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The following is an expanded version of the notes for a survey lecture
on the theta correspondence given at Trichy in January, 1996. The
aim of this lecture was to give an idea of this theory and some of the
directions in which the theory has been developing. Perhaps some of
the material contained in sections 2,3 and 9 is new.

The theory of theta correspondence gives one of the few general
methods of constructing automorphic forms of groups over number
fields, or admissible representations of groups over local fields. The
method has its origin in the classical construction of theta functions
which are modular forms—perhaps of half integral weight on the upper
half plane. Here is a special case of this:

Let ¢ be a positive definite quadratic form on a lattice L C R", ¢ :
L — Z. Let p be a homogeneous polynomial on R" which is harmonic
with respect to g, i.e. Ayp = 0 where A, denotes the Laplacian with
respect to ¢ (A, is the unique homogeneous differential operator of
order 2 invariant under the orthogonal group of b) Then,

) = Lp(v)erc:

vEL

is a modular form on the upper half plane of weight £ + degp. It isa
cusp form whenever the polynomial p is of positive degree.

We refer the reader to the original papers of Howe [Hol], [Ho2],
[Ho3], of Weil [Wel], [We2], the book of Gelbart [Gel] for the one-
dimensional case, the book of Moeglin-Vigneras-Waldspurger [MVW]
for a comprehensive account of the local theory, and the exposition of
Gelbart [Ge2] as well as an earlier exposition of the author [P1] for
more details on theta correspondence.



The plan of this paper is as follows :

(i) Construction of the Weil Representation.

(ii) K-type of the Weil representation.

(iii) Character of the Weil representation.

(iv) Dual reductive pairs and the local theta correspondence.
(v) Global theta correspondence.

(vi) Towers of theta lifts.

(vii) An example of global theta lift: A theorem of Waldspurger.
(viii) Functoriality of theta correspondence.

(ix) Theta correspondence for unitary groups.

(x) The Siegel-Weil formula.

(xi) Application to cohomology of Shimura Variety.

(xil} Recent generalisations of theta correspondence.
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1 Construction of the Weil Representa-
tion

Let k be a field which is not of characteristic 2, and is either a local
field or a finite field, and let W be a finite dimensional vector space
over k together with a non-degenerate symplectic form:

WxW =k

Wy, we =< Wy, Wy > .

Define the Heisenberg group H(W) = {(w,t)|w € W,t € k} with the
law of multiplication :

1
(wl,tl) . ('le,tz) = ('wl + we, ¥ 4t 5 < Wy, Wy >).

The Heisenberg group is a central extension of W by k :

0=k—->HW)->W 0.



The most important property about the representation theory of the
Heisenberg group is the following uniqueness theorem due to Stone and
von Neumann.

Theorem 1 For any non-trivial character ¢ . k = C, there exists a
unique irreducible representation py of H(W) on which k C H(W) acts
by Y.

Now we observe that the symplectic group Sp(W) operates on
H(W) by g(w,t) = (gw,t). By the uniqueness of py, Sp(W) acts
by intertwining operators on py. Namely, there exists wy(g), unique
up to scalars, such that

py(gw, t) = wy(g)py(w, hwy(9) ™"

The map g — wy(g) is a projective representation of the symplectic
group Sp(W), and gives rise to an ordinary representation of a two
fold covering of Sp(W). We will denote this two fold cover by Sp(W),
and the representation of it so obtained again by wy(g). The group
Sp(W) is called the metaplectic group, and the representation wy/(g)
the Weil or metaplectic representation. In this paper we will often
abuse terminology to call the Weil representation of the metaplectic
group Sp(W) as simply the Weil representation of the symplectic group
Sp(W).

Remark 1: If W is a symplectic vector space over a separable field
extension K of a local field &, then tr <, > gives a symplectic structure
on W with its k vector space structure, to be denoted by Ry, W. If 1 is
a character on k, then ¢¥x(z) = ¥(trz) gives a character on K. We have
the inclusion of Sp(W) in Sp(Rg /W), and it is easy to see that the
restriction of the Weil representation of Sp(Rx/x W) for the character 3
of k to Sp(W) gives the Weil representation of Sp(W) for the character
Wi of K. Moreover, if W, and W, are symplectic vector spaces, then
Sp(W1) xSp(W?) is contained in Sp(W,®W,), and the restriction of the
Weil representation of Sp(W; & W2) to Sp(W,) x Sp(W,) is the tensor
product of the Weil representations of Sp(W;) and Sp(W;). Obvious as
these properties are, the reader will of course notice how special these
are to the Weil representation: that their restriction to such small
subgroups remains of finite length.



1.1 Explicit realisation of the Weil representation

Let W = X @Y where X and Y are subspaces of W on which the
symplectic form is identically zero. The Weil representation of Sp(W)
can be realised on the Schwarz space S(X) which is the space of locally
constant, compactly supported functions on X if k£ is non-Archimedean,
and has the usual definition if k£ is Archimedean; the action of Sp(W)
on §(X) is as follows:

(5 eam) 70

| det A f(*AX)
(p 7)70 = w10

(2 o)1) = 2

where 7y is an 8-th root of unity, and f denotes the Fourier transform
of f, and % is a non-trivial additive character of k.

Remark 2: [t will be interesting to construct a model of the Weil
representation which is defined over a number field. Since all the known
models require the additive character % in an essential way, it does
not seem obvious if it can be done at all. We note that the Weil
representation of SL(2) can be defined over a number field because it is
sum of its even and odd pieces, both of which are defined over number
fields: the even piece because it occurs in an explicit principal series,
and the odd piece because it is induced from compact open subgroup.

2 K-type of the Weil representation

The decomposition of a representation of a p-adic group when restricted
to a maximal compact subgroup is an important information used in
the representation theory of p-adic groups. In this section we carry
out this decomposition for the Weil representation of Sp(W) where W
is a symplectic vector space of dimension 2n over a non-Archimedean
local field k. We let < .,. > denote the symplectic form on W, and
let % be the character of k& of conductor 0 used in the definition of the
Weil representation. The investigation in this section is in response to
a question of B.H.Gross.



We will assume that the cardinality of the residue field of & is ¢
which is odd so that the metaplectic covering splits over the maximal
compact subgroup Sp(L) of Sp(W) stabilising a lattice £ on which the
symplectic form < .,. > is non-degenerate. The Weil representation of
Sp(W) becomes a representation of Sp(L). Let I'(s) be the standard
filtration on I' = Sp(L), so that ['(0) = Sp(L), and I'(s) = ker[Sp(L) —
Sp(L/x'L)].

We will prove the following theorem in this section.

