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Iatroduction Geodesic flows on Euclidean Polyhedra is an old

subject that goes as far back as 1906 ( see [30] and a related
paper [9]). An example of such flow is the motion of a billiard
ball inside a polygon. If the angles of the polygon are rational
multiples of 5t , the direction of any geodesic takes only a
finite number of values as time varies. Fixing these values one
obtains invariant "surfaces" of the billiard flow and the induced
flow on the typical invariant surface is minimal ( (13] ). It

is not known whether the flow is typically ergodic ( with res-
pect to the invariant Lebesgue measure ). The general expecta-
tion is that the answer is yes. This question is related to the
question whether the typical interval exchange transformation is
ergodic where the answer is positive ( [SJ', [32] ).

For arbitrary polyhedral surfaces the condition that vertex
angles are JT-rational does not insure the existence of invari-
ant surfaces for the geodesic flow. One needs an extra condition
that a certain holonomy group is finite. I call surfaces satis-
fying this condition almost infegrable because the geodesic flow
which is a Hamiltonian system with two degrees of freedom has an
additional integral of motion which "almost commutes” with the
Hamiltonian.

In section 1 I associate with any almost integrable surface
S a Riemann surface R in a purely geometric way. T he genus of R
is determined by the vertex angles of S ( formulas (8) - (11) ).
The main tool is the developing map of the universal covering of
S onto the complex plane. The typical invariant surface of the
geodesic flow of S ( which I call the billiard flow ) is isomor-
phic to R. Topology of the foliation of the phase space of the

billiard flow into invariant surfaces is discuS$sed in f4] .



In section 2 I show that the billiard flow of S is equivale
to a family b§ 06 <2 of flows on R ( bg is the billiard
flow in direction 8 ). They are pulled back by the developing

map from the linear flows l; on €. At the end of the section I

extend to b; the minimality results of [13] and [3] .

in section 3 I consider a class of almost integrable surfa-
ces S given essentially by condition that the full holonomy grou
of. S is discrete. For these surfaces‘j"rheorem 3 shows the billiar
flow b: is minimal if and only.if it is uniquely ergodic ( whic
is false for general almost integrable billiards ). Moreover in
this case b; extends the liﬁear flow 1; on a certain torus int
: is minimal if and only if 6 i
an irrational direction. If ¢ is irrational the discrete spec-
trum of b; coincides with the spectrum of 13‘; i.e. b:
weakly mixing modulo 1: . It is reasonable to expect that for

rinsically defined by S, thus b
is

almost integrable polyhedral surfaces outside of this class the
the billiard flow b; is typically weakly mixing.

Some results of the paper generalize ;; billiards on higher
dimensional polyhedra which will be discussed elsewhere. It is
worth mentioning that almost integrable billiards ( both classi-
cal and quantum ) are of interests to physisists ( cf. [Q] ' [1]
Finally I would like to thank A. Katok and W. Veech for useful

consultations.



1. Developing map.

By Euclidean polygon I mean a closed bounded polygon P in
€ such that its interiour P\QP is connected. If P has more than
one connected component we say that P has obstacles. If an obs-
tacle has two adjacent sides with angle 27 between them we
say that P has a slit ( see fig. 1 ).

A Euclidean polyhedron S ( of dimension 2 ) is a collection
of Euclidean polygons with some sides identified by isometries.
These polygons, their sides and vertices are the faces, edges and
vertices of S. A Euclidean polyhedron has a natural topology.

Definition 1. A polyhedral surface S is a connected Eucli-

dean polyhedron homeomorphic to a topological surface.

If a polyhedron S has vertices with an infinite number of
adjacent faces then S can not be a polyhedral surface. We say
that s ié a polyhedral surface with vertices at infinity if S
with those vertices punctured becomes a topological surface.

" Henceforth polyhedron will mean a polyhedral surface possibly
with vertices at infinity. A polyhedral surface is closed if it
has no boundary, 93S = ¢. If 23S # @ twoLopies of S glued a}ong
the boundary make a closed pothedral suLface dS called the
doubling of S. 7

There is a canonical complex structure on any oriented poly-
hedral surface. Assume first that dS = @. Every face and every
edge of S define a coordinate patch in an obvious way. Let A
be a vertex of S and let P1""'Pn be the adjacent faces in an
orientation preserving order. Let TERRY aln be their respective
angles. The sum « = ol +,.. .+ dnkis called the angle of A. Cut

1

U= P1U...UPn along an edge b and unfold it on € so that A goes

into 0 and b goes into the positive real axis. Let 2z be the comp-
25L/oL

lex coordinate in €. Then u = 2 is a well defined coordinate



in U. It is straightforward to check that the transition function:
of the covering are complex analytic and that the éomplex struc-
ture thus defined does not depend on the choices made. If
9S # @ the imbedding S < dS defines the complex structure on S.
Thus any polyhedral surface is a Riemann surface.

Polyhedra 51, S, are isomorphic if there i§ an invertible

mapping £: S, — S, which maps faces isometriclly onto faces. Giwv

1
a polyhedron S one can always draw new edges on the faces of S.
This operation does not change S essentially.

Definition 2. Polyhedra s._, 32 are called equivalent if

1
they can be made isomorphic by adding new edges.

