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THE FUNCTIONAL DETERMINANT OF A
FOUR-DIMENSIONAL BOUNDARY VALUE PROBLEM

THOMAS P. BRANSON AND PETER B. GILKEY

ABSTRACT. Working on four-dimensional manifolds with boundary, we consider formally self-
adjoint, elliptic boundary value problems (A, B), A being the interior and B the boundary
operator. These problems (A, B) should be valued in a tensor-spinor bundle; should depend
in a universal way on a Riemannian metric g and be formally self-adjoint; should behave in
an appropriate way under conformal change g — Q%g, £ a smooth positive function; and the
leading symbol of A should be positive definite. We view the functional determinant det Ag of
such a problem as a functional on a conformal class {2?g}, and develop a formula for the quo-
tient of the determinant at 023g by that at g. (Analogous formulas are known te be intimately
related to physical string theories in dimension two, and to sharp inequalities of borderline
Sobolev imbedding and Moser-Trudinger types for the boundariless case in even dimensions.)
When the determinant in a background metric gg is explicitly computable, the result is a
formula for the determinant at each metric 22go (not just a quotient of determinants). For
example, we compute the functional determinants of the Dirichlet and Robin (conformally
covariant Neumann) problems for the Laplacian in the ball B*, using our general quotient
formulas in the case of the conformal Laplacian, together with an explicit computation on
the hemisphere H4.

0. INTRODUCTION

The zeta function determinant det A of an elliptic differential operator A is important in
Quantum Field Theory because it provides a regularization of the functional integral, for-
mally identical to a functional determinant. (The adjective “functional” indicates that the
integral, or determinant, is taken over an infinite-dimensional function space.) Originally of
interest on four-dimensional manifolds, these objects have recently been intensively studied
by physicists and mathematicians in two dimensions, in connection with String Theory,
the isospectral problem, and uniformization problems. In each of these applications, the
operator A = A, should be built naturally from a Riemannian metric g on a compact
manifold M (and possibly some related extra information, like spin structure), and one is
concerned with det A, as a functional on the cone {¢} of Riemannian metrics on M, or
more precisely, the quotient of {g} by the action of the diffeomorphism group Diffeo(M).
A key point has been the behavior of the determinant under conformal change of g; that
is, replacement of ¢ by Q%g, where Q is a smooth positive function. The idea is that if
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A has reasonable conformal behavior, then the behavior of det A should be predictable,
much as the behavior of the fundamental solution of A is. In the two-dimensional case, this
thinking gets one quite far, as the quotient of {g} by the groups Diffeo(M) and C*(M)
(the positive functions Q acting by g — QZ%g) is a finite-parameter object; see, e.g. [O,
OPS1-2]. Since diffeomorphisms act on conformal factors (2, this quotient has the form
G = {g}/(Diffeo(M) x C°(M)); i.e., the total group is a semidirect product. In dimen-
sions three and higher, G is much larger, and in particular is in no sense a finite-parameter
object. Even though it is not clear how one would go about tracking the behavior of the
functional determinant as the metric g cuts across conformal classes, it seems timely to
return to four dimensions, and, inspired by two-dimensional successes, at least handle the
behavior of det A as a functional on a conformal class C$°(M) - g.

For compact manifolds without boundary, some results are already in place. For a
computation in connection with Yang-Mills theory on four-manifolds, see [CT]. In [B@3],
Branson and @rsted derived a formula for the functional determinant of a strongly ellip-
tic differential operator, with reasonable conformal properties, over a Riemannian four-
manifold without boundary; this is analogous to the much-studied Polyakov formulas on
two-manifolds. Branson, Chang, and Yang [BCY] used these formulas to study the isospec-
tral and extremal (uniformization) problems in four dimensions, trying to get analogues of
the two-dimensional results of Onofri [O] and of Osgood, Phillips, and Sarnak [OPS1-2].
The conformal behavior of the functional determinant in dimension two is intimately re-
lated to the Moser-Trudinger inequality, which expresses the continuity (and, in its sharp
form, is the norm calculation for) the embedding

(0.1) L? & et

of the Sobolev class L? in the Orlicz class eX. (0.1) may be regarded as a limit of borderline
Sobolev inequalities L2 < L3/(—*) (where L? is the usual Lebesgue class) as v 1 1, or as
m | 2. Roughly speaking, the log-determinant (logarithm of the functional determinant) is
the quantity that (0.1) asserts to be nonnegative. In general dimension m, the borderline
Sobolev inequalities correspond to the imbeddings L2 «— L?™/(m=2¥) and the limiting case
is an inequality of Moser-Trudinger type, corresponding to the imbedding L2, 2 < el;
this has been studied by Adams [A] and by Beckner [Be]. In dimension four, [BO3]
and [BCY] show that the logarithm of the functional determinant is a linear combination
of two terms, one of which describes the embedding LZ — el and the other of which
describes the “ordinary” borderline Sobolev embedding L? «» L*. Up to normalization,
the L2 «— el and L? < L* terms are connected by one coupling constant, say a. The two
inequalities “work together” (the quantities asserted to be nonnegative do not appear with
opposite signs) if and only if @ > 0. a = a[A] depends on the elliptic operator A whose
functional determinant we are studying; for example, A could be the conformal Laplacian
Y or the square ¥? of the Dirac operator ¥. But a[A] is universal in the sense of being
independent of the particular manifold and Riemannian metric; indeed, the number a[A]
can be computed from a knowledge of the heat invariants, which are similarly universal.
Fortunately, a[Y] and a[?’z] are positive; this makes possible, among other things, the
extremal results of [BCY, Sec. 5] for the log-determinant on S*.
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In this paper, we begin the extension of this program to four-dimensional manifolds with
boundary, inspired by the quite complete two-dimensional treatment of [OPS1-2]. As will
become clear, this is qualitatively harder than the boundariless case, but still tractable on
on a conceptual as well as computational level. (Incidentally, the three-dimensional case is
not interesting for manifolds without boundary, as the functional determinant is very rigid
conformally in odd dimensions; see Sec. 2 below. The boundary value version of this three-
dimensional problem is, however, interesting, though not as rich as the four-dimensional
theory. Our results on the three-dimensional problem will appear separately.) It would
seem that an effective treatment of isospectral and extremal problems in the boundary-
value case would have to await a theory of boundary-value inequalities of Moser-Trudinger

type; we note that an excellent theory of sharp borderline Sobolev inequalities is already
in place [E1-2].

We shall need to be precise about three types of assumptions on the elliptic operator A
and the boundary operator B which define our problem: (1) analytic assumptions, i.e. the
strength of the ellipticity needed; (2) naturality assumptions; and (3) conformal assump-
tions. Since we wish to invoke invariant-theoretic properties of local spectral invariants
associated to (A4, B), specifically the heat invariants, we need to know that (A, B) enjoys
suitable invariance properties; this is the rationale behind (2). (3) makes precise the “con-
formally reasonable behavior” mentioned above. We work out two examples in detail: the
conformal Laplacian ¥ = A + 7/6 (7 = scalar curvature) with Dirichlet conditions, and
Y with conditions of Neumann type called Robin conditions by physicists; specifically, the
boundary operator here is N — H/3, where N is the inward unit normal derivative, and H
is the trace of the boundary embedding’s second fundamental form.

This paper is organized as follows. In Sec. 1, we summarize the invariant-theoretic
background needed to extract information from the heat asymptotics on manifolds with
boundary. Sec. 1 also describes a natural fourth-order differential operator P, originally
introduced by Paneitz ([P]; see also [Br2, ES|) in connection with the interaction of the
gauge and conformal groups on Maxwell fields; P seems to be absolutely central to four-
dimensional functional determinant problems. In Sec. 1, we also make precise statements
of the above-mentioned analytic and naturality assumptions. In Sec. 2, we define the
functional determinant and prove a formula of Polyakov type for its conformal variation.
(See also [R, BA2] in the boundariless case.) Though the functional determinant is a
nonlocal invariant of the spectrum of (4, B) (i.e., it is not the integral of a local expression),
its conformal variation is local, and in fact is a heat invariant. In Secs. 3 and 4, we apply this
variational formula in concert with invariant-theoretic and conformal geometric knowledge
of the heat invariants in dimension four to get explicit local formulas for the quotient of
functional determinants. At this point, the operators A and B have not been pinned down,
apart from their naturality and conformal behavior; thus our formulas at this point depend
on (exactly 13) parameters. In Sec. 6 we compute these parameters for the two choices
of (A, B) mentioned above: the conformal Laplacian with Dirichlet and Robin conditions.
In Sec. 5, still in the abstract (parameter-dependent) setting, we compute determinant
- quotients on special manifolds; specifically the unit four-hemisphere H*%, the unit four-
ball B%, the spherical shell A% = {z € R™ | 1 < |z| € s} for s > 1, and the cylinder
C} =[0,h] x 83 for h > 0, all with their standard metrics. H* is conformally equivalent
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to B* and A% to Cj (when h = logs); this provides checks on our calculations. It also
provides a value for the functional determinant on the ball since, as we show in Sec. 7,
everything is explicitly computable on H*. For example, we find that if Y_ (resp. Y, ) is
the conformal Laplacian with Dirichlet (resp. Robin) conditions, then

—logdet Yy = 31¢h(=3) + 1¢R(—1) + 53z £ 2Ch(-2)  on H*,
~logdet Y_ = 1(¢R(—3) + 1¢R(-1) + 5h5 — 3¢R(-2) + (4log2 + £1)/360  on B,
—logdet Yy = (R(—3) + §CR(—1) + 755 + $CR(—2) + (41og2 - 1)/360  on B,

where (g is the Riemann zeta function. This shows, in particular, that the minimality

result of [BCY, Sec. 5] for detY in the conformal class of the standard metric on S*

does not readily extend to the hemisphere: passage from the round H* metric to the flat

B* metric “improves” (lowers) both functionals. In an appendix (Sec. 8), we collect in

one place the definitions of local invariants used in developing the determinant quotient

formulas, and prove some facts (used in Sec. 7) about zeta functions associated to spheres.
Special thanks are due to Bent @rsted for enlightening discussions.

1. LOCAL INVARIANTS, NATURAL DIFFERENTIAL OPERATORS
AND BOUNDARY VALUE PROBLEMS, AND THE HEAT INVARIANTS

Let M be a smooth, compact, m-dimensional Riemannian manifold with smooth bound-
ary OM. Denote by g the metric tensor on M; the pullback of g under the inclusion
OM — M is a Riemannian metric on M. Let R be the Riemann curvature tensor of g,
with the sign convention that makes R!;;, positive on standard spheres. We adopt the
convention that letters ¢,j,... run from 1 to m, and index a local coordinate frame and
coframe on M. We raise and lower indices using the metric tensor, and sum over repeated
indices. The Ricci tensor p of M has p;; = R".—k_,- , and the scalar curvatureof M is T = p".- .

Additional invariants describe the embedding of 0M, and are defined as tensor fields
over M (as opposed to M). Let N be the inward unit geodesic normal in a collar for M
in M, and consider local coordinates (z') in a neighborhood of a point of 8M for which
8/0z™ = N, and for which the %, a = 1,...m — 1 are local coordinates on M. Letters
a,b,... will run from 1 to m — 1, and index coordinate frames and coframes of this type
on M. The subscript N will be interchangeable with m in this setting, and will serve
to indicate that we are working in such a coordinate system. We denote the coordinate
coframe element dz™ by N, . The (second) fundamental form L of the boundary embedding
is a symmetric 2-tensor defined by

Lgp := —-;—Ngab .

The trace H := L%, of L is a multiple of the mean curvature. Here we have used glgps,
the pullback of ¢ to @M under the inclusion, to raise the boundary index; we shall always
use g|aar as the metric on M. Repeated boundary indices are, of course, summed from 1
to m — 1. L measures the deviation of the boundary embedding from total geodesy; that
is, it is the obstruction to the possibility of finding coordinates z* which are normal on

both M and 0M.
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A symmetric 2-tensor G is defined by
G% := R noN,
and we let F := G*%;. The symmetric 2-tensor T is defined by
Tap := Rach .

Note that (T + G)as = pas, and that %, = R**;, = 7 — 2F. We use g and its pullback
glanm to define quantities like |p|> = p'7 p;;, |L|? = L°®L,y, (L, G) = L**G s, etc. Intrinsic
objects on M which are analogous to objects on M will usually be denoted with a tilde;
for example, § = gloam ; V, V are the Levi-Civita connections on M and M respectively;

and A, A are the Laplacians on functions. The Riemannian measure on (M, g) will be
denoted by dz, and the Riemannian measure on (0M, §) by dy. Our sign convention for the

Laplacian gives A = —d?/dz? on R!. We shall sometimes use a standard abbreviation in
which indices after a bar indicate covariant differentiations with respect to V, for example
wijit = ViVipij = (VV@)ikij; and indices after a colon similarly indicate covariant
diffentiations with respect to V.
Let
J=71/2(m-1),
(1.1) V=_(p-Jg)/(m-2),

Cijk; = Rijkl + V}'k5il - leaik + Vilgjk - Vikgjl-

C is the Weyl conformal curvature tensor. C,V,J carry the information in R in a way
which is better adapted to conformal variational calculations than are R, p, 7. Specifically,
let the metric run through a conformal curve glew] = €**“g[0] for w € C*°(M) and ¢ a real
parameter. Then (d/de)|.=o(g[ew]) = 2wg(0} and

(1.2) (d/de)|e=0Clew] = 0,
(1.3) (d/de)le=0J [ew] + 2w [0] = A[O)w,
(1.4) (d/de)|e=0V[ew] = —(VV)[0]w.

Here we have used the following convention, which will be maintained throughout this
paper: given a conformal class of metrics

(g[0]) := {e**g[0] | w € C=(M)},
and a metric-dependent quantity T, we indicate that T should be evaluated in gfw] :=

e2“g[0] by writing T'[w]. For example, the conformal invariance of |C|*dz on four-manifolds
can be expressed as

(1.5) (ICPda)w] = (|CPda)0], m=4, weC®(M).
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We shall need the Panestz quantsty
(1.6) Q=-2V*+2J*+AaJ
and Paneitz operator
P=AY4+6{(m-2)J —4V-}d+ TT_‘}-Q.
Here d is the exterior derivative, é is the formal adjoint of d, and V- is the bundle endo-

morphism ¢ = (p;) = (Vi’p;) on the cotangent bundle T*M. By [P], [Br2, Theorem
1.21], [ES], P is conformally covariant: given a conformal class (g},

(1.7) Y Pw] = P0ju(e™F %), allwe C®(M), m#1,2,

where for any u € C*®°(M), p(u) denotes multiplication by u. The infinitesimal form of
(1.7) is

(18) (4/de)]emoPlew] = ~4wP(0] + "2 {P[0], u(w)].

