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Abstract

We introduce a filtration of hyperbolic groups according to their possible actions on real
trees. Using this filtration and results from the theory of (small) group actions on real trees
we study the structure of hyperbolic groups and their automorphism group.

In [Gr] M. Gromov has introduced hyperbolic groups and show how geometric notions,
tools and results, mostly from the theory of negatively curved manifolds, can be adapted
to obtain deep and broad algebraic results on the structure of hyperbolic groups and their
subgroups. Gromov’s paper and a recent work of the second author on the isomorphism
problem [Sel] stress the need for understanding the structure of automorphisms of hyperbolic
groups and more globally the structure of the automorphism group of a hyperbolic group.

The work of the first author on group actions on real trees [Ri] seems to have more and
more applications since it was introduced. In this paper we adapt results from this work to
the study of hyperbolic groups and their automorphisms. Our approach is an elaboration of
the Bestvina-Paulin method ([Bel, [Pa]) and we believe that besides the results we obtain our
arguments should be applicable for future problems. The results we get serve as key points
in our generalization of the solution to the isomorphism problem [Ri-Se].

We start by introducing a natural filtration of hyperbolic groups in terms of their
possible actions on real trees. This filtration, although very simple, turns to be essential in
understanding automorphisms and may serve as possible induction steps for future problems.
In section 2 and 3 we bring an immediate application of the Bestvina-Paulin method for the
Hopf and co-Hopf property for certain hyperbolic groups.

The automorphism group of a surface group is generated by Dehn twists and inner
automorphisms. In general we call an automorphism generated by the above internal (the
notion was suggested to us by Benjamin Weiss). In section 4 we start developing our
machinary in order to show that for torsion-free hyperbolic groups, the group of internal
automorphisms is of finite index. We do that by constructing a real tree equipped with an
isometric group action in case the index of the internal subgroup is infinite and then show in
sections 5 and 6 such a real tree cannot be obtained by our construction. Having a complete
“proof scheme”, we show how to get Gromov’s theorem on freely indecomposable subgroups
in section 7, and in the following section we prove the automorphism group of a hyperbolic
group is finitely generated.

Further structural results on hyperbolic groups, their small splittings and automorphism
group appear in a continuation paper by the second author [Se3]. Application of the
techniques presented in this paper to (acylindrical) accessibility of finitely generated and
finitely presented groups appear in [Se2]. In [Se4] we use a modification of our approach to
study automorphisms of a free group.



1. Rigidity Tower

Actions of groups on real trees suggest a natural filtration for groups which turns to be
essential in studying the structure of hyperbolic groups and their automorphism groups. The
filtration seems to be a key point in the solution of the isomorphism problem ([Sel], [Ri-Se]),
and some of the algebraic propertiecs we discuss in this paper are proven only for certain
levels in our filtration. We believe some of the techniques presented in this paper should
serve as a tool for “climbing up” in our rigidity categories also for other algebraic properties
of hyperbolic groups and their subgroups.

0. Kazhdan T -groups

Kazhdan’s groups are known to have no non-trivial action on a real tree [Ha-Va].
Moreover, every measurable cocycle of such groups into the automorphism group of a
simplicial tree is cohomologous to a cocycle with values in the isotropy group of a point
of the tree [Ad-Sp].

Although we are not making use of the special properties of Kazhdan groups, they seem
to be distinguished among our next category:

1. Strictly rigid groups

A group is called strictly rigid if it admits no non-trivial action on a real tree. In
addition to Kazhdan’s T -groups, fundamental groups of non-Haken 3-manifolds [Mo-Sh]
and of Kahler hyperbolic manifolds [Gr-Sc] form examples for such groups. Clearly, like
Kazhdan’s T -property, strictly rigid is a property preserved under taking quotients. The
algebraic structure of these (even hyperbolic) groups is unfortunately not yet completely
clear, although they are described in [Ri] using R -trees of groups. Note that in particular
strictly rigid groups do not admit a non-trivial Bass-Serre splitting.

2. Rigid groups

A small action of a group on a real tree is an action that satisfies the ACC condition
[Ri] and edge stabilizers do not contain a free group (in the case of hyperbolic group they
are, therefore, virtually cyclic). In [Ri] small actions of groups on real trees are studied in
details and the existence of a small action for a group is shown to be equivalent to some
algebraic properties of the group. Rigid groups are known to have no Bass-Serre splitting
with virtually cyclic edge stabilizers [Ri], they have finite outer automorphism group [Pa] and
solvable isomorphism problem [Sel]. Natural examples are fundamental groups of closed
negatively curved manifolds.

Rigid hyperbolic groups have finite automorphism group. To study the structure of
individual automorphisms and the automorphism group for general hyperbolic group, we
need to introduce the following category.

3. Weakly rigid groups

A weakly rigid group is a group for which every small action on a real tree (in the
above §cnse) is discrete.

4. Freely indecomposable groups

Groups which do not split as a non-trivial free product. From our discussion, using
extensively the results of [Ri], we show that a freely indecomposable hyperbolic group is
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weakly rigid if and only if it does not contain “quadratically hanging” free subgroups (see
5.1 below).

To conclude, we would like to note that subclasses of weaker rigidity categories are
sometime easier to handle than stronger ones. For example, the isomorphism problem for
free products of rigid hyperbolic groups was shown to be solvable in [Sel], where weakly
rigid hyperbolic ones require more [Ri-Sel.

