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0. Introduction

Consider two Riemannian manifolds M™ and NO c:md , where
M 1is compact, possibly with boundary, and m 2 3 . A map
f : M~— N is harmonic if it is stationary for Dirichlet's

integral ("energy")

E, (f) = | |Vf|2dVol,
M

d m a8 Bfi afi
R % 3% ¢+ and where
B=1 o B

represents the metric of M . In a fundamental paper {([SU1]},

1

where |Vf|2 {x) = (YGB(X))—

.
i21 a, aB

Schoen and Uhlenbeck showed that near any singularity, a minimizing

harmonic map £ : M —> N converges strongly to a minimizing

tangent map u : RY —> N° , which is harmonic and homogeneous of

degree zero. The investigation of minimizing tangent maps

u : B®™ —s N' is therefore an important aspect of current research

into minimizing harmonic maps.

We restrict our attention in this paper to the case N = s” '

n+1

the unit sphere in R Even in this case, surprisingly few

examples are known of maps u : 8" —> s , homogeneous of degree

zero, which minimize energy for given Dirichlet boundary conditions.
The first nonconstant example was given by Jiger and Kaul in

1983, who proved that the map B —s s™ gdefined by

o
uo(x) = (x/|x}|,0) minimizes energy if m 2 7 ([JK]; see also

[su3l). Recently, Brézis, Coron and Lieb have shown that the map

ug (x) = x/|x| from B> to s minimizes E, ([BCL]). A proof
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was communicated to us by Lin that u,(x) = x/|x| from B"  to
Sm_1 has minimum energy, for all m ([L]). In a related result,
Hélein has shown that E,(u) 2 E,(uj) + a E2(u~u0) for some

o > 0 , provided that n = m=-1 and m 2 9 ([H]).

In contrast, it is shown in [SU3] that any minimizing tangent
map u : B —> 8" is constant if m < d(n) , where 4d(3) := 3

and d(n) 1 + min{n/2,5} otherwise.

il

A natural generalization of the functional E2 is the

p-energy
= P
Ep(u) = ém |va|¥ax ,

which is finite if and only if u belongs to the Sobolev class

W PE™ s .= {uew PE", R

):Juj = 1 a.e.} . Mappings which
are stationary for Ep are called p-harmonic maps. Note that
regularity theorems analogous to results for p = 2 in [SU1]
have not yet been proved for general p (uniform ellipticity is
lost). One may well expect, however, that minimizing tangent maps
will play a role similar to their role in the theory for p = 2
One result of the present paper concerns the homogeneous
mapping uy ¢ B" —> s" defined by uo(y,z) = y/|y| , where

y € B ana z e BV | we have

Theorem 2.4. If p s n s m-1, then Ep(uo) s Ep(u) for any

u € W1’p(Bm,Sn) with u = u, on aB™ .

If p =n = m-1 , then this result may be proved by the



methods of [BCL]. If p =2 and n = m-1 , then this is exactly
Lin's result. Our proof was discovered later than Lin's and

independently, and is of a gquite different nature.

Two interesting examples of mappings from an to S° are
provided by the homogeneous extension
ug (x) = H(x/|x})
2n-1 n . . .
of the Hopf maps H : S —> S related to the multiplication

of complex numbers (n = 2) and the gquaternions (n = 4) . We
shall prove that both are minimizing maps for E2 (Theorems 5.1
and 6.1).

Using similar techniques, we shall prove a sharp lower bound

En(u) 2 nn/2 volume (Sn)

1,n( n+1 _n

for uvu e w B ;) such that u(-x) = -u{x}) for all

x € 38™1 (Theorem 4.1).

Finally, we give a theorem with general hypotheses on a
mapping U, ¢ B™ —> s" which allow us to conclude that Uy
minimizes Ep for its boundary data. The hypotheses are similar
to the conditions for a harmonic morphism (compare p. 123 of [B]).

We would like to point out that the results of the present
paper do not include a classification of all minimizing tangent
maps into s" . For example, up to an orthogonal motion,

uy (x) = x/|x| is the only known example of a minimizing tangent



map from B4 to 83 ; it is not known whether any others exist.

It was proved in [BCL] that uo(x) = x/|x| 1is the unique

minimizing tangent map from B3 to 82 modulo @(3)

One idea in our proof is to bound the p-energy of a map

v : B®™ —> sP  from below by a coarea formula. The usefulness

of the coarea formula in the context of the functional Ep for
mappings into a p-dimensional manifold was made clear in the
paper of Almgren, Browder and Lieb [ABL]. An analogous framework
of ideas had been constructed in [BCL] for the case p = n = m-1

A new idea, which plays a central role in our proof, is to
estimate the p-energy of a map u : B —s g" by averaging a
related functional of the composition of u with all nearest-
peint projections Ty of S™ onto its totally geodesic p-spheres

(Lemma 2.2). This averaging method is simplest in the classical

case p = 2 : the energy of any map u : B" —> s is a constant
times the average of Ez(nyou) over all 3-planes Y in :mp+1
Here Ty ¢ s" —s vy n s” maps s € s to the nearest point in

the 2-sphere Y n s" (Lemma 1.2).