A group G of automorphisms of a polyhedron S acts properly
discontinuously if for any face P<c S there is only a finite num-
ber of g&€ G such that gPNP # @. The quotient S/G is naturally a
polyhedrqn.

Definition 3. A mapping f£: S1 -e-sz of polyhedra is a cove-

ring if for any X€ S, there is s; equivalent to 31. a subpolyhed-

1
ron R of S; containing x and a group G acting properly discontin-
uously on R such that S2 is equivalent to R/G and flR coincides
with the natural projection R — R/G.

If G acts on S properly discontinuosly the covering
S — S/G is the regular covering with the group G of deck trans-
formations. The reader should be aware of the fact that coverings
of polyhedra are usually branched. If dS # @ the natural involu-
tion of dS defines a regular covering dS — S with the group 2/2
of deck transformations branched at &S <ds.

Let S be a closed polyhedron and let Xq be an interiour
point of a face POC:S. Consider the set of continuous loops on S
starting at x, and avoiding vertices. The set of homotopy classes

of these loops endowed with the.usual composition becomes a grouP



ﬂf(S) called the full fundamental group of S. If $ is the topolo-
gical surface obtained by puncturing S at the vertices then
I (S) = 9, (S). Let S # 9. Imbed S into dS and denote by S, S,

the image and the mirror image of S respectively. Let x,€ S

1 1

be the mirror image of x,€ S,. To define fo(s) we start from
the set of piecewise smooth loops transversal to 3S. Any such
loop Y has a unique lifting S; on dS if we agree that ? passes
from S0 to S1 or vice versa each time as y bounces off 0S.

We say that X1 and X2 are equivalent if ?1 and ?2 are homo-
topic with fixed ends. The set of equivalence classes with the
usual operation is the group -W-'f(S) . There is an obvious exact

sequence

1 — S'L'f(dS) — ﬂ'f(S) —_— Z/2 — 1

A natural class of coverings of S is associated with the sub-
. groups of ﬂf‘(S) .Let 9Ss =20 and let H< SZ'f(S) be a subgroup. The
imbedding Sc S identifies H with a subgroup of 9Z1 (S). Let sH

be the unbranched covering of S corresponding to H. Filling in
the punctures we obtain a closed polyhedron SH and the covering
Pyt st S. If dS # @ we define SH for any subgroup H¢ J‘Tf(dS)

to be (dS)H with .the projection Py: (dS)H ~—» dS —» S. The cove-

H

rings p,: S — S are branched at the vertices and above 0S.
H .

Proposition 1. Let S be a closed polyhedron and let H, G be

subgroups of ﬂ'f(S) .

1. The inclusion H<G holds if and only if there is a cove-

G

ring q: SH —» S~ such that the diagramm below commutes

q
Sl'x —bSG

o, | 1a o n

S — S



2. For any subgroup Hcstf(S) we have 5Z'f(sH) = H. If H is
normal then Pyt sH — $ is a regular covering with the group
SC.(S)/H of deck transformations.
The proof as well as the generalization to the case 8S # ¢
are straightforward and are left to the reader.

Definition 4. The covering of S corresponding to the tri-

vial subgroup of 9l'f (S) is called the universal covering and is
denoted by 's'
Definition 5. Let S be a closed polyhedron. A mapping

W: S —C is called a developing map if it is an isometry on
every face of S and if for any edge b there is a neighbourhood
U of the interiour of b such that ¥ is an isometry on U.

A closed polyhedron S is called developable if there exists

a developing map ¥ : S — C.

Proposition 2. 1. For any closed polyhedron S the following
are equivalent:
a) S is developable

b) there exists an isometry \Io: Po —>» € of a face Po
which continues to a developing map Y 4+ S — €

c) any isometry ‘PO: Po —~> € uniquely extends to a developi
map ¥Y: S — C.

2. Let 0(C) denote the group of is;ometries of €. Then for

any two developing maps ¥, ¥ of S there is a unique g€ 0(C)
such that ¥ = gey.

The proof is obvious and is left to the reader. For general
polyhedra S the universal covering S is the minimal developable
covering of S.

Definition 6. A polyhedral surface S is called rational if

any vertex angle of S is JC times a rational number.

Let S be a closed rational polyhedral surface. Let A, with



angles mei/ni ( my and n, are coprime ) 1 €I be the vertices
of S. Denote by gié Vl'f(S) the equivalence class of a simple

A
loop around A,. Let W(S) be the minimal normal subgroup of TCf(S)

i
containing g?i, ielI.

A
Definition 7. The corresponding covering S of S is called

the universal rational covering. If O0S # ¢ we set g = (dS)A.

For any polyhedron S we denote by Fq (S) the fundamental
group of the underlying topological space. We say that S is
simply connected if .'7[:‘ (s) = 1.

Theorem 1. Let S be a compact connected rational polyhedral
surface. Let o{; = Tmy/n, i = 1,..., M and o(j = 2£7t'-'rujlnj
j=M+1,...,N be the angles of boundary, respectively interiour
vertices of S.

1. ’S\ is a closed connected simply connected noncompact de-
velopable polyhedral surface.

2. 3 with its canonical complex structure is isomorphic to
€ if and only if all the numerators m, = 1 4 =1,...,N. Other-
wise g is isomorphic the hyperbolic plane H. The isomorphism
£: §—»u ( g —» € ) carries the group SZ;_(S) = SZ'f(S)/-V'E(S) of
deck transformations of the covering g —» S into a discrete
group G of isometries of H ( respectively € ). If S is oriented
the brojection p: 's\ —= S is a covering of Riemann surfaces.