2. The Hopf Property

A group is called Hopf if every homomorphism of the group onto itself is an isomorphism.
A simple application of the Paulin-Bestvina method ([Pa], {Be]) give us the follwing:

Theorem 2.1 Strictly rigid hyperbolic groups are Hopf.

Proof: Let I' = (G|R) = (g1, -, 9|1, ,7s) be a strictly rigid §-hyperbolic group, let
¥ : ' — I be an onto homomorphism with kernel, and let X be the Cayley graph of '
with respect to its set of generators G. The epimorphisms ¥ : ' — I' are non-conjugate.
For each m we pick vg € T' for which:

o = Az (id, 0™ (g)75 ") = min max, (id, v2™(g; v ™Y)

Since the {¥™}°°_, are non-conjugate there exists a subsequence (still denoted U™ ) for
which g, — 00 . Let {(Xm,id)}5._, be the pointed metric spaces obtained from the Cayley
graph X, by dividing the metricon X by j,, . (X, 1d) is endowed with a left isometric
action of T" via yU"yy 1| At this stage we can apply the following.

Theorem 2.2 ([Pa), 2.3) Let {X,.}o_, be a sequence of b, -hyperbolic spaces with 6o, =
limé,,, < oo . Let G be a countable group isometrically acting on X,, . Suppose there exists
a base point uy, in X, such that for every finite subset P of G, the closed convex hull of the
images of u,, under P is compact and these convex hulls are totally bounded metric spaces.
Then there is a subsequence converging in the Gromov topology to a 508, -hyperbolic space
X endowed with an isometric action of G.

Our spaces {(Xyn,id.)} = satisfy the assumptions of the theorem (see [Pa]) and they are
pi hyperbolic, so X is a real tree endowed with an isometric action of ' , a contradiction
to I' being strictly rigid.

O

Corollary 2.3 Let M be an irreducible 3-manifold with a Gromov hyperbolic fundamental
group. Then m (M) is Hopf.

Proof: If M is Haken or m(M) is elementary, (M) is residually finite and therefore
Hopf. Otherwise the corollary follows from Morgan-Shalen [Mo-Shl], and the previous
theorem.

O
Question: Is every (torsion-free) hyperbolic group Hopf?
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3. The co-Hopf property

A group is called co-Hopf if every monomorphism of the group into itself is an
isomorphism. A simple application of the simplicial volume [Gr3] shows that the fundamental
group of a closed negatively curved manifold is co-Hopf. Gnerealizing this observation we
have:

3.1 Let T' be a rigid hyperbolic group. Then I' is co-Hopf.

Proof: Let ¢ be a monomorphism of ' into itself which is not an isomorphism. Clearly
we have:

vneN ") C (D) (D) # (D).

Since a rigid group admits only finitely many monomorphisms into a hyperbolic group up
to conjugation ([Sel], 5.1), we have integers £ and ! and g € I" such that for all vy € T
we have:

k4! (

9" (Mg = " ()

!

Therefore, conjugating () by g¢ is equivalent to map it via ¢' | so we have:

g (g™ = ¢ (¢H(n)) =

sof(ggo"(v)g'l) = ()" (1) (g7)

which implies ¢'(g) = g since T is not elementary. But this shows ¢ € ¢™(T") for all
integers n, so it acts on <,ok(lf‘) as inner automorphism, and we have:

o (D) = p*H(T)
a contradiction.

O

Remark: It seems very plausible that every (torsion-free) freely indecomposable hyperbolic
group is co-Hopf. Our description of automorphisms of hyperbolic groups might help
attacking this problem.

4. Internal Automorphisms

To certain extent the “structure” of a group is reflected in its automorphism group and
vice versa. A rigid hyperbolic group has a finite outer automorphism group. The outer
automorphism group of a closed surface on the other hand is finitely presented ([Ha-Th],
[Mc], [Wa]) and generated by Dehn twists ([Li]). The notion of a Dehn twist can be made
purely algebraic as an automorphism obtained naturally from an amalgamated product or an
HNN extension over a cyclic group. The subgroup of the automorphism group generated
by inner automorphisms and Dehn twists will be called (as suggested to us by Benjamin
Weiss) the subgroup of internal automorphisms. Our goal in the next following sections is
to show the group of internal automorphisms is of finite index in the automorphism group of
a torsion-free hyperbolic group, and in parallel to get that the automorphism group of such



groups is finitely generated. Our approach is a variation of the Bestvina-Paulin method ([Be],
[Pa]) which is an elaborate application of the Gromov topology on metric spaces, joined with
results from the work of the first author on (small) actions of groups on real trees [Ri]. This
approach is adapted in [Ri-Se] in order to generalize the solution to the isomorphism problem
given in [Sell, and to study acylindrical splittings of f.g. groups in [Se2].

Let I' = (G|R) = {(¢1,-,Gt|r1,---,7s) be a torsion-free freely indecomposable § -
hyperbolic group, let X be the Cayley graph of I' with respect to the generating set G and
let I+ be the group of internal automorphisms of I' . For each automorphism ¥ € Aut(I)
we pick a “shortest representative” in the left coset ¥/, 7 , that satisfy:

max [W{g;)| = min max [ o ¢(g;)
Clearly, in a given left coset U/ there are only finitely many shortest representatives. Now
assume [Aut(l'): It] = oo and let {¥,,}°_, be shortest representatives for distinct left
cosets of I . Let:

P = lllsl?i(t I‘I’rn(gj)|

Since W,, is determined by the image of the generators {g; }§'=1 , and the W, do belong
to distinct It left cosets, we have u,, — oo.
m—00

Let (X,n,1d.) denotes the pointed metric space obtained from the pointed metric space
(X,id.) by dividing the metric on X" by i, . The space {Xy,,id.) is equipped with a T’
action via the automorphism ¥,, .