Theorem 2 The Weil representation w of Sp(W) when restricted to
the compact open subgroup Sp(L) decomposes as the sum of irreducible
representations as follows:

W = wp Z (w;-m eaw;m)

m>1

where wy is the trivial representation of Sp(L), and wy,,, w3, are irre-
ducible representations of Sp(L/7*™L) of dimension §[¢*™" — g*m=1"]
form > 1.

Proof : The proof of this theorem will be carried out in the lattice
model of the Weil representation, cf. [MVW], which is most suitable
for the study of K-types. We recall that the Weil representation of
Sp(W) in this model is realised on the space S¢ (W) of locally constant
compactly supported functions on W such that

fz+a)=9(< z,a >)f(z)

for all z € W, and ¢ € L£. The action of an element g of Sp(£) on a
function f in S; (W) is given by

(g- f){=z) = fgz).

Let S C Sc(W) be the subspace of functions on W which are
supported on 7#~™L. From the functional equation f(z + a} = ¥(<
z,a >)f(z), we find that the functions in S, are invariant under
translation by 7*L, and therefore &,, can be thought of as a space
of functions on 77 L /7™ L with a specified property under translation
by L£/7x™L. It follows that

dim S, = t(r~™L/L) = ¢*™™.



Define S (resp. ;) to be the subspace of &,, consisting of even
(resp. odd) functions. Define wi, (resp. ws,) to be S7/S;h_; (resp.
S../85,.-1). We find that

1
dim w;_m = dim wz‘m — [q2mn 2(m—-1)n]'

Clearly, T leaves S,,,S,5, S, invariant, and it is easy to see that
['(2m) acts trivially on S,,. Since I'(m)/T'(2m) is an abelian group, it
acts by characters which we now find. Let g = 1+7™y € I'(m), f € Sn,
and z € #~™L, then

(g-H=) = flg=z)
= f(z +yr™z)
= Y(<z,y7™z >)f(z)
= P(< 97 >)f(z).

It follows that the action of I'(m)/T'(2m) on &, is via the characters
g — ¥(< z,9z >)f(z) where z € 77 L. We denote this character
of T'(m)/T(2m) by ., so ¥:(9) = ¥(< z,gz >). It is easy to see
that ¥, = ¢, if z = ymod L, or if 2 = —y mod L. Conversely, if
%y = 1, then cither £ = ymod £, or z = —y mod L. Moreover,
Yaz(g9) = ¥(A7'gA), for A € Sp(L). Tt is a well-known fact that
Sp(L) acts transitively on vectors in 77™L which do not belong to
7~™+1L. Therefore, if 9, appears in an irreducible representation of
Sp(L) for one value of z in 77™L not belonging to 7=™+1L, 1, for all
values of y in #=™L not in #~™+'L appears. Since ¥, = 1, if and
only if z = ymod L, or z = —y mod £, we find that the dimension
of an irreducible representation of Sp(L£) containing %, is divisible by
1lg*™ — g*™=1"]. Since wj,, w, are representations of Sp(L) of di-
mension §[¢?™" —¢*™=1)"} these must therefore be irreducible, proving
the decomposition

w=wy D Z (w;m D wQ_m)'

m>1

3 Character of the Weil representation for
SL(2)

In this section we calculate the character of the Weil representation of
SL(2, F) for anon-Archimedean local field /. Because of the relation of
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the character formula obtained in this case to transfer factors, it would
be very interesting to calculate the character of the Weil representation
of the general symplectic group. For some work along this direction in
the Archimedean case, see [Ad2].

The calculation of the character will be done in 2 steps. The first
step consists in identifying those characters of E! (the subgroup of
norm 1 elements of a quadratic extension E of F') which appear in
the Weil representation. The answer is in terms of an epsilon factor.
This is a result due to Rogawski [Ro], based on an earlier work of
Moen. Next we need to add all the characters of E' which appear in
the Weil representation to find the character of the Weil representation
restricted to E'. This kind of summation of characters was done by
the author (for a different purpose!) in [P2]. We set up some notation
now.

Let E be a quadratic field extension of the local field F' with wg/p,
the quadratic character of F™* associated to E by local class field theory.
The group E' of norm 1 elements of E is contained in SL(2, F), and the
metaplectic cover of SL(2, F) splits over E!. However, there is no natu-
ral choice for this splitting. For each character «y of E* whose restriction
to F'* is wg/r, one can construct such a splitting. Let ¢ be an additive
character of F and § be an element of E* with tr(§) = 0. This choice
of § gives rise to a symplectic structure on the 2-dimensional F' vector
space E : z,y — tr(6z7). Let w(v,d) denote the Weil representation
of SL(2, F') associated to the additive character ¥ and this symplectic
structure on E. Let w(vy,,d) denote the restriction of w(y,d) to E!
via the splitting given by . The following theorem is due to Rogawski
[Ro, Prop. 3.4].

Theorem 3 Let x be a character of E'. Then x appears in w(y,,6)
if and only if
e(vxz' ¥e) = x(—1)7(20)

where xp(z) = x(2/%), ¥p(z) = P(trz).

The following theorem is Lemma 3.1 of [P2] proved there only for
odd residue characteristic.

Theorem 4 For the character iy of E defined by vo(z) = P (tr[— %’:]),



we have

wi/r (55
S o) = el iy 2L ED)

r—=2 2
E(Xa d)O) =1 =z R
X|re = wg/p

where, as s usual, the summation on the left is by partial sums over
all characters of E* of conductor < n.

Since e(yxg', ¥e) = x(—=1)7(26)e(vxz", %), it is easy to see that
the above two theorems imply the following.

Theorem 5 The character of the Weil representation w(vy,,6) at an
element y = 1/% € E' is equal to

E/F(J J).

e(we/r,P) — E

Remark 1: We note that any 2 of the theorems of this section im-
plies the third. Theorem 3 is valid for any residue characteristic, but
Theorem 4 is known only for odd residue characteristic, and therefore
Theorem 5 is available only in odd residue characteristic.

Remark 2 : One can use Remark 2 of section 1 together with the
character formula for the Weil representation of SL(2) to calculate
the character of the Weil representation at many elements of Sp(n)
for general n. This presumes of course that, in the notation of that
remark, the restriction of the character of Sp(R W) to Sp(W) is the
character of the Weil representation of Sp(W), which can be justified.

4 Dual reductive pairs and the local theta
correspondence

Definition: A pair of subgroups (G,,G2) in Sp(W) is called a dual
reductive pair if

1. Z(Gy) = Gy, and Z(Gy) = Gy where Z(G,) (resp. Z(G,)) de-
notes the centraliser of G (resp. Gs) in Sp(W).

2. G1 and Gy are reductive groups, i.e., any G, invariant subspace
of W has a Gi-invariant complement; similarly for G.
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We refer to [MVW] and [P1] for a detailed discussion on dual re-
ductive pairs. Here we only note the following examples.