'3. For any developing map ¥: S — ¢ there is a homomor-
phism h: Vtr(S) — 0(C) such that Y is h-equivariant i.e. for
any g € &'r(S), Yog = h(glo¥? . The developing map ¥ is a holomo-
rphic branched covering. The branching locus is contained in the
set of vertices of g . The branching number at a vertex Reé‘
with angle 2®m is m.

Proof. By Proposition 1, 5L'f(’sv) = 1 therefore m(g) = 1.

A
The regular covering q: g—-— S induces a homomorphism
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q: S/‘;’(S) — %’1 (g) —» 1. The group J;(S) is generated by conju-
gates of g?i ( taking dS if necessary we can assume without loss
of generality that 9SS = @ ). Each g, fixes some vertex at infini
ty of ;, thus S';-'(S) is generated by transformations with fixed
points. Those generate the kernel of q,, thus 9{1(3) = 1. Let A
be a vertex of 3 above A with angle 29%Tm/n. Going around A once
and lifting to g we rotate 3 about K by 2&Xm/n. Repeating it n
times we make a circle around ?\, thus 3 has a finite number of
adjacent faces and its angle is 2%m.

The covering S is developable almost by definition. €hoose
a reference face Po and an imbedding ‘?0: P0 —» €. Continue '1’0
analytically along a path X going from P, to some face P. The
path )X defines a face Pc S above P. 1f X' is another path homo-
topic to x we continue 5’0 analytically along the homotopy from
x to x ‘and conclude that the imbedding of '5 depends only on the
homotopy class of X . Thus ‘Po uniquely continues to a develo-
ping map ¥: S — C. Any automorphisﬁ\ g of S defines another deve
loping map Vv = WYog. By proposition 2, there is an isometry h
of € such that ¥ = he'f. Thus h = h(g) is a homomorphism of
SZ'f (S) into 0(C) such that ¥ is h-equivariant. Let 2& g be a
vertex above A€S with angle 29Tm/n. Let gé& O'Cf(S) correspond to
a simple loop around A. Then h(g) is the rotation of € by 25Tm/n
around ‘p(ﬁ). Thus h(g™) = 1 therefore 9%(8) C Ker h. Therefore
P ; —» € is invariant with respect to 3%(8) and it descends
uniquely to a developing map of S. Since S is developable it is
not compact. By now we have proved 1) and 3).

Since the Riemann surface $ is simply connected and noncom-

A
pact, by Riemann mapping theorem S is either € or H. Denote both

>

by D and let £: S — D be an isomorphism. Any g€ Wr(s) is an au-

tomorphism of § therefore it preserves ( reverses ) the canonical



complex structure of § if g preserves ( reverses ) the orienta-
tion. Thus f induces an isomorphism of 92}(5) onto a discrete
subgroup G of the group O(D) of ‘isometries of D and identifies
S with the quotient D/G, If S is oriented then S = D/G as a Rie-
mann surface.

It remains to prove that D = € if and only if m, = 1
i=1,..., N. Doubling S if necessary we assume that 9S = @.
Any polyhedral surface S defines an orbifold ( [11] ch. 13 ),
The orbifeld S-has. an Euler number ;KO(S) which is given by ( [11])

Fot®) = Y51 - 5 t1-a/m) (2)

where )((S) is the Euler characteristic of S. For any closed
compact polyhedral surface S with vertex angles o(i i=1,..., N
we have

/(s-) - =

(1 -o(i/zm: ) (3)
i=1

The proof of (3) is an elementary computation and is left to the

reader. If S is rational with vertex angles 29Thi/ni, {2) and

(3) yiela
N
Fots) = 2=, (1-mm (4)

Thus fO(S) £ 0 and the equality takes place if and only if m, = 1
for all i. Let G0 be a subgroup of G of a finite index n which
acts freely on D. Then D/Go = R —» S is a covering with n sheets
and )((R) = /(0‘(R)'..For a covering R — S of orbifolds with n

sheets we have ( [31], 13.3.4 )

JFoR) = n X (s) (5)

If D = € then }K(R) = 0 which is equivalent to mg =1 1=1,..., N



- - -

Definition 8. A rational polyhedral surface is called flat

( respectively hyperbolic ) if the corresponding orbifold is iso
morphic to €/G ( resp. H/G ) for some discrete group G of iso-
metries.

The following Corollary has been established in the course
of proof of Theorem 1 ( compare with [11] , 13.3.6 ).

Corollary 1. A rational polyhedral surface S is flat if

and only if the numerators of all vertex angles of S are equal
to 1. Otherwise S is hyperbolic.

Corollary 2. Let S be a polyhedral surface with boundary

vertex angles S'Emi/ni i=1,..., M and interiour vertex angles
Zﬂfmi/ni i = M+1,..., N. Then the Euler number of the orbifold

modeled on S is
M N

K ol8) = (1/72) :4;1 (1-m;)/n, + Eu:h (1-m,) /n,

Proof. If 0S = @ (6) becomes (4). If S # @ (6) follows

from (4) for 4S and ;(O(dS) = 2/(0(51 by (5).
P

From now on we identify S with D ( D = € or 8 ) and the
group :Jfr(S) of the deck transformations cf 'S\ with G<O(D). We
choose a developing map ¥: D — € and let [ < 0(C) be the image
of G under the homomorphism h: G — 0(C). Choose an origin in C,
let C be the unit circle around it and let O(C) be the group of
isometries of C. Then O(C) contains 0(C), the normal subgroup
€ of translations and 0O{(€) = O(C):C is the semidirect product.