An important technical tool 'in our proof is a new approximation
result for mappings into the p-sphere of class W1'p {Theorem 3.2),;
which is based on methods of Hardt-Lin and of Bethuel-Zheng. Note
that smooth mappings are not dense ([su2], p. 267 for p = 2 ).
However, we construct a dense class R of mappings whose

singularities form submanifolds of codimension p + 1 , with



simple structure near the singularities. Of course, the
slicing theorems of Federer ([F], 4.3.1), which are relevant
to the coarea formula, are valid only for Lipschitz-continuous
mappings; in effect, the singular set of a mapping of class R
contributes to the boundary of each slice. This difficulty is
overcome by considering the difference of the slices at two
distinct points in sP ; the difference is a current having

no boundary in the interior of the domain.

The authors would like to thank Martin Guest and Uwe Abresch
for useful references to the literature. They gratefully acknowledge
the hospitality of the Max-Planck-Institut fiir Mathematik, where

this work was carried out.



1. Projection to lower-dimensional spheres (p = 2)

Consider n ¢ m-1 and an integer p, 1 £ p £ n . For this

section and the following one, we define boundary data

n

g : 3™ —> S by

gly,z) = y/iy]
where vy e R™! and z e B ™! | The class of admissible mappings
is
T}

Ep(g) = {u € W1'P(Bm,Sn) :u=g on 0B

The homogeneous extension of g is u,ly,z) = y/|y| , which is
singular on {0} x B ™ 1 c ®™ . Note that Ep(uo) is the integral
of |3,r|_p , which is finite since p < n+1 . This shows that
u, € Ep(g) , and the admissible class is not empty.

In this section, we shall consider only the case p = 2 ,

which is simpler than the general case (compare the averaging

Lemmas 1.2 and 2.2). Our result is

Theorem 1.1. E2(u0) b3 Ez(u) for any u € Ez(g) .

Given a 3-plane Y cimn+1 , we define Ty ¢ s —> s ny

by WY(U) = u'/|u'| , where u' is the orthogonal projection of

u onto Y ., The singular set of Ty is the (n-3)-sphere s™ n Y'L



Lemma 1.2. There is a constant ¢

1

u € w2, s

c(n) such that for any

n

)

(1.1) ¢ Ez(u) = 1 Ez(nypu)dG(Y)

YEG3(:1R“+ )

Here dG is the bi-invariant volume form on the Grassmann manifold

G3(2Rn+1)

Proof. For any tangent vector V to S° , we have

(1.2) clv|? = 7§ oy (v) | %ac(y)

vea, ( r T

since 0(n+1}) acts transitively on the unit tangent vectors to

n+1) . Note that Tm. is

s and leaves dG(Y) invariant on G3(ZR v

singular along a totally geodesic (n-3)-sphere of s™ , and
IDFY(V)I < C|v|/r , where r is the distance to the singular set;

therefore, the integral in equation (1.2) is finite. Since

m
|Vu|2 = 21|%§— , this formula applied to V = %%— yields
a= o o

c|Vu[2 = f n+1 ]V(nYou)|2 dc(y) .

Y€G3( R )

We integrate both sides over B" to obtain (1.1) by Fubini's
theorem.

g.e.d.

.' o m 2 . _ X
?o?éllary 1.3. Let Vo B > S be defined by vo(x,y) = TxT *
where x €2R3, y er"3 . If E,(v) 2 E,(vy) for every




v € W1'2(Bm,52) with v = VO on 9B , then Ez(u) P Ez(uo)

on 9B .

for every u € W1’2(Bm,sn) with u = u, on

Proof. Note that TyeUy = V

rotation in R" . Using Lemma 1.2,

0 after performing an appropriate

c E,(u) = [ E, (1, ,0u)dG(Y) 2
2 G3(:mn+1) 2y
G3(:mn+1)E2(“You0)dG(Y) = ¢ Ez(uo)

qg.e.d.

The coarea formula has the serious weakness that it gives a
lower bound for energy E2 only for mappings to a manifold of

dimension n = 2 . The above corollary bypasses this weakness in

the case of mappings to the n-sphere.

Lemma 1.4. (Coarea formula, p = 2 ). If ve C0’1(Q,Sz) for

Q open in B" , then

flwvlPax 2 2§, H™2w Ns)raa , (s)
Q S )

‘where Hm“2 denotes (m-2)-dimensional Hausdorff measure.

Proof. See [F, 3.2.22], with the observation that |\7v|2 2 2 J(v) ,
where J(v) is the determinant of Vv restricted to the
2-dimensional space orthogonal to v“1(s) , and s 1is any regular

value of v .
qg.e.d.
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In order to use Lemma 1.4, which is only valid for Lipschitz
mappings, we need to approximate W1’2(Bm,82) by mappings having
precisely controlled singularities (recall that Lipschitz

functions are not dense for m 2 : see [SU2], p. 267). Let R
1

3
2

be the class of mappings v € W ' (Bm

,52) such that

(1.3) v = vy ©ona neighborhood of 5B™ (whose size may depend

on Vv ) and on a neighborhood of the singular set

A = {0} XIRm_3 of Vg i
(1.4) v € c(B™ (A U £)) for some Lipschitz (m-3)-dimensional
manifold I c < B™a (3 = ¢) ; and

2

(1.5) for a.e. s € 8%, v ' (s) u v |

{(-s) U Z UA 1is a Lipschitz

(m=2)-dimensional manifold with boundary «c aBm .