(i) Let V be an orthogonal space {i.e. a finite dimensional vector
space over k with a non-degenerate quadratic form), and let W be a
symplectic space. Then V ® W is a symplectic space in natural way,
and we have a map

O(V) x Sp(W) — Sp(V @ W).

The pair (O(V}, Sp(W)) is a dual reductive pair.

(ii) Let K be a quadratic extension of k, V' a Hermitian and W
a skew-Hermitian space over K. Then the k-vector space VW is
naturally a symplectic space under the pairing

<V @wy, U Quwy >= tl';(/k(< V1, Vg >< Wi, Wy >)

and gives rise to a dual reductive pair (U(V), U{(W)) in Sp(V@xW).

For a dual reductive pair (G, G,) in Sp(W), let G, be the inverse
image of G| in Sp(W), and G, the inverse image of G;. The groups
G, and G are known to commute. The Weil representation wy of
Sp(W) can therefore be restricted to G x Ga. Let 7 be an irreducible
representation of G,. Define

A(m) = wy/ NKerg : ¢ € Home, (wy, 7).

A(r) is a smooth representation of G; x Gy, and can be written as
A(m) = 7 @ 8y(m) for a smooth representation 8y(m) of Gs.

The following theorem is due to Waldspurger [Wa2] building on the
earlier work of Howe.

Theorem 6 The representation Oy(m) is of finite length, and, if the
residue characteristic of k is not 2, it has a unique irreducible quotient.

Notation : The unique irreducible quotient of f;(7) is called the local
theta lift of m, and is denoted by (). We warn the reader that the
representation wy and hence () depends on the choice of the additive
character ¢ : k — C.

Examples:
(i) For V = K, a quadratic extension of k thought of as a 2-
dimensional vector space over k£ with the norm form as the quadratic
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form, SO(V) = K, and the theta lift from O(V) to SL(2) can be used
to construct representations of GL(2) from characters of K*. This
construction is due to Shalika and Tannaka.

(ii) For V = D, the quaternion division algebra over k, together
with the reduced norm as the quadratic form, SO(V') is essentially D' x
D!, and the theta lift from SL(2) to D' x D! is related to the Jacquet-
Langlands correspondence between discrete series representations of
G L(2) and representations of D*.

Remark : The question about the field of definition of the Weil rep-
resentation (cf. Remark 2 at the end of section 1) is interesting also
because one could use it to give a field of definition to #(r) in terms of
a field of definition for 7.

5 Global Theta Correspondence

Let A be the adele ring of a number field F. Let ¢: A/F — C be a
non-trivial character. Let W = X @Y be a symplectic vector space over
F with X and Y maximal isotropic subspaces. We have S(X(A)) =
®,S(X(F,)), and there is a pojective representation of Sp(WW)(A) on it
by taking the tensor product of local representations. This projective

representation of Sp(W)(A) becomes an ordinary representation of a
2-fold cover Sp(W)}(A) of Sp(W)}(A).

The following theorem is due to Weil [Wel].
Theorem 7 The covering Sp(W)(A) — Sp(W)}(A) splits over Sp(W)(F).

Because of this theorem, Sp(W)(F') operates on S(X(A)). Define a
distribution 8 on S(X(A)) by 8(¢) = Xzex(r) ¢(z). This distribution
is Sp(W)(F)-invariant. Therefore, the function g — (g - ¢) = 6,4(g)
defines a function 84 : Sp(W)(F)\Sp(W)(A) —» € These are called
theta functions. They are slowly increasing and therefore automorphic.
For an appropriate choice of ¢ on A, this gives the adelic analogue of
the classical theta function of weight = % on the upper half plane given

by L,
0(z) = E e,
neZ

Now let (G1,G2) be a dual reductive pair in Sp(W) which is defined
over F. Let 7; be a cuspidal representation of GGy, realised on a space of

10



cusp forms on G1(F)\G1(A). For a function ¢ € S(X(A)) and f € =,
define '

0s(f)(92) = /G] 0s(g1, 92) f (g1)dgn.

(FN\G1(A)
04(f) is an automorphic form on G, and is called the theta lift of f.

Example: The theta function 8(z) = T, p(v)e™) defined in the
introduction is such a lift from O(V') to SL(2) where V is the quadratic
space R" with ¢ as the qudratic form.

Basic questions for the global theta lift are

(i) When is the space generated by 8,(f) for ¢ € S(X(A)) and f
in the representation space m; not identically zero?

(i) What is the relation of the space spanned by 8,(f) to local theta
correspondence?

As regards (ii) we have the following due to Rallis [Ral].

Theorem 8 If 64(f) consists of cusp forms, then the space generated
by them is irreducible and is ®6,(m)) where m) denotes the contragre-
dient of m,.

Rallis has a theory about when 6,(f) is cuspidal in terms of “towers
of theta lifts”, which we review next; this theory also partially answers
part (i) of the above question (see Theorem 5(ii) below).

6 Towers of theta lifts

Let V be an even dimensional quadratic space over a number field which
does not represent any zero. Let H be the two dimensional hyperbolic
quadratic space (with quadratic form XY). The “towers of theta lifts”
consists in looking at theta lifts from Sp(W) to various O(V + nH).
The following theorem is due to S. Rallis [Ral].

Theorem 9 (i) Let m be a cuspidal automorphic representation of
Sp(W), and 6,(x) its theta lift to O(V + nH). Let ny be the small-
est integer > 0 such that O,,(m) # 0. Then 0,,(7) is cuspidal, and
On(7), n > ng, are non-zero, and never cuspidal for n > ng.

(i) 0,(7) # 0 for n > dimW .
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There is an analogous statement in which W is varying in the tower
H,2H, ... (H now hyperbolic symplectic), or for dual reductive pairs
consisting of unitary groups.

Remark: Let I; be the space of cusp forms on Sp(W) whose theta
lifts to O(V + jH) is non-zero but is zero to O(V +iH), ¢ < j. Then
the theorem above gives an interesting decomposition of the space S
of cusp forms on Sp(W) as

S=IQG)II®...IQ,;

where dimW = 2n. The cusp forms in different /;’s behave quite
differently.

The theory of towers of theta lifts works in the local case also when
one replaces the word cuspidal by supercuspidal, cf. the work of Kudla
in [Ku). This work of Kudla in [Ku| determines the principal series
in which 6,(7) lies as a subquotient in terms of 8,,(x), and is based
on the calculation of the Jacquet functor of the Weil representation of
Sp(V ®W) with respect to the unipotent radical of maximal parabolics
of O(V} and Sp(W).