Proposition 4.1 There exists a subsequence (still denoted (X,,,id.) ) that converges in the
Gromov topology on metric spaces to a real tree (Y, yo) .

Proof: {(Xp,id.)} -, satisfy the assumptions of theorem 2.2 (see [Pa]) so there exists a
converging subsequence. Any limit of a subsequence of the above spaces is 0-hyperbolic
(since X, is ZI%.‘ hyperbolic and p,, — oo ), so it is a real tree equipped with a " -action.

O
Proposition 4.2

(i) Stabilizers of segments of Y are cyclic.
(ii) Stabilizers of tripods (convex hull of 3 points which are not on a segment) are trivial.

Proof: (i) is identical with proposition 2.4 of [Pa]. To prove (ii) let {A, B, C} be a tripod in
Y and let N be the three valence vertex in the tripod {4, B,C}. Let v € I' fix our tripod
and let A,,, Bn,Cy € X,n be triples of points converging to A, B,C in correspondance.
Let:

! = min {dy (A, N), dy(B,N), dy(C,N)}

oo}
m=

From the convergence of the metric spaces {{X,,id.)}
large enough m :

max{d);m(fl,,,, \I;rn(']")(Anl))> d‘\'m(Bma \I’m('f)(Bm));

l
de(Cm, lI’m(')’)(Cm))} < 100 t105

, to (Y,y0) we have for



Let N,, be three valence vertex of a (geodesic) approximating tree with vertices
A, By, Cy, . By the inequality above for m large we have:

6
d‘\'m(‘I’m('Ys)(Arm)a Nrm) < '8‘_' s = 1a e :tlﬂﬁ

‘e

Therefore, there exist s; # sy for which W, (v)(Np,) = Pp(7*)(N,,) which clearly
implies v%2~%' =1, but our group I' was assumed torsion-free so v = 1.
O

Proposition 4.3 Let [y1,y2] C [y3, vs] be segments of Y and assume stab([ys,y4]) # 1 .
Then:

stab{[y1, y2]) = stab([ys, va))

Proof: By proposition 4.2 the stabilizer of [ys,y4] is cyclic. Let v € stab({ys,v4]) and
o € stab([y1,y2]) \ stab([ys,y4]) . Clearly y; commutes with 2 . On the other hand
(assume w.lo.g. y3 & fix(ye) ):

Yomi(ys) = 12(y3);  72vs) # us

But if vi72(y3s) = ~2(y3) then = fixes the tripod {y2,¥s,v2(y3)} which contradicts
proposition 4.2,

O

The combination of propositions 4.1 and 4.2 shows the action of [ on the real tree Y
satisfies the ACC condition of [Ri] so it enables analyzing the action using the classification
of small actions on real trees obtained in that paper. In [Ri] the real tree Y is divided into
distinct components, where on each component a subgroup of I' acts according to one of
the following dynamics:

(i) Indiscrete action of the free group (e.g. Levitt type).
(i1) Interval exchange transformation.

(iii) Axial components.

(iv) Discrete action,

Our aim is to show that for each of these components either I' splits as a non-trivial free
product, or we obtain a contradiction to ¥,, being shortest representatives in their cosets by
constructing automorphisms ¢, € Ir (for large enough m ) such that:

112;‘% IlIJmQDm(gj)I < 1121&2! |qjm(gj),

Remark A similar (although technically somewhat different) discussion appears in [Se2] for
the study of acylindrical splittings of groups.

Indiscrete actions of the free group

Since stabilizers of tripods are trivial by proposition 4.3 and since the stabilizer of a
segment is the stabilizer of the whole component in the above case by [Ri], the stabilizers of
segments are trivial. Therefore, our group I' splits as a free product [' = A x F,, where F,
is a free group on n generators. ' was assumed freely indecomposable, so Y contains no
components with an indiscrete action of the free group.



Axial components

If an axial component is not isometric to a real line, then by the above argument stabilizers
of segments are trivial. Therefore, by [Ri] our group T" has the form I' = A xz Fy in this
case (since we assumed T is torsion-free and I* contains no Z° ), 80 we treat it as a special
case of an interval exchange transformation discussed in the following section.

The subgroup corresponds to an axial component which is isometric to a real line is
solvable and it has Z2 as a quotient. But the only solvable subgroups of torsion-free
hyperbolic groups are cyclic, so real line axial components do not occur in Y.

In the next section we treat the IET components and show how to shorten all generators
supported in part on these components, so we are left with the discrete case and the standard
Bass-Serre theory. This last case is studied in section 6. The whole procedure described in
this and the following two sections will serve us in getting other results about the structure
of hyperbolic groups and their automorphism groups in the preceeding sections and in [Se3].

5. The IET components

Having our limit real tree (Y)yp) , our aim is to find an automorphism ¢ € Ip such
that all generators ¢; supported in part on IET components will get shorter in Y, i.e.

dy (¢(9;)(0), yo) < dy(g;(v0) vo)

Achieving such a shortening automorphism we are left with the discrete case which is handled
in the next section. Combining the two sections we get a sequence of automorphisms ¢, € It
such that for large enough m :

flg]?ét de(\I’m o (Pm(gj)> id-) < 11151?'; d,\'m(\I’rn(gj)Jd-)

which clearly contradicts our choice of the automorphisms ¥,, and, therefore, we obtain a
contradiction to our initial assumption: [Aut(I'): Ir] = oo .

