THE KUZ'MINOV — SHVEDOV ADDITION LEMMA IN A
QUASI-ABELIAN CATEGORY

YAROSLAV KOPYLOV

ABSTRACT. We study the question of the validity in a quasi-abelian category
of some diagram lemma proved by Kuz’minov and Shvedov in 1994 for abelian
groups and used by them as a tool for calculating the reduced Lyp-cohomology
of Riemannian manifolds.
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INTRODUCTION

In [7, Lemma 1], Kuz'minov and Shvedov proved the following assertion as a tool
for constructing addition sequences for the reduced L,-cohomology of a Riemannian
manifold:

Suppose that in the commutative diagram

@01
App ——— Aoz
Bo1 Bo2

a1 Q12 a13
A11 4 A12 A13 A14

B11 B2 513J/
Ay —2 Ay —E Ay (*)
B21 B22

«31
Ay —— Az

Bs1 Bs2

Q41
Ap —— Ap

of abelian groups and homomorphisms the rows and columns are semi-exact, the
second row is exact at the term Ais, the first column is exact at A1 and Agy, the
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second column is exact, B13 and azy are isomorphisms, agy is an epimorphism, and
—1 -1
Ker(algﬂlg 0122) = Ker(ﬁ31a31 622). Put

Hl = Keralg/Imau, H2 = Keragg/lmagl, H3 = Kerﬁgl/Imﬁgl.

Then the homomorphisms (312 and ozgfﬁgz induce homomorphisms Hy — Hs
and Ho — Hjs. The resulting sequence 0 — Hy — Hy — H3 — 0 is exact.

The proof in [7] obviously extends to modules over an arbitrary ring and, thus,
by Mitchells’s Embedding Theorem [8], the assertion also holds in any abelian
category.

There appears the question of the validity of the above lemma in more general
additive categories, for example, in the category of topological abelian groups or
in various categories of topological vector spaces (Banach, normed, locally convex
spaces). A natural framework for this is provided by some class of categories now
known under the name of quasi-abelian [12, 13].

In a quasi-abelian category, (*) also induces a semi-exact homology sequence but
its exactness relies on the strictness of some morphisms in (*). We find sufficient
conditions for the exactness of (*) at particular terms.

In the quasi-abelian categories of topological algebra and functional analysis,
strict morphisms admit clear explicit descriptions. For example, in the category
Ban of Banach spaces and bounded linear operators, a morphism is strict if and
only if it has closed range; a number of important examples can be found in [12].

1. QUASI-ABELIAN CATEGORIES

We consider additive categories satisfying the following axiom.

Axiom 1. Each morphism has kernel and cokernel.

We denote by kera (coker o) an arbitrary kernel (cokernel) of o and by Ker o
(Coker ) the corresponding object; the equality a = ker b (a = coker b) means that
a is a kernel of b (a is a cokernel of b).

In a category meeting Axiom 1, every morphism « admits a canonical factor-
ization @ = (im a)a@(coim o), where im o = ker coker a, coima = cokerkera. A
morphism « is called strict if @ is an isomorphism. Below we often use the abbre-
viation & for @coim a.

We use the following notations:

O, is the class of all strict morphisms;

M is the class of all monomorphisms;

M. is the class of all strict monomorphisms (= kernels);

P is the class of all epimorphisms;

P, is the class of all strict epimorphisms (= cokernels).

We write a| 8 if @ = ker 8 and 8 = coker a.

Lemma 1. [1, 6, 10] The following assertions hold in an additive category meeting
Axiom I

(1) kera € M, and cokera € P, for every «;

(2) a€e M, <= a=imaq, a € P, < « = coim «;

(3) a morphism « is strict if and only if it is representable in the form o = aiag
with ag € P,, a1 € M,; in every such representation, ag = coima and o = im «;



KUZ'MINOV — SHVEDOV ADDITION LEMMA 3

(4) if a commutative square

[e3

C —— D

gl fl (1)

ALB

is a pullback then f e M =g e M, f € M. = g € M., if the square is pushout
thenge P— fe P,ge P.— f € P,.

An additive category meeting Axiom 1 is abelian if and only if @ is an isomor-
phism for every a.

Axiom 2. For every morphism «, @ is a monomorphism and an epimorphism.

Additive categories with kernels and cokernels satisfying Axioms 1 and 2 are
called P-semi-abelian or simply semi-abelian (in the sense of Palamodov) [9, 11].