Recently Harris, Kudla and Sweet have used these towers of theta
lifts to construct a very interesting infinite family of supercuspidals on
Unitary groups of dimension tending to infinity from one supercuspidal.
We review this work briefly.

Let V and W be two Hermitian spaces over a quadratic extension
K of a local field k. Let & be a non-zero element of X whose tracc
to k£ is 0. Multiplication by § turns a Hermitian space into a skew-
Hermitian space, and therefore (U(V),U(W)) form a dual reductive
pair in Sp(V ®x W). By [HKS] the metaplectic cover of Sp(V@xW)
splits over U(V)xU(W), the splitting depending on choice of characters
X1, X2 of K* such that x| = w‘}(i?}cw, and xalk = Wi Here wii
is the quadratic character of £* associated to the quadratic extension
K of k£ by local class field theory.

Note that there are two isomorphism classes of Hermitian or skew-
Hermitian spaces of a given dimension depending on their discriminant
over a non-archimedean local field.

The following theorem is due to Harris, Kudla and Sweet [HKS].
Here we fix the splitting of the metaplectic cover of Sp(V ®x W) over
(U(V),U(W)) for the choice of the characters xi, x2 of K* with x, =

X2 = X-
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Theorem 10 (i) Suppose that n is a supercuspidal representation of
U(V). Then the theta lift of m to U(W) is non-zero for ezactly one
Hermitian space W with dim(W) = dim(V).

(1t) Given a Hermitian space W with dim(W) = dim(V), the theta
lift of m to U(W) is non-zero if and only if

wisk(discV) = e(BC(m) ® X, Y Jwr (—1)x (6 wiese (discW),

where e(BC(m)®x, ¥k ) ts defined and studied via the “doubling-method”
in [HKS].

This theorem implies that starting with a supercuspidal represen-
tation w on U(V'), one can construct a supercuspidal representation on
U(W @nH) for n > 0, dim W = dim V, and the space W has the prop-
erty that the theta lift of 7 to U(W) is zero. Repeating the process
one gets an infinite family of supercuspidal representations on unitary
groups of increasing dimensions. This theorem of Harris, Kudla and
Sweet also generalises Theorem 3 due to Rogawski.

7 An example of global theta lift: A the-
orem of Waldspurger

The theorem of Waldspurger {Wal] completely describes the global
theta correspondence between PGL(2) and SL(2), and is proto-type
of theorems expected in general.

Theorem 11 (i) For a cuspidal automorphic representation m of PG L(2),
0. # 0 on SL(2) if and only if

L(m,3) #0.

(ii) For an automorphic representation m of SL(2), 8, # 0 if and
only if m has a - Whittaker model.

(111} For an automorphic representation m on PGL(2), ®,0,(m,) is
automorphic if and only if the sign in the functional equation for the
L-function of m, e(m, 3) = 1.

Remark : For generalisations of Waldspurger’s theorem above, see
the book of Rallis [Ra3], and also a recent paper of Furusawa [Fu].
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8 Functoriality of theta correspondence

The basic question about local theta correspondence is to classify those
representations m; of G for which 6(m;) # 0, and then to understand
() which is a representation of G5 in terms of the representation m;
of GG;. Here, for simplicity, we assume that the metaplectic cover of the
symplectic group splits over GG} X G5, and that we have fixed such a
splitting to regard the Weil representation of the metaplectic group as
a representation of Gy X (G5, to define the theta correspondence between
representations of G; and G,.

We recall that according to conjectures of Langlands, representa-
tions of a reductive group G over a local field & are parametrised by
certain homomorphisms of the Weil-Deligne group W, of k into a com-
plex group associated to G, called the L-group of G and denoted by
Lg

bW = LG,

This conjecture is known in the Archimedean case and in some other
cases. The conjecture implies in particular that if there is a map be-
tween L-groups “G; — G5, then there is a way of associating rep-
resentations of GG; to representations of G,. Correspondence between
representations of two groups arising in this way is said to be “functo-
rial”.

We refer to the work of Rallis [Ra2] in this regard which proves the
functoriality of the theta correspondence for spherical representations.
When the groups G; and Gy are of “similar” size then again the theta
lifting seems functorial. There are some conjectures and evidences on
this by Adams in the Archimedean case [Ad1 |, which are refined and
extended by this author [P3]. However theta correspondence in general
does not respect functoriality; see [Ad1], and [HKS).

We also refer to the recent work of Gelbart, Rogawski and Soudry
[GRS] for rather complete information about theta lifting from U(2)
to U(3) both locally and globally and its relation to functoriality.

9 Theta correspondence for unitary groups

In this section we propose two conjectures, one local and the other
global, about theta correspondence between two unitary groups U(V)
and U(W) where V and W are Hermitian spaces of dimension n over a
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quadratic extension K of a local or a global field k. The local conjecture
is motivated by the work [HKS] recalled in section 6 which we refine
using the Vogan parametrisation.

If the local field is non-Archimedean, then there are precisely two
isomorphism classes of Hermitian spaces, and if £ = R, then there are
n+1 isomorphism classes represented by U(n,0),U(n—1,1),---,U(1,n—
1),U(0,n). We will denote the L-group of U(V) by “U(n) which is a
semi-direct product of GL(n, C) by the Weil group of & which acts via
its quotient Gal(K/k) by g — ®,'¢7'®, " where @, is the n x n matrix
whose only non-zero entries are at the places (z,n +1~-14),1 <i<n
where it takes the value (—1)**1,

Let V and W be Hermitian spaces of the same dimension over a
quadratic extension K of a local field k. We fix ¥ to be a non-trivial
additive character of k, and v the additive character of K obtained
by composing 1 with the trace map from K to k. In this section
we fix x to be a character of K* whose restriction to &* is wgk, the
quadratic character of £* associated to I if n is odd, and we let x to
be the trivial character of K* if n is even. Let § € K* be fixed with
tr(§) = 0. Multiplication by § turns the Hermitian space W into a
skew-Hermitian space, and therefore we get a symplectic structure on
V@ W. The character x is used to define a splitting of the metaplectic
covering of Sp(V ®@x W) over U(V) x U(W), cf. [HKS]. The Weil
representation of Sp(V @k W) associated to the character ¢ thus gives
rise to a representation of U(V) x U(W). When working globally, we
take global analogues of ¢ and .