Approximation Theorem 1.5. If v

E,(vy) = {v € w2 (8M,s%) v = vy on 8B"}

0 € R, then R 1is dense in

We defer the proof of Theorem 1.5 to section 3.

Proocf of Theorem 1.1. According to Corollary 1.3 and the

Approximation Theorem 1.5, we need only to show-that for
v € R, Ez(v) 2 E2(v0) . We use the coarea formula of Lemma 1.4,

with © = B™(Z U A)
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"2(vs) naa ,(s) .

(1.6) [ |vv|?ax z 2 f , H
2 S S
Since Hm-z(E U A) = 0 , we have Hm—z(v-1(s) nQ = Hm_z(v-1(s)) .

Note that the antipodal map from 82 to 82 defined by

S b—>~-5 preserves the volume form dA 2(s) , S0 that the right-
S

hand side of (1.6) equals

S 2 Hm'z(v'1(s) v v_1(—s))dﬂéz(s) :

It follows from conditions (1.5) and (1.3) that for almost all

-1

s, v (s) U v_1(—s) UZUA 1is a regular manifold with boundary

a totally geodesic sSphere of dimension m-3 . In particular, it

has (m-2)~-dimensional measure 2 Hm—2(Bm-2) =: a__, . Thus
2 2,.2
me|Vv| dx 2z a _, H°(ST) = 4m o _,
. 2 2
Meanwhile, |Vv0(x,y)| = 12 , so that
X
m-3
2 1 2. 2
E,lvg) = [  ——dxdy =dma 5 [ 2(1-r") dr
B |x] 0
= 47 O *
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£° Projection to lower—dihensional sgheres (general P )

We may now turn our attention to the case of a general
integer exponent 1 £ p s n . Somewhat surprisingly, the counter-

part of Lemma 1.2 fails: if the constant ¢ 1is defined so that

c B (u,) =/ E (mw,ou,.) dG(Y) ,
p 0 veG (:mn+1) p Y 0
pt1
then it is not true that
c E_(u) 2 E_(m,ou) dG(Y) .
P vea )y PY

In order to carry out our program, we will instead compute the

average of squares of the Jacobian determinants of Tyou (see

Lemma 2.2 below).

. . . m n
Given a linear transformation L : IR —> IR , where

mz2n , we may write L = Q1 A Q,y where Q1 € 0(n) ,

Q2 € O{m) and A has the form

( )
X1 0 ... 0 0 ...0
0 Ay 200 0 ...0

A = . : Lo .
0 0 LI )\n 0 “- e 0 ’

with kj z Xj+1

the eigenvalues of the positive semi-definite symmetric operator

2 0 . (For example, 'L = Vu(x).)-In fact, A?,:.é,li

are
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T n .
LL on IR . We shall refer to l1,...,kn as the singular

values of L . Observe that A may be given a variational?

k
interpretation:
(2.1 A = max - min {[Ix] : x € Z, x| = 1} .
ZEGk( R)

For any p-plane 2 € GP(:Rn) r let be the orthogonal

2
projection of R®R® onto 32 , and write u1(Z),...,up(Z) for

the singular values of myoL : RT —> 2 zZRP .

Recall the definition of the elementary symmetric functions

n
01""'0n of (a1,...,an) € IR
Iy (G reeerd ) == z o, G. . o .
k' n . i i i
11<12<...<1k 1 2 k
We have the following formula:
Lemma 2.7. Given any linear transformation L : R" —> R"  with
singular values A1,...,An , the average
§ (u, (2) 21286 = M) o (2 A %)
n u.] o--up - p Op 1,.-., n
Gp( R")

Proof. Without loss of generality, we may assume L = A , Write

M = AAT , a symmetric linear operator on R"  with eigenvalues
_ 42 _ 22 : ” n
U, = k1,...,un = An . For any 2 € GP(JR )y
u1(Z)2...pP(Z)2 = det(ﬂZMﬂg) , which is a homogeneous polynomial

of degree p in Oqreves o Define

T
fla reeesa ) = f det (m Mr_)dG(2Z) ;
! n Gy | R") 2z
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we need only show that

Elagriaara ) = (g) O
for any OqreesrQy € R . Note that £ 1is a homogeneous polynomial
of degree p . Further, f(a1,...,an) is symmetric under permiutations
of (a1,...,an) , Since a permutation corresponds to the isometry
of ®® which permutes the éigenvectors, leaving dG(2Z)} unchanged.