Lemma 2. [4] The following hold in a P-semi-abelian category:

(1) gf e Mc = f € M., gf € P.= g € Pp;

(2) if f,g € M. and fg is defined then fg € M.; if f,g € P. and fg is defined
then fg € Pe;

(3)if fg€ O, f €M then g€ Og; if fg€ O, g € P then f € O..

An additive category satisfying Axiom 1 is called quasi-abelian [2, 12, 13] (semi-
abelian in the sense of Ralkov [10], or almost abelian [11]) (Jurchescu called such
categories preabelian in [3]; Yoneda [14] did not assume the existence of kernels and
cokernels) if it meets the following

Axiom 3. If square (1) is a pullback then f € P. = g € P.. If (1) is a pushout
then g € M, = f € M..

As is well known [6, 10, 11, 12], every quasi-abelian category is P-semi-abelian.

A sequence ... % B L ina quasi-abelian category (or even in a P-semi-
abelian category) is said to be ezact at the term B if ima = ker b (or, equivalently,
cokera = coim b). Below we call a sequence semi-ezact if the composition of its two
consecutive morphisms is zero.

By the homology of a sequence A > B Y C at the term B in a quasi-abelian
category such that ¥ = 0 we mean the cokernel of the natural morphism r :
Im p — Kery or, equivalently, the kernel of the natural morphism ¢ : Coker ¢ —
Coim ) (see [5]).

For a commutative square (1), denote by § : Kera — Ker3 the morphism
defined by the condition g(kera) = (ker 8)§ and by f : Cokera — Coker 3, the
morphism defined by the condition f (coker o) = (coker 3) f.

2. THE MAIN THEOREM

The main result of the article is formulated as follows:
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Theorem 1. Suppose that in the commutative diagram
Ap —2— Ape

Bo1 Bo2

a1 Q12 a13
A —— A Ais Ay

B11 B2 513J/
Agp —22 Agy —2 Aps (2)
B21 B22

«31
Ay —— Az

Bs1 l Bs2 l

Ay — Ay

in a quasi-abelian category the rows and columns are semi-ezxact, the second row is
exact at the term Ais, the first column is exact at A1, and Asq, the second column is
exact, 813 and asy are isomorphisms, agy is an epimorphism, and ker(ozlgﬁl_glozzg) =
ker(ﬁglagllﬁgg). Denote by Hy the homology of the second row at the term Ao, by
H,, the homology of the third row at the term Ass, and by Hs, the homology of the
first column at the term As;.

Then the morphisms (312 and agfﬂzg induce homomorphisms ¢ : Hi — Hs and
1 Hy — Hs such that ¥ = 0, that is, the sequence

0—>H1£>H2£>H3—>0 (3)

is semi-exact.

Moreover, the following sufficient conditions for (3) to be exact at particular
terms hold:

(a) if in (2) @21, P11, PBo2 are strict and a1 € P, then (3) is exact at Hy, i.e.,
peM;

(b) if in (2) P12 and P21 are strict then (3) is exact at H;

(c) if in (2) aae, aas, P32, and the composition 63104;11522 are strict then (8) is
evact at Hs, that s, ¢ € P.

Proof. The commutative square

«12
Ay —— Ay

BI2J/ Blsl

22
Agy —— Aos

gives rise to a unique morphism Blg : Kerajas — Ker ags such that (1o ker g =
(ker ciaa) 312 (see the end of Section 1). Similarly, $12 induces a morphism [, :
Coker a1 — Coker g1 of the cokernels of the rows of the square

Q11
A —— A

ﬁllJr ﬁlzl

Q21
Ay —— Aa
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and, hence, since im = cokerker, we have a morphism (12 : Ima;; — Imas;
making the diagram

ima coker «
Ima11 = A12 = Cokerau

Bwl Blzl ﬁizl

im s A coker a1
22

Im aoq Coker aiaq

commute. Denote by €1 : Imaj; — Kerags and €5 : Imag; — Kerage are the
natural morphisms such that imai; = (kerajgg)er and imasg; = (ker agg)es (by

Lemma 2(1), €1 and 5 are both strict monomorphisms). Then Brae1 = €29,
H, = cokere;, Hy = cokerey, and we have a natural morphism ¢ : Hy — Hy
making the diagram