A conformal variational formula for the local scalar invariant @ in dimension m = 4 will
be important for us. To get this, let m > 3 be arbitrary for the moment, and let

Py=P-T22Q = A4 5{(m—2)] — 4V }d,
Applying the conformal covariance relation (1.7) to the function 1, we get
-4 m -4 _
Qe = (Rl + Tl <R

= R[] (%7 ~ 1) + Z2Qloje ™,

since Py annihilates constants. This leads to the identity

(1.9) Qule™ = m2— FPol0] (574 ~ 1) + Qloje "7

= P[0](w + (m — 4)w’a((m — 4)w)) + Q[0] + (m — 4)wb((m — 4)w),

where a and b are entire functions. This identity holds for m # 4, but since all conformal
variational calculations can be done within spaces of polynomial invariants with rational-
in-m coeffients, analytic continuation in m is justified, and we get

(1.10) P[0Jw + Q[0] = Qw]e®,  m=4,
Taking the variation of (1.10), we have

(1.11) Pl0Jw = (d/de)|e=oQlew] + 4wQ[0], m=4.
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1.1 Remark. We shall work with differential operators on bundles of tensor-spinors over
(M, g). One way to describe these is as follows. A tensor-spinor bundle V is a vector
bundle associated to the principal O(m)-bundle of orthonormal frames, the SO(m)-bundle
of oriented orthonormal frames, or the Spin{m)-bundle of spin frames. (The groups H =
O(m), SO(m), and Spin(m) are the natural structure groups of Riemannian, oriented
Riemannian, and Riemannian spin geometry respectively.) That is, V has the form
Fux,V,where (V, p) is a finite-dimensional representation of H, and Fy is the appropriate
frame bundle. Since the defining representation T of SO(m) and the spin representation
T of Spin(m) are faithful, any irreducible tensor-spinor bundle can be realized as a direct
summand of an iterated tensor product

T3 = (TM)2° @ (T*M)® @ (EM)®° @ (T*M)®", a,B,0,7 € N.

We shall need a quick review of some basic results on the small time asymptotic ex-

pansion of the trace of the heat operator. Details can be found in [G2], especially Sec.
1.9.

1.2 Analytic Assumptions. Let A be a differential operator of positive order on sections
of a tensor-spinor bundle V over M. Suppose that A has self-adjoint and positive definite
leading symbol 0ieaqa(A); that is, 0lead(A)(z,§) is positive definite in EndV; forallz € M
and 0 # £ € T M. Let B be an operator on the bundle of Cauchy data for A on M with
the property that the pair (A, B) is elliptic and formally self-adjoint.

1.3 Remark. The assumption on the leading symbol makes sense because tensor-spinor
bundles over a Riemannian manifold come equipped with Riemannian vector bundle struc-
tures. Since Geaa( A}z, =€) = (=1)" 4N g1,.4(A)(z, €), the assumption of positive definite
leading symbol forces the order of A to be even. We shall always denote ord(A4) by 2¢ > 0,
50 that gjead(A) = 02¢(A). We do not give the definition of ellipticity for a boundary value
problem here as it is somewhat technical and distracting; see [G2, Sec. 1.9] for this.

1.4 Remark. The bundle W of order 2¢ Cauchy data for sections of V has a natural
grading by subbundles

W=W,&...0 Wy

where W; holds the j:& Cauchy datum. The boundary operator B for an elliptic boundary
value problem is valued in an auxiliary bundle W’ which admits a similar grading

W=Wya...0eW,,_,

but which has dim W' = 1 dim W. (See the examples below.)

Let Ap be the restriction of A to the subspace

C®(M,V)p = {F € C™(M,V) | B(CDy, F) = 0}.
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Here CDy¢ : C®°(M,V) — C*(0M, W) is the operator which assigns the order 2£ Cauchy
data. If f € C°°(M), there is an asymptotic expansion

o0

(1.12) Tryz fexp(—tAp) ~ ) an(f, A, B)t""™/3, ¢ | 0,

n=0
where

n—1

(1.13) an(f, A, B) = /M fan(z, A)dz + 3 /B (V" P (v, 4, B)y.

v=0

The an(z, A) and a, ,(y, A, B) are locally computable from the total symbols of A and B
in local coordinates.

1.5 Remark. The auxiliary function f is a device which allows us to observe the dis-
tributional behavior of the heat kernel at the boundary. We are forced to deal with this
extra information because, as we shall see below, conformal deformation of the asymptotics
of Trexp(—tAp) and of the functional determinant naturally lead to the asymptotics of
Trwexp(—tAp), where w is the infinitesimal conformal factor as above. Here and below,

we write simply “Tr” for Tr;a2, and use the notation “tr” for traces over vector bundle
fibers.

1.6 Naturality Assumptions. Suppose that A and B are given locally by universal,
polynomial formulas in the jets of a Riemannian metric g; the inverse g* of g; plus (if
orientation is involved), a volume form E; plus (if spin structure is involved) the funda-
mental tensor-spinor . Suppose that, with respect to uniform dilations of the metric, A
has homogeneity degree —ord A, and the boundary condition does not change:

(114) g = O.'zg (E = C!mE, ‘_)' = C!-l"y) = Ja = O.'&ZlA, N(Boc_Dgg) = N(Bo Cng),

where N is the null space. Suppose further that A satisfies the analytic assumptions 1.2
categorically; that is, the realization of (A, B) on any Riemannian manifold (M,0M) with
boundary satisfies the analytic assumptions.

1.7 Remark. If M has spin structure, the fundamental tensor-spinor, or Clifford section
7 is a section of TM @ End EM =g,y TM @ EM ® L*M, where TM is the tangent
bundle and £M the spinor bundle. ~ satisfies the Clifford relations

7'y + vy = —2¢7 Idg,

where v* is the local section of End ¥ gotten by tensoring with dz* and contracting the TM
argument. The scalings of E and - posited in (1.14) are those which are consistent with
the scaling of the metric; the scaling of 4 being forced by the Clifford relations. The Lewvi-
Civita connection on T'M is lifted to the spinor bundle (if any), and extended to iterated
tensor products of TM, ¥M, and their duals, so that we may take covariant derivatives
of tensor-spinor fields. Vg, VE, and V- all vanish when defined.
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1.8 Remark. Since a scaling § = a®g of the metric induces a scaling N = a~!'N of the

inward unit normal, the operator CDy, is sensitive to uniform dilation; thus we had to
speak of CDg, in (1.14).

1.9 Remark. By Weyl’s invariant theory, A is built polynomially (using tensor product
and contraction) from g, its inverse ¢?, V, and iterated covariant derivatives of R; plus (if
orientation is involved) E; plus (if spin structure is involved) 4. B is similarly built from §,
g, N,N,, Vu, 6’, and tangential covariant derivatives of R and L, plus the restrictions
to OM of E and/or v if applicable. As a result, the a,(z, A) are polynomial in g, ¢, and
iterated covariant derivatives of R; plus E and/or v if applicable. The a, ,(y, A, B) are
polynomial in §, §*, N, N,, and iterated tangential covariant derivatives (V) of Rap and
of L, plus the restrictions to M of E and/or « if applicable.

1.10 Remark. We shall say that a local scalar invariant on M or OM, or a natural
differential operator A on some C®(M, V), has level n if it scales according to A = a™"A
under uniform dilation § = a?g of the metric, 0 < a € R (with the compatible scalings
E = a™E, ¥ = a1~ if applicable). For example, it is part of the naturality assumptions
1.6 that A has level 2¢ (equal to its order). It is straightforward to show that we may
measure the level as follows. If A is a level n monomial local invariant or monomial
natural differential operator on M, of degree (kg ,kv) in (R, V), then

2kp + kv =n.

If Ais a level n monomial local invariant or monomial natural differential operator on 9M,
of degree (kg ,kr kg ,kn) in (R, L,V,Vy), then

2kR+kL+k€,+kN=n.

In the study of the index, analytic torsion, and functional determinant, a special role is
played by quantities of level m, the dimension. Thus in this paper, we shall be especially
interested in level 4 objects on M, for example the Paneitz quantity ¢ and operator P;
and level 3 objects on M.

1.11 Remark. By the last two remarks, the assumption of categorically positive definite
leading symbol implies that o3¢(A) is polynomial in g and ¢*; plus, if applicable, E and/or
7; that is, no higher jets of these objects are involved.

1.12 Remark. Parity considerations force acdaa(z,A) = 0, but the aq4,.(y, A, B) are
generally nonzero. Homogeneity considerations (i.e., comparison of the behavior of the
two sides of (1.13) under uniform dilation of the metric) imply that a,(z, A) has level n.
Similarly, the a, ,(y, A, B) must have level n — 1 — v.

2. THE FUNCTIONAL DETERMINANT AND ITS CONFORMAL VARIATION

We retain the notation of Sec. 1, and assume that our boundary value problem (4, B)
satisfies the analytic and naturality assumptions 1.2, 1.6. The analytic assumptions guar-
antee that (A, B) has real eigenvalue spectrum Ap < A; < ... T 400, with corresponding
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eigensections in C®°(M, V)p. We define the zeta function of the problem (A4, B) by

Ca,B(s) = Z A7

A; F#0

There exist € > 0 and jo € N such that A; > j¢ whenever 7 > jg, so (4, p(s) is manifestly
well-defined and holomorphic for large Re s. Since there are only finitely many nonpositive
A;j , the heat expansion (1.12) gives

N
S e Nl= —g(4,B)+2 Y sinhtd; + Y an(4, BYR /2 4 0 (1754
A; #0 Aj <0 n=0

— f: an(4, B)H"~™/2 4 0 ("),

n=0

(2.1)

where a,(4, B) = a,(1, A, B), ¢(A, B) is the multiplicity of 0 as an eigenvalue of (4, B),

and
an(A, B) — q(A, B), n=m,

(2.2) an(4,B) = { (4, B) +2 DMK, n=m+20(1+42k), k€N,
- Aj <0

an(A, B) otherwise.

Applying the Mellin transform, we get a meromorphic continuation of {4 p(s) to C:

Canls) = ﬁ (XN; (s - ")_1 an(4, B)

n=0

1 oo
s~1 .N%m_ﬂ a—1 —t|Af]
+/Dt O(t 3 )alt+/1 1Y e :dt),

A; #0

where O(#{N-m+1)/2¢) is the error term from (2.1). In particular, 4 p(s) is regular at
s = 0, and we define the functional determinant of the problem (A, B) by

det Ap = (~1)*% < exp(=(}y 5(0)).
2.1 Remark. It is important to note that the functional determinant is not invariant
under uniform dilation of the metric. Suppose, as before, that § = a®g, and if applicable,

E=a™E,5=a"'4. Then

(2.3) €4,5(0) = C4,5(0),
detAp = a~ 244800 det 45
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That is, the quantity (4,5(0) is scale-invariant, and the functional determinant has a scale
homogeneity which depends on (4 8(0). Thus the functional

P(A, B, g) = vol(g)*4.8(0/m det Ap

is a scale-invariant “version” of the determinant. An added advantage of P(A,B,g) is
that, like the determinant, it is a spectral invariant, since

ao(4, B) = C vol(g),

where C is a constant depending only on 03¢(A). (The number 2¢/m can be recovered
from the spectrum because —m/2¢ is the leading exponent in the heat asymptotics (1.12).)
We emphasize that there is no reason to expect det Ag or P(A, B, g) to be the integral of
a local expression, as is a,(A, B).

2.2 Remark. If m > 1 and M # @, the functional
(2.4) Pa(4, B, g) = vol(g)**™ vol(§)2(€4.8(O)=N/(m=1) det Ap A €R,

is also scale-invariant, and this raises the interesting prospect of interaction with the isoperi-
metric problem, especially in connection with extremal problems. The new ingredient,
vol(§), is often a spectral invariant: e;(A, B) has the form C vol(§) for some constant C
which depends on (A4, B) but not on M. Thus vol(g) is determined by the spectrum when
C # 0. To preserve the spirit of the endeavor, and with a view toward the isospectral
problem, one would like to choose exponents in (2.4) which are spectral invariants, per-
haps by choosing A = 0 or A = (4,5(0). (See Theorem 4.10 below.) If M and/or OM is
disconnected, there is also the possibility of giving different components different weights in
making scale corrections. Specifically, if M, and (OM), are the (finitely many) connected
components of M and OM respectively, and g, = g|m, , §» = gl(am), , We can consider

(H vol(gu)u'\“/"‘) (H vol(§y )25\"/("'-1)) det Ag,

v

where Z Ao + z X, = ¢a,8(0).

The problem is that this may move us outside the realm of spectral invariants.

2.3 Remark. Suppose we are given an elliptic boundary value problem (D, ) in which
D is formally self-adjoint, but does not necessarily have positive definite leading symbol.
Let d be the order of D. If r € Z%, we can form a new elliptic problem (D", 5(") by taking

the 4 power: the boundary condition determining b is
boCDgy = bo CD4(Dyp) = ... = bo CD (D" ) = 0.

The operator corresponding to the problem (D7,5") will be called (D;)". If (D,b) is
natural, then so is (D", b"), and if r is even, D" has positive definite leading symbol.

We shall now impose some additional conformal assumptions.
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2.4 Conformal Assumptions. Suppose that A is a positive integer power of a natural
differential operator D, A = D*, which is conformally covariant in the sense that given a

conformal class (g[0]),
(2.5) e*+*/2Dlw] = D[0]u(e™),  w € C=(M),

for some a € R. Here, in case orientation and/or spin structure are used, E{w] := ¢™“ E[0],
y[w] := e~“v[0]. for some @ € R. Suppose that B arises as b*) as in Remark 2.3,
where (D, b) is an elliptic boundary value problem, and that the conformal behavior of b
is compatible with (2.5) in the sense that N ((boCDz¢/p)[w]) = N((boCD2¢/4)[0]p(e“)), or
equivalently,

(26) N((boCDﬂ/,‘,)[w]) = e_aw./V((boCDQ[/h)[O]).

2.5 Remark. Our conformal assumptions are weaker than the assertion that (A, B) is
conformally covariant; this is the special case h = 1. When we work in this generality, we
can handle, for example, the conformal Laplacian D on middle-forms (m/2-forms for m
even) with a suitable boundary operator B. By [Brl], D has the form

éd — dé + (Ricci term),

where d is the exterior derivative, and é is the formal adjoint of d. If M is oriented,
D interchanges the two eigenbundles Ai‘/ 2M of the Hodge * operator, unlike the form

Laplacian A = éd + d6, which preserves both AT 2M and A™/2M. There do, in fact exist
boundary conditions which are suitable in the sense of ellipticity and conformal covariance
of the right weight. On the leading symbol level, the resulting boundary conditions are
absolute or relative conditions [BG, Sec. 7], and the necessary lower-order corrections are
given by actions of the fundamental form L. (These results will appear separately.) Note
that since

D? = A? 4 (lower order),

D is elliptic. On the other hand, the Dirichlet problem for the spin Laplacian, i.e., for
the square of the Dirac operator ¥ on the spinor bundle £M, is outside the framework
we have described, even though Y is conformally covariant. The reason is that Dirichlet
boundary conditions for ¥* do not arise from the iteration process of Remark 2.3. In
fact, there are no local boundary conditions for ¥ which are elliptic in the sense we need;
this is, of course, what leads to the eta invariant of Atiyah-Patodi-Singer. (¥, D) is not
elliptic, even though this problem satisfies our conformal assumptions (¥ is conformally
covariant).