According to the fundamental theorem on symmetric functiohs

(see e.g. [Md], p. 13), any symmetric polynomial f(a1,...,an)
is equal to a polynomial P0(01""'0n) , with real coefficients;
moreover, g,,...,0 ~ are algebraically independent. In our case

f(a1,...,an) is homogeneous of degree p s n , and therefore,

for some Yy ER ,

Pologseen,o)) = Yo, * P1(o1,...,op_1)
Consider the special case ap = .. =007 0 : in this case
ci(a1,...,ap_1, 0,...,0) = oi(a1,...,ap,1) ’ thg elementary

symmetric function in p-1 variables. On the other hand, for
each 2 E'Gp(:mp), det(nZMng) = 0 since M has rank s p-1 ,
and hence f(u1,...,an) = P0(01,...,0n) = 0 . Clearly, cp = 0 as

well. Therefore, for any (a1,.. €ZIRP_1 . P1(81,...,g =0

-,ap_1) p_1)

But according to the fundamental theorem on symmetric functions,

~

61""'Ep—1 are algebraically independent in p-1 variables, so

that the polynomial P, is itself zero. This shows that
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flogreeeral) = ch(u1,...,an)

Finally, we may evaluate the constant <y by choosing

M = id , which implies u1(Z) = ... = up(Z) = 1 for eacl:1 Z
in Gp( R") . Since op(1,...,1) = (;) we have vy = (;) as
claimed.
g.e.d

Define, for v : B — P and for each x in BT '
J(v) (X) := A1(x)...AP(x) , the product of the p singular
values of L = Vv(x) : R® —> Tv(x)sp . We recall that
u : B" —> s is said to be horizontally conformal (see e.g.[B])
if for almost all x in B™ , the singular values of
Yu(x) : R" —> Tu(x)sn are equal.

We have the following averaging result:

Lemma 2.2. For n 2 p , there is a constant ¢ = c(n,p) such

that for any u € W1'p(Bm,Sn)

(2.2) ¢ Ep(u) 2 £

d n+ Jm J(mgeu)dx dG(Y) .
p+

1(3& ) B

Moreover, equality holds if wu is horizontally conformal.

Proof. We first observe that

n
(2.3) op(ageeniay) € ) (g ] oap)®
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for oy 2 0 , with equality if Oy = ... = Q. The case p = n-1

was given in inequality (8.5) of [BCL] and A.1.3 of [ABL]. We
prove inequality (2.3) by induction on n ; for n = p it is
the well-known arithmetic-geometric inequality. By reordering,
we may assume o, 2 a5y 2 .. 2 a q by homogeneity, we may

assume o, + oee. * a, = 1 . Now consider (a1,...,an) which

maximizes op . If a, = 0 , we use the induction hypothesis:

n-1 _\ P n -p
cp(a1,...,an_1,0) s | p ) (n-=1) < (p) n - If a, >0, then

by the method of Lagrange, there is 8 € R with

_ 09 - _.

B - aai Gp(a.l'---'an) - Gp-1 (a."ooo,ai_.lf ai+1'oo-'&n) - Oi
for all 1 £ 1 £ n . But Oi+1 2 Oi , and equality implies that
A, = Oy i inequality (2.3) follows.

Applying inequality (2.3) to the eigenvalues Qqreeerty of

Yu(x) (Vu(x))¥ for some x € B™ , we have

2p =1

(2.4) |Vu(x)| 2 np(g) . Up(u1,...,an) =
= nP § L det (m, Vu(x) Vu(x) "5,)dG(2)
G_(T S)
P Tu(x)

by Lemma 2.1. An application of the Cauchy-Schwartz inequality

yields

1/2
(2.5) |vu(x) |P z2nP/? 4 o [det(nvu(x)vax) Trp) 1 de(z)

Gp(Tu(x)S )
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Note that equality holds in the inequalities (2.4) and (2.5)

if wu 1is horizontally conformal at x

Let Y be a (p+1)-plane in :Rn+1 , and write Z for the

p-plane in Tu(x)Sn parallel to the subspace of Y orthogonal
to ﬂY(u(x)) . Then up to a parallel translation in :Rn+1 , we
have

' ™, 0 Tu (x)
V(nY°u)(X)

= Cos d(u(x),Y)

where d(u,,Y) is the distance in S% from u. € s? to

1
v n s . Thus

T T 1/2

[det(ﬂZVu(x)Vu(x) ﬂz)]

(2.6) J(ﬂY°u)(x) = .
cospd(u(x),Y)

Integrating formula (2.6) over Y € Gp+1(IRn+1) , we find that
(2.7) g (gt J(myeu) (x)dG(Y) =
p+1
T T 1/2
=c'f [det(w,Vu(x)Vu(x) m.)] aGc(z) ,
G (T Sn) Z Z
p ulx)
where c¢' = ¢'(n,p) 1is independent of x and u . Finally,

using inequality (2.5} and equation (2.7), and integrating over
x € B" , we find the inequality (2.2) with ¢ = n-p/2 c' .

g.e.d.

0,1

Lemma 2.3. (Coarea formula, general p ). If v € C"’ (Q,Sp) for

an open set { < B" , then
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[ J(v)ax = | Py T(s))aa _(s) .
o sP sP

Proof. See [F, 3.2.22].