According to the work of the first author on group actions on real trees [Ri], the
fundamental group S of an IET component 7' with trivial edge stabilizers is Fuchsian,
and covered by a corresponding IET action of the free group:

F n X Tl - 'Tl

(v, 1) lu
SxT —= T

where there exists a homomorphism » : F,, — S such that:

VieF, Vel p(ft1)=v(f){ult))

In this section we do not need to assume our hyperbolic group I' and in particular the
fundamental group of the IET component S are torsion-free, and in fact in [Se] we use the
argument and results of this section in the context of f.g. groups with no 2-torsion. In our
present situation of torsion-free groups we have the following notion which plays a central
role in the study of dynamics of individual automorphisms and the algebraic structure of the
automorphism group (see [Se3)).



Definition 5.1 Let " be a freely indecomposable, torsion-free hyperbolic group. A quadrat-
ically hanging free group Q of T' is a finitely generated free group ()} ~ F, such that T
admits a graph of groups:

where j(i) < m and @ admits one of the following two presentations (the u; ’s are
conjugate of the s; ’s):

m g
(1) Q = <Sly”' 3 Sm o, a1, :a’g: bla"'rbgl]___[sil__[[a’j1bj} = ]->
=1 ;=1

m g
(11) Q=<511“'asmy lUla"'a‘UgIHSiH’UJz:]_>

i=1 ;=1

In section 9 we show that a freely indecomposable torsion-free hyperbolic group is weakly
rigid if and only if it does not contain quadratically hanging free groups. For much stronger
results on the role of quadratically hanging free groups in the structure of the automorphism
group of a torsion-free hyperbolic group see [Se3].

Our aim is to shorten generators supported in part on IET components. To do that
we find automorphisms of the fundamental group S of an IET component T such that
the intersections between the segment [yo, g;(yo)] and the disjoint union of shifts of the
corresponding IET components T are strictly shorter (if positive) for [yo,o7(g;)(v0)] - The
length of the intersection between [y, g;(yo)] and the discrete part and other IET components
remains unchanged. By setting ¢ = @r1,0- -0, Where T1,---,T, denote all the (conjugacy
classes of) IET components in Y we achieve our goal.

Let T be a fixed IET component with fundamental group S. Suppose {0, ¢;(¥0)] is
supported in part on at least one of the conjugates of 7' and let:

Tp={yel| Ty N[yo, g;(v0)]| > 0}
er = min YTy~ In [¥0, g (v0)]|
yel'r

and S be given by one of the standard presentations (for simplicity we assume no reflec-
tions):

mn

g
) —h ~Fm
<31,-~ Sy 1,01, - ag g7 s ,Hs,' H [a,j,bj]>

i=1  j=1



or; . g
<31, e 8m, UL, ,'vg|s;}”,--- ,s;f"“,Hs,’ va)

=1 j=1
Now, let Pr be the set of all possible permutations ¢ on 2m + ¢ or m + g symbols (in
correspondence) such that there exists an IET transformation (see [Ke] or [Ri] for definition)
with permutation o that gives a real tree T with S as fundamental group and s1,--,sp,
as non-conjugate stabilizers of vertices of 7. With each such real tree 7" we get a natural
presentation for the group S where the generators are the elements of S which correspond to
the generators of the pseudogroup defined by the IET transformation. Clearly, this presentation
depends only on the permutation ¢ € Pr, so let xyr be the maximal length of a generator
in our standard presentations under all ¢ € Pr :

X7 = Max 11}3“{('3:"; la;l, 1)

or:
NT = max 111a-x(|55|; |'Ujl)
e J

bl

Let A be the graph of groups corresponds to the action of I" on the real tree Y according
to the first author’s Bass-Serre theory for real trees [Ri]:

I S “A(F)

Let 2, = Fix(u,) NT , and suppose (w.lo.g.) o € T or z,, is the closest point on
T to 1yp . By taking appropriate conjugates we may assume:
€
liam{a; }¥ —
diam{a;}7_, < 100
and if yo € T then: dy(yo,71) < 355 since the IET component 7" is minimal and orbits

are dense ([Ri], [Ke}).

Each generator g; can be represented as a word in the vertex stabilizers i.e.:
kG
g; = [[ Wwlf
i=1

. D . ,
where 1! € |J Hm; w! € S and f/ are generators of loops in the above grpah of groups

m=] . i
(some of the k!, w!, f! may be the identity). Let:

L= max max |u]|
1<) <t1Ki<h()



where |wf | is the word length of ‘”':’ in the standard presentation for S.

Since the action of S on T is minimal (orbits are dense), in any subinterval we can
represent the action of S as a pseudogroup, from which the action of S on T can be
reconstructed [Ri]. By taking the interval to be of size iﬁﬁi"\? around yy if yg € T or
around ., , where z,, is the closest point to yg on 7', we get an automorphism @p of
S that satisfies:

dy (GDT (w{(‘"“"l ), ‘T”)) < %

Therefore, we have strictly reduced the intersection between [y, ¢7(g;){¥0)] and the conju-
gates of the IET component 7" in comparison with [yo, g;(yo)] . Since all the automorphism
group of S is internal (i.e. generated by Dehn twists and inner automorphisms [ZVC]), and
the intersection of yy with the other IET components and with the discrete parts remains
unchanged we get the following.