2.6 Remark. The infinitesimal form of the conformal covariance relation (2.5) is
(2.7) (d/de)le=0 Dew] = —(2¢/h)D[0] + a[D[0], (w)]-

The finite and infinitesimal forms of the conformal covariance relation are, in fact, equiv-
alent: an application of (2.7) with g[eow] in place of g{0] gives

(2.8) (d/de)lemeo {e!*+/M“ Dlew]p(e™*)} = 0
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for any ¢¢ € R, so that (2.5) is obtained. In practice, the way in which we shall enforce
(2.6) is to show that

(bo CDa¢yn)[w] = Alw](bo CDag/n)[0]u(e®*),
where A[w] is a smooth, functorial, w-dependent section of Aut W', with the curves Alew]

smooth and £[0] = Idw+. An argument like (2.8) shows that this is in turn enforced by
its infinitesimal form

(d/de)|e=0(be CDae/n)[ew] = a(be CD3¢/4)[0]p(w) + Ew](bo CD2¢/4)[0],
where E[w] 1= (d/de)|e=0 Alew] € C°(OM,EndW’). In fact, in our examples, the entries
of Alw] in the block decomposition corresponding to the grading of Remark 1.4 have the
form u(e“) for various powers c.

2.7 Example. Let A be the conformal Laplacian, or Yamabe operator
m—2
Y=A+ m‘r.
Y is conformally covariant of bidegree ((m — 2)/2,(m + 2)/2):
Yw] = e~ Y [0)u(e *TH).
Though Y can be viewed as a conformally snvarient operator between density bundles, we
choose not to do so, and instead view it as acting on sections of a trivial line bundle over
M. Accordingly, Dirichlet conditions for Y are obtained by letting W; be a trivial line
bundle over M, setting W; = 0, and setting
By, =1d, Boy=B1g=B;; =0

in the block decomposition of Remark 1.4. Dirichlet conditions are, of course, conformally
compatible.

2.8 Example. There is also a conformally compatible Neumann condition, sometimes
called the Robin condition by physicists. This is obtained by “playing off” the conformal
variation of the mean curvature against that of the normal vector field N, just as the
variation of the scalar curvature 7 compensates that of the Laplacian A to form the
conformal Laplacian. By [BG, Appendix],

(d/de)|e=oN{ew] = —wN[0], (d/de)|e=oH[w] + wH[0] = —(m — 1)w§y H[0].
Thus for all a,a € R,

(d/de)|e=o(N + aH)ew] + w(N + aH)[0] — o(N + aH)[0}, p(w)] = (~a(m — 1) - a)p(wjn)-
As a result, there is an infinitesimal conformal covariance law for V + aH for each a € R:
(d/de)lemo(N + aH)[ew] = —w(N +aH)[0] — a(m — D[N + aH)[0], u(w)]

In particular, the boundary operator
m— 2
V- 2(m — 1)H
is conformally compatible with Y. More precisely, to set up the Robin condition, we
let W] be a trivial line bundle, Wy = 0, By; = Id, By,; = —(m — 2)H/2(m — 1), and
By = By,o = 0. The Robin condition is important in the study of the Yamabe problem
on manifolds with boundary; see [E2].
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2.9 Remark. If (A, B) satisfies 1.2, 1.6, and 2.4, then so does (A", B(")) for each r € Z*.
This is sometimes useful in that it allows us to get rid of the (finite multiplicity) negative
spectrum of (Ap) by passing to (4g)?.

An extremely important property from our point of view is a generalization of the
scale-invariance property (2.3) to pointwise (conformal) scalings under the conformal as-
sumptions 2.4. Following [B@1], we call this a conformal indez property.

2.10 Conformal Index Theorem. If (A, B) satisfies 1.2, 1.6, and 2.4, and g[0] is a
Riemannian metric on M, then the quantities g(A, B), #{}); < 0}, am(A, B), and {4,5(0)
are constant on the conformal class {g[0]).

Proof. Let D be as in 2.4. The spectral invariants of A{w] on M((BoCDg¢)[w]) are the
same as those of (u(e~(*+2¢/M«)D[0]x(e**))* on N((Be CD2¢)[0]u(e*)). The spectral
invariants of the latter problem are the same as those of

Alw] = e (u(e~*+ 2V DI0]u(e®))" u(e ™) = (u(e™**/*)D[0})*

on N((Bo CD4.){0]). Here we have applied a “global gauge transformation” in conjugating
by u(e®“); this does not affect spectral data, and has the advantage of transforming the
original problem into one in which the boundary condition is fixed. Note that all of the
boundary value problems mentioned are elliptic because the original one is. Because Ap
has pure eigenvalue spectrum, the null spaces N(A) and N(D) in C®(M,V)p agree. But
by the conformal covariance relations, the dimension of (D) in C*(M,V)p is confor-
mally invariant; thus g( A, B) is conformally invariant. By a straightforward extension of an
argument in [Bl, Proposition 1], the number of negative eigenvalues of (u(e~2%“/*)D[0])*
on N((Bo CD2,.)[0]) is independent of ¢; this uses the fact that the number of zero eigen-
values is independent of €. Since (4 p(0) = am(A, B) — q(A, B), we just need to show that
ax(A, B) is conformally invariant.

For this, fix w € C*°(M), and consider the conformal curve of metrics glew] = €2¢“g[0].
If we can show that the variation operator (d/de)|.=¢ annihilates the functional a,,( 4, B),
we are done, since this result may then be applied with any gleow] in place of ¢{0], and w is
arbitrary. By the preceding paragraph, it is sufficient to show that (d/de)|.=o annihilates
am(Alew], B[0]). The estimates in [GS] justify the following formal computation:

S (/e eoan(Alew], Blewt" /2 = 3 (d/de) oot (Ales], BIODH /2

~ (d/de)|e=o Trexp(—t(A[ew])5(0])
= —t Tr{((d/de)|c=0(Afew]) 5 [0]) exp(—t(A 5)[0])}
(2.9) = —t Tr{((d/de)|e=o(p(e2*“/*)D(0])*) 5j0) exp(—t(AB)[0])}
= 20t Tr{w(Ap exp(—tAp))[0]}
= ~2¢t(d/dt) Tr{w exp(—t(Ap)[0])}

~ i(m — n)an(w, A[0], Blo])t("~m™/2,

n=0
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where the asymptotics are for ¢t | 0. Here we have used the fact that that exp(—t(Ag)[0])
is a smoothing operator for ¢t > 0, with the consequence that

Te(UVet42) = Te(VUe™'42)

as long as U and V are finite-order pseudo-differential operators, and V commutes with
Ap , Comparing coefficients for n = m, we get the result. a

In the course of the proof, we have actually computed the conformal variation of
an(A, B) for every n:
2.11 Corollary. Under the assumptions of Theorem 2.10,
(d/de)|e=0an(A[ew], Blew]) = (m — n)an(w, A[0], B[0}). O
The corollary shows that a,(4, B) is a conformal primstive, or integral, for a,(w, A, B)
provided n # m. The following variational formula, which will be fundamental to our

computations, shows that the functional determinant supplies the “missing” primitive for
am(w, A4, B), at least when the conformal invariant ¢(A, B) vanishes.

2.12 Theorem. Suppose (A, B) satisfies 1.2, 1.6, and 2.4. Let (M, g[0]) be a particular
manifold with boundary together with a conformal class on which N(Ag) = 0, and let
w € C°(M). Then

(d/de)le=0C4(ew), Blew) (0) = 26am(w, A[0], BI0]).

Proof. First assume that (Ap)[0] is positive. By the conformal invariance of ¢(A, B) and
of #{); < 0} (Theorem 2.10), (Ag)[ew] is positive for all ¢ € R, so that the Mellin
transform relates the zeta function to Trexp(—tApg), without the modifications of (2.2).
The estimates in [GS] allow us to conclude that (d/de)|.=0{4,B(38) is meromorphic, and
that we can interchange the order of conformal variation and analytic continuation. For
Re s large,

(d/ d€)|e=0C.'4[:w],B[eu](s) = (d/ds)(d/ d€)|e=oCA[w],B[w](5)

= (d/ds) {ﬁ /:o t*~1{(d/dg)]e=0 Trexp(—t(AB)[Sw])}dt}

2.10 o
(2.10) = —(d/ds) {-I% A t’(d/dt)Tr{wexp(—t(AB)[O])}dt}
= (d/ds) { I?(e:) oo‘o £~ Tr{w exp(—t(AB)[O])}dt} .

Here we have integrated by parts in £, and used the computations in (2.9). Analytically
continuing this formula, the value at s = 0 is the same as that of

%) [ et T exp(-tanOD)
that being 2¢a,(w, A[0], B[0}).

To dispense with the positivity assumption on Ag , note that we have proved the result
for the positive operator (Ap)?. (Recall Remark 2.9.) But (4 pa(s) = (a,8(2s), so
(42 p(0) = 2(} p(0). But by a straightforward extension of [FG, Theorem 2.4] to
boundary value problems, ap,(w, A2, B®) = a;,(w, A, B). O
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2.13 Remark. The effect of zero spectrum on this argument is as follows. Since ¢(A, B)
is conformally invariant, nothing in (2.10) changes until we apply the e-derivative; the
trace on the third line becomes

Tr(wexp(—t(AB)[0]) = P), P = Proja(apo)nai(BeCD2)[0)) *

The kernel function of w{exp(—t(Ag)[0]) — P} is

w(z) {H(t,w»y) =D ¢i(@)® w}(y)} ;

A;j =0

where H(t,z,y) is the kernel function of exp(—t(Ag)[0}), and {¢;} is an orthonormal basis
of eigensections, A[0}p; = Ajp;, (Be CDy¢)[0]¢; = 0. The conclusion is that

(d/de)le=0CAeu), Bew) (0) = 2¢ (ﬂm(w,A[O]aB[O]) —w(z) Y |‘P:‘($)|2) -

Aj=0

Thus an explicit formula for the local heat invariant a,,(w, A, B), or such a formula together
with an explicit knowledge of the null space M (A4g) when this null space is nonzero, is
sufficient for an understanding of the conformal behavior of the functional determinant.
Note that an explicit knowledge of N{Ap) is not an unreasonable expectation: if the
scalar curvature of the background metric has positive scalar curvature, there can be no
null space for an elliptic boundary problem Yz based on the conformal Laplacian Y. For
more general (A, B) satisfying 2.4, if M and OM are locally flat (for example, if M is a
standard flat half-torus), A (Apg) can be given explicitly in the background metric, and
thus in conformal metrics by the conformal covariance law.

The strategy for computing the functional determinant within a conformal class will
be to integrate the variational formula along a one-parameter family g[ew] = e2*“g[0].
The result will be a formula for the difference C:‘l[wl, BM(O) - C;x[o], 3[0](0); that is, for the
quotient of determinants

(det(Ap)[w])/(det(Ap)[0)).

The formulas involve integrals of differential polynomials in w, but such quantities cannot
necessarily be re-expressed as integrals of scalar local invariants in the sense of Remark
1.9. For example, the quantity [wPw, where P is the Paneitz operator, appears in our
formulas; it cannot, in general, be expressed as the integral of a local scalar invariant
of glw]. This phenomenon is one conformal manifestation of the nonlocal nature of the
functional determinant. To express everything in terms of differential polynomials, at least
via the current methods, it is very important that we stay within a conformal class.

The problem of computing (det(A45)[0]), so that we have formulas for functional de-
terminants instead of just quotients of such, may be approached separately; see Sec. 7
below.
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3. VARIATIONAL FORMULAS AND CONSEQUENCES
OF THE CONFORMAL INDEX PROPERTY

In this section, fix w € C®(M), and again consider the variation (d/de)|.=o as the
metric ¢ runs through the conformal curve glew] = e?*“¢[0] for a fixed (but arbitrary)
w € C®°(M). We extend the definition of local scalar invariant to f-augmented local scalar
invariants, f € C®°(M), by adding df (or df and N f for boundary invariants) to the list
of ingredients in Remark 1.9. (Note that suitable derivatives are also ingredients, so it is
only the Ot derivative of f that does not come into play.) When there is no chance of
confusion as to the choice of manifold or measure, or when these choices are arbitrary, we
shall sometimes abbreviate [, -dz by [ -, and f,,, - dy by §-.

We begin by choosing a nonstandard basis of the interior invariants.

3.1 Lemma. With notation as in Sec. 1, the 4 quantities |C|?, Q, J?, AJ span the space
of level 4 local scalar O(m) invariants on M for m > 3; for m > 4 they are a basis. If
m > 5, these 4 quantities are also a basis of the level 4 local scalar SO(m)-invariants. If
m = 4 and Cy are the self- and anti-self-dual parts of C, the 5 quantities |C4|?, |C-|?, @,
J%, AJ are a basis of the level 4 local scalar SO(4) invariants on M.

Proof. Let m > 3. By (1.1), Ar is a scalar multiple of AJ, |p|? is a linear combination
of J? and |V|?, and |R)? is & linear combination of J?, |V|?, and |C|?. |V|? is a linear
combination of @, J?, and AJ. By, e.g., [G1], the 4 quantities |R|?, |p|?, 72, AT span the
O(m) invariants, and are a basis for m > 4. For m 2> 5, all O(m)-irreducible summands
of the vector bundle of which R is a section are also SO(m)-irreducible. For m = 4, this
is true except for the O(4)-bundle of which C is a section; this splits into two irreducible
summands under SO(4) [S)], and this induces the splitting C=Cy +C_. 0O

Using the invariant theory of [BG], we can write down all the invariants that can
appear in a4(f, A, B). In Table 3.1, we introduce abbreviations for some level 3 local
scalar invariants on @M. tr L3 is an abbreviation for the local scalar invariant L3, L*.L¢, .
For convenience, all indices are written as subscripts, the convention being that one index
in each pair is raised before summing,.

Abbreviation Invariant Index expression

Xy Nt Rijijiv

X, TH RijijLaa

X FH RananLes
X4 (G,L) RansnLas
Xs (T, L) RegesLas

Xe H? LoaLtyLee
X7 H|L|? LoaLycLie
Xs tr L3 Loy LycLea
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Table 3.1

Let f € C*°(M) be an auxiliary function. In Table 3.2, we introduce abbreviations for
some f-augmented level 3 local scalar invariants. Note that because the inward unit normal
is extended to a collar as the tangent to a unit speed geodesic, the iterated partial deriva-
tives N ... N f agree with the iterated covariant derivatives fijy. v =(V...Vf)ny. . N.

Abbreviation Invariant Index expression
Yi(f) (Nf)r finRiji;
Y2(f) (N2f)H finnLaa
Y3(f) (-AfHH fiaaLu
Yy(f) (Nf)H? finLaaLss
Ys(f) (Nf)F fINRaNaN
Ys(f) (VV£,L) fasLas
Y2(f) (NAILP? finLasyLas
Ys(f) N(-A)f fliin

Table 3.2

iFrom [BG, Lemma 2.3] and the above, we get:

3.2 Lemma. Suppose that either (A, B) is not orientation-sensitive or m > 4. Under the
analytic and naturality assumptions 1.2, 1.6, a4(f, A, B) has the form

as(f,A,B) = /f-{c’lfl,llm2 + a1 2Q + a1 3% + a1 4 AT}

8 8
+ f (f z a‘Z,pX_u + 2 aa,qu(f))
p=1 v=1

for some constants a, , which depend only on the formal functorial expression for (A, B),
and on m. (In particular, they do not depend on the particular manifold or metric.) If
m = 4 and (A, B) is orientation-sensitive, the same is true with cuf;"’1|C'+|2 + a;,|c_|2 in

place of a; 1|C|? for for constants ait'l . a

When f =1, the invariants Y, (f) vanish, and integration by parts gives

(3.1) /AJ = (f Xl) /2(m ~1).