Let g : S —> s" and uy : B —> s" be as in Theorem

1.1‘

Theorem 2.4. For any 1 $ p $ n, Ep(uo) < Ep(u) for all

u € E_( .
pg)
Proof. According to Lemma 2.2, we have

(2.8) ¢ Ep(u) 2 f S J(ryou)dx dG(Y)

n+1
Gp+1(m ) B
Note that for almost all Y € Gp+1(Zmn+1) , the map
v = Tgeu € W1’p(Bm,Sp) . Write vy = Tyouy - We shall show that
n+1
for all such Y € Gp+1(im )

(2.9) [, Jvidx 2 [ J(vy)dx .
B B

According to Approximation Theorem 3.2, it is enough to prove

inequality (2.9) for v in the class R of mappings with

controlled singularities, since J(v) 1is dominated by [Vv|p .

As before, choose Q = B™N(Z U A) , where I U A 1is the singular

set of v , as in the definition of R ; and apply the coarea

formula of Lemma 2.3. This yields
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(2.10) [ J(wax = [ H" P 1 (s))ana
Q gP s

I

1 m=-p
=5 [ H (M(s))da ’
2 gp sP

where M(s) := v_1(s) U v-1(-S)U I U A 1is a regular, oriented

Lipschitz manifold having boundary a totally geodesic sphere of

dimension m-p-1 in 5B™ , for a.a., s € sP . 1n particular,
(2.11)  H"P(mM(s)) 2 WP (B™P)

Note that equality holds in (2.11) for

=1

o (8) U va1(—s) U A .

Mo(s) = v
Inequality (2.9) now follows from equation (2.10) for v and
for vy

With u replaced by Uy + we attain equality in (2.8),
according to Lemma 2.2, since ug is horizontally conformal.

Therefore

c Ep(u) 2 C Ep(uo)
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3. Approximation and slicing

We saw in sections 1 and 2 that it may be useful to
approximate mappings in W1’p(Bm,Sp) by mappings with
controlled singularities, and particularly, with regular
slices u_1(s) for almost all s € sP . consider boundary
data g € W1’p(aBm, sP) , such that g |is c” except on a
Lipschitz submanifold I c 3B" of dimension at most m-p-2

Write u, € W1'p(Bm, Sp) for the homogeneous mapping

0
_ X . .
uo(x) i= g(T;T) . Observe that u, 1is singular on the cone
A := {tx : 0 2t s1, x €T} . We define R to be the class

of mappings u € W1'p(Bm, sP) such that

(3.1) u = uy on a neighborhood of 3™ U A ;

(3.2) u 1is locally Lipschitz on B™(A U I) , for some
Lipschitz submanifold I c < B™A (6 = ¢} , of dimension

m-p-1 ; and

-1 1

(3.3} for a.a. s € Sp, u ‘(s) Uu (=s) UZUA is a regular,

oriented (m-p)-dimensional Lipschitz submanifold of g™ ’

having boundary only in 5B™ .

Remark 3.1. The conditions (3.3) and (3.1) are both possible

only if the restriction of g to a small p-sphere linking T

in “3B™ is one-to-one. In the present paper, this condition

is always satisfied; the general case requires methods of
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geometric measure theory.

Theorem 3.2. If wu, € R, then R is dense in

Elg) = {ue wP@E", sP) :u=u, on 8B"} .

Proof. We follow ideas of Bethuel and Zheng [BZ]. Consider

u € Ep(g) : we wish to find u, € R, u, —> u in W1’p(Bm, Sp)

k k

First observe that by radially homogeneous extension beyond.

9B and rescaling we may assume that u = u on

0
{x €R" : |x| 2 1-e} . We form w, = uxp,  for some compactly

m

supported mollifier p : R —> [0,»w) , where (x) := kmp(kx)

%
Note that w, —> u in W1’P(Bm, §p+1) . Since A has

p-capacity zero, we may find a sequence v/ € w!'P(s", BPH1y

such that each vﬁ =u, ona neighborhood (of size depending

on k ) of A, vﬁ € Cm(Bm\A,ZRp+1) and vﬁ —> u in

W1’p(Bm, §P+1) and a.e.. Let n € Cm(:mm,Im) have support

in BT-&/Z , such that n(x) = 1 for [x| s 1-¢ . Define

Vi = n v f (1-n)u0 ;

then Vi T Uy On a neighborhood of A U aB™ , and —> 1

in W1'p(Bm, §p+1) and a.e.. Let
m 1
Q. = {x € B : |vk(x)| <35}

then mes(ﬂk) —> 0 , and hence



_wzz -

I IVvk|p —> 0 as k —> o
Q

k
i " " p+1
Consider a regular value ("center") a € B1/4 ; let
t(a,k) = {x € B" : v, {x) = a} . Note that since |Vk\ = |u0| = 1

on a neighborhood of BBm U A, Z(a,k) 1lies in a compact subset

of B™A .. Since Vi € Cw(Bnks%§p+1), Z(a,k) 1is a regular sub-

. . . o . . mp+1 __ p+1
manifold of dimension m-p-1 . Define q, ¢ 81/2 > 331/2 so
that x 1lies in the line segment from a to qa(x) ; then
q,(x) =x for x € BB?;; . Extend q_ to gP* ] by defining