We will assume the conjecture of Langlands and its refinement due
to Vogan [Vo| about parametrization of representations of reductive
groups over local fields. Very briefly put, let G be a quasi-split reduc-
tive group over a local field k£ with “G' its L-group which is a semi-direct
product of GV with the Weil group of k. Fix a non-degenerate charac-
ter of the unipotent radical of a Borel subgroup of G. Then according
to Vogan, the isomorphism classes of pairs (¢, ) where ¢ is a param-
eter for GG, and g is an irreducible representation of S, the group of
connected components of the centraliser of ¢ in GV, is in one-to-one
correspondence with the set of irreducible admissible representations
of pure inner forms of G. For G, the quasi-split unitary group U(V}),
the pure inner forms of U(V}) are in one-to-one correspondence with
the isomorphism classes of Hermitian spaces of dimension n = dim(V}).
The additive character s of the trace zero elements of K defined by
s(z) = P(dz) can be used to fix a non-degenerate character on the
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unipotent radical of a Borel subgroup of U(V;). In the case of a non-
Archimedean local field, the discriminant of V| denoted discV, which
is an element of k*/NmIK™* determines the isomorphism class of V. A

Vogan parameter (¢, ;) corresponds to a representation of U(V) such
that

discV ) 5.0.1.

_1 — —_—
w(=1) = ik (discvo
where —1 is the element of S4 represented by the negative of the iden-
tity matrix in GL(n, C).

9.1 Component group for parameters of unitary
group

Let ¢ be a parameter for unitary group U(V') over a local field k defined
in terms of a Hermitian form on an n-dimensional vector space V over
the quadratic extension K of k. The restriction of ¢ to the Weil group
Wy of K is a group homomorphism ¢y : Wi — GL(n,C). Assume
that ¢ decomposes as a direct sum of irreducible representations ¢x =
S-n;¢; where n; is the multiplicity of the irreducible representation
#i. The representation ¢, has the property that ¢ = ¢% where ¢
denotes the dual of ¢, and ¢ is the representation of Wy obtained
from ¢y by conjugation by an element of Wy which does not belong
to Wg. It follows that the set of irreducible representations ¢; which
appear in the decomposition of ¢ is stable under ¢; — ¢;. The
group of connected components of the centraliser of ¢ in GL(n,C) is
a product of Z/2’s, the product being indexed by those irreducible
representations ¢; which have the property that ¢; = ¢! and either n;
is odd, or if n; is even, then the dimension of ¢; is even. We do not give
detailed proof of this here, except to point out that these connected
components arise because of the maps,

Lu) x 0(2m +1,C) = “U(2mn + n),
Ly(@2n +1) x Sp(2m, C) — “U(dmn + 2m),
Ly(2n) x O(2m, C) — “U(4mn).

These maps arise essentially because ®,, is symmetric if » is odd, and is
skew symmetric if n is even, and the fact that under a suitable ordering
of basis, ¢, ®®,, = P, if either n or m is odd, and ®,, @ Vs, = Pypmn
where Wy, is the 2m x 2m matrix whose only non-zero entries are at
the places (i,2m+1—1),1 <17 < 2m where it takes the value 1.
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9.2 The character x4 and the local conjecture

For representations ¢; of Wy with the property ¢; = ¢}, det ¢; which
is a character of K~ is trivial on those elements of £* which are norms
from K*. Recall that we have fixed § € K* with tr(é) = 0. Since
§2 = —Nm(d), det¢;(d?) = det¢;(—1). We will now be using ep-
silon factors associated to representations of the Weil-Deligne group for
which we refer to the paper of Tate [Ta]. Since e(¢;, %) = (i, ¥k ),
and €(¢;, Yi) - €(¢F, YK) = det ¢;(—1), we find that

e(¢i, ¥ic)? = det ¢i(—1) = det ¢;(6?),

and therefore
e(¢i, ¥x) - det §;(671) = 1.

To a parameter ¢ of the unitary group U(V), we will now define
a character x4 on the group of connected components Sy of the cen-
traliser of ¢ in GL(n, C). For the decomposition of ¢ restricted to K,
o = ¥ n;p;, as we have seen, the group of connected components is
parametrised by those ¢; for which either n; is odd, or if n; is even,
dim ¢; is even. Define x4 on the Z/2 associated to ¢; to be the character
of Z/2 taking the non-trivial element of Z/2 to

e(d: ® X, k) - det(d; @ x)(671).

Remark 9.2.1: From the definition of x4 given above, it is easy to
see that

Xe(—1) = e(¢x ® X, %K) - det(dx ® x)(67"),

where —1 is the element of Sy represented by the negative of the iden-
tity matrix in GL(n, C).

Conjecture 1: If an irreducible admissible representation my ® my
of U(V) x U(W) appears as a quotient in the Weil representation of
Sp(V @k W) restricted to U(V) x U(W), then

(i) The Langlands parameters associated to my and my are the
same; call it ¢.

(ii) The theta correspondence between U(V) and U(W) as V and
W vary over the isomorphism classes of Hermitian spaces of dimension
n define a bijection between the irreducible admissible representations
of pure inner forms of U(V') belonging to one Vogan L-packet to itself.
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(iii) The characters xy and xw associated to the representations
my and mw are related by

XV = Xw " X¢
where x4 is the character of the component group Sy defined earlier.

Remark 9.2.2: If for an irreducible admissible representation 7 of
U(V), the theta lift of 7 to U(W) is non-zero for a Hermitian space W
with dimV = dim W, then from the above conjecture together with
Remark 9.2.1 above, and equation 9.0.1, the discriminants of V' and W
are related by

wip(discV) = e(r ® x, i) det(Bi ® X) (5™ Jwsesu(disciV),

where ¢ is the parameter of m base changed to K.

Remark 9.2.3: One can formulate a conjecture analogous to Conjec-
ture 1 in the case when dim V and dim W differ by 1. Since this will
entail introduction of alot more notation, we dont do it here, except
to say that if dimW = dimV + 1, then for an irreducible admissible
representation m on U(V'), with Vogan parameter (¢, 11), the character
on the group of connected component of the parameter ¢’ associated
to the theta lift of 7 to U(W) is the various ways in which pxs can be
extended to Sy under the natural map from S, to Sy .

9.3 Theta lifting for unitary groups: The Archimedean
case

We verify conjecture 1 for the discrete series representations of the uni-
tary group U(p, q) here. The discrete series representations of U(p, q)
are parametrized by p + ¢ tuples of distinct numbers (A, Ao, - -+, Apiq)
where all the A; are integers if p + ¢ is odd, and all the A; are half-
integers (i.e., belong to $Z but not to Z) if n is even. We can further
assume that

M>A > > 2, and

’\p+1 > ’\p+2 > > )‘p+q'

Assume that

M>A> A > 0> A >0 > A,
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Apt1 > > Ay > 0> Apypgn > - Ay,

then it follows from the results of J.-S. Li [Li1] that the local theta lift
of mx to U(r, s) for r + s = p + ¢, is non-zero if and only if

r=a-"b+gq,

s=b—-a+p,

and in this case the local theta lift is again a discrete series whose
Harish-Chandra parameter is

(’\‘I) T /\a)/\p+b+la v 'a’\p-l-Q)’\p-H)' : '1’\p+b) ’\a-l-l’ T, ’\P)

Actually as Li is concerned with local theta lifts of discrete series repre-
sentations of U(p, ¢) to general unitary groups, he expresses his results
in results in terms of Vogan-Zuckermann A,(A) which even in the case
of same size unitary groups that we are considering, seem much more
complicated because of various shifts involved.