Theorem 5.2 Let T be an IET component of the limit real tree Y. There exists an internal

automorphism o of T' such that for generators g; € G where [yo, g;(y0)| is supported in
part on conjugates of T we have:

dy (0, 9;(v0)) > dy (0, o1(9;)(w0))

By composing automorphisms {e7;}7_, for all distinct IET components we get:

Corollary 5.3 There exists an internal automorphism ¢ of T’ such that for all generators
g; € G with [yo, g;(y0)] supported in part on IET components we have:

dy (%0, 9; (o)) > dy(yo, ©(9;)(v0))

6. The discrete case

Showing how to make all generators supported in part on IET components shorter, we
are left with a discrete action of T" on (Y, o), the standard Bass-Serre theory. In this case
we do not find an automorphism @ € I that makes the action on Y “shorter”, but we do
find automorphisms ¢,, € Ir that makes ¥,,0¢,, “shorter” for large enough /m. This again
contradicts the way the automorphisms ¥,, were chosen, and we obtain a contradiction to
our basic assumption on the infinity of the index of the group of internal automorphisms Ir
in Aut(I') . The whole argument described in this section is very similar to the one given
in [Se2] for the discrete case.

Since I' is assumed freely indecomposable, stabilizers of edges can not be trivial, so
by proposition 4.1 they are infinite cyclic. The treatment in this case is divided into several
cases according to yp being in the interior of an edge of Y and in the first case we divide
our argument to a splitting and non-splitting edge in the corresponding (Bass-Serre) graph
of groups.

Case 1A yy € e and € € Y/I is a splitting edge.

Let C be the cyclic subgroup of ' that fixes the edge e . By the construction of the
tree ¥ we get [' = A xo B where C is strictly included in both A and B (in fact C is
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of infinite index in both). Given the above splitting, for each generator g; € G we have
the following presentation:

1 TR RLE] 1 i
gj_ab--u 1505 w; €A b; e B

} and 07’ may be the identity element).

(where «a J

Let z € C be a generator of the cyclic subgroup C, and let ¢ be the minimum between the
shortest edge of Y and the distances between yp and the vertices of e¢. By the convergence
of the metric spaces (X,,,¢d.) to (Y, o) in the Gromov topology on metric spaces, we have
the following inequalities for large enough m :

dx, (¥m(2°),id.) < &1

dx,. (\I’,,,(zsaiz's) id.) — d}--(aj-(yo),yoﬂ <€
|dx,, (W (2°05277) id.) — dy (b (w0), 90) | < €1
ldx,, (IIJ,,, (zs‘a;-‘z 31) U, (2 s"a}“ 3’))

q]

—dy (z a 'z 2‘”0:}2 Z—SZ(UO))! < €1

i () )

—dY( SHY 27 (), 22 Uo))| <eér

e L)

—dy(z a2z~ (yo), 835;22_32(!/0))|<51

where &1 = m, 0 < |S| < 206t26
Lemma 6.1 Let w,, € [id.,lllm (a})], U [1(1 \I!m< )] satisfy:
€

(l-’\-m ('u}nl? fd') = d-‘Y"' (?U;n’ 1([ ) 2 ’

Then for m large enough (so that inequalities (6.1) hold) and for some sy, 1 < sy <
206¢%

dx{wm, (2" ) wn)) > 106

dx (w:n, U (2% )(wm)) > 106 .

Proof: W,,(2%){(w,,) is 26-close to a geodesic segment [id.,kl!m (a})] . Therefore, a
simple pigeon-hole argument proves the lemma.

'F“\i;n(b}) . S

1
. ‘IJHI (aj)
id.,
r
Wm Wiy

@m(z%)'(wi.:) | V() )

11



Proposition 6.2 Assume (w.l.0.g.}) that for the sy of the previous lemma:
dy (id., Uy (2% ) (wm)) < dy(id.,wy,) — 86
dx (id., U, (2* )(wm)) >dyx (ir_l., w:,l) + 86

Then forall 1 < 7 <t; 1 <@ < ny we have:

dy (id., U (2%a527%)) < dy (id., U, (a})) — 86

dy (id., U (27°0052%)) < dy (id., T,, (b%)) — 86
Proof: By inequalities (6.1):

dy (id., lIlm(z“‘”a;z"“)) < dx(id., U n(2°) (wm))
+dy (lI’,,,( Y wm), \Ilm(z a )(w,n))-i-
+d.\( ( ) W), ¥ (z an q"))
< dx(id., wm) + dx (W, 111,,1( )wm)-I—
+dy (\I’ ( ) (1wm), ‘I’m(a )) — 166

<dy(id., ¥,,(a})) — 85

A similar argument proves the inequality for the bj ’s.

Theorem 6.3 Let ¢ be the I -automorphism defined by:

Vae A  ¢la) = z%az""
Voe B (b)) = z7%bz*

Then:

\ -(2d. ;
111<1§1~<\td\ (id., Wi 0 9(g5)) < ax dx(id., ¥in(g;))

Proof: Clearly both maxima are obtained for g; ¢ C . From the inequalities (6.1) and
proposition 6.2 we have:

dy (id., Uy 0 p(aj - b3)) < dy (id., By (a} - b)) — 20 - (46)

and the theorem follows (cf. [Se2] ch. 2).
O

Theorem 6.3 contradicts our choice of the automorphism ¥,, . Therefore, our pointed limit
ee (Y,yp) does not fall into case 1A.

Case 1B y € e and & € Y/T is a non-splitting edge.