q,(x) = x when |x| 2 1/2 . We note that

|va (x) | s ¢/[x-a| ,

where C 1s independent of a and x . As in the paper of

Hardt and Lin ([HL]; see also [HKL], p. 556), we apply Fubini's

theorem to show that for every ¢ € W1’p(Qk, §p+1) ,

fm S IV(qaow)\p dx da s C' | |vo|P ax
Bisa iy D%

where C' is independent of ¢, a and k . It follows that

for a in a subset of BT/4 of positive measure

(3.4) [ |v(gq.ev,)Paxs c' [ |vv, |P ax ,
a k k
o e

which tends to zero.
qa(vk(x))

uk(x) t= . From inequality (3.4),
lq, (v (x)) |

We define

4
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we see that Y —> u in w1,p(Bm"Sp) . Note that Uy satisfies

condition (3.1), and satisfies condition (3.2) for almost all

m
1/4

In order to check condition (3.3), we first observe that

a € B

for almost all lines a + IRb in :mp+1 ’ V£1(a-ﬁmb)\ﬂ is

locally a smooth submanifold of Bm\A , as follows from Sard's

theorem. Note that for s € Sp

M(s,a) := u£1(s) u u;1(—s) Uug = v£1(q;1(2ms)) , while q;T(ZRS)

is the union of the four line segments

(s, % s] U [% s, al U [a, —% sl U ['% s, -s]

Observe that q_'(Rs) is a Lipschitz 1-manifold with boundary

m
1/4

M(s,a) is locally a Lipschitz (m-p)-dimensional manifold in

{s, -s} . In particular, for almost all a € B and s € s ,

B™A . In a neighborhood of 38™ U A ;, we have 0 =uy g but
since Uy € R by hypothesis, M(s,a) U A 1is also a Lipschitz
manifold near 98B U A , hence everywhere in B . Finally,

M(s,a) U A 1is composed of four smooth manifolds-with-boundary,

of which two meet at the smooth manifolds I = v£1(a) , at

v;'(3 ) and at v, (-3 ) ; so that its boundary is

-1 1(

(AU ug

(s) U u. (-s)) n 3B™ .

0



4. 0dd boundary data

In this section, we consider smooth boundary data

m-1 m-1

g : S —> S satisfying the hypothesis

(4.1) g(-x) = —-g(x)

for all x € Sm-1 , with p = m-1 . This includes the specific
case of Theorem 1.1 with n = p = m-1 . Let Uy ¢ B" —> Sm_'1

. _ X .
be defined by uo(x) = TET . We have the following lower bound

for any such g :

Theorem 4.1. For any u € W1'm-1(Bm, s with u = g on 3B ,

(u.)

E _q(0) 2E . 0

Remark 4.2. This result settles a conjecture of Brézis-Coron-Lieb

[BCL, Remark 7.3]; they proved this theorem under the additional

hypothesis that the Jacobian J(g) 2 0 and g has degree 1.

Proof. According to Approximation Theorem 3.2 (see also Theorem 4
of [BZ]), we may assume u belongs to the class R of W1'm—1
mappings with contreolled singularities. In particular, u is

locally Lipschitz continuous on B\I , where I 1is a finite

m=1

set. Further, for almost every s € S ’
M(s) := u_1(s) U u_1(-s) U X is a Lipschitz 1-manifold with
boundary g_1(s),U g-1(—s) . Considered as a one-dimensional



- 25 -

: k k
integral current, 34 = J a, - | a
121 121

i+k ! where

1

{a1,...;a2k} = g_1(s) U g '(-s) and a point of g_1(1s) is

included in the list {a1,...,ak} provided iJ(g)(ai) > 0 ,

otherwise in the list {a } . Note that'hypothesis

k+1’ "0 r%2k
(4.1) implies that J(g)(—ai) = J(g)(ai) . By reordering

{ak+1,...,a2k} r Wwe may assume that A4k - T2y v According

to the well-known theorem of Borsuk and Ulam, g has odd degree.

Since s € Sm-1 is a regular value of g , the number ©f points

in g~ '(s) has the same parity as- the degree of g . That is,
k 1is odd.

Now each connected component of M(s) has boundary equal

to the zero-dimensional integral current a; - ak+j for some

11, j sk ; write 3j = ¢(i) , and note that ¢ 1is a permutation

of {1,...,k} . Clearly, therefore, M(s) has length

H'(s)) 2§ ay - A vo (i) |

i=1 i ST

i B~

1

Since k 1is odd, we have H1(M(s)} 2 2 by Lemma 4.3 below.
From the coarea formula (Lemma 2.3) along with inequality

(2.4) with p = n =m-1 , we have

(m-1) /2 1

m-1 =1
émIVul dx 2 (m-1) ém-1H (u (s))dASm_1(s)
- 1 (m-1ﬂm‘1’/2ém_1 WlM(s))an __, (s)
S
2 (m-) "2 2B (ug)



Lemma 4.3. Consider a set {a1""'ﬂ9 of points (not

necessarily distinct) satisfying |a;} 21 . If k is odd ,

then for any permutation o of {1,2,...,k} , the sum

e 2

wn
I
I e~15

la; * ag (4

i=1

Remark 4.4. Note that any even value of k allows counter=-

examples.