€ cokere
Ima11 — Keralg —= Hl

B12l B12l S‘Jl
€ cokere
Im Q21 —2 Ker Qa29 —c2 H2

commute.
Now, since, obviously, a13ﬁ;31a22 ker aps = 0 and, by hypothesis,

ker(ons By az2) = ker(Bs1a, B22),
we have ker ags = ker(ﬂglagllﬁgg)h for some morphism h. This implies that
Ba1aizy! Bag ker cigy = 0,
and thus there is a unique morphism p : Ker ags — Ker 31 with the property
agllﬁgg ker cas = (ker 331 ).
Moreover, since
(coker Ba1)agy! Bazaar = (coker Ba1)f21 = 0,

we have a morphism 7 : Coker cvg; — Coker 821 such that m coker aig; = (coker Ba1)ag1 22
and, thus, a morphism 7 : Im ag; — Im (31 making the diagram

im sy A coker a1
22

Im aoq Coker aoy

| ] |

ima coker (3
Im (21 2 As 2, Coker Ba1

commute.
Denote by €3 the morphism Im ﬂgl — Kerﬂgl such that imﬂzl = (ker ﬂgl)é‘g.
Then

(kel‘ﬂgl)ué‘z = 013_11622(1{81‘ 0122)52 = Oég_llﬂzg im Q21 = (imﬂzl)T = (ker ﬂgl)é‘gT.
Since ker 331 is a monomorphism, this yields the relation pues = 37 and thus there
exists a unique morphism v : Hy — Hj3 making the diagram

€ cokere
Imagl —2 Keragg —"z H2

| ‘| gt

€3 cokereg
Im B2y —— Kerf3; ——— Hj
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commute.
We now prove that ¢ = 0.
We have the commutative diagram

€ coker e
Imau — Keralg Bt N Hl

512l élQl S‘Jl
Imagy —2— Ker ags Rl LN H, (4)

| g gt

€ coker e
Imﬂzl —2 Kerﬁgl RGN Hg.

Note that
(ker B31) bz = gy Bz (ker a92) P12 = g Bazfra ker g = 0.
Since ker 31 € M, this gives uﬁAlz = 0. Thus,
Y coker ey = tp(coker £9) P12 = (coker e3) B2 = 0.

Now, cokere; € P, and, hence, ¥ = 0.
Thus, we have constructed the semi-exact sequence (3).

Now we consecutively prove assertions (a), (b), and (c).

(a) Suppose that as1, 511, o2 € O, and ap1 € P.. We need to prove that ¢ is a
monomorphism. To this end, take a morphism x : X — H; such that pxz = 0 and
show that x = 0.

Consider the pullback

cokere
Ker 12 LA EN Hl.

Since (cokerez)ﬁlgtl = p(cokereq)t; = pxty = 0, &1 = kercokereq, there exists a
morphism w : T — Im o such that B12t; = eou. Consider the pullback

Vv 25 T
S
Aoy LN Im «aay.
We have
a31821v1 = Bazo1v1 = [z im aauve
= (oo (ker aga)eauvy = (g (ker aag) Fratiuvy = fBagfia(ker aga )t uvs.

Since agp is an isomorphism, this implies that fo;v7 = 0. From the exactness
of the first column at the term A it follows that then v; = (im S811)w for some
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unique morphism w. We can write the following commutative diagram:

Loal

vV — Im 314 -~ Im 512

imﬂlll imﬁlQl

Ayr  —— Ao,

where the left upper square is a pullback and o : Im 317 — Im (15 is the natural
morphism of the images induced by ao;.

We infer:
Brzanw’ = a1 friw’ = agr (im fr1)wse = (Im ooy )dggv1 2
= (im a1 )uve e = (ker aga)equvase = (ker agg)ﬁlgtlvgz.
Consequently,
B2 ((ker a1a)t1v95 — ajw’) = 0.
The exactness of the second column at the term A, yields
(ker Oélg)tl’L)z% — oqlw' = (imﬂog)’y (5)

for some morphism v : C' — Ajs. Consider the commutative diagram

@o1
Apg —— A,

al al

Im fp1 —“— TIm oo

im Bo1 l im Bo2 J,

Ay e, Aqs.
Here &17 : Im 891 — Im Bys is the natural morphism of the images induced by a;;.
Consider the pullback

P P2

and then the pullback

A —% Ape.
We obtain from (5):
(ker av12)t1v25¢p2r2 — 1w’ para = (im fBo2)ypars = (im Boz)Bozpire
= Boz2p1r2 = Pozao1r1 = a11Bo171-
Therefore,

(ker 0412)75102%1727“2 = all(w/pQ'l"Q + ,@017‘1) = (ker 0412)515411(10/1927“2 + 5017‘1),
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which, since ker av12 € M, gives the relation
t1vasepary = e1G11 (W' pars + Boir).