Thus a4(A, B) has the form

8
(3.2) as(A,B) = /{ﬂfl,1|C|2 +a;2Q+ay 372} + ﬁ Z ay u Xy,
p=1
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where the &1 are constants with the same dependence as above. (We make the obvious
adjustment if m = 4 and (A4, B) is orientation-sensitive.) Under the conformal assump-
tions 2.4, the number of undetermined coefficients in Lemma 3.2 and (3.2) is cut down
considerably; the “axe” is the Conformal Index Theorem 2.10. To apply this, we need to
know the conformal variations of the quantities involved.

3.3 Lemma. Let m = 4. For the conformal variation above,

(2) (d/de)|e=o(|C|*dz)[ew] = 0. If M is oriented, (d/de)|e=o(|Cx|*dz)[ew) = 0.

(b) (d/de)e=o f(J?dz)[ew] = 2 [ w((AT)d2)[0] + § $({—w X1 + Yi(w)}dy)[0].

(c) (d/de)le=o [([V*dz)lew] = 2 f w((AT)dz)[0] + §({—3wX1 — §Y1(w) — Ya(w) + Vs(w) +
Ys(w)}dy)(0].

(d) (d/de)|e=0 [(ATdz)ew] = (d/de)|e=0 $(Jindy)lew] = $({—FY1(w) — Ya(w)}dy)[0].

(e) 3(d/de)le=0 [(Qdz)[ew] = $(S(w)dy)[0], where S(w) = ;Yi(w) + Ya(w) - Ys(w) -
Ye(w) — 3Ys(w).

Proof. (a) was already remarked as (1.5). (The statements about Cy follow from the fact
that the splitting into C; and C_ is conformally invariant.) For (b), we use (1.3) and
integrate by parts to get:

(d/de)|e=o /(ﬂdr)[aw] = 2] J(Aw)dz = 2/(d.f,dw)dz + 2f Jw ndy
= 2fw(AJ)d:c - 2fJ|Nwdy+2f Jw|ndy,
where everything after the first “=" sign has an implicit [0] (is evaluated in g[0]).
For convenience in the rest of the proof, we write all indices as subscripts; one copy

of each repeated index should be raised before summing. For (c¢), we use (1.4) and the
Bianchi identity V;;;; = J;, and integrate by parts:

(d/de)]eco / (|V[2dz)[ew] = —2 / (V, VVw)dz = 2 f (dJ, dw)dz + 2 j{ Vinwpidy
= 2/wAJd:c - Zf Jinwdy + 2fV.'Nw|,-dy.

Again, everything after the first “=" sign is evaluated in g[0]. But

Vniwii = Vnvwin + Vvawa

fVNaw:a = - f VaN:aw = _% fPaN:au-

By [BG, Lemma A.1(b)],
PaNia = H:aa - Lab:ab .

Since Vyn = 3 F — 757, integration by parts over &M (which has no boundary) gives

(3.3) %VNiwﬁ = f. (3Ys(w) — £Y1(w) — 1Y3(w) + 1Ys(w)).
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This and J = /6 give (c).
The first equality in (d) is obtained by integrating by parts; the second is Lemma 3.4(a)
below. For the proof of (e), we use (1.10):

Hd/de)lemo [(Qan)lew) = } [Ptz =} [wiasyie = [107 -2V}
=-3 }(wumdy + f[{-f — 2V -}dw]ndy
=—3 fwu.wdy + f(-fww — 2VNiw)i)dy.
(3.3) now finishes the proof. Alternatively, we could use the definition (1.6) of @ together

with parts (b-d) to derive (e). O

We shall also need the conformal variations of the boundary invariants that do not
automatically vanish for w = 1. The following can be read off from the variational formulas
in the appendix to [BG]. (Note the differences in sign conventions.)

3.4 Lemma. Let X!(w) = (d/dg)|e=0(e?*“ X;[ew]) = (d/de)]c=0Xi[ew] + 3wX;[0]. Then:
() X} (w) = —2¥; (w) — 2Am — D¥s ().

(b) Xj(w) = —(m — 1)Y1(w) — 2(m — 1)Y2(w) — 2(m — 1)Y3(w) + 2(m — 1)Yy(w).
(¢) Xi(w) = —(m — 1¥3(w) — Yy(w) + Ya(w) ~ (m — 1)¥s(w)

(d) Xi(w) = =Ya(w) - Ys5(w) — Yo(w) + Yz(w).

(6) Xi() = ~Yi() — Ya() + Ya() + 2¥3(w) = (m — 3)¥s(w) + (m — 8)¥s(s).
(f) Xi(w) = =3(m — )Yy (w).

(8) Xi(w) = ~2%4() - (m ~ )Y (w).

(b) Xi(w) = ~3s(w). O

We retain the “prime” notation of Lemma 3.4 to derive some straightforward conse-
quences in the next two lemmas.

3.5 Lemma. Let 1
Xg +.X3 —(m—3)X4 +.X5 ,
m-—1

2 m-—1
3(m-1)X"+X7— 3

Then L\(w)=0,s=4,5. O

£4=—

[’5=— Xa.

3.6 Lemma. Let m =4, and let
S=-LX1+ 31X, - X4 + 1 Xe — 1 Xs.

Then S'(w) = —8(w), where S(w) is as in Lemma 3.3(e). a

We can now harvest the consequences of the conformal index property, reducing the
number of undetermined coefficients from the 20 in Lemma 3.2 to just 13 under the con-
formal assumptions.
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3.7 Theorem. Let m = 4, and suppose (A, B) satisfies 1.2, 1.6, and 2.4. Suppose that
(A, B) is not orientation-sensitive. Then a4(f, A, B) has the form

w4 B) = [ncP+a {3 [ 1o+ f 15}
o frar-td Y en frecea frecr f 3 nnin,
v=}

where the constants 8,, p = 1,...,5 and k,, v = 1,... ,8 depend only on the formal
functorial expression for (A, B). In particular,

(3.4) a4(A,B)%ﬁ1]|0|2+ﬂz{§/o+){s}+ﬁ4}c4+ﬂafcs.

If (A, B) is orientation-sensitive, the same is true with }91'_|_|C_|_|2 + Bl,_lc_lz in place of
B1|C|? in each formula.

Proof. Changing basis in the formula of Lemma 3.2, we may write a4(f, A, B) in the form

i [ ficr+6: {4 [ia+§ishea{[rar-3fimtre [rr

+ ff{ﬁvcfl + BsLs + 11 X1 + 12 X2 + 13Xz + 74 X4 + 16 X6 + 718 X3} +f2n Y.(f)

v=1

for some universal constants f3;,c,v;. In particular, by (3.1),

a.,(A,B)=ﬂ1/lC|2+ﬂ2 (%/Q+f ) /J’+ﬁ4}§£4+ﬂsfﬁs+ > fﬁn

j=1,2,3,4,6,8

By Lemmas 3.3-3.6,
(d/de)lomaau(Alew), Blew)) = 2¢ [w(aT)de — e fu
+ (3o =2 =31) § Vi) + (6 = 31 = %) § Vo) + (=672 = ) § ()
+ (6747 = 970) § Ya(w) + (=37 = W) § ¥ow) = 7 § Ya(w)
+(n = 3m) § () — b § %a(w)

By the linear independence of the invariants § Y;(w), we conclude that c =y, = 42 = 73 =
Ya=7%=7%=0 0O

It is now time to clarify the notion of conformal primitive.
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3.8 Definition. A real functional P on a conformal class (g[0]) on M is smooth if the
functions

RN - R,

N
e=(e1,... ,eN)HP(g [225.1».-])
i=1

(3.5)

are C* for all N € Z%* and functions w; € C®(M). P has degree n € Z* if the maps
(3.5) are polynomial in € of degree n, and we use the terminology linear, quadratic, etc.
for degree 1,2,.... A map R from (g[0]) to C°°(M) is smooth (resp. has degree n) if
g — R(g|w])(z) is smooth (resp. is polynomial of degree n in ¢) for each z € M, and
similarly for maps to C*°(0M).

3.9 Definition. Let P and T be smooth functionals on a conformal class (g[0]) on M. P
is a conformal primitive for T if

(3.6) (d/de)le=oP(gln + ew]) = T (gn])

for all n,w € C*°(M). If in addition, a base metric go is given and P(g[0]) =0, P is a
base-pointed conformal primitive for T.

3.10 Remark. A base-pointed conformal primitive P for 7, if it exists, is unique, since
the curve a(e) = P(g[ew]) solves the initial value problem (d/de)a(e) = T (g[ew]), a(0) = 0.
If a functional 7 and a prospective conformal primitive P are given by universal formulas,
it is sufficient to prove (3.6) at n = 0, since universality allows us to replace g[0] by g[n].
If 7(g[w]) is a homogeneous polynomial functional of degree n > 0, then T(g[w])/n is a
base-pointed conformal primitive for 7(g[w]). Thus a decomposition of a given functional
into homogeneous polynomial functionals is sufficient information for the computation of
a base-pointed conformal primitive. We shall sometimes use the abbreviation 7 [w] for

T(g[w])-

Motivated by Remark 3.10, we go on to compute the higher conformal variations of the
local invariants in Theorem 3.7. The formulas for V[w], Rjw], Ljw], V[w], and N[w] show
that each term in that expression for a4(w, A[w], B[w]) is polynomial of degree < 4; this
will also emerge from our calculations, so we omit the abstract proof. We first introduce
abbreviations for some f-augmented local invariants which are quadratic and cubic in f.
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Abbreviation Invariant Index expression
Zi(f, f) (NANS finfin
Zy(£, f) (NA(=D)f fin fiaa
Z3(f, f) (NF?H finfinLaa
Z4(f, f) |df1*H fiafiaLns
Z5(f, f) (df ® df, L) fafsLas
Zs(f, 1) (df, d(N ) fa(fiN):a
E\(f,£,1) (N)ldfP? finfiafia
Ey(f, f, f) (Nf)? hnfinfin
Table 3.3

The notation Z;(f, f) indicates that Z; can actually be thought of as a quadratic form
Zi( f1 , f2) after polarization; similarly for the cubic form determined by E;(f, f, f). Lem-
mas 3.11-3.18 immediately following are obtained by direct computation with the varia-
tional formulas and identities of [BG, Appendix], and integration by parts.

3.11 Lemma. Let Y/(w,w) = (d/de)|,=o(e**“Yi(w)[ew]) = (d/de)|e=0Yi(w)[ew]
+3wYi(w)[0). Then:
(a) Y{{w,w) = =-2(m — 1)2,(w,w) — 2(m — 1)Z2(w,w) + 2(m — 1) Z3(w,w).

(b) YJ(w,w) = —(m - 1)Z(w,w) — Z3(w,w) + Z4(w,w).
(c) Yi(w,w) = —(m — 1}Zy(w,w) + (m — 3)Z4(w,w).
(d) Y{(w,w) = =2(m — 1)Z3(w,w).

(e) Yi(w,w) = —(m — 1)Z)(w,w) — Z3(w,w) + Z3(w,w).
(f) Yi(w,w) = —Z3(w,w) + Z4(w,w) — 2Z5(w,w).

(g) YV (w,w) = —2Z3(w,w).
(h) Y3(w,w) = 2(m - 3)Z)(w,w) — 2Z3(w,w) + 2Z;3(w,w) + 2(m — 2)Z5(w,w)
+2(m — 2)Zg(w,w). g

3.12 Lemma. For all f,w € C®(M),

(2) § Z6(f, f) = — § Z2({, f)-

(b) ¢ fZs(f, f) = —ffzz(f,f) $ Ei(f, £, f).

(c) (d/de)le=o ($(Ya(w)dy)lew]) = (m — 4) § w(Ys(w)dy)[0] + §{2(m — 3)Z;(w,w)
=2(m = 1)Zy(w,w) + 2Z;3(w,w) + 2(m — 2)Zs(w,w)}. O

3.13 Lemma. Let Z)/(w,w,w) = (d/de)|.=o(e3** Zi{(w,w)[ew]) = (d/de)|e=02Z;(w,w)[ew] +
3wZi(w,w)[0). Then:

(a) Z1(w,w,w) = By (w,w,w) — Ea(w,w,w).

(b) Z)(w,w,w) = (m — 3)E) (w,w,w).

(c) Zj(w,w,w) = —(m — 1) Ey(w,w,w).

(d) Zi{wsws0) = —(m — 1)Ex(wr00).
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(e) Zy(w,w,w) = —Ey(w,w,w).
(f) Zi(w,w,w) = —Ey{w,w,w). O

3.14 Lemma. The quantities E!(w,w,w,w) = (d/de)|,=0(e*** E;(w,w,w)[ew])
= (d/de)|,=0Z;(w,w,w)[ew] + 3wZ;(w,w,w){0] vanish identically. O

3.15 Lemma. Form 2> 2, let

(w) = -Yi(w) + (m - VY7 (w),

£(0) = ~¥i() = (m — )Vy(w) + Ya(w) = == Ya(w) + (m = DYs(w)
) = =) - 2 - PR )

= (m — 4)Y5(w) + (m — 2)Ys(w) + Ya(w).
Then £ (w,w) = 0 for s = 1,2, and (d/de)|e=0 §(fa3(w)dy)[ew] = (m — 4) § w(€s(w)dy)[0)].
In particular, if m = 4, then (d/d€)|.=0 §(£s(w)dy)[ew] =0, =1,2,3. O

3.16 Lemma. Let
A=Xg—-(m-1)>X,.

Then A" (w,w) = 0. O
3.17 Lemma. Let

q1(w) = Y3(w) — (m - 1)¥s(w),
g2(w) = (m = 3)Y1(w) + (m - 3)(m - 2)Ya(w) — 2(m - 2)Y3(w),
g3(w) = (m - DY (w) — (m - 1)(m - 2)Y;(w) + 2(m - 2)Y,(w).

Then ¢!/ (w,w,w) =0, s = 1,2,3, with the result that
(@ /4o latieu]) =0, m=4. O

3.18 Lemma. If f € C*®(M), then on OM,

fi' N = finnn + (fin)a® + 2V (L VP f)
_H:af:a_Fle_IL]2f|N_Hf|NN- o

The following lemma is a consequence of Lemmas 3.4, 3.11, 3.12, and 3.13.

3.19 Lemma. If m =4 and S is as in Lemma 3.6, then

(dz/dez)lmo( fo(sty)enl - 5 § Ys(w)[ew]dy[ew]) 0. O
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4. FORMULAS FOR THE QUOTIENT OF FUNCTIONAL DETERMINANTS

Suppose we have a compact 4-manifold M with boundary dM, and a base-pointed
conformal class {g[0]) is given. Suppose also that we have a boundary value problem
(A, B) satisfying the assumptions of Theorem 2.12. A change of basis in the formula of
Theorem 3.7 allows us to write

as(e, 4, BYlo] = 1 [ w(ICPda)l
+62 {4 [w(@ilel + (S - Nyl }
+60{ [at@ndall + f(i(0) - X))ol
+ B0 flLody)lo] + B § wlLody)le
+ :ZIA.- eyl + ;S_:a,- Flas@il]

+a fHa@] + o FH@)

(4.1)

where 3, ,A;,0;,c3,cq are universal constants depending on the universal polynomial
expression for (A, B).
By Theorem 2.12, we can find a formula for

—log | det(Ag)|[w] + log | det(Ap)i[0]

by finding a base-pointed conformal primitive for each term in (4.1). By Theorem 2.10,
the sign (~1)#{2 <% of det Ap is conformally invariant, so this gives a formula for

det(Ap)[w]
det(Ap)[0]

4.1 Lemma. In (4.1), the B, terms for v = 1,4,5 and the \; terms for i = 1,2,3 have

base-pointed conformal primitives

B fw(|C|2d$)[0], Ba fw(£4dy)[0], ﬂsfw(ﬁsdy)IO], Ai j{(f-‘(w)dy)lﬂl

respectively.