Proof. If o(j}) = j for some 13 j £ k , then the term

lay + ag 4|

then o¢(1) = 1 , and the conclusion again follows. Thus we may

= 2|aj| 2 2 , and the conclusion follows. If k = 1 ,

proceed by induction, with the assumption that o(j) * j ,
15 3j £k
Since o(k) * k , we may reorder {a1,...,ak} so that

o(k) = k-1 . Then a_ appears only in the two terms Iak + ak_1]

and |aj + akl , where o(j) =k . If 3j = k-1 , then we may

discard these two terms to form the sum

k-2

i la, + a

-t 0(i)| 2 2

by the induction hypothesis, since the restriction of ¢ 1is a
permutation of {1,...,k-2} . If j #% k-1 , then a, _4 appears
in one additional term |a,_, + a;| , where i = o(k-1) . By the

triangle inequality,



v

o
+
)

2 lagq —agl v ey + ayl

Now define the permutation & on {1,...,k-2} so that G(3)

and otherwise G = o . Then the corresponding sum S § S . But

S 22 by the induction hypothesis.

g.e.d.

i

r
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5. The complex Hopf map

‘'The Hopf map H : S3 —_— Sz is defined by the restriction
2 ]2 + |w|2 =1} of

to s° = {(z,w) € C? : |z

H(z,w) = (|zl2 - |w|2, 2zw) ER x € =R° .

0 ¢ B4 —> 82 be its homogeneous extension of degree zero:

x
uo(x) = H(T;T) .

Note that uo(z,w) is the stereographic projection of

z2/w EC U {=}

1,2,.4 2

Theorem 5.1. For any u € E2(H) = {u € W (B, 87) : u =4

2

4 -
on 3B’} , Ez(u) 2 Ez(uo) = 81

Proof. According to Theorem 3.2, we may assume u belongs to

1,2

the class R of W maps with controlled singularities. In

particular, u 1is locally Lipschitz on B4\Z , where I 1is a

one-dimensional Lipschitz manifold without boundary. Further,

for almost every s € 82 ’

M(s) := u '(s) Uu '(-s) U

1 1

is a Lipschitz 2-manifold with boundary H '(s) U H ' (-s)
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The energy-minimizing property of ug will be proved by

first showing that the cone Mo(s) over H—1(s) u H-1

(-s)
has smallest area. In fact, Mo(s) is the union of the disks

of radius 1 in the 2-dimensional planes
{z = tw} and {z = -w/E}

where £ € € U {«»} corresponds under stereographic projection
to s € 52 . Now any vector (€w1, w1) in the first plane is
orthogonal to any vector (-w2/§, wz) in .the second plane, which

implies that Mo(s) is a complex-analytic variety for some
4

orthogonal complex structure (which depends on s ) for IR

In particular, Mo(s) has minimum area among all surfaces in

1

B4 having boundary H_1(s) U H '(-s) (including unorientable

surfaces: see [M], Corollary 6). Specifically,
2 2
H™(M(s)) 2 H"(M;(s)) = 2m .
It now follows from Lemma 1.4 that

Bp(w) 22 Hz(u'T(s))dAszcs) -

- 0 He (M(s))an ,(s) 2 8m° .

S
. 2 2
Meanwhile |Vu,(x)|” = 8/[|x[" , so that

E, (u,) = an3(s3) = sn? .
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6. The quaternionic Hopf map

Quaternionic multiplication in ZRA is defined via an
orthonormal basis {1,1i,j,k} with the properties
i2 = j2 = k2 = ijk = -1 , forming a skew field I . The Hopf
map H : 57 —> S4 is defined by identifying :ms as H x H

and setting

2 2 - - 5
Hiq,,q,) = (Ja [%-]a,1% 29;q) € RxH =R .

0 ¢ B® —> S4 be its homogeneocus extension of degree zero:

Note that uo(q1, q2) is the stereographic projection of
] .

a4 9, €H U {«}
RN _ 1,2,,8 4
Theorem 6.1. For any u € E,(H)= {uew (B, ) :u=H on
8
3B} , we have Ez(u) 2 E2(u0) .
Rémark 6.2. The map ug also minimizes E4 , as may be proved

by direct analogy with the proof of Theorem 5.1, and with the

proof of Corollary 6 of [M]. The case p = 2 , however, requires

. . . 4 2 .
averaging over projections Ty ° S —> 87 , and is more

interesting.
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Proof. For any Y € G3(IR5) , write Ty ! S4 _— 82 for the

nearest-point projection. According to Lemma 1.2, we have

(6.1) ¢ E,(u) = § E, (7 _°u)dG(Y) .
2 Y€G3(IIR5) 2y
Write v = 7_ou : 88 —> 82 and v, = T,e°u We need to
Yy o ! 0 Y 0
show that E2(v) 2 EZ(VO) for any v € W1’2(B8,82) with
vo= wY°H on BBB . It suffices to prove this for v € R,

according to Theorem 3.2. Applying Lemma 1.4 and regrouping s

with -s as before, we have
(6.2) E,(v) 2 [ , H (v’