By Axiom 3, from the relations ésy € P, f11 € P., Bo2 € Ps, ag1 € P, it follows
that vo € P., % € P., py € P., 1o € P, respectively. Hence, by Lemma 2(2),
vaspare € P.. Put a = tjvasepare, b = dq1(w'pars + Boir1). We have ima =
imt; = e1imb. Thus, t; = £1(im b)t;. Therefore,

xty = (cokerey)t; = (cokerey)er(imb)t; = 0.
Since to € P, this implies that z = 0.

(b) Suppose that 312 and (a1 are strict in (2). Let 2 : X — Hy be a morphism
with ¢z = 0. Demonstrate that x = (im )z’ for some unique z’. We may assume
without loss of generality that © = imx € M,.

Consider the pullback

G g2

@ | |

KeI‘Oélg L Hz.
We infer from (4) that

0 = Yxgs = 1p(cokerey)gr = (cokeres)ugr = 0.

Since €3 = ker cokeres, this implies that pug; = €39 for some g. Consider now the

pullback

B =

I

Az L Im &o1.

Recalling that (ker 831)p = agllﬁgg ker cva9, we infer

Borby = (im B21)B21b1 = (im B21)gba
= (ker (331)e3gba = (ker 831)pg1ba = gy oz (ker ang) g1 ba.
Consequently,
Baz(ker azz)g1be = 312101 = Pazcra1by.
But then
Ba2((ker aa2)g1b2 — ao1b1) = 0.
Hence, by the exactness of the second column at the term As, there exists a unique

morphism 0 : © — Im (12 such that (ker aes)g1b2 — ag1b1 = (im f12)0. Consider
the pullback

We infer:

Brob = (im B12) P12 = (im f12)00:
= (ker Oézg)gzbgol — (1m (121)6&211)191 = (ker (122)(g1b291 — 5207211)191).
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Therefore,
Braan2l’ = 120" = 0.
Since (313 is an isomorphism, this means that ay260’ = 0. Hence, there is a unique
morphism 65 : © — Ker a2 with 8’ = (ker a12)f3. Consequently,
5129/ = ﬂlz(ker 0412)93 = (ker 0422)B1293-

Thus, we have the equality
(ker ava) (910261 — €2210161) = (ker aa)Br126s.

Since ker age is a monomorphism, this yields
grboth — e2821b101 = P1263 (6)
Apply coker ey to both sides of (6). We infer:
(cokereg)g1baty = (cokereg)BmHg,

Z‘ggbgol = cp(coker 81)03.

By Axiom 3, we have the implications: cokerey € P, = g9 € P,; o1 € P. =
by € P; p12 € P. = 61 € P.. By Lemma 2(2), the morphism ¢ = g2b26; € P..
Put xzc = d, (cokerep)fs = I, ¢(cokereq)fs = I'. Then we have two canonical
decompositions of d: _

d = zc = (im ) (im ")’ coim’.
Hence,
x = (imp)iml’. (7)

Since im ¢ is a monomorphism, im!’ is defined by (7) uniquely.

Item (b) is proved.

(c) Pass to the dual category (obviously also quasi-abelian) and consider the
dual assertion:

Lemma 3. Suppose that in the commutative diagram
Cip —— Oy
532 631

Y31
Cszp —— O3

522 621
Y22 Y21
023 022 C(21 (8)
013 l 012 011

Y13 Y12 Y11
Ciy —— Ci3 Ch2 Cn

502 601

Coa —>— Cor
in a quasi-abelian category the rows and columns are semi-exact, the penultimate
row is exact at the term Cis, the last column is exact at C11 and Csy, the penul-
timate column is exact, 13 and 731 are isomorphisms, Yo1 iS a monomorphism,
and coker(v22873 713) = coker(da275;'031). Denote by Hs the homology of the last
column at the term Cs31 and by ﬁg, the homology of the third row at the term Cag.
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Then the morphism 5227511 induces a homomorphism 1& : Hg — ﬁg. If v22, 7113,
032, and 5227511531 are strict in (8) then 1 is a monomorphism.