Given this result of J.-S. Li, conjecture 1 can now be easily checked
for discrete series representations of U(p, ¢), but before we can do that,
we need to review the Vogan parametrization of representations of real
reductive groups.

Let G be a connected real reductive group, and G its L-group
which is a semi-direct product of its connected component GY by the
Weil group Wg of R. Let ¢ : Wr — G be a discrete series parameter.
The centraliser Sy of ¢ in GV is a finite abelian group isomorphic to
(Z/2)" where r is the rank of G over C. The pure inner forms of G =
U(p, q) are U(p+q,0),U(p+q—1,1), -, U(0, p+q). We will fix a quasi
split pure inner form of G together with a non-degenerate character
on the unipotent radical of a Borel subgroup. According to Vogan,
given this data, every character of (Z/2)P*¢ determines in a bijective
manner, a pure inner form of G and a discrete series representation on
it with parameter ¢. Starting with a pure inner form and a discrete
series representation on it, one constructs the character of (Z/2)P+7 as
follows. Let T be a compact Cartan subgroup of G, and x : T'— S! a
regular character, i.e., < x,a ># 0 for every root « of G. This defines
a system of positive roots by declaring a root to be positive if and
only if < x,a >> 0. Define a root to be compact if the corresponding
root space is contained in the unique maximal compact subgroup of G
containing 7', and non-compact otherwise.
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The torus 7" in G with associated +ve root system gives rise to a
torus TV, and a Borel subgroup BY in GV, and for each root a of T, we
have the coroot a¥ : G,, = TV. A coroot oV is called compact if and
only if the root « is compact. Now given a discrete series parameter
¢ : Wr — UG, we can assume that its restriction ¢gc- to C* lands
inside TV. The discrete series representations with Harish-Chandra
parameter x : T — S!, has ¢¢c. given by ¢¢o-(2) = (2/Z)X where y
belongs to X*(T) = X,(TV) ® C.

The centraliser of ¢ : Wr — LG in GV is precisely the elements
of order < 2, TV{2}, in TV(C). For each positive simple root c, we
have ¥ : G, = TV. Let aq = a¥(~1) € TV{2]. Corresponding to
the discrete series on G with Harish-Chandra parameter vy, define the
character x : TV[2] = C* by demanding x(a,) = ~1 if v is a compact
simple root. In the case of unitary groups, the a,’s generate a subgroup
of index 2 of TV[2], so one needs one bit more of information to fix x
(which distinguishes U(p, ¢) from U(g, p)), but which we dont describe
here.

We will not verify conjecture 1 for general discrete series represen-
tations, but we will do it in a particular case; the general case is very
similar. We will take the discrete series representation on U(p, ¢) with
Harish-Chandra parameter

A=A > >0 > 00> > A > 0> Apjar > 0 > Apyge

According to Vogan, this representation of U(p, ¢} defines a charac-
ter x4 on the component group (Z/2)P*? which for the standard basis
{e:} of (Z/2)P*9 has the property that:

xaleieip) =—1 for i=1,..,p+qg-1i#p.

By the result of J.-S. Li recalled above, the lift of this discrete
series representation on U(p, g) is non-zero for U(p + ¢ — a,a), and the
Harish-Chandra parameter for the theta lift is:

AL> A2 > > A > Appan > > Aprgs
Apt1 > Appa > -0 > Apya.

The corresponding character xp on the component group (Z/2)P*4

has the property that:
xpleeis1) = -1, for i=1,..,p+qg—1,i%#p,i#p+a.
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For m € 1Z, let x,, be the character of C* given by z — (2/z)™,
or re'? — e?™ We have [Ta,3.2.5]

e(xm) =17°™, if m>0, and

e(xm) =4, if  m<O.
It follows that for m € $Z — Z,

xm(®) lelxm) =—1  if m>0

and
xm (D) re(xm) = 1 if m<O.

If n is odd, then the character x fixed at the beginning of this section
(to split Sp(V @ W) over U(V) x U(W)) can be taken to be X1, and
if n is even, then as always, x is taken to be the trivial character. It
follows that for any value of n, A ® x is a tuple consisting of elements
in %Z — Z. Therefore the character y, associated to the parameter A
is

xale:) =1, if i<p+a,

xale) =-1, if i>p+a

Clealy, xg = x4 - xa on the index 2 subgroup of (Z/2)?*7 generated by
ei€ir1- lfnisodd, then —1 = (1,---,1) € (Z/2)P*7 gives a complement
to this index 2 subgroup. Since x4 corresponds to a representation of
U(p,q), and xp to a representation of U(p + ¢ — ¢,a), from 9.0.1,
xp(—=I) = xa(=I)(—1)**", verifying xpg = xaxa. U n is even, our
result has this ambiguity by 2.

9.4 Global theta correspondence for unitary groups

Conjecture 2: Let V be an n-dimensional Hermitian space over a
quadratic extension K of a number field &£, and let 7 = ®,7, be a
cuspidal automorphic representation of U(V'). Then,

(i) There exists an n-dimensional Hermitian space W over K such
that the local theta lift is non-zero at each place of k if and only if the
global epsilon factor ¢(BC(n) ® x, ¥x) = 1, where BC(7) denotes the
base change of m to GL(n, K).

(ii) Suppose that W is an n-dimensional Hermitian space over K
such that for each place v of &, the theta lift, call it (), of m, is non-
zero. Then the global representation ®,8(m,) is a cuspidal automorphic
representation of U(W).

21



(ii) If W is as in (ii), then the global theta lift of 7 to U(W) is
non-zero if and only if L(BC(r) ® x, 1) # 0.

Remark 9.4.1: Part (i) of the above conjecture follows from the lo-
cal conjecture, specially the remark 9.2.2 following from Conjecture 1.
When the number field K splits at a place v of k, then the correspond-
ing local unitary group is just GL(n, k,), and we are granting ourselves
that the duality correspondence for the pair (GL(n,k,), GL(n,k,)) is
just the identity map. One also needs to use the classification theorem
of Hermitian forms over a global field due to Landherr (or, the Hasse
principle in modern language).