Proof. By Lemmas 3.3(a) and 3.5, |C|*dz, L£4dy, and Lsdy are conformal invariants in
dimension 4; thus the relevant 8, terms in (4.1) are linear on the conformal class {g[0]).
By Lemma 3.15, the ); terms are also linear. We now apply Remark 3.10. a
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4.2 Lemma. A base-pointed conformal primitive for [ w(Qdz)w] is
Bloli=} [ w(Plolw)islo] + [ w(@z)o)
Proof. If n,w € C*(M),
(4/de)ecoBln+ ] = § [ (n(PI0L) + w(PLOI}as(0] + [ w(@z)o
Evaluation at n = gow shows that the curve B[ew] satisfies the initial value problem
(4/de)emesBlew] = [{eaw(PIO) +wQIO]}dal0],  B(0] = 0.
But by (1.10), the right side of this ordinary differential equation is

[ wt@isenc),

as desired. O
4.3 Lemma. A base-pointed conformal primitive for Clw] := $((wS — 1Ys(w))dy)[w] is

Futsaio -3 feaa)ol - 4 § oS
+} $(Zae,0)il0] - § §(Zuw,w)i

Proof. By Lemma 3.19, C[w] is a quadratic functional. By Remark 3.10, its base-pointed
conformal primitive is

(sl -+ § (@l
+3 ﬁ (wS'(w)[0] — Y3 (w,w)[0])dy[0).

The last line of this is computed using Lemmas 3.6 and 3.11. O
4.4 Lemma. The 3 term in (4.1) has base-pointed conformal primitive

1, [ (sl - (s,

Proof. This is a restatement of Lemma 3.3(b). O
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4.5 Lemma. The sum of the 0, c3, and ¢4 terms in (4.1) has base-pointed conformal
primitive

o { fa@anio + §(-z+ 320 )0}
Flasraniol+ §(-67,+32: +22 - 2w, 0)ii0) )

FEN0+ (322 + F20(r 0] - §(Brws,)i)0]

\
ror{
+s { lar@ianlo) + §((-922 - 32,001}
e
veu{ f

(Yu()dnlo] =3 §(Zs(0,0))l0) + 3 § (Ba o))

Proof. By Lemma 3.17, the o, terms in (4.1) are quadratic on the conformal class {g{0]),
and by Lemmas 3.11, 3.13, and 3.14, the ¢4 and ¢; terms are cubic. We now apply Remark
3.10, using Lemmas 3.11 and 3.13 to compute expansions into homogeneous polynomial
terms. a

We collect all this information in the following.

4.6 Theorem. Under the assumptions of Theorem 2.12, if (A, B) is not orientation-
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sensitive,

~@0 sl = o1 [wiicpan

+2{} [w(POR)al0]+ } [ wl@ae)0]+ fulSaniol- § fraan0
3 foS@0+ $(42 - 12w )0}
+4 [((Fda)le] = (P do))} + B0 § (Lad)O1+ B § w(Lady)O
" Z x fle@ano
{fa@ano+ f-z0+ 220,000}
+o, { (g2 (w)dy)[0] + f( —62Z, +32; + 223 — Z4)(w, w)dy)[O]}
+01{ a0 + f(-92: ~ 32w )]
res{ FOR@IN + (=322 + 20000 = F(Brtw )01}
reu{ f@I0) - 3 § (2o )0+ 3 f (a0l

If (A, B) is orientation-sensitive, #; [ w(|C|*dz)[0] should be replaced by
B1,+ [w(|C4|*dz)[0] + By — fw(|C=|%dz)[0). If Py is the functional of Remark 2.2, then

PA(A:B: g[w]) — —ilo fe4wd$[0] _ thg(A,B) - lo feiiwdy[o]
Pr(4,B,gl0) ~ 4 ° v 3 & 500]

-1 det(Ap)[w]
= (207 log 3 N

—(26)"log
(4.2)

where v[0] = vol(g[0]) and 3]0} = vol(g[0]). a

In the above, recall that a4{ A, B) is conformally invariant. A more manageable version
of this formula is obtained when we notice that several of its terms are also terms in a
formula for a4(w, 4, B). Indeed, if w,n € C®(M), (4.1) can be modified to give a formula
for ay(w, A, B)[n] just by replacing each {w] by [n]. To make the formula even more easily
applicable, we add the mild assumption that our chosen background metric on M has
constant scalar curvature. We immediately have:

4.7 Corollary. Suppose (M, (g[0]}) and (A, B) are as in Theorem 2.12, and that ¢[0] has
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constant scalar curvature 79 . Let w € C*°(M). Then

det(Ap)[w]
det(Ap)[0]

+2 {4 [o(PlOl)dal0) - § S0+ f(42 - 32w )0)01)
+460{ 17 doe] = (Fao)l0) ko funw f + o1 $(~2a +325)w, )0
t+o3 f (=621 + 323 + 225 — Za)(w,w)dy)[0] + o3 f (=922 — 3Z4)(w,w)dy)[0]
v { F(-320+ 3200 - F(Er(ww, )0}

+eu{ =3 § (200 +3 f(Brto il O

Now recall the functionals Py of Remark 2.2, which involve the conformal index a4( A4, B).
It is sometimes useful to express the conformal index in terms of the Euler characteristic
of M. Recall that x(M) = x(0M) + x(M, dM); thus if m is even, x(M) = x(M,0M). By
the Chern-Gauss-Bonnet formula, if m = 4,

—(26)7} log = a4(w, A, B)

X() = (322%)7 [ (7%~ 4" + Rz

(4.3) M

+ (24n%)~! (3rH —6FH —6(T,L) + 2H® — 6H|L|* 4 4 tr L*)dy.
M

The interior integrand can be rewritten as |C|? — 8{V|? + 8J% = |C|*> + 4{Q — AJ}, and
thus the interior term in (4.3) equals

(327%)1 (/M(|C|2 +4Q)dz — §fr|,qdy) :
Thus
X() = @2n) [ (CFF +4Q)da
+ (24n%)! fiw(*%r'” +3rH —~6FH —6(T,L) + 2H* — 6H|L|* + 4 tr L*)dy,
or more compactly,
(44)  x(M) = (320%)"! /M(|C|2 +4Q)dz + (472)"! j{, (5= L= L)y

At a background metric g[0] with constant scalar curvature as in Theorem 4.7, the 7y
contributions to the boundary integrals in the formulas for x(M) and a4(A, B) disappear.
It is now appropriate to distinguish two types of “model backgrounds”:
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4.8 Definition. (M, g¢[0]) is a model background of type I if (VR)[0] = 0, M is totally
geodesic, and M is connected. (M,g[0]) is a model background of type II if g[0] is flat,
(VL)[0] =0, and OM is connected.

4.9 Lemma. In a model background (M, g[0]) of type I, the boundary integrals in (3.4)
and (4.4) vanish, and
a4(A[0), BI0]) = 47? By x(M) + (81 — §2)|C|*[0](0].

In a model background (M, g[0]) of type II, the interior integrals in (3.4) and (4.4) vanish,
and

as(A[0], BJ0]) = 472 Bax (M) + (B4 + 682)L4[0]5[0] + (Bs + 682)L5[0]5(0).

Proof. In the type I case, VR = 0 = V( = 0, so the connectedness of M guarantees
that |C|?{0] is constant. In the type Il case, R=0, VL =0 = VL4 = VL5 = 0, so0 the
connectedness of M guarantees that £4[0] and £5[0] are constant. O

We combine these considerations to get a more natural form of (4.2):
4.10 Theorem. Under the assumptions of Theorem 2.12, if (M, g[0]) is a background of
type I and A = a4(A, B), or if (M, ¢[0)]) is 2 background of type Il and A =0,

~(207 o DL — ey + £ {4 [ w(POLIEI0 - 3 )]

- Fu(S@H0+ F((32: - §zww)l0

15 [((Pda)le] - (Pda)lOl + ZA @
+or $((=24+3Ze)w,)dy)[0
+or{ fla@)anlo) + F((-621 +322 +22 - 20,01
#1{ $laa))0+ (-2 - 3201}
ror { f0)+ F(-32+ 1200 )0) - §(Brer )0l
reu{ N0 -3 §(Za(o,0)0)01 +3 § (Eawrw )]}

where

as(A, B) log fe“(“"”)da:[ ]

fi=-—7 v[0]

= {7 Bax(M) + }(B1 — §82)IC}*[0]0[0]},
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a4 (A, B) o ) e3(w=)dy[0]
3 BT 0]
= —{4n%Bax(M) -+ §(Bs + 682)Ls[0]5(0] + 3(Bs + 662)L5(0]5(0)}.
Here & := ([ wdz[0])/v[0] is the mean value of w over M, and & := (§ wdy[0])/5[0] is the

mean value over OM.

Proof. In the type I case, we absorb terms totalling (8:|C|*[0] + 3/.Q[0]) [ wdz[0] (or
(B1,+|C+12[0) + B1,— |C=|*[0] + 382QI0]) [ wdz[0] if (A, B) is orientation-sensitive) into the
first exponential term of (4.2); the coefficient of the second exponential term is 0. In the
type II case, we absorb terms totalling (82.5{0)+ 84L4[0)+ 85 Ls[0]) § wdy[0] into the second
exponential term of (4.2); the coefficient of the first exponential term is 0. We also make
use of the fact that §(g;(w)dy)[0] vanishes, since (VL)[0] = 0 in both the type I and type
IT cases. O

4.11 Remark. The choice A = a4(4, B) or A = 0 makes Px(A, B, g) a spectral invariant
(recall Remark 2.2). The presence of the |C|* term in the case of a model background
of type I is an indication that the analysis of the determinant functional will be heavily
dependent on conformal geometry as well as on topology. See [BCY] for this analysis, and
the effect of the |C|? term, in the boundariless case. Similarly, for a model background of
type I, the £4 and Cs terms indicate a dependence on conformal geometry.

&n =

4.12 Remark. There need not be a model background of type I or Il in a given conformal
class, of course. It can happen, however, that there are model backgrounds of both types
in the same conformal class. For example, the round metric on the closed hemisphere H*
(type I) is conformal to the flat metric on the closed ball B* (type II). The standard metric
on the cylinder C3 = [0, k] x S? of height h is conformal to the flat metric on the spherical
shell A2 = {z € R* | 1 < |z| < s}, s = e*. Here the cylindrical geometry is type I; the
shell geometry fails to be type II only because of its disconnected boundary.

5. SPECIAL MANIFOLDS

We would now like to do some computations in the special cases of the hemisphere, ball,
cylinder, and spherical shell. Since the hemisphere and ball are conformally equivalent,
and the cylinder of height h is conformally equivalent to the spherical shell of outer/inner
radius ratio s = e”, this will provide checks on our formulas, in that we can compute certain
determinant quotients in two different ways. Moreover, since we can write down the spectra
of the Dirichlet and Robin problems for the conformal Laplacian on the hemisphere, and
compute the determinants of these problems explicitly (Sec. 7), we shall be able to compute
the determinants of the similar problems on the ball. The following elementary observation
will be useful.

5.1 Lemma. If M is totally geodesic and « is the intrinsic scalar curvature of OM, then
T=Kk+2F on OM.

Proof. We use total geodesy to pick coordinates at a point of @M which are normal for
both ¢ and §, then use the characterication of the Riemann tensor as the second-order
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part of the Taylor expansion of the metric, to show that x = R%®,,. Since 7 = R';; =
R, 4+ 2R% yan , the result follows. a

Now consider the upper hemisphere H™ in §™, the boundary of which is the equa-
tor S™~!, with the standard round metric g[0] as background. Here the interior met-
ric has VR = 0 and the boundary embedding is totally geodesic, so (H™,g[0]) is a
model background of type I. In this background, C = 0, V = {g, and J = m/2. If
U2 := A + (m — 1)?/4, then the Paneitz operator and quantity are

P=(U-DE-DE+HE+D,  @=mlm+2)(m-2)/8.
In particular, if m = 4, then P = A(A + 2) and @ = 6. By (1.1),
Rijii = —gjkga + 9519ik -

Thus on the boundary 8H™ = §™~! of H™,

G=3j, F=m-1, T =(m — 2)§.
L and H vanish, and by Lemma 3.18, if f € C®°(H™),

Yo(f) = N(=A)f = N’ f +(-A)Nf) = (m - 1)Nf.

We also have

X;=0,1=1,...8;
Y2(f) =Ys(f) =Ya(f) =Ye(f) =Ya(f) = Zs(f, f) = Za(£, f) = Zs(f, f) = 0

and
i(fy=m(m-1)Nf,  Ys(f)=(m-1)Nf.
As a result, on 0H™,
Ly=Ly=0,
6H(f) =0, L(f)=-(m-1)Nf,
t(f) = =(m = 4)(m — )N f + N(=A)f = N*f + (~B)(Nf) = (m = 3)(m — )N,
a(f)=0, @f)=m(m-1)(m-3)Nf,  g¢(f)=m(m-1)’N{.

On 0H1Y,
§=0, S(f)=Nf-IN(-A)f =-3N*f—3(-A)Nf)+5Nf.

Since vol(H*) = 47*/3,
a4(4, B) = 27*5,Q[0]/3 = 4n* B,

for (A, B) satisfying 1.2, 1.6, and 2.4. (Alternatively, we can use the formula of Lemma
4.9 and the fact that y(H™) = 1.) Specializing Theorem 4.10, the conclusion is:
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5.2 Theorem. Suppose that (A, B) satisfies 1.2, 1.6, and 2.4, and that N (Ag) = 0 on
(H*, g[0]), where g[0] is the round metric. Let A = 4n%B,. Then for w € C™(H*),

Pa(4, B, glw]) _ Hw-2)dz[o]
’P/\(A,B,Q[O]) B 47‘[’2/3

+ (3024902~ 903 — §er) §  (No)(=Bw)ay)0)

—(20)7" log —72B; log Juee

6 {3 [ w(0@+D0 -3 § el +if wPaio)
118, { /H (Jdz)lu] - 1677 /3}
+(=3X2 — 323 + 1209 + 360’3)% ((Nw)dy)[0] + As f ((Naw)dy)[()]

OH+ 8H4

602§ (VNP0 s §  (Nw)dold)l0) +3e0 (N dlol

A formula for the determinant functional

- det(Ap)w]
~(207"log A

is obtained by replacing

fH‘ 64(”_D)d$[0]
472 /3

—728; log by 47t B0

in the formula for
pX(Ai Bv g[w])

pA(As B,g[O]) .
To set up the conformal diffeomorphism between the hemisphere and the ball, view S™

as the unit sphere of R™*! with coordinate function ¢ = (u,s) € R™ x R. Identify R™,
whose coordinate will be called z, with the complement S™ \ (0, —1) of the south pole via

—(26)" log O

u 2z 1—1r?