Proof. The commutative square

82275,

C(2 2

5211 7211

id
Coyy —— Co.

induces a natural morphism ) : Ker do1 — Ker 721 such that (ker y91)\ = 5227511 ker 601
and a natural morphism of the cokernels w : Cokerdy; — Cokerys; such that
coker 1 = w coker 21 giving a natural morphism of the images A’ : Im 21 — Im o1
such that (im d2; = (im y2;)\'. Consequently, the morphism d29y5," defines a unique
morphism of the homologies @[AJ : Hy — H, — the morphism of the cokernels of the
rows of the square

Im 521 L Ker (521

v |

Im 91 —=2 , Ker Yo1-
Here €3 : Im d2; — Ker do; and €5 : Im 91 — Ker g, are the natural inclusions.
Let 2 : X — Hj be a morphism such that @x = 0. Prove that z = 0. Consider
the pullback

Y Y1
y2l zl

cokere
Ker 521 =8, H3.

Since (coker é2)A\ys = @(coker €3)ys = @myl = 0 and e = kercokeres, there is a
morphism y : Y — Im yo; with Aya = é2y. Next, consider the pullback

V/”_é) Y

i

Ca3 SLN Im 2.
We have:

1201307 = 01272207 = O12(im Y22)Y220] = d12(im ya2)yvh
= 512(1(61‘721)522/1]5 = 512(1(61‘721))\]42115 = 512522’}/511 (ker 521)(7;2115 =0.
The exactness of the penultimate row of (8) at the term Cj3 implies that §13v] =
!

(im 713)w’ for a suitable (unique) morphism w’ : V' — Tm 3, i.e., v} = 015 (imy13)w’.
Consider the pullback

’
WV

T

Y13
014 _— Im’yl3.
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Put f = 722551713, fo= 52273711531. By hypothesis, im f = im fy,. We infer
Ya2vjwy = 72251_31713105 = fwy = (im f)fwlz = (im fo)fwlz'
Consider now the pullback

7z Aoy

wf | Fus |
Jo
C41 ——— Im fo.
We have )
Sa0vay 031wl = (im fo) fwh £ = 22075 yi3wh £
Furthermore,
G223 (ker 8a1)y2vh = (ker ya1)Ayavh = (ker y21)éayvh = (Im y22)F220] = Ya201.

Consequently,

G203 (ker 81 )y2vhw! f = Yaovfw! f§ = Y2205 (im y13)w'w] £
= 722015 (Im y13)F13wh f§ = V22075 Y1swh £
= (im f) fw fo = (im f) fowt = fowl = 62275, 1w

Thus,

822731 (ker 8a1 )y2vhw} f§ = G223 Oz,
that is,

822731 (F31wy — (ker 1) yavhw} f3) = 0.

By the exactness of the penultimate column at the term Cso, we infer that

Yart (S31wh — (ker 02y )y2vhw] f§) = (im d32)C

for some unique morphism ¢ : Z’ — Im d35. Consider the pullback

K —" . C4

kll sszl

Z # Im632.

Hence,
ds1wy ky — (ker 891)yavyw] fok1 = y31032ke = 831741k,
or
(ker 521)ygv’2w’1f6k1 = 531(w’2k1 — Yarkz) = (ker 521)53531(w§k1 — Ya1kz2),
Since ker o1 is a monomorphism, this yields
921’/2“/1%]?1 = ésggl(w/gkl — Ya1k2).

By Axiom 3, we have the implications: 23 € O, = v} € P.; 113 € O, = w} €
P.; 52273_11531 € O, = fl € P 632 € O. = k1 € P.. Thus, by Lemma 2(2),
yavywi fok1 € Po. )

Put a = 53531(10/2]61 - ’741]62), a’ = 531(w'2k1 - ’}/41]62). Since 53 € MC, then
a = és(ima)a(coima) and ima = é3ima’ = imy,. Hence, yo = £2y) for a suitable
morphism yy. Therefore,

zy1 = (coker £3)y, = (coker £3)E3y5 = 0.
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Since y» € P, we have z = 0, q.e.d.
Lemma 3 is proved, and so is the dual assertion to it, (c¢) of Theorem 1. O

Theorem 1 is proved. O

Remark. Assume that all assumptions of Theorem 1 hold. Then (3) is exact
at all terms. By analyzing (4), we easily see that:

(i) if (cokereg)fry is strict then so is ¢ and, thus, ¢ = ker1;

(ii) if (cokeres)p is strict then so is ¢ and, hence, ¥ = coker (.

Acknowledgment. The author expresses his gratitude to the Max Planck
Institute for Mathematics in Bonn for warm hospitality and excellent working con-
ditions.
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