Remark 9.4.2: For n = 1, part (i) of the above conjecture is a theorem
due to Rogawski, cf {Ro]; part (ii) is a tautology; part (iii) is due to
Gelbart and Rogawski [GR, cor.5.2.2). For n = 2, part (iii) of the
above conjecture is proved by M. Harris [Ha, Thm. 4.5] in most cases,
but part (i) seems open. Since the unitary group in 2 variables is
closely connected to GL(2), part (ii) of the above conjecture should be
a consequence of Jacquet-Langlands correspondence together with the
multiplicity formula of Labesse-Langlands, but which this author has
not verified.

Remark 9.4.3: The reader will of course not have failed to notice
the analogy of conjecture 2 to the theorem of Waldspurger recalled in
section 7. We would like to point out that in Waldspurger’s theorem,
there was no local condition as the local theta lift from PGL(2) to
SL(2) is always non-zero.

Remark 9.4.4: In the general theory of automorphic forms, there is
a conjecture due to J.Arthur [Ar] building on the work of Labesse-
Langlands in the context of SL(2), which answers when a representa-
tion of the adele group which is associated to a parameter ¢ is auto-
morphic. This criterion depends on, again conjectural, pairing

<> Sy x Il — Z/2,

where Sy is the group of connected components of a global parameter
@, and II is the set of representations of the adele group G(A) whose all
the local components belong to the L-packet determined by ¢ (which
for simplicity we take to be a tempered parameter). For each represen-
tation 7 in I1, x,(s) =< s, 7 > defines a character on Sy. Suppose that
7 is a cuspidal automorphic representation belonging to IT which has
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a Whittaker model. In such a circumstance, by Vogan there are local
pairings
<, >yt Sy, x Iy = Z/2.

It seems natural to expect that these local pairings defined by Vogan
give rise to the global pairing in the sense that for 7 = ®,7,, a rep-
resentation of G(A), < s,7 >=[], < 8,7y >, for s € S; and s, its
image in §y,. Now the conjecture of Arthur is that a global representa-
tion 7 of G(A) is automorphic if and only if the character x, is trivial.
Now we will show how this conjecture implies part (ii) of conjecture
2. So, we start with a tempered, cuspidal automorphic representation
Ty = @7y of U(V), such that 7w = ®,8(m,) is a non-zero represen-
tation of U(W)(A). By Arthur, we are given that the character x,,, is
the trivial character, and we need to verify that x,, is also the triv-
ial character. Since the global component group Sy is Z/2 generated
by £Id in GL(n, C), from Remark 9.2.1, this will be so if and only if
e(BC(m)®x,%¥x) = 1. But since 7y has a non-zero theta lift to U (W),
by part (i) of the above conjecture, e(BC(7) ® X, ¥k) is indeed 1.

10. The Siegel-Weil Formula

The aim of this section is to describe the Siegel-Weil formula which is
at the heart of many applications of theta correspondence. It relates
the integral of a theta function to an Eisenstein series. The simplest
case of the Siegel-Weil formula is the identity

bols)
> away = B

where (2 is the set of integral positive definite even unimodular quadratic
forms in 2n variables, and F,(Z) is the Eisenstein series of weight n
for SLy(Z).

We will be working with a number field F' in this section. Let
G = Sp(W) be the symplectic group of rank n, and H = O(V) be
the orthogonal group of a quadratic space V over F' which we assume
has even dimension = 2m. Then G and H form a dual reductive pair
inside Sp(V ® W). Since the dimension of V is assumed to be even,
the metaplectic cover of Sp(V ® W) splits over G x H both locally and
globally. Weil representation of Sp(V ® W) therefore gives rise to a
representation w of G(A) x H(A) on the Schwartz space S(V(A)").
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For ¢ € S(V(A)"), define the theta function as usual by

0(g. hig) = > wlg)¢(h 'z).

zeV(F)»

It is a theorem of Weil [We2] that the integral

I{g,¢) = 0(g, h; ¢)dh,

/H(F)\H(A)
converges if either V' is an-isotropic (i.e., V does not represent any zero
over F'), or if r is the dimension of the maximal isotropic subspace of

V,thenm >n-+r+ 1.
For s € C, let ®(g, s) be the function on G(A) defined by

®(g,s) = (w(g)$)(0)|a(g)|*™.

Here if ¢ = pk where p € P(A) for P the Siegel parabolic with GL(n)

X 0
0 tx-!
k € K =[], K, a standard maximal compact subgroup of Sp(n)(A),
then a(g) = det X.

Let (.,.) denote the Hilbert symbol of the number field F'. For the
quadratic space V with discriminant d(V), let xv denote the charac-
ter of the idele class group of F defined by xv(z) = (z, (—=1)™d(V)).
Let I,,(s, xv) denote the principal series representation of Sp(n)(A) in-
duced from the character g — |a(g)|*xv(a(g)) of the Siegel parabolic
subgroup. It is easy to see that the map sending ¢ to ®(g, so) defines a
G(A) intertwining map from S(V(A)") to I,(so, xv). Define now the
Eisenstein series by

E(g,5,®)= 3, ®(v9,3).
1EP(\G(E)

as its Levi subgroup embedded as ) inside Sp(2n), and

The above series is absolutely convergent for Re(s) > 2L, and has

analytic continuation to all of complex plane; it is known to be holo-
morphic at so = 2=2=1,
The identity expressed in the following theorem is called the Siegel-

Weil formula.

Theorem 12 Assume that either V is an-isotropic over F, or if r
18 the dimension of the mazimal isotropic subspace of V, then m >
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n+ 1+ 1 so that the integral defining I(g, ¢) is absolutely convergent.
Let so = ®=0=L  then with the notation as above, we have

2
E(Q)S[):(I)) = mf(ga¢)

where k =2 if m < n+1, and 1 otherunse.

This theorem was proved by Weil in [We2] when m > 2n+2 i.e., the
case in which the Eisenstein series involved converged absolutely; the
general case of the Siegel-Weil formula, including the holomorphicity of
the Eisenstein series at sp is due to Kudla and Rallis [KR1], [KR2]. Weil
proved it for general dual reductive pairs in [We2], and not just for the
(O(n),Sp(m)) case considered here. The extension of this formula to
other dual reductive pairs where the Eisenstein series does not converge
absolutely is not yet complete.