T 1+s T T

= cosp, a = |u| = sinp,

where r = |z, and p is the azimuthael angle between the vector (u,s) and the ray emanating
from the origin (0,0) and passing through the north pole (0,1). The standard metrics are
related by

gRr gsm, P 2(1+T’) 1+ s

This version of the stereographic projection identifies the upper hemisphere in S™ with
the unit ball in R™; our two conformal metrics agree on the common boundary of H™ and
B™ . The total interior volumes of our models differ, as

(4m)"*T(m/2) 272

VOl(Hm) = 2P(m) y VOI(Bm) = m,
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so that
vol(B™) I'(m)

vol(H™) = 2m=2mI(m/2)? ;

in particular,

vol(B*)/ vol(H*) = 3/8.

The inward unit normal in H™ is N = — 38, . Here we use p, together with any coordinate
system on the latitudes s = const, to get local coordinates on H™. Since Ns = —0,8 = a
and d,a = —s/a,

N = ad,, N% = o?0? - 50, N3 =028 - 3as8? — a0,
on H™ \ {(0,1)}. In particular,
N=9,, N*=9}, N*=08}-9, on OH™.

In the notation of Theorem 5.2, if g[0] is the hemisphere metric and gfw] the ball metric,
then w = —log(1 + s). In particular,

-~

do=0, Aw=0 on H™\{(0,1)},
w=0, —Nw=Nw=-Nw=1 on OH™.

Specializing to the case m = 4 now, and looking at the formula of Theorem 5.2, our
first need is for (A(A + 2))[0Jw = P[0}w. Applying our covariant setup in the form (1.10),
we can immediately conclude that

P[0jw = Q[wle* - Q[0] = —Q[0] = -6,

since all local scalar invariants vanish in the flat metric g[w]. J?[w] also vanishes for this
reason. The surviving boundary terms in Theorem 5.2 all come from the expressions

§ (@om=§ (= § (V)0
8H1 SH* OH4
_ ?{,  ((N0Pdy)lo] = —vol(9H*) = —vol($%) = ~2e".

(Note especially that no #2 boundary terms survive, since w vanishes on the boundary.)
Thus Theorem 5.2 specializes to

_ Pia(A, B, g[w]) vol( B*) _ /

_ 1 = —q2 = -3

(26)~" log P2(A. B, g[0) 7B, < log 13 4 1) e wdz|0]
— 87265 — 27%(—3X; — 2X3 + 603 + 3603 + 3cy).

In this, the @ and [ w terms combine to give

'PA(AaBsg[w]) — -2 i S 4 3 T
oA B o) = 725, log 3 + 38, '/H‘wd [0]

- %ﬂ:ﬂr? - 2772(—3/\2 —2X3 + 602 + 3603 + 3c4).

—(28) ' log vol(B")
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To compute the [w term, let df be a volume form on a standard (radius 1) $%; then a®dé
is a volume form on the latitude in H* with radius a, and

—a*dpAdf =a?ds Ad = (1 — s?)ds A df

is a volume form on H* \ {(0,1)}. Since vol(S?) = 27% and w = w(s) = —log(1l + s) is
constant on latitudes,

1 2
/ wdz[0] = 272 / (1 — s?)w(s)ds = —2n? / (2 —t)logtdt = n*(2 — Elog 2).
H4 0 1

Here we have used the integral formula

"(logt)dt = L~ (1 :
/t(og) _n+1(ogt——)+const

n+1

in the cases n = 1,2. Since vol(B*) = n%/2, we have:

5.3 Corollary. With assumptions as in Theorem 5.2 and g[w)] the flat B* metric,
’P,\(A,B,g[w]) —

Pa(4, B, ¢[0])

7 {(8 —log6)B; — 383 + 6Xz + 4)3 — 1203 — 7203 — 6cy}. O

—(2¢)7" log

In the expression for the quotient of determinants (as opposed to scale-invariant deter-
minant functionals) is simply missing the vol(B*)/ vol(H*) contribution:

5.4 Corollary. With assumptions as in Theorem 5.2 and g[w)] the flat B* metric,
det(AB)[w] _

det(4p)[0]

72 {(12 - 4log2)B; — 8Bs + 6)g + 4); ~ 1203 — 7203 —6cq}. O

—(26)" log

An interesting check on our calculations can be made by specializing Theorem 4.10 to
the flat metric on the unit ball B*, a model background of type II, and viewing the round
H* metric as the perturbation rather than the background. This is not simply the same
calculation in disguise; different terms from the determinant quotient formula contribute to
the answer, which is, of course, the reciprocal of the determinant quotient just computed.
To set up the calculation, let the dimension m be unrestricted for the moment. Since all
interior invariants vanish in a flat metric,

ICI?=J%=Q =0, P =A%
The fundamental form and normalized mean curvature are

L=g, H=m-1,
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80

Xe=(m-1)?®  Xs=(m=-1)} Xg=m-1.
Because the Riemann tensor R vanishes,
X1 =X=X3=X,=X:=0.
As a result of the formulas for the X,
Ly=Ls=0.
By Lemma 3.18,
Yo(f) = N*f + (=) f) + 2=B)f = (m = 1)N*f — (m — 1)N{.
Furthermore,

Yi(f) = Ys(f) =0
Y2(f) =(m-1)N*f,  Ya(f)=(m-1)-A)f, Yi(f) =(m-1)’Nf,
Yo(f) = (-A)f,  Ya(f) = (m—1)NF,

and

G(f)=0, £&(f)=—~(m=-3)m-1)N*f+(m—1)(-A)f - (m - 1)N,
6(f) = N*f + (“A)Nf) + (m* —dm = )N*f = m(=A)f — (m* —4m + 1)Nf,
a(f) =0,  @f)=(m~3)(m-2){(m—-1)N*f-2(-A)f},

¢a(f) = (m —1)*(m - 2){-N*f + 2N f},

Zy(f, )y =(m-DNF?,  Z(f,)=m=-1Ddl’,  Zs(f,f) = |dw|’.

Hm=4,
S=2 S(f)=-3N*f-3(-A)Nf)+ 3N f+(-A)f +3Nf.

The conformal index, being a conformal invariant, is that already computed in the H*
background, viz. 4728, . Specializing Theorem 4.10, we have:

5.5 Theorem.. Suppose that (A, B) satisfies 1.2, 1.6, and 2.4, and that N(Ag) = 0 on
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(B*, g[0]), where g[0] is the standard flat metric. Then for w € C*(B*),

Po(A, B,glw]) _ _47*fz,  fops " dy[0]
P(ABgll) ~ 3 v 2w

+ (%ﬂz + 3oy — 903 — %03) faB‘((Nw)(-Aw)dy)[O]

~(2¢)7" log

+8, {% L‘ wA?[0lwdz[0] + 1 ﬁB* w((N3w)dy)[0]

3 w@aao-3 @)
+18, /B (J2dz)lu] + (=331 — X5 + 6o, — 1805) }i (@il
+(—3X2 — A3 + 3603 + 9c.4)f ((Nw)dy)[0] + )\:;f ((Nsw)dy)[O]

aB4 8B4
~6ox §  (Vw)(V2)iy)O] + (672 = 9ea) § (NPl
+(<302 =903+ §i) § (dold)lo) = s §  (Wo)ldlPy)(0)
oB1 o84

+3c4 fi (@rapappl

A formula for the determinant functional

det(Ap)[w)

(207 log G A a ]

is obtained by replacing

_41r2ﬂ2 log §334 33(w—&)dy[0]

3 o2 by 411'2ﬁ2£:)

in the formula for

PO(Aa B, g[w])
PO(A’ B, 9[0]) .

Now specialize further to the case where g[w] is the round hemisphere metric. In this
case,

—(26)"" log a

2
w=log—1+r2,

S0
w=Nw=0, Nw=-Nw=1.

By (1.10),
’ AY0lw = Qw]e*™ — Q0] = 6e*.
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To evaluate [, we'“dz{0], note that e*“dz[0] = dzfw] is the measure on the round hemi-
sphere, so our previous calculations give

%/34 w(A?[0)w)dz[0] = 2 [3‘ wet“dz[0] = 3x%(2log2 — 12).
Thus the surviving terms in this special case are

Po(4, B,glw]) _ det(Ap)[w]

pO(Aa B}Q[O]) dEt(AB)[Ol

= 2n?(Llog2 — ) + 285 vol( H*) + vol(S*){—3A; — 2A3 + 602 + 3603 + 3c4}
= 1T2{(410g2 - l—sa)ﬂg + g—ﬂg — 6y — 423 + 1205 + T203 + 604};

—(26)"'log —(20)" ! log

that is, we get the answer predicted by Corollary 5.4.

The case of the ball is helpful in getting a determinant quotient formula in the case of
the spherical shell

A= {z e R™|1< e < s),

where we assume s > 1. What we need to know is the case of the unit ball B} treated
above, plus the case of the ball B? of radius s. Formulas for the larger ball can be obtained
by scaling those for B} and keeping track of the effect of the unit normal’s direction on
the sign of each term. Note that our setup is in terms of Riemannian measures rather
than volume elements, so dy is not signed. All level 3 local invariants on dM, including
f-augmented ones, reverse sign when the direction of NV is reversed. (Recall that L changes
sign with N.) The result of this bookkeeping is the following:

5.6 Theorem. Suppose that (A, B) satisfies 1.2, 1.6, and 2.4, and that N(Ag) = 0 on
(A%, g[0]), where g[0] is the standard flat metric. Let X = —0,, where r is the radial
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spherical coordinate in R™. Then for w € C®(A?),

—(26)" ! log %L(%z)—)[[‘;]] =(3p2 + 302 — 903 — 1c3) (fisg - fg?) ((Xw)(—Aw)dy)[0]

Ho(83) - o(S? 1 wA?*[O)lwdz 1 - w((X3w
+ﬂz{4vr (B(S3) — 3(53)) + 1 L w8 d[01+4(fé fs) (X*w)dy)[0]

( ¢ = ¢ i;) w((X%w)dy)[0] - 3 ( ¢ - $ ?) w((Xw)dy)[m}

116, fA (el + (—.3,\2 _ As + 607 — 1805) (3-1 fs - fs ?) (X?w)dy)[0]

o les

+(—3Az — A3 + 3603 + 9c4) (3-2 f{s - f_i ) ((X¥w)dy)[0]

s ( $.-4 f) ((A*)dy)f] s ( $.-1 ?) (Xw)(Xw)dy)l0]

+(602 —9c4) ( .1 ?) (Xw)dy)l0]

+(~302 — 903 + 3c) ( ¢ - f ?) (Idwf2dy)[0] - cs ( f - f f) ((Xw)|dwl?dy)(0]
+3c, ( $.- 9 ?) (Xw) dy)].

Here S? is the sphere of radius r centered at the origin in R*, and &(S?) is the mean value
of w over this sphere. a

We now specialize further to the case where the perturbed metric g[w] is the standard
metric on the cylinder C} = [0, k] x S* with h = log s, that being dt? + d6?%, where t is the
parameter on [0, k], and d6? is the standard metric on $®. The shell A? is diffeomorphically
the cylinder [1,s] x S%; in these coordinates, its standard metric is dr? + r2d8?. Thus the
diffeomorphism (¢, 8) — (e!,8) from C} to A? is conformal:

dr? 4+ rdg® = r2(dt2 + d32).

That is, with A} as the background, the C} metric is g[w] for w = —logr; with C} as the
background, the A} metric is glw] with w = t.

Let ¢[0] be the flat A? metric. We first note that the term in Theorem 5.6 which
involves A?[QJw vanishes by (1.10), since Jjw| = 1 and 2V|w] = —dt? + d6?, so that
Q[w] = 0. (Alternatively, we could use the fact that logr is a constant multiple of the
fundamental solution of A? in R*.) The fact that J{w] = 1 also evaluates the f; term in
Theorem 5.6 as 383k vol($%). To evaluate the other terms, note that

Xw=r""1, X =172, Adw =2r73,
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we need this at r = s and r = 1. No boundary integrals except the mean value of w over
S? survive the computation, and the result, using vol($*) = 272, is:

5.7 Corollary. With assumptions as in Theorem 5.6 and g|w) the standard Cj metric,

det(Ap)[w] _

—(23)_1 log m =

211’2111(—,62 + %ﬂ;;) D

Now let g[0] be the cylinder metric di? 4 d6?; this is a model background of type 1.
Computing for the moment in a general dimension m > 3, we have

J=(m-2)/2, V= %(—dt2 +d6?), C=0, Q=m?*(m-4)/8.
The Paneitz operator is

m(m — 4)

m2(m — 4)?
3 .

P=A?
* 16

A+ 40% +

Since L = 0 and 7 is constant, X; = 0 for : = 1,...8; in particular, L4 = L5 = 0, and if
m =4, S =0. We have F =0, and for all f € C™(C]*),

a2(f) =Ya(f) = Ya(f) = V() = Ys(f) = V2(f) =0,  Yi(f) = (m —1)}(m —2)NF,
Ys(f) = N*f + (~A)Nf).

As a result,

G =alf)=0, &f)=-(m-1)m-2)Nf, &(f)=Nf+(-A)Nf),
@(f) =(m-1)(m-2)(m=-3)Nf,  g(f)=(m-1)(m-2)Nf,

and if m =4,
S(f)=2Nf - {N°*f - J(-B)N ).
Furthermore,

Z3(f)f) =Z‘i(f7.f)= Zs(f;f) = 0.

Now specialize to the case m = 4. The conformal index vanishes by the above and
(3.4), or by Lemma 4.9, since x(Cj*) = 0; thus the scale-invariant functional involved in
the specialization of Theorem 4.10 is Py . Collecting information, we have:

5.8 Theorem. Suppose that (A, B) satisfies 1.2, 1.6, and 2.4, and that N(Ag) = 0 on
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(C# , g[0]), where g[0] is the standard cylinder metric. Let Y = —8;. Then forw € C*=(C}),

P(A, B, g[w]) _ det(Ap)lw] _

_(23)"1 log P(4, B, ¢[0]) = m -

—(2¢)" og
B2 { /c ,w((A%[0) + 49])Jwdz[0] - § f (2w = $5 - %(—5)(yw))dv)[01}
+18; (/C‘(ﬂd:c)[w] - hvol(Sa)) + (=622 + 602 + 1303){(32@)@[0]

e f "(w)dy[0] + As § (=AY Pw)dy)lo]
601 § (D) (Pw)dyl0] + (2 Bz + 302 — 903 — 2es) § ")~ Aw)dy)o]

—es § QIO+ 3c4 § (Y dol,

A T

We specialize further to the perturbation which gives the shell A% with s = e*; that is,
we set w = £. The surviving terms on the right in Theorem 5.8 are

where

(5.1) B {—% f_h w(zyw)dym]} + §B3(=hvol(5%)) = 27 h(B; — 3 Bs).
This checks with Corollary 5.7.