Denote by h: G — 0(C) the composition of h and the homomorphism

o(e) — o(c). Let I = h(g)< 0(C).) s shace

+ — For reasons that will become clear in Section 2.
h ( resp. h ) is called the holonomy ( resp. restricted holono-
my ) homomorphism. The group /” ( resp. r ) is called the holon®
my ( resp. restricted holonomy ) group of S.
Denote by 2/n<€0(C) the gréup of rotations of order n and

by D, €0(C) the group generated by reflections in two axes meeti!



at the angle 37/n. These groups exhaust all finite subgroups of
o(C).

Proposition 3. Let S be a compact rational polyhedral surface

and let n be the least common multiple of denominators of the

—

vertex angles of S. Then /" contains Z/n. If dS # @ or if S is
not orientable then f'— contains Dn’

Proof. Let 0S = ¢ and let A, i = 1,..., N be the vertices
of S.with angles 2.‘1’mi/ni. Let gie G be the simple loops around
A;. Then h(g,;) is the rotation of € around ‘P(Ai) by ZJz‘mi/ni.
Thus h(gi) is a primitive rotation of order n,. Together they ge-
nerate z/n. Let S be nonorientable and let S be the orientable
2-sheeted covering of S. Then G is generated by G(S') and an ele-
ment r such that rzé G(S') . Then h(r) reverses orientation so h(r)
is a reflection. Thus /= Contains Z/n and a reflection, so D < /_‘-'-
If dS # ¢ then G is generated by G(dS) and an element r such
that r2 = 1. Then h(r) is a reflection therefore DnCﬁ.

Definition 9. A rational polyhedral surface S is called

almost integrable if the restricted holonomy group /’is finite.

In order to state Proposition 4 we need the notion of the
developing map along a path. Let X (t) 0£t<£1 be a piecewise
differentiable path on a polyhedron S going through faces
P1,..., Pn' Any isometry W': 1?1 — ¢' uniquely analytically con-
tinues to an immersion ¥: 3 P 1 € which is an isometry on
each P i* The mapping Pis tlt;1developing map along X .

Proposition 4. 1. A polygon P is almost integrable if and

only if the angle between any two sides of P is Yl -rational.

2. Let a rational polyhedral surface S be homeomorphic to
the sphere with n holes, n = 0,1,... Let Q1,..., Qn be the con-
nected components of dS. Choose a sidé.ai of 0. and a path X,

from a; to a1 i=1,... n-1, Then S is almost integrable if
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and only if developing S along Xi we map a;, a;,, into interva
a{, a;+‘ respectively with a J-rational angle between them.

3. Let a rational polyhedral surface S be homeomorphic to
the projective plane ez. Then S is almost integrable.

Proof. The group G is generated by simple loops 9, around
vertices, ST;(S) and the flipping r if 9S # 3. Proving Proposi-
tion 2 we have shown that ﬁ(gi) i=1,..., N and h(r) generate
a finite group F"/-: . In case 1 , ﬁ(ﬂ'1 (S)) = 1 and in case 2
hi .77.‘1 (S)) is generated by rotations of finite order, thus /-; is
finite. In case 3 let r be the generator of JI,(S). Then H(gi)
generate Z/n and h(r) is a reflection, thus j= = Dn'

Corollary ( of the proof ). 1. Let S be a polygon with
JT-rational angles between the sides and let n be the least com
mon multiple of denominators. Then i? =D,.

2. Let S be a rational polyhedral surface homeomorphic to
82 ( resp. Pz or the disc ) and let n be the least common mul-
tiple of denominators of the vertex angles. Then i:=:2/n
( resp. Dn ).

Let S be an almost integrable polyhedral surface. Denote b
G, the kernel of h: ¢ — 0(C) and by R the quotient D/Gy. fhen
R = SGO is the regular covering of S with the group /7 of deck
transformations. In this notation we have

Theorem 2. 1. Let n be the least common multiple of deno-
minators of the vertex angles of S. Then f?a-zln/ if s is orie
table and S = @, othewise / = D+ where n’ is divisible by n-

2. R is a compact Riemann surface without boundary and
Gy = jta(R). The vertex angles of R are multiples of 27€. The
Euler characteristic /1(R) is equal to neXO(S) ( resp. 2n17b(5)
if s is closed orientable ( resp. otherwise ) where ;(O(S) is

the Euler number of S given by (6).
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3. The group /"0 = h(Go) is a finitely generated group of
parallel translations. The developing map ¥: D — @ yields a com-

mutative diagramm
(7)

where one corner is left empty because in general /,o is not
discrete.

Proof.l.By Proposition 4, the group/; is cyclic if S is clo-
sed orientable and /-: is dihedral otherwise. By Proposition 3, F
contains Z/n, Dn in the first, resp. second case.