Now since v € R ,

1

M(s) v l(s) u v

(-s) U I UA

is a 6-dimensional oriented Lipschitz submanifold of B8 , With

IM(s) = (ﬂYOH)-1 1

(s) - (nYOH)- (-s) as integral currents with
the natural slice orientations ([F], 4.3.1). The cone over OM(s)
is

Mo(s) 1= va1(s) U V81(-S) U A

We need to show that

(6.3) HG(MO(S)) < H% (M(s))
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For each Y € G3(ZR5) and each s € S2 =Yn S4 , Observe

that n;1(s) U ﬂ;1(-S) = 54 N Z , where Z is the 3-plane
spanned by s and the orthogonal complement of Y . According
to Lemma 6.3 below, it is enough to verify inequality (6.3) for

the special case where Y is spanned by (1,0) , (0,3j) and

(0,k) , and where s = (1,0) . In this case, Z is spanned by
(1,0) , (0,1) and (0,i) . Write the point (q1,q2) EIRB' in
terms of complex variables 21 Wqs 25, W, by ‘defining

dy = Z4 + waj . Then

Ay = 242, * WW, + (2w, - zowo)g
so that MO(S) is given by

8 i -
{(21,w1,22,w2) € B : g(z1,w1,zz,w2) 12 Z,W, - Z.W, S 0} .

Note that the orientation induced on MO(S) = g_1(0) by

g : B8 —> € from the appropriate orientations on @ and ZRB

is consistent with the orientation given in the Approximation
. : 8

Theorem 3.2. For the (standard) complex structure on IR

given by
J(z1,w1,22,w2) = (iz1,iw1,%22,iw2),

Mo(s) is a complex variety, and inequality (6.3) :follows, since

BMO(Q) = 9M(s) as integral currents ([F], pp. 435 and 652).
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On the other hand, u, ¢ B8 —_— S4 is horizontally
conformal ({B], Theorem 7.1.1 and Examples 7.2.1, 8.2.1) and
therefore Vg ¢ B8 “_>,52 is horizontally conformal for any

choice of Y . It follows from Lemma 1.4 that equality holds

in (6.2) when v 1is replaced by Vo - Finally, using inequality

(6.3), inequality (6.2) for v gnd equation (6.1) for Uy and
for u , we conclude that
c Ej(u) 2 ¢ E2(u0) .
g.e.d.
The following lemma is known, since it is an immediate
consequence of the fact that the Hopf map: S7 —_ S4 induces

the isomorphism of the symplectic group Sp{2) of guaternionic
2 x 2 matrices in S0(8) with the oriented double cover of
S®(5) (which fact may be proved in analogous fashion to p. 38
of [A]). Since the literature may be unfamiliar to many, we

prefer to present a direct proof.

Lemma 6.3. Given ZO’ Z1 € G3(IR5) , there exist rotations
R € S@(5) and Q € S0{8) such that R(Z1) = ZO and
H(Q(q,,q,)) = R(H(q1,q2)) for all q,, q, €H

5

Proof. Without loss of generality, we may assume Z, <R =1R X H

0
is spanned by (1,0), (0,1) and (0,i) . According to a theorem
of Cayley ([Cj, p- 71}, any R1 € S@{(4) may be written in terms

of quaternionic multiplication as R1(q) = 4499, for some
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d4r 9y € H of norm one. This corresponds to Q1 € S@(8) given

by Q1(p,q) = (q1p, ézq) . Consider R to be in SO(5) by

1

R,(t,q) = (t, Ry(q)) ; then He°Q, = R,°H (recall that Pq = gp ).

By choosing R1 appropriately, we may achieve Z2 = R1(Z1) so

that (0,1) and (0,i) are in 22 . Next, let R2

the rotation which fixes (0,i), (0,3) and (0,k) , while

€ SO(5) Dbe

R2(1,0) = (cos 20, sin 20) and R2(0,1) = (-sin 20, cos 20) .

This corres?onds to Q, € s(8) defined by

Qz(p,q) = ((cos O)p - (sin 0)g, (sin O)p + (cos 0)g) : namely,

HoQ, = R,°H . For two choices of © , we find 7, = R,(Z,)
g.e.d.

We would like to conclude our paper with a theorem of more
general character, whose proof is analcgous to the proofs of
Theorems 1.1, 2.4, 5.1 and 6.1.

¢ w1,p(Bm' Sn)

1

Consider for some integer p , 1 £ p &§n .

Yo

For each Y € Gp+1(I[Rn+ ) , let Vo = Teeuy . We require that

Y

(6.4) A € C0'1(Bm\A, Sp) for some Lipschitz (m-~p-1)-submanifold

A c B® with 8A < 3B™ ;

(6.5) there exists a measurable and measure-preserving map
h : s —> sP such that the difference of slices
My(s) := vg'(s) - v;'(h(s)) defines an (m-p)-dimensional

integral current of smallest mass for its boundary; and

(6.6) Vo is horizontally conformal a.e. in 8™ .
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1

( ]Rn+

Theorem 6.4. Suppose that for almost all Y € G )

p+1
hypotheses (6.4), (6.5) and (6.6) hold. Then Ep(uo) g Ep(u)

on BBm

for all u € W 'P(B", s") with u=u, on
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