6. THE DIRICHLET AND ROBIN PROBLEMS FOR THE CONFORMAL LAPLACIAN

The determinant quotient formulas of Theorem 4.6 involve coefficients 8, (1 < v £ 5),
Xi (1=1,2,3), 0 ( = 1,2,3), ¢k (k = 3,4) that depend only on the universal formula for
(A, B), and not on the particular manifold M. In this section, we compute these constants
for the two boundary value problems described in Examples 2.7-2.8.

The starting point is a formula of Branson and Gilkey [BG] for a4(A, B) for elliptic
boundary value problems (A4, B) in the case where: (1) A is a second-order differential
operator with metric leading symbol on sections of a vector bundle V over M, i.e.

o2(A)(z,€) = |¢P Idy, = ¢7¢:€;1dy, ,

for all (z,£) € T*M, and (2) B gives either Dirichlet conditions, or Neumann conditions
of the form

(6.1) (v + Sv)lom =0,

where S is a smooth section of End V|gps . For convenience, we state these results in the
present notation. There is no restriction on the dimension m, and there no assumptions
on naturality or the conformal behavior of (4, B).
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6.1 Theorem [BG]. Under the above assumptions on A, there is a unique connection V
on V such that A = Ay — £, where Ay = —¢'iV;V; is the Bochner Laplacian of V, and
£ is a smooth section of EndV. If B gives Dirichlet conditions, we write a,(f, A, D) for
an(f, A, B), and have

360(47)™ 2ay(f,A, D) = / try F{—60Agna vE + 607E + 18067
+30Q7Q;; — 12A7 + 572 — 2|p|? 4+ 2|R)*}
+ f by pa (f{-—120£|N — 187y + 120EH

4+20rH — 4FH 4+ 12(G, L) — 4(T, L) — 24AH
+33H® — B H|L|* + 32+tr L%}

+fIN{_180£ - 30T — l—ggHz + %lle}

+24finnvH + 30(Af)|N) )

where () is the curvature of V. O

The connection V determines a connection on End V, and this is used to form Agnqv.
The invariants § fLab.** = $§(VVf, L), § fQ°N.a, and § fin F, which could appear in the
above formula, do so with coefficient 0. Note that we have not quite written things in the
form (1.13); (Af)|n has been used instead of fijynyn in our basis of invariants. This turns
out to be convenient for most practical purposes; if desired, Lemma 3.18 can be used to
switch to a basis consistent with (1.13).

6.2 Theorem [BG]. Under the above assumptions, if B gives Neumann conditions of the
form (6.1), we write a,(f, A, S) for a,(f, A, B), and have
360(47)™ 2ay(f,A, §) = / try F{—60Agna vE + 607E + 1802
+30QY7Q;; — 12A7 + 57% — 2|p|*> + 2|R]*}
+ f try g (f{2408|~ + 427§ + 120EH

+207H — 4FH +12(G, L) — 4(T, L) — 24AH

+39H? + 8H|L|* + £ tr L®

+7205€ + 12057 + 144SH? + 485|L|?

+480S%H + 4805° — 120Agnq v, 0 S}

+fin{180€ + 307 + 12H? + 12|L|* + 72SH + 2405%}

+finn{24H + 1205} — 30(A f),N). O
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Aggain the invariants § fL.%% = §(VVS, L), § fQ°N.a, and § fivF appear with coef-
ficient 0, as does the new invariant § fSF.
For the conformal Laplacian Y with either Dirichlet or Robin conditions,

m — 2 m —2
Q—O, E—*-"—z—.]-—4(—m_—1)1'.

To evaluate the interior terms of a4 for either problem, we compute that

7% = 4(m - 1)2J?,
lol* = (m = 2)*|V|* + (3m — 4)J%,
|IR?> = |[C2 +4(m = 2)|V]* + 4T
Recall the formula (1.6) for Q. Writing (Y, D) and (Y, R) for the Dirichlet and Robin

problems, we have:
6.3 Lemma. The interior terms of 360(4w)™/2a4(f,Y, D) or of 360(47)™/?as(f,Y,R) in
the formula of Theorem 6.1 or 6.2 are
/f(2|0|2 —2(m — 2)(m — 6)|V|® + (5m — 16)(m — 6)J* + 6(m — 6)AJ)
= [ (210 +2m - 6)Q = 2(m ~ 4)om - OOV P

+4(m —4)(m —6)J* + 4(m — G)AJ). O

In the last expression, we have used a highly linearly dependent list of local invariants;
the terms that survive upon restriction to dimension m = 4 are linearly independent. The
factor of m — 6 in the terms that are not local conformal invariants is expected; see [BG,
Lemma 3.1(c)]. Recalling the notation of Tables 3.1 and 3.2, we have:

6.4 Lemma. The boundary terms of 360(47)™/2ay(f,Y, D) in the formula of Theorem
6.1 are

f ( f {_ﬁ(fnm:l7) X - —lofnm_‘ ) X, — 4X, + 12X, — 4Xs + @Xe - gx, %xa}
+ 3Dy ) + 24007) + 245500) — ) + W) - 30%(5)).

(The invariants Ys(f) and Ys(f) appear with coefficient 0.) O

We now change the basis of invariants to that of Theorem 3.7, and check that the
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coefficients ¢ and +; vanish as asserted there. For this, note that in dimension 4,

Ly=-3X2+ X3 - Xo+ X5,

Ls= _%X6+X7"XB:'
6(f) = (-Y4 + 3Y7)(f),
6(f) = (=Y = Yo+ Y3 — 1Y, + 3Y5)(f),
6(f) = (3Y; — §Y3 + 2Y4 + 2Ys + Y3)(f),
q1(f) = (Ya — 3Y6)(f),
¢2(f) = (1 + 2Y2 — 4Y3)(f),
a:(f) = (311 - 6Y2 + 4Y4)(f)-

We then change to the basis of (4.1) and compute the following,.

6.5 Theorem. If B, = (47)?-3608, and similarly for X;, oj, and ci , then for the problem
(Y, D) in dimension m = 4,

(6.2) (m = 4)

Bl= y _2=E3=_8a B4=_4a 55=_§7§$
M=%, X=0 A=-30,
oy = —20, g, =3, g3 =-%,
Cy = 8, _4 = —J%Z . ]
For the Robin problem,
S=-rm=2 g,
2(m-1)

The easiest way to compute is to find the difference between the Robin and Dirichlet heat
invariants; this we do in dimension m = 4 only:

(4m)? - 360(as(f,Y,R) — as(f,Y, D)) = f ( f{-8H +2H|L?

- 24 L3 + 40AH} + fin {88 H? + Z|L|*} — 40fijnnH — GO(Af)|N)
(6.3)
= f (f{—%xe + 8 X7 - BX,} - 40Y5(f) — 40Y3(f)

+ 5 Ya(f) + 21 + GOYs(f))
Using (6.2), we write this in terms of the invariants £, , £;(f), ¢;(f), Y3(f), and Yy(f):
(4m)? - 360(as(f,Y,R) — as(f,Y, D)) = ‘?{ (g-;lfﬁs + 3£,(f) + 60£3(f) + 40q:(f) |

— 20a(f) + Ras(f) + -g-%n(f)), m = 4.

This gives:
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6.6 Theorem. If 3, = (47)%-3608, and similarly for \;, ¢; , and ci , then for the problem
(Y,R) in dimension m = 4,

b =2, B2 = By = -8, 4 = —4, fs = -8,
M o=4, =0, X;=30,

a, = 20, gy =-2, gy = 22,

¢3 =8, €4 = —% a

Apropos Theorems 5.2, 5.5, 5.6, and 5.8, we remark that

(36 + 352 — 953 — 3&3)(Y, D) = 48,
(%ﬁ + 353 — 933 — '2-C3)(Y, R)=—

(—3X; — 3%; + 125, + 3653 )(Y, D) = 106,
(— 3)\2 —3X3 + 125, + 3633 (Y, R) =

(- /\2 — A3 + 63, — 185; (Y, D) = 162,
(=3Xq — A3 + 652 — 1853)(Y,R) = —138,

(- 3)\2 — Xs + 3633 + 9, )(Y, D) = —810/7,

(3%, — A3 + 3655 + 92, (Y, R) = 78,

(652 — 924 )(Y, D) = 642/17,

(662 —9Ca (Y, R) = —

(=35, — 953 + 323 )(Y, D) = (—35, — 953 + 3&)(Y,R) = 8,
(38, + 35, — 955 — 3&)(¥, D) = 50,

(38 + 35, — 953 — 2&)(Y,R) = —

(—6Xz + 652 + 1853)(Y, D) = (—6A2 + 652 + 1853 )(Y,R) = 8.

By Corollaries 5.3 and 5.4 and equation {5.1), we have:

6.7 Corollary. If g[0] is the standard H* metric and g[w] the standard B* metric, then
a4(Y,D) = a4(Y,R) = —1/180. For A = —1/180,

P (Y,’D,g[w]) —_ 17

log Pi(Y Dol —(log6 + £1)/360 < 0,
lo % —(4log2 + 31)/360 < 0,
'PA(Y,'R,Q[LU]) — 1

log P, Rogl0]) —(log6 — 3)/360 < 0,
tog SR _ 41050 — 11/360 < 0.

det(Y=)[0]
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If g[0] is the standard Cj metric and g[w] the standard A% metric, s = e*, then a4(Y,D) =
ay(Y,R) = 0, and
Po(Y,D,glw]) det(Yp)[w]

CERU, D)~ E a0

Proof. Aside from direct computation, what we need to verify is that the null spaces of
the problems vanish on the spaces in question. But the lowest possible eigenvalue of either
problem on H* or Cj is 1/6 times the (positive) constant scalar curvature of g[0]. O

Branson, Chang, and Yang [BCY, Sec. 5] have shown that the scale invariant determi-
nant functional for Y on the conformal class of the round metric g[0] on S* is minimized
exactly at g[0], and at the metrics h*g[0] gotten by pulling ¢[0] back under a conformal dif-
feomorphism & of (§*, g[0]). In light of this, Corollary 6.7 can be interpreted as saying that
passage from H* to B* has improved (i.e. lowered) the scale-invariant determinant func-
tionals for both (¥, D) and (Y, R). Roughly speaking, round is “best” in the boundariless
case, but flat is “better” when boundaries are allowed.

7. THE VALUE OF THE FUNCTIONAL DETERMINANT ON THE HEMISPHERE AND BALL

In this section, the index ; will always run over the natural numbers N.
The Hurwitz zeta functions are

Ca(s) =) (G +a)™*, a>0,

j
and the Riemann zeta function is (r(s) = (;(s). Note that

(d/da)(a(s) = —sCa(s + 1),
Ca(8) = Cag1(s) =a™".

Consider the double zeta functions

ha(s) = DI +a)j +a+ 1),

(7.1)

fuls) =S (2 + 20+ 1[G + )G +a+ 1)

7

In analogy with (7.1), we have

(7.2) (d/da)hs(s) = —sfa(s + 1),

(13) (dfda)fa(s) = (2 — 4s)hals) = sha(s +1),
(7.4) ha(s) = hat1(s) = [a(a +1)]7*,

(75) £u(5) = Furs(s) = (2a+ Dlaa + 1],

All these zeta functions have isolated simple poles. All identities below are valid in their
elementary form for large Res, and for all s in the sense of analytic continuation. In
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particular, a quantity expressed as a sum or product of terms, some of which are singular
at a given value of s, might still be regular at that s.
The Riemann zeta function satisfies

(16)  (a(=2m)=0, (a(1—2m)=(~1)"Bn/2m (me€Z*); (a(0)=-},

where the By, are the Bernoulli numbers: By = 1/6, B3 = 1/30, Bs = 1/42, By = 1/30,
Bs = 5/66, ... [WW, 13.15]. Further [WW, 13.21],

€a(0) = 3 —a.

A generalization of a calculation in [W, Appendix C] gives, for the double zeta functions,

(=Dl | 5

(7'7) hd(_m) 2(2 +1)2 +Z( 1)k( )Ca-i-l( 2m+k) mé€N.

(See the appendix to this paper for this calculation.) Differentiating using (7.2), we get

(7.8) fa(1—m) = Z( 1)"( )(2m E)ag1(—2m+k+1), meZ*t.

(It is tedious, but possible, to check the derivative of this formula against (7.3); the values
given in (7.6) are necessary for this.) In particular,

ha(o) = —a, ha("'l) = _]l'é' + Ca+l(_2) - Ca-l-l("'l)s
fa(0) = § —a?, fa(=1) = 2(a41(=3) = 3¢a+1(=2) + (a1 (1)

If a is a natural number in the above formulas,

ha(—1) = 55 — 3a(a® = 1), fo(-1) = —75 — }a*(a® - 1)

by (7.1) and (7.6). (These formulas are actually good for general a > 0, and follow from
(8.2) below.)

Now consider s-derivatives, denoted by a prime. In analogy with
(o(0) =logI(a) — 1 log 2
[WW, 13.21], and again generalizing [W, Appendix C], we have:
ha(0) = 2¢;4,(0) - loga,
hi(—1) = 2¢} . 1(~2) — (a® + a)loga,

fa(0) = 4(4,(—1) — 3 — (2a + 1)loga,
fa(=1) = 4 41(=3) + 2(41(—1) — a(a + 1)(2a + 1) loga + 5;.

(7.9)
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(Again, see the appendix to this paper for the calculation.)
Vardi [V, Proposition 3.1] has calculated (H})'(0) for the functions

n — +
Hd(s)—; : BT d,neZt.
=]

These can clearly be related to our double zeta functions; for example,
hl = Hg , fl = 2H} + H[} , h]/g(S) = 4’Hg(3) - Hg(S),
frja(s) = 4°(H(s) + H3(s)) — 2H{ (s) — Hy (s).

In fact, we shall only really be interested in h, and f, for a € %N, so by (7.4, 7.5), the H}
with d € N, n € Z* would be sufficient for our purposes. Furthermore, since

Hi(s = 1) = Hiyo(s) + nH, (s),

knowledge of the behavior of the H} at s = 0 will give us knowledge of the behavior the
H}, and thus the h, and f, for a € %N, at all nonpositive integers. More specifically, let
d range through N, n through {1,2}, and a through 7N. If we know HJ(0) and (H7)'(0),
then we also know h,(—m), hy(—m), fa(—m), fo(—m). Vardi shows:

7.1 Theorem [V]. Ifd,n € Z*,

hd _p)t1 4 d -
(H7Y(©) = Dok =) logk - 5 d-i)-; D i (=) + (=)D ( ‘R_C(_(n).-) .
k=1 =1 r=0

In particular,

(D™ 5

1 d
w0 =3 Y v+ (0 Y (Dvraen. o

=

Our formulas (based on Weisberger’s method via (7.7, 7.8, 7.9)) check with Vardi’s
where applicable.

An understanding of the double zeta functions is sufficient to compute the determinant
of the conformal Laplacian Y, with Dirichlet or Robin conditions, on the hemisphere H™
in §™, the boundary of which is the equator ™!, By standard theory of spherical
harmonics, ¥ takes the value

hmsi= (1+252) (42).

on the space E,, ; of spherical harmonics of degree 7. Since

m+427—1 . .
I S (m+j-2)...(+1),

dimEm,j = Nm.]‘ = m
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the zeta function of Y 1s

$m(s)=ﬁg(mmj—n{(mﬂ—2)...(j+1)}{(j+1"_;_2) (J+L;‘.)}

m > 3.