2. If g& G has fixed points then g has a fixed vertex A. Thus
h(g) fixes ¥Y(A) therefore E(g) # 1. Analogously if g reverses
orientation then h(g) does and h(g) # 1. Thﬁs Go acts freely by
conformal automorphisms of D inducing a complex structure on
R = D/.GO and JT, (R) = G,. Besides X(R) = X (R) = (71 Zo(s) by (5).
The vertex angles of g are multiples of 29T and G0 acts freely, thus
vertex angles of S/G0 a;e the same.

—

3. By definition hJG,) = 1 so /"occ. If p is the genus of R

then Go and therefore rO have.2p generators. The rest is obvious.
Riemann surface R is called the canonical covering of an almost
integrable surface S. In cases of particular interest we can calcu-

late / and the genus g(R) from the angles of S.

Proposition 5. 1. Let S be a pblygon and let n be the least

common multiple of the denominators of angles between sides of S.

Then [ = D . Let .ﬂ'mi/ni i=1,..., M be the vertex angles. Then

M
g(R) = 1 + (n/2) 2= (m-1)/n,; (8)
i=1

2. Let S be homeomorphic to the disc and let HZmi/ni i=1,...,

( ZJl'mi/ni i = M+1,..., N ) be the boundary ( interiour ) vertex

angles of S. Let n be the least common multiple of ng. Then i= = D
[
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and

g(R) = 1 + n[(1/2) (m.-1)/n, + (m,-1)/n (9)
i=1 S T TR L

3. Let S be homeomorphic to the sphere ( resp. projective

plane ), let ZSZmi/nl i=1,..., Nbe the vertex angles and let

n be the least common multiple of n,. Then "= z/n ( resp. [ =D

i° 1
and
N
g(R) = 1 +(n/2)3_ (m,~1)/n (10
=3 i i
respectively
N
g(R) =1 +n23 _ (m~=1)/n, (1]
i=1

—

Proof. The groups r were calculated in Proposition 4.Using
that 2-2g(R) = X(R) = t/"l;{o(S) and formula (6) we obtain (8) -

2. Invariant surfaces of the billiard flow

If a polygon P is imbedded in € we define the unit tangent
bundle T(P) to be the set of tangent vectors in € of length one
with base points in P and looking into P. The unit tangent bundle

T(S) of a polyhedral surface S is made from T(Pi) where P, runs

i
over the the faces of S, with obvious identifications.

The set T(S) is the phaée space of the geodesic flow on S
which is modeled on the movement of the billiard ball on S.The
ball goes straight inside each face. It bounces off. boundary
edges in an obvious way. Let the ball come to an ‘edge.b between
two faces P and Q, at an interiour point of b. We imbed PUQ in
€ and let the ball cross straight from P to Q. We agree to stop
the ball at the vertices. We will see later that the trajectory
has a natural continuation through a boundary ( interiour ) ver-

tex if and only if its angle is /n ( 29C/n ).

Definition 10. The flow on T(S) defined above is the billi-

ard flow of S.
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I1f x€S is not a vertex, the fiber T(S)x is isomorphic to C
and the measure on T(S) which is locally the product of Lebesgue
measures on € and C is preserved by the flow ( cf. ['7] }). For any
x € S the set of directions which will bring the ball from x to a
vertex is countable therefore the set of ve€T(S) which generate
finite lifetime trajectories has measure 0.

Let x, Y€ S be not vertices and let X be a piecewise diffe-
rentiable curve on S going from x to y and avoiding vertices.De-
veloping S on € along y we obtain an isomorphism T(S)’x = Xx Cc
and an isometry TX: 'I.‘(S)x — '1'(8)y which depends onX. It is called
the parallel translation along X . Moreover Tx depends only on

the homotopy class([yle€ T (S) .

From now on S is assumed to be almost integrable. Choose a

base point Xp€ Po and an imbedding ({’0: Py — C. For any x€S a
choice of curve x from x to X4 gives an isometry TX: T(S)x — C.

a—

Varying X changes Tb’ by the action of /7 on C which yields a
__mapping @ : T(S) — C/F . Let now R be. the canonical covering
.of S and identify Py with a face of R. Since the restricted holo-
nomy group of R is trivial the construction above yields a mapping
®: T(R) — C. The act;.on of I° on R obviously lifts to T(R) and
we have T(S) = T(R)/T . Tﬁe projection p,: T(R) — T(S) of unit
tangent bundles commutes with the billiard flows on T(R) and T(S),

so the billiard on S is the quotient of the billiard on R.

Proposition 6. 1. The mapping @ (@) uniquely extends to a
continious mapping @ . T(R) —> C | @: T(S) — C/[° ) invariant
under the geodesic flow and such that the following diagramm

commutes

T (R) —@-—'C

Py b } ' (12)
T(S) — C/F

2. For fec (0 €c/F ) denote by RgS T(R) ( R C T(S) ) the
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set given by the equation @ (v) =6 ¢ @(v) =0 ) and by b: ( bt

‘
the flow induced on RO( R.’. ) by the billiard flow on .T(R) ( T(¢
Let d: C — C/F be the projection and say that @ec/F 1is reg
lariany 6ea'( 8) has a trivial isotropy subgroup. Then

i) for any fec the projection q: T(R) — R induces a mappi
P R which is one to one everywhere except over vertices ¢
R with angles 29tm) 25Tt where it is m to one.