Remark : The local case of the map ¢ — & defined by

®(g, 50) = (w(9)¢)(0),

is also very important. By a theorem of Rallis {(Ral], this induces an
injection from S(V"*)o(vy into In(sg, xv). (Where for a representation
X of a group E, Xg denotes the maximal quotient of X on which £
acts trivially.) The method of Weil representation gives an important
method for the study of the Jordan-Holder series of I,(sg, xv). For
instance, Kudla and Rallis [KR3] prove that if m < n 4+ 1 then the
image Rn(V) of S(V") in I,(s¢, xv) is irreducible, and if V; and V,
are the two distinct quadratic spaces with the same discriminant (if
m = 2, and the discriminant = —1, then there is only one quadratic
space), then R,(V}) and R, (V) are distinct irreducible submodules of
I.(s0,X) {x = xvi = Xv,) such that I,(s, x)/[Ra(V1) + R.(V2)] is also
irreducible, and non-zero if and only if m<n+1. If n+1 <m < 2n
(if x = 1, we exclude the value m = 2n; see [KR3| for this case),
then R,(Vi) and R,(V,) are maximal submodules of I,(s¢,x), and
R,(V1) N R,(V5) is irreducible. These results on Jordan-Holder series
in turn find important application to theta liftings as in the work of
[HKS] in the unitary case.
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11 Application of theta correspondence to
cohomology of Shimura variety

A Shimura variety is a topological space of the form I'\G/K where G

is a real Lie group, K a maximal compact subgroup of G, and " an

arithmetic subgroup of G (An example : SL,(Z)\SL(2,R)/S0O(2)).
According to a theorem of Matsushima, if I'\G/K is compact, then

H{(T\G/K,Q = &, H G, K, )™

where L2(G\T") = ¥ m(m)7.

Therefore the calculation of the cohomology of a Shimura variety is
equivalent to finding those automorphic representations whose compo-
nent at infinity have non-trivial (G, K') cohomology.

The construction of cohomological automorphic representations of
G depends on realising G as a member of a dual reductive pair (G, G")
with G’ small, and lifting automorphic representation of G' which are
discrete series at infinity. Cuspidal automorphic representations of a
group with prescribed discrete series component at infinity are known
to exist in plenty according to a theorem of Savin, and then the problem
splits into two parts:

(i) Realisation of cohomological representations as theta lifts at in-
finity.

(i) Determination of the condition under which the global theta lift
is non-zero.

For (i), one knows by Vogan and Zuckermann [V-W] an explicit
description of cohomological representations. The theta lifts are calcu-
lated via the method of Jacquet functors, [Lil].

For (ii), observe that 84(f) # 0 if and only if the inner product
< 04(f),05(f) ># 0. There is a formula for this inner product by Rallis
[Ra3] involving special values of L-functions. Therefore we know it to
be non-zero when the special value is at a point of absolute convergence.
Actually, there are finitely many “bad” factors which might contribute
a zero and which one needs to deal with also; see [Li2}, and [KR4] in
a greater generality. The formula of Rallis generalises Waldspurger’s
result mentioned before, and is proved by expressing an integral of
theta functions by an Eisenstein series by the Siegel-Weil formula, and
then unfolding the integral.

Non-vanishing theorems about cohomology of Shimura variety via
the method of theta correspondence were first proved by Kazhdan for
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SU(n,1), and the most recent results are due to J.-S. Li. Here is an
example from the work of Li ([Li2], corollary 1.3).

Theorem 13 Let G = SO(p,q), I' an arithmetic subgroup of G con-
structed by a skew-Hermitian form over a quaternion division algebra
over a totally real field such that D is split at all but one real place.
Then for p > q, p+q =2n > 8, and for I' deep enough, the qth Betli
number of I" is non-zero.

12 Recent generalisations of theta corre-
spondence

There has been much activity recently in constructing analogues of the
Weil representation, and understanding the associated theta correspon-
dence.

The characteristic property of the Weil representation taken for the
purposes of this generalisation is the fact that the Weil representation
is a rather small representation, in fact the smallest representation
after the trivial representation. We will make this concept precise, but
one can get some idea about it from the dimension formula for the
Weil representation over finite field F,. The dimension of the Weil
representation of Sp(2n,F,) is ¢*, and it splits into two irreducible
representation of dimension 9"—2;-*—1 and 9“7"5, whereas the dimension of a
generic representation of Sp(2n, F,) is of the order of ¢™".

We now make precise the concept of smallness of a representation.
For an irreducible representation n of G, define a distribution ©, on
the Lie algebra G of G as follows :

O.(f) =tr (-/G f(X)Tr(e:an)dX)

Theorem 14 (Harish-Chandra) For each nilpotent orbit 8, there
exists a complex number Cy such that for all functions f with small
support around the origin of G,

Ox(f) = anff#o,

the summation is over the (finite) set of nilpotent orbits, and where pg
s ¢ G-invariant measure on the nilpotent orbit 8 suitably normalised.
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Definition:
(1) Wave front set W F(r) = Ug, 208.
(2) Gelfand-Kirillov dimension of w, denoted dim d(7) is max¢, 3 dim 6.

Proposition 1 Let G(n) be the principal congruence subgroup of G of
level n. Then for an irreducible admassible representation V of G,

dim VE®) _

n—bIIgo qnd(‘"’)

Definition : A representation 7 is called minimal if WF(7) = O,
where 0,,:, is a non-trivial minimal nilpotent orbit. (Such a nilpotent
orbit is unique over the algebraic closure.)

Minimal representations have been constructed by many people
starting with the work of Kazhdan, by Kazhdan, Savin, Gross-Wallach
among others. Here is an example. Consider the Satake parameter
corresponding to:

Fr4 500,038 Lg
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0
unipotent orbit. The following theorem is due to G. Savin [Sa].

where ¢ 1 £ — ( O_ L ), and ¢p corresponds to the subregular
2

Theorem 15 Let G be a simple, simply connected, simply laced split
group over a local field F'. Then the spherical representation © with the
above as Satake parameter is minimal.

One can classify dual reductive pairs for general groups, cf. [Ru],
and in each case when minimal representations are constructed, one
would like to prove if the analogue of the Howe duality conjecture is
true. Next one would like to prove that the local minimal represen-
tations are part of global automorphic representations, and if so, this
gives a construction of global automorphic representation on one mem-
ber of a dual reductive pair in terms of the other just as in the case of
the Weil representation. This is a very active area of research at the
moment. Here is an example from the work of Gross and Savin[G-S].

The pair (G, PGSp(6)) is a dual reductive pair in E7. There exists
a form of G, over Q which is compact at infinity, and split at all
the finite places. The pair (G, PGSp(6)) sits inside a form of E;
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which is of rank 3 at oo and split at all finite places. There is an
automorphic form on E; constructed by H. Kim [Ki] which is minimal
at all places. The theta lifts from automorphic form on G, to PGSp(6)
using this is expected to correspond to the mapping of L-groups given
by G2(§ — Spin7(Q), as proved in [G-S] for many representations. The
interest of this work of Gross and Savin is that they are able to lift
automorphic forms from G to PGSp(6) using this “exceptional” theta
correspondence, and the automorphic form they get on PGSp(6) is of
holomorphic kind, and so presumably has a motive associated to it,
whose Galois group is G (and not smaller as they take care to lift only
those which have a Steinberg at a finite place).
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