Let C be the cyclic subgroup that fixes the edge e, and let [' = A% . Let z be a generator
of C, and let f € I be a (Bass- Serre) element corresponding to a simple loop containing
the edge € . For each generator { JJ} -, Wwe have:

qj—al,lf’1 . “’f:

1

where a; or f"":‘J may be the identity element.
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Let » = max (A}) and let ¢ be the minimum between the shortest edge of Y and the
i
distances between yo and the vertices of e. By the convergence of the metric spaces (X, id.)

o (Y,yo) in the Gromov topology on metric spaces, we have the following inequalities for
large enough m :
dx, (Um(2°),id.) < &

X (W (af) id.) — dy (a5(30), 90)| < &1

ldx,, (W ((£2)F), i) = dy (£ (30),90) ) < e
62) {dx,, (l}'m(a}(fz‘“)k : a’(fz ) ) zd)
(ly(a'ljdb s f (yo J())I <€

ldx.. (‘I’m (0}1),‘1’m (fr-}2)> = dY( 1{wo), h(Jo))| <e
i, (@), W ((£2)1)) = v (o), £ (90) )| < e
where €1 = gy —n <k <n; s] <2062 _
Lemma 6.4 Let wy, € [id., Uo(f)]; w,, € [id,,\Il,,, (a})] satisfy: l
£

dx,, (wm,id.) = dx, [ ( T zd) )

Then for m large enough (so that inequalities (6.2) hold) and for some sp; 1 < sp <
206t%

dX(wm: ‘I’m(zso)(wm)) > 206
dx (wm, U, (2%0) (w'm)) > 206

Proof: identical to the proof of lemma 6.1.

Proposition 6.5 Assume (w.l.o.g.) that for the sy of the previous lemma:
dx (id., U (2°°)(wm)) < dx(id.,wy) — 186

dx (id., lIJm(zS")( )) >dy (ad wm) + 1846 .

Thenforall 1 < 3 <1t; 1 <1 < n; we have:
(i) d.\'(‘l’m(zso):‘I’rrl(fz3s°)(‘1’:r:( )) < |l1’m( )| — 206

(H) ' (lX(lI’m(zso) lI}m (aj)(q}m(zsn))) < |l1}7“ ((I;)| — 206

Proof: By inequalities (6.2):
dx (lllm(zso): Wi (fz.'}so)) < d;\'(\l’m(zso)y wm)+

+dx (wm, W ('w' )) +dx (‘I’m(f) (w:n) » Win (fzssu))

< |wm| + d\ (111,“( (wm) ‘Um)’i'

+dy ('wm, m( (w )) + ¥ _35°)(’”171)|
< |wm| + dx (w,,,, m(f)( ))
+ |w,| = 306 < [Ty f)] — 206

13



To prove (ii) we have:
dX (‘I,m(zso) lI!m(a;'zsu)) < dy (wm, ‘I’m(z"‘”))
+ dx (UJ ‘I‘m( ) (w;”)) +dx (‘I’m (a;) (w;n) U, (ajz"‘”))
< 2|wm| +dx (wm; \IJ,”(G;) (w:n>) —286 <
< | @ (al)| - 206

Theorem 6.6 Let ¢ be the T -automorphism defined by:
Yae A pla)=ua
o(f) = f2
Then:

S . 50 3 .
fléj“é,d‘( m(2%), Uy 0 0(g; (¥ y(2 )))<112?‘étd)~(1d'vlpm(gj))

Proof: Assume 7 = roa.;- is a subword of the reduced form for g; and:

dx(Vn(2%), Ty, 0 o(mo ) ¥in(2%))) < dx(id., ¥ (1))
dx(Um(2*), W 0 p(T)(Un(2%))) < dx(id., Um(T)) .

First suppose n% > 0 . Then:
A (@), U 0 (7175 ) (Tn(2))) <
d.\'(q}m(z‘go)a lIJm o W(T‘)(wm))'{'
T dx (w By (£25%) "?(\Ilm(zso)))
< dy(id., Un(7)(wm)) + dx («wm, mpm(f)"i‘)
~ 126 < dy (id., v, (T f)) _ 85

Now, suppose 'n.j- < 0 . Then:

dy (‘I’m(z‘%’) ‘I’mow(foﬂ"-f";)( m("“"’)))
< dx (Ta(2™), U 0 p(m0a}) (Trn(2))) +
+dx(\I’m(’ ),‘I'mw(a ) (W,n(2%) ))
—dX( m(z% ),\I’,,.(aj)( m(-""))) + 46

d (Un(2), w0 0 ()17 (0 (™)) -
— dx (Tn(2), U () (Tin(z%)))
< dy (id., U, (a;f“:v)) —dyx (‘id., lI’m((L;')) — 156

Therefore:

dx (\I’m(zs“), W, 0 ‘P(T(Jff-;'fu;) (‘I'm(zso)))
< dx (id., T (Tf“;')) +dx (i(f-, P, (ﬂ;‘fn;)) -
= dx (id., W (1)) = 108 < dic (i, Wy (7)) = 56
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We are left with 7 = 7 f "j as a subword of the reduced form for g; and we assume:

(l_\'(‘IJm(Zso), ‘I’m o) (,O(T())(\I’m(z'go))) S d;{(id., \I’,H(TQ))
dx (¥ (%), Um0 @(7)(Vn(2%))) < dx(id., ¥ (7))

First suppose 7 < 0 . Then:

dx (Wn(2), U 0 0 m'+1) (W (2 ))) <
dx (\pm 2%, xp,,,w(f)( ))
i (10, (071 (2n(2))
< dy (:d Uo7 )(w)) +dy (w'm,m,n(a}“)) — 306
< dy (zd T, (m;“)) — 206