: R
9

ii) for any regular OeC/F and any Oed ™ 1(8) the projec-

tion p, induces an isomorphism of R6 onto R5 which commutes witl

t
é

lar and let /-"9 be the isotropy subgroup of Ged '(8). Then .

b, and b.; on R, and R5 respectively. Let feC/F be not req

acts on R, and RG- = Ré/ﬁg with the flows bg and b} respectit
ly. '

Proof. First of all we can define the billiard flow and the
parallel translations on '1‘(§) where everything commutes with the
projection q,: T(g) -— T(R) . Parallel translations on T(g) defir

A

@ : T(g) - C. Parallel translations and the geodesic flow on

T(§) are induced by-the developing map ¥ : é‘... €, thus é is ir
duced by the composjition of 9,: 'r('é) —» T(C) = € x C and the p1¢
jection € x C —» C. Therefore @ is defined everywhere includir
the vertices, and commutes with the geodesic flow. All the mappi
are compatible with. the action of relevant groups, so we have ti

following commutative diagramm

Go Vad
| T(S) —— T(R) — T(S)_
e 8] ! (13)
c A, ¢ ——~p

vwhich implies (12).
Fixing some 8 ec we have the constant vector field x9 on

which is a crooss-section of T(C) —» C. The set 3 (4 T(g) is the
Q

the pullback of X 8 by Y*. The branching properties of ¥ imply
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A

A
( see Theorem 1 ) that the projection SG —> S is one to one eve-

rywhere except above the vertices with angle 2Jtm where it is m
to 1. Factoring out by the action of G o Ve obtain the same proper-

ty for the projection Ry — R. Commutative diagramm (12) implies

that for any § ec// the action of " on T(R) permutes Rg for
i

eié d-1 ( 9) according to the action of ” on d-1 { 6 ). The assertion

2, ii) follows.

Proposition 6 shows that for reqular gé ¢/ ( ¢/ has two

——

irregular points if /7 is dihedral and none otherwise ) the bil-
liard flow on the invariant surface Ry < T(S) is equivalent to

that on Ry < T(R) for any 6 éd°1(5). The projection qa :eRG — R

. 0
being essentially one to one, we transfer by it the flows,from RB
to R, denote them by the same symbol and call them the billiard

flows on R. It is clear from the construction that the flows b;'

have singularities at the vertices of R with angles 2%m > 27.

Proposition 7. 1. Let fec ve arbitrary. Let 12 be the 1li-

near flow on € in direction 8, i.e. 1;’ z = z+tej'9. Let 50:112 be

the pullbacK of 1; on § by the developing map ¥ : § — €. Then

the flow ‘9:11: is imvariant under the action of G, and the in-

t
e L ]
2. Each vertex of R with angle 2fm » 29t is a singular point

duced flow on R = D/G0 is b

of b;' with uniformly spaced m incoming and m outgoing separatrices.
Other points of R are.nonsingular. The flows b; are obtained from
anyone of them by rotation.

3. The billiard flow on T(R) is isomorphic to R x C with the

flowb: onRxG .

Proof. From the proof of proposition 6 we see that-the geode-
A N
sic flow on S is induced by the developing map ¥P: S — ¢. Propo-

sition 7 follows easily from that, the information about the bran-

ching of ‘P'( Theorem 1 ) and the fact that h(Go) = /-'0 is a group



- 16 -

of translations, thus it leaves 1: invariant.

Recall that a flow' bt on a manifold M smooth everywhere exce
at a finite number of multisaddle singular points is called mini-
mal ( quasiminimal in {13/ ) if every infinite semitrajectory of
bt is dense in M.

Definition 11. A direction 8 is called rational with respect

to a set X € ( with respect to a group /" of translations )
if there exists a straight line in direction 6 which meets X in
two points.( which contains points Z40 Z, such that the vector
z,-2, éer ).

Proposition 8. Let S, R, r'o and bt be as before. Denote by

e
Ve ¢ the image of the branching locus of ¥Y: D — €. Then the flov
b;' has a periodic trajectory ( resp. is not minimal ) only

if @ is rational with respect to [/ 0 ( resp. € is rational with
s
repect to V ).

P with period

A A
T. Then the lifting X(t) on D has the property J(e+T) = g X(t)

A

for some gé Gy. The image Y. X(t) is the straight line in direc-

Proof. Let X(t) be a periodic trajectory of bt
A

tion 0 , thus the equivariance of ¥ implies that € is rational

with respect to [/~ o Let b" have a nondense infinite semitajec-

tory. Arguing as in (3] or a: in [13] ( they used Theorem 9 of (6] )
we conclude that bg has a tra.jectory X going going from one
singular point to another. Thus both ends of X are vertices of g
and ¥ ( x ) is a straight interval with both ends in V.

Corollary. The flow be is not minimal for at most a countab!
set of @'s.

Proof. The set of branching points of ¥: s — € is at most
countable.

3. Ergodicity and spectrum

We keep notation of the previous sections. We will assume



that the reader is familiar with the basic notions of ergodic the-
ory cf.[7] ). The flow b: preserves the Lebesgue measure on R

and let Ut be the corresponding group of unitary operators on L. (R

6 2
For any discrete group L of translations the linear flow 12 define

a flow on the torus T = €/L denoted by the same symbol. When L is

fixed we call 8ecC rational if it is rational with respect to L.

t
]

only if it is minimal if and only if @ is an irrational direction.