Now suppose n;. > 0 . Then:

dx (Tm(%), W 0 (oSS ) (Wi )))
<dy (‘I’m(zs"), m O tP(Tof"’) )
+dx (¥n(%), T 0 so(f"mrl)(wm(z“)))
— dx (W), T 0 9 (575) (T (2))) + 46

A (), T 0 p( £ ) (W(2)

— dx (W), o 0 9 (£75) (% (%)

< dy (-i.d., T, ( f"i'aj.“)) — dy (m‘, . ( f)) 156

dX(lllm(z““’) U, 0 (p('rgf”Ja""l)(\Ilm(z"‘")))
<dx (id.., U, (T(J,;-+1)) + dx (id., v, (f"i'a;ﬂ))
—dy (id., ‘11( f)) ~ 106 < dy (z’d., \p,,,(mj.“))

Clearly, a finite induction argument finishes the proof of the theorem.

-~

Therefore:

O

Theorem 6.6 contradicts our choice of the automorphisms W¥,, for large enough m, so
joint with theorem 6.3 we conclude that iy does not belong to the interior of an edge of
the limit (discrete) tree Y, and is, therefore, a vertex of Y. Since yg is a vertex of Y we
have no distinguished edge which we should try to make “shorter”, but rather make all the

edges adjacent to the vertex yg shorter, and by that complete a contradiction to the whole
construction of the tree Y.

Let 7, be the vertex corresponding to the orbit of o in Y/T' | let &,---,€, be the
edges adjacent to 7, in Y/I' , let c1,---,¢p, be their stabilizers and z, € C, be their
generators. As we did in the case yg lies in the interior of an edge, we split our treatment
into two cases.
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Case 2A ¢, is a splitting edge in Y/T .

This case is naturally parallel to case 1A and our approach is, therefore, very similar.
The group I' splits as ' = A ¢, B where stab{yp) < A and C, is of infinite index in
both A and B. For each j let:

(where a} or b7’ may be the identity element). By the convergence of the pointed metric

spaces (X,,,id.) to (Y,yo) in the Gromov topology we may assume that the inequalities
(6.1) hold for m large enough, where ¢ in these inequalities is the length of the shortest
edge of Y.

Lemma 6.7 Let w,, € [id.,\l’,,;(b]l-)]; |w| = §um . Then for m large (such that
inequalities (6.1) hold):

dx (Wi, T (25°) (win)) > 206

q
for some sq 1 < |so| < 206t% .
Proof: identical to the proof of lemma 6.1.

O

Proposition 6.8 Let s59; 1 < |sp| < 20626 satisfy the conclusion of lemma 6.7, and suppose
(w.lo.g.):

dx(id.,wm) > dx (id., U, (z;j”)(’wm))
Let ¢, be a I'-automorphism defined by:

Yae A wyla) =a
Ybe B pqlb) = 2,°b 2%
Then: .
dy (id., U 0 g (1)) < dy (id., ¥,, (%)) — 206
Proof: .
dyx (id., W (2005 27%)) < di (id., W (2°) (wm))
+ dx (W, Won (85) (i) + dx (w0, U (27*))
< dx(id.,wm) + dx (wm, U, (bj-)(wm)) + dx(id., wy) — 306
< dy (id., Uy, (b})) ~ 206
O

Theorem 6.9 Let {g; };=1 be the generators of I' , and let I' be given by the splitting above
I' = Ax¢, B . Then:

(i) 95 € A= [Um(g;)] = [Wm 0 0q(g;)]

(ii) 9; € A= |V, 0 04(95)] < |¥m(gj)| — 206



Proof: (i) is immediate since ¢4(g;) = g; if g; € A . The proof of (ii) is identical with
the proof of theorem 6.3. ’

O
Case 2B €, is a non-splitting edge in Y/T" .

This last case is naturally similar to case 1B. In particular T' splits as I' = A*¢, , and
each g; admits a presentation:

c— 4l Lﬂ‘... n; A"J
gi=a;f a7

where a;'- € A and a]; or f"’iJ may be the identity element. By the convergence of the pointed

metric spaces (X,,,id.) to (Y, yp) in the Gromov topology we may assume inequalities (6.2)
hold for m large enough, where ¢ in these inequalities is the length of the shortest edge of Y.
Lemma 6.10 Let w,, € [id.,V,,(f)]; |wm| = St . Then for m large (such that
inequalities (6.1) hold):

dx (wmg Pin (zgo)(wm)) > 206

for some sp; 1 < |so| < 206t
Proof: identical to the proof of lemma 6.4.

Proposition 6.11 Let so; 1 < |so] < 206t2° satisfy the conclusion of lemma 6.10 and
suppose (w.l.o.g.):

dx(id.,wp) > dx (‘id., U (z;")(‘w,,,))
Let ¢, be a I'-automorphism given by:

Vae€ A pqla) =a
og(f) = fz2%
Then:
dx(id., Uy 0 @y(f)) < dx(id., ¥p(f)) — 206

Proof:
dx (7'(1.., U, (fzg“)) <dy (id., T, (zgst') (‘wm))

+dx (\I‘m (fzg‘q”), Win (zgso)(wm))
< dy(id.,wy,) + dx(9,,(f), wy,) ~ 308
< dX(id') lI’m(f)) - 206
O

Theorem 6.12 Let {gj};-:l be the generators of I , and let T be given by the splitting above
' = Axg, . Then:

(i) 9i € A= |Un(g)] = [T 0 9q(g;)]
(it) gi g A= |‘I’m o ‘Pq(gj)l < |‘I'm(gj)| — 106
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Proof: similar to the proof of theorem 6.6.