It is well known that the flow 1 on the torus is ergodic if and

Moreover for irrational € the flow is uniquely ergodic and for

t
8

will generalize these facts to a certain class of billiards.

rational & it is periodic. The spectrum of 1 is discrete. We
Denote by Voc V the set of fixed points of rotations in .
Any two points x, y€ € define a translation vector y-x.

Definition 12. A point z€ C is called rational if there exist

zoé Vo and a1. azé f'o such that z-z, = r1a1+r2a2 for some rational

numbers Lyr T,

Theorem 3. Let S be an almost integrable polyhedral surface
such that the monodromy group /7 c0(€) is discrete and such that
all points of V are rational. Then

1. The following are equivalent:

i) direction A is irrational

ii) flow bZ is minimal

iii) flow bta is ergodic with respect to the Lebesgue measure
iv) bg is uniquely ergodic

2. Let 1: be the linear flow on T = C/fb. For every irratio-

nal direction 6 the discrete spectrum of b; coincides with the

spectrum of l; . Continuous spectrum of bt

g is empty if and only

if s is flat.
3. For every rational € the flow b; is periodic.

Proof. By Theorem g’if fb is discrete we can complete the com-
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mutative diagramm (7)

Y‘)

D—C
G r
ol 1 7o (14)
R -2, T
and obtain a branched covering p: R —» T which projects bg on 1;'.

It is well known ([2]) that there are 17 types of discrete
groups [ co(C). The set VO of centers of rotations together with
the axes of reflexions and sliding reflexions of /—1 form a pattern
of lines and points in €. Choose two generators a, b of /-'0 and
take some 0¢& VO for origin in €. An obvious choice of coordinates
X, y identifies a with (1,0), b with (0,1) and [°) with the inte-
ger lattice. It is easy to verify case by case that every A¢ Vo
has rational coordinates and that every axis of ( sliding ) ref-
lection has two points with rational coordinates. By assumption
all points of V have rational coordinates. Observe that all points
of V\V, come from ( boundary ) vertices of S with angle (7Im>5T)
29Cm » 25T and that V is invariant under the action of f;. There is
a finite number of orbits of \; under the action of fa, therefore
coordinates of z€ V have a common denominator, say N. Let /'6/ be
the group generated by a/N and b/N, denote by x, y the new coordi-
nates and by Q = {ng,y51 } 'the fundamental parallelogramm of /'6
Now the poipts of V have integer coordinates and the whole plane
is the union of Q = /m—1,5 x{m, n-18y Sn} . Denote the torus

m,n

c/r‘; by T' and let p': T — T' and p, = p'p: R — T, be the natu-

1
ral, projections. The covering P, is branched only over (0,0) € Ty
therefore R can be represented as a union of Qi i €1 such that

P4 Q; — Q is 1 to 1 for all i. Choose a fundamental domain RED
for R, then R = \{ Qi' Since the composition of ¥: D —» € and the

projection C — T1 maps each Q:L onto T Y must waDd Qi on some Qm

1'
for all i€ I. Thus we have represented R by the unicn of a finite



number of Qm n where each Qm n may be taken with some multiplicity.
14 ’
Let us call this object a polygon in the lattice /'6 and denote it

by R'. Identifications on the boundary of R' are made by elements of

r,.

This construction represents the billiard flow b;’ on R by the
linear flow in the direction & on R'. When the ball reaches a bo-
undary edge of R' it gets trarfferred by some g€ /':, to another edge
and then it keeps rolling in the same direction. We think of Qi i€r1

as parallelograms on the plane and let X be the union of their

t
é

some Qi reaches after a certain lapse of time Te the tops of two

bases. Thus X = [0,1) X I. The flow b that started on the base of

parallelograms of R' which are identified with the bases of say

Qj and Qj' ( see fig. 2 ). Every point of the base of Qi comes to
its destination translated by the rotation number ol of the flow
t
16
part of Qi comes to Qj" Denote by J’.‘ the rotation of [0,1) by oL .

. Besides the [0,1-d ) part of Q; comes to 0y and the [1-« ,1)

The previous remarks can be summarized as follows. There exists a
function w(x) on [0,1) with values in the permutation group ZI of
I symbols, constant on [0,1-ol) and [1-&,1), so that the first
return to X map T;L’is T (xrd) = (x+d ,wi(x)1) for x€f0,1), ieI.
Thus Td. is the extension of rotation JD L with the squewing func-
tion w(x). The flow b; is the suspension of E with the constant
time of return function. To show 1) we use an unpublished result of
W. Veech.

Theorem ( W. Veech ). Any extension Td of an irrational ro-
tation J”,‘ with the squewing function constant on [0,1-06) and
[1-al +1) is ergodic if and only if it is minimal. The ergodic com-
ponents of ‘Z',‘ are in 1 to 1 correspondence with the orbits on I
of the group W< ZI generated by w([0,1-<)) and w([1-4,1)).

T

Ergodicity or minimality of o 1S equivalent to the ergodi-
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city or minimality of b: . If the direction § 1is irrational
then b: is minimal by Proposition 8 and o is irrational. Thus
by Veech's Theorem, T“ is ergodic. For finite extensions of ir-

rational rotations ergodicity is equivalent to unique ergodicity

t

5 1is periodic and bt

which proves 1). If 6 is rational then 1 o

being a finite extension of it is too.

Pulling back by p: R — T we imbea L2 (T) isometrically into
LZ(R) as functions constant on the fibers. We want to show that
LZ(R) @ Lz('r) does not contain eigenfunctions of b: . Every non-
trivial eigenfunction of bg comes from an eigenfunction f(x,i)
of T& with an eigenvalue A . Then g(x,1i,3) = £(x,1)f(x,3)
is a fixed function of the transformation T“, of [0,1) xIx1I
given by (x,i,j) —» (x+ol ,w(x)i,w(x)3j). Thus by Veech's Theorem,
g(x,i,j) = h(i,j) where h(wi,wj) = h(i,j) for any we W. Since o

is irrational, W acts transitively on I and let W, be the isotropy

0
subgroup of 1. Set h(i) = h(1,i), then h is Wo-invariant, ithi =1

and
f(x,1) = h{i)£f(x,1) (15)

Applying T.L to both sides of (15) we get
'Y .
f(x+el,w(x)i) = h{w(x)i)E(x+el,1) = Xf(x,i) =)h(i)f(x,1).

Thus for each generator wé W there is an interval J< [0,1) such

that for all xé J

1

hwi)h(£)~! =X £(x, 1) E(x+ o , 1) (16)

Since. the right hand side of (16) does not depend on i, there is

c{w) € C such that
h(wi) = c(w)h(i) (17)

for all 1€I. It follows from (17) that w —= c(w) is a character

of W trivial on W,. 15 yernel W, is a normal subgroup containing

Wy- Let m = ['w:w1j and let I, < I be the W,-orbit of 1. Then the

1
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character c¢ induces an isomorphism c: W/W1 —» 2/m, the group W,

has m orbits I OVRERY ]:m of the same magnitude IIi/m and Z/m

permutes them cyclically. Therefore if we represent elements of I
by pairs (i,3) 1$ig¢m, 1<3< 1Il/m we have T (x,i,3) =

= (x+ eL,c(w(x))i,w1 (x,1)j) . The transformation G :(x,i) —

A
(x+d ,c(w(x))i) is a m-point extension of ﬁ,‘ and Tol. is a

I1I1/m-point extension of U:L . The eigenfunction f of Td‘ is the

~

pullback of an eigenfunction £ of O:& and G;‘ is equivalent to
the rotation by o of [0,m).

Going back to the flows we conclude that there is a torus 71“,
a branched covering S: R — T with II1/m sheets and a covering

q: T — T, ( unbranched ) with m sheets such that P, = gp and

1
the diagramm below commutes

~

T
t 1.,t
b LPR R

T g 1

T 4
& T
9 P—

(18)

o —

Thus we know that any eigenfunction of b: is the pullback from
some torus T. Let T = C/Fo. Since R is the polygon R with sides

7~

identified by some gy the group /-'0 must contain all 9+ But 95
generate [, thus /_—;)C f:; which implies that the covering

‘5: R — T factors through p and some ?;’: T -—>"i“ where all the map-
pings commute with the relevant flows. This argument shows that T
is the maximal torus covered by R. Therefore we can pull an eigen-
function back from "E toR in two steps: first from "i" to T and then
from T to R. Continuous spectrum of b: is empty if and only if

L, (R) = L, (T) which means that p: R — T is an isomorphism.

Corollary 1. Let P be a polygon with l-rational angles bet-

ween the sides. Assume that the obstacles of P have no slits. If
the group I generated by reflections in the si’~s of P is discrete

t
then the billiard flow be is uniquely ergodic for any irrational



direction @ .

Proof. Since P has no vertices with angles JTm>Jr . we have
Vv = vo. Points of Vo are rational with respect. to /7 by defini-
tion, therefore assumptions of Theorem 3 are satisfied.

Corollary 2. Let P be a polygon with J7-rational angles bet-

ween sides such that the group ad generated by reflections in the
sides of P is discrete. Let A be a vertex of a slit and continue
the line of the slit until it crosses a side b of P. Let B be the
point of intersection. If the vector B~A is rational with respect
to 7 ( for every slit in P ) then b; is uniquely ergodic for
any irrational direction é .

Proof. The slit and the side b define axes of reflections
in /7. It was mentioned in the proof of Theorem 3 that those are
rational lines. The intersection of rational lines is a rational
point. Since B is rational and B-A is by assumption, A is rational
and we are in the range of Theorem 3.

Corollary 3. Let S be a rational polyhedral surface homeo-

morphic to the sphere or the disc. Assume that S has no boundary
( interiour ) vertices with angles Hm ( 25Tm ), m> 1. Let the
holonomy group I” of s be discrete. Then for any irrational direc-
tion O the billiard flow b;’ is uniquely ergodic.

Proof. By Proposition 4, 2), S is almost integrable. Apply

Theorem 3.

Corollary 4. Let S be any Platonic solid except the dodeca-

hedron. Then the billiard flow on S in any irrational direction
is uniquely ergodic.
Proof. Developing S on the plane one sees that /" is not

discrete only for the dodecahedron.
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fig. 1

The shaded regions are obstacles. Obstacle 2 has a
slit and obstacle 3 is just a slit.



tig. 2

%
.
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Boundary edges are identified by parallel translat.
The shaded area does not belong to R', it comes fr
an obstacle.
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