Theorem 6.13 Let ¢ = @1 0--- 0, . Then for m large enough:

mmax [T 0 9(g;)] < ¥mlg)]
Proof: Clearly for m large the maximum is obtained for some g; & stab(yg) . Such g; has
to become “shorter” by at least one of the ¢, by theorems 6.9 and 6.12. Since all the ¢,
do not increase the length of the g; the theorem follows.

O

Contradicting all the possibilities appear in [Ri] for the dynamics of components of the
real tree Y, we get a contradiction to its existence. Since the construction was based on It
being infinite index in Aut(I") , for [’ torsion-free freely indecomposable hyperbolic group,
we get the main result of the last three sections:

Theorem 6.14 Let [" be a torsion-free hyperbolic group. Then It , the group of internal
automorphisms of T is of finite index in Aut(T) .

Proof: Since the automorphism group of a free group is generated by Dehn twists and inner
automorphisms the theorem follows.

O

The argument presented in the last three sections is going to be used in the preceeding
sections to obtain additional structure results for hyperbolic groups, their subgroups and their
automorphism groups.

7. Freely indecomposable subgroups

In this section we prove the following theorem, which is originally due to Gromov
(Gr], 53 C' ) :

Theorem 7.1 Let T' be a hyperbolic group and let T'y be a f.g., torsion-free, freely indecom-
posable (non-cyclic) subgroup. Then T contains at most finitely many conjugacy classes of
subgroups isomorphic to ['y .

Proof: Let I’y = (G1) and suppose there are infinitely many conjugacy classes of subgroups
isomorphic to I'; in I’ . For each such different embedding we choose a monomorphism
@ : 't = T' such that:

max |¢(g;)| = min  max [p¥{g;)|
1<j<t velShe,, 1SSt

Let {¢m}on=1 be a sequence of these shortest imbeddings and let:
Hm = ax |om(g;)]

Then by the infinity assumption ,, — oo and by the limiting argument described in section
4 we obtain a real tree ¥ equipped with a (small) left I'; action, which is the Gromov limit

18



of a subsequence of the metric spaces ¢.,,(I"1) (with metric inherited from T' ). Now, I';
being freely indecomposable and the shortening arguments described in sections 5 and 6 give
a contradiction to the construction of our real tree Y. Therefore, we have a contradiction to
the infinity of the sequence of shortest embeddings ¢,, .

O

Remark: Note that in our statement of theorem 7.1 only the subgroup I'; is assumed torsion-
free, and we assume I'y is f.g. and not f.p. .

8. Finite generation of the automorphism group

The general scheme presented in sections 4, 5, 6 enable us to get the following:
Theorem 8.1 Let T" be a torsion-free hyperbolic group. Then Aut(T) is finitely generated.

Proof: First note that Inn(I") clearly is f.g. and it is enough to prove the theorem for T’
freely indecomposable. Suppose Aut(I') is notf.g. for I" torsion-free, freely indecomposable
hyperbolic group.

On the set of conjugacy classes of small splittings of I , we may define a natural height
function. A splitting I' = A ¢ B (and in correspondence an HNN extension) is of height at
most v if A= {a,---,a;); B=1{bg, --,bs) and |a;| < v; |bi] € v and the generator
of C is also of length not exceeding v . The height of a conjugacy clas of a small splitting,
therefore, is the minimum possible height under the action of Inn(I") . Clearly, given a height
vy , there are only finitely many conjugacy classes of small splittings with such height. Let
DTT denote the subgroup of Aut(T') generated by Inn(T") and Dehn twists obtained from
splittings of height at most m.

Now let ,,, be one of the “shortest” automorphisms of I" which are not in DT ie.:

m

jnax lom(g5) < wemi?%‘\um jax ()]
At this stage we are able to use the argument presented in section 4 once again and get an
action of I on a real tree Y. But by the arguments presented in sections S5 and 6 there
exist finite (fixed) Dehn twists so that the group generated by them makes ¢,, (after taking
a subsequence) shorter for all m > m; . On the other hand for some mgy this finite set
belongs to DTL a contradiction.

ma
O

Remark: This rather simple argument is in fact a key point in our generalized approach to
the isomorphism problem [Ri-Se]. On finite presentability see [Se3].

9. Weakly rigid hyperbolic groups

Weakly rigid hyperbolic groups are of main importance for the understanding of the
automorphism group of a hyperbolic group and in connection with the isomorphism problem
[Ri-Se]. The main observation for their significance is the following:

Theorem 9.1 A torsion-free freely indecomposable hyperbolic group T is weakly rigid if and
only if ' does not contain quadratically hanging free groups (see definition 5.1).
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Proof: If ' as above is not weakly rigid then by the discussion appears in section 4 T’
admits a small action on a real tree Y, where Y contains IET components. The stabilizer
of a segment includes in such an IET component is the stabilizer of the whole component
by [Ri]. If a stabilizer of such a segment is cyclic, then I" contains a subgroup H having
the short exact sequence:

124 —->H-—-N=-=-1

where N is free or a surface group. The normalizer of a cyclic group in I' is cyclic so we
get a contradiction. On the other hand if I contains a quadratically hanging subgroup then
acting on I' with a pseudo-Anosov automorphism of the quadratically hanging subgroup and
take a Gromov limit we get a real tree with a small action of I' and an IET component (the
whole limiting tree Y has IET dynamics in this case).

O

Much stronger results on the structure of weakly rigid hyperbolic groups and their automor-
phism group appear in [Se3].
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