Noting that the factors in both A, ; and Ny, ; exhibit a certain symmetry about the value
j+ 221, we can perform the following trick. If m is even, define a polynomial B,(z) and
integers by m by

Bn(z) = H(m— (p+1) = Zbam:

Then
agi

(7.10) (3 (s) = ﬁ Z bc.,mf_r_n.;_a(s — @), m even.
" a=t

Recall that this really expresses C}‘?m in terms of f; , since

m.,-_1
fmza(s) = fi(s)— D (20 + D{g(g + D} ™.

g=1

In fact, the situation is even simpler than this: we can actually replace f,_s)/2 by fi in

(7.10), since

ngd
) bam{a(g +1)}* = Bm(q(g +1)) =0
a=1
forg=1,2,... ,-'-’-'-ifi. The result is:
_ 1 =
(7.11) (v (8) = m=1) QZ::I ba,mfi(s — @), m even.

The case m = 2 is exceptional in that the zero eigenvalue must be thrown out before the
construction of the zeta function; the result is ¢ g’(s) = fi(s). Special cases of (7.11) are

A+2(3) sfl(3 - 1),
A+6(3) = 150 {A(s—=2)=2fi(s - 1)}

If m is odd, define a polynomial C,,(z) and rational numbers ¢4 m by

Cnl@) = [[@= @+ HE-1) = cams™.

p=0 o=0
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Then

m—l

CYm(-’) (m 1), anmhg’-_a(s a), m odd.

a=0

This is a formula in terms of h,,, since

ol
haza(s) = hy(9) = D_{(a+ D)a— 17"

g=1
In fact, since
m=1
Y cam{(a+ 3@— DI =Culla+3)g—3)) =0
a=0
forg=1,2,... ,-'"T":’-, we may simply replace hE’-J by hy/;:

5 () = )' E Ca,mhi(s ~—a), modd

a=0

As special cases, we get
S =hy(s—1)+ th
C 3(3) = hy(s — 1) + 3hy(s),

¢ 15(3) T ihy(s ~2) = ghy(s = 1) = F5hy(s)}-

aA+r

Now consider the conformally covariant Dirichlet and Robin problems on the hemi-
sphere H™ with its standard metric g[0]. Since the equator is totally geodesic, the mean
curvature vanishes, so that the Robin problem is just the standard Neumann problem. The
spectral resolutions of these problems are as follows: Dirichlet eigenfunctions are spherical
harmonics on §™ which are odd across the equator, while Robin eigenfunctions are those
which are even. A standard counting argument from the theory of spherical harmonics
shows that the space E; contributes multiplicities Ny, j r and Np, ; p to the Robin and

Dirichlet spectra respectively, where

m -1 1+ 1
Nmjr= 3, Nmoip= ( +J(m31).(1+)

0<k<y
j—F even

m+3—2)...3
0<kS; meas
J—Fk odd

i, From a representation-theoretic viewpoint, this can be derived from the branching rule
describing the decomposition of SO(m)-modules under restriction to a standard (embedded
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by block stabilization) SO(m — 1) subgroup, together with Weyl’s dimension formula. See,
e.g., [Br3] for details of both the branching rule and dimension formula. Calculating as
above for m even, we get

m-=2

Fils) = (—m-%l—), 3 baym{dfi(s = @) £ B=Lhy(s — a)}, m even,
a=}

where C{,’I: is the zeta function of the Robin problem, and C{'}f ™ is the zeta function of the
Dirichlet problem. If m is odd, we define

[’.!"'3

3 Con oyt
C’"("‘)zwi [1G- e+ he-1) = 2 G,
=1 =0

and compute that

Gals) = ﬁ{z caymhy(s — @) £ T Z &, mfl(s-ﬁ)}, m odd.

a=0

For example, on H?, the zeta function of the Robin problem is 5( f1(8)+hq(s)), as opposed
to -i;( f1(s) — hi1(s)) for the Dirichlet problem. On H 4. the Robin zeta function is = 5 f1(s —
1) + $hi(s — 1), and the Dirichlet zeta function is fl(S —1)— 1hi(s—1). On H?, the
Robin zeta function is

${gh12(s) + hij2(s = 1)+ 1 f172(3)},
and the Dirichlet zeta function is
%{%hlﬂ(‘s) + hyja(s—1) ~ %fl/z(s)},
In particular:
7.2 Theorem. On H?, H3, and H* with their standard metrics,
(C&4)'(0) = 2¢a(-1) — § £ CR(0),
(CF2)'(0) = —3CR(~2) + $log2 £ (—lCh(—l) — - 77 log2),
(CH2)(0) = 3CR(=3) + 3CR(-1) + 735 £ 3Cr(-2).
Proof. Besides the above computations, we use (7.9); the fact that (;(s) = (r(s) — 1, so
that (3(s) = (R(s); and the identity
Ca+1/2(3) = 25(2&(3) - Ca(s)
in the case a = 1. O

Theorem 7.2 gives the value of —logdet Y3 on H%. By virtue of Corollary 6.7, we can
also give the value of these functionals on B*:

7.3 Corollary. On B* with its standard metric,
—logdetY_ = l(}{(—3) + lC;q(—l) + ﬁ 2CR( 2) + (4log2 + )/360
—logdet Yy = 1¢h(=3) + 3Ch(~1) + gk + 4Ch(~2) + (4log2 — 1)/360. O
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8. APPENDIX

a. Local invariants. Here, for ease of reference, we record the formulas from Secs. 1 and
3 which define the local invariants used in our computations. We refer to the beginnings of
those sections for conventions on the use of the invariant index notation. In particular, we
shall not bother to use raised indices here; when an index occurs twice in an expression, one
copy should be raised before summing. Our sign conventions for the Riemann curvature
tensor and Laplacian are

Rj212 > 0 on standard spheres,
A = —(d/dz)? on R'.

The basic curvature and fundamental form quantities are

pi; = Riikj, T = pii,

Lit = —3Ngas, H = L,
Gas = RunoN F =G,
Top = Reach -

Note that T,, = 7—2F. m always denotes the dimension of (the interior of ) the underlying
manifold (M,0M). The quantities

J=7/2(m-1),
V=(p-Jg)/(m-2),
Cijet = Rijir + Virgi — Vigie + Vagie — Virgjt .

are sometimes better adapted to conformal variational computations than are 7, p, R. We
put

V|? = Vi;Vi;, |CI* = Ci;xiCiijkt |L1? = LasLas, (L, G) = LayGas
and similarly for other tensor quantities. The Paneitz quantity is
Q= -2V +Z2J*+AlJ,

and the Paneitz operator 1s
P=A%4§{(m—-2)J —4V-}d+ 1"-2_—4Q,

where d is the exterior derivative, 6 is the formal adjoint of d, and V- is the realization of
V as an endomorphism of the cotangent bundle T* M.

Indices after a bar indicate covariant differentiations with respect to the Levi-Civita
connection of g, and indices after a colon indicate covariant diffentiations with respect to
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the Levi-Civita connection of the boundary metric induced by g. Let f be an indeterminate
element of C*°(M). We adopt the following non-standard abbreviations:

Abbreviation Invariant Index expression
X, Nt Riji;in
X, rH RijijLaa
X; FH RananLos
X4 (G, L) - RanonLas
Xs (T,L) ReachLas
Xe H? LaaLyyLee
X7 H|L} LoaLpcLyc
Xs tr L3 LayLycLea
Yi(f) (Nf)r fin Rijij
Y2(f) (N?f)H fiNnLaa
Y (f) (-Af)H fiaaLss
Yi(f) (Nf)H? finLaaLes
Ys(f) (NAF fiINRaNaN
Ys(f) (VVS,L) fabLab
Y2(f) (N FILJ? finLasLab
Ys(f) N(-b)f fliin
2:(4,) (NFN?f finfin
Zs(f, 1) (NFU=B)f fiN fraa
Z3(f, f) (Nf)H finfinLaa
Zi(f, f) |dfI*H foafaLus
Zs(f,f) (df ® df, L) fafsLas
Zs(f, f) (df,d(Nf)) falfin)-a
E\({f, ], f) (NS finfafa
Ey(f, £, f) (Nf)? finfinfin

Table 8.1
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Let

S=—11_2X1+%X2—X4+%X6‘*%X8, m=4,

Sw) = $Hh(w) + Ya(w) - Y5(w) - Ys(w) — 3Ya(w), m
1
£4=—m_1X2 + X3 — (m—3)Xs + X5,

2 m-—1
—mxs + X7 — 3
0,() = ~Yiw) + (m — D¥i(w),
)

(W) = V() - (m - 3)¥;(w) + Ya(w) -

4,

£5= Xs,

L) + (m — DY),
2 2
TN - ) - T
— (m — 4)¥s(w) + (m — 2)¥e(w) + Ya(w),

A= X - (m— 17X,

01(©) = Ys(w) - (m — 1)¥s(w),

() = (m — B¥i(©) + (m — 3)(m — 2A¥3(w) — 2(m — A¥s(w),
() = (m — D¥(w)  (m — 1)(m — 2)¥a(w) + 2m — 2)¥4(w).

6(w) =

Ya(w)

We note the identity

flin = finNN + (fin):aa +2(Lab f)ia = Hiafia — Ffin — |LI* fin — Hfiww »

and the local expression

XM = (@27 [ (CF+4Q)z+ (4 § (S—Li=Lo)dy,  m=4,

for the Euler characteristic in dimension four.

b. Explicit zeta functions. As in Sec. 7, we adopt the convention that the index j
always runs over N. a will always be a positive real number. We note at the outset the
integral formulas

1 e~ ot

-8 _ * a—1_—a _____1_ = —
(8.1) a _I‘(s)/ﬂ t ey, C“(s)_r‘(s)/o t 11—e—'dt

[WW, 12.2, 13.12], as well as

(82) G(0)=-a+i, Cu(-1)=-da?+la—%, C(-2)=—La(a—1)(2a—1).

[WW, 13.14 and 7.2].
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Consider the zeta function

fals) = Z(zj +2a+ )G +a)j +a+1)*
= Z{(j +a)y G Ha+ 1)+ (G +a) (G +a+ 1))

Applying the Mellin transform, we get

38) = —-—1 = [ w)? 2 (u+v e~ (ita)uto)—v g, 4,
O e A D> dudo.

Switching coordinates to t = u +v, 8 = u/t (so that u = 8¢, v = (1 — 6)t), and noting that
du A dv = tdf A dt, we get

f@ﬁ%;:TiLWa1—on”2(Lmﬂ*45¥;;;;i&)da

We expand €% in a power series, perform the 8 integration, and use (8.1):

fa(s) =

76) = TGy 2 ke,

s—1DI(s+k~1)
T(2s+k-2)

cwy=Lmherw=( k€N,

oo e—(a+1)t
Ia,k(s) f = / t2’_2+kﬁ di = F(23 -1 + k)(a+1(2.9 -1 + k).
0 -t
Thus
(2s+k—2T(s +k—1)
k!

fals) = % gdk(s)cm(zs Fh=1),  di(s) =

(7.8) is immediate from this. The only singularity of {,4.1(2) is a simple pole with residue
1at z=1[WW,13.13]; in calculating f,(0), we encounter this pole at the k = 2 term; in
calculating fi(—1), at the k = 4 term. For the s = 0 calculation, we note that

do(s) = 2I'(s), di(s) = (25 = 1)I'(s), da(s) = s*T(s),
k-2
dk(O) = m , k>3.
This allows us to write
f' (0) = 4C|'1+1(_1) - 2C:I+1(0) —2a — % + 13,

oo

oo 1 9 o e—(a-l'l)‘
Z P Ca-l-l(k ) Z (m — E) ./(; k-2 — dt.

k=3
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But
— 2 t t 1,42 t
> (k—l)' T)t =t 1) =2t -1t = ) = (E-2)(ef - 1) + 2t
k=3

Thus

o0 e—(a+1)t
Is =/ (t'l —at _gy=2g—at 4 gy—1° 1 )dt
A _

d —s 2a i
= E » {a - Py + 2(a+1(3)}
= —(2a + 1)loga + 2a + 2Ca+1(0)-

d

(Note that in the first line directly above, the integral converges at ¢t = 0, even though the
integrals of the individual terms do not.) This gives

fa(0) = 4¢g4y(=1) - 3 —~ (2a +1)loga,
as desired for (7.9). To compute f,(—1), note that

d3(s) = s(s + 1)(2s + 1)I(s)/6, dy(s) = s(s + 1)*(s + 2)T'(s)/12,

k—4
di(-1) = k(k - 1)(k — 2) k25

S0

fa(=1) = 4(g44(—3) — 6¢,(=2) +2(; ("1) + 2Ca+1(—2)

= 2¢a41(—1) + §Cas1(0) — 55 — Ts,
where
Is: = kg w(k (k 2)Ca+1(k 3)
_ oo 12 oo - e—(a+1)t
",,Z(k 5 ET )/ Py
=5
But

Z((k 2). (kfl)!+%) th= (¢ — 6t +12)(e ~ 1)~ 121,
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and thus
oo e-(a+l)t
I = ] ((r“ — 6t 12t )"t —12¢73 : ) dt
; _
d

1 /oo -2 _-—at 6 / 8—3 _-—at 12 > 8—4 _—at
—_— P YT dt — e dt + " e dt
»=0 {F(S) 0 I'(s) Jo I'(s) Jo

T ds
12 el e—(at1)t
- ’ dt
I'(s) Jo t 1—e"t
_4da at=* 6a2~? + 12a*~° _ 12 Cass(s —2)
Tds|,_ols—1 (s-1(-2)" (s-D(s—-2)s-3) (s—-1(s—2)*"
= a(a+1)(2a + 1)loga —a — a® — 2a® - 6(, (-2} — Hat1(-2).
This gives
fa(=1) = 4(41(=3) + 2(o 11 (1) + 12Ca41(—2) — 2(a42(-1)
+8a¢* +2a? + 3a— 1 —a(a+1)(2a + 1)loga.
By (8.2),

fl:(_l) = 4Cl'l+1(_3) + 2C +1( 1) - a(a + 1)(20' + 1) loga + 24

as desired for (7.9).

Now consider

ha(s) = Z:[(j +a)(j+a+1)"
P(s / / (uv)*~1 Z e~ (ta)(utv)=vg, 4y

1 o) e—(a+1)t
= 6(1 — 6))*~* 27l ——dt | df
(3)2/[0 ) (] i

= TG )220k (s + D u(s+3)

= -I-,—@ ;Ck(s)ca+l(2s + k),

where

ex(s) :=T(s+ k)/k!.

(7.7) is immediate from this; the first term on the right in (7.7) is produced by the singu-

larity of (441 at s = 1. In calculating Al (0), we encounter the singularity of {,4, at the
k =1 term; in calculating k! (—1), at the £ = 3 term.
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For the s = 0 calculation, note that

eo(s) =T'(s), e1(s) = sI'(s),
ex(0) = 1/k, k> 2.

Thus
he(0) = 2(34,(0) + a(a) + I3,

where a(a) is defined by
1
Car(1+5) = = + aa) + O(s),

and

= © 1 [ el
- /m(e‘ —1— ) e

0 1—-e™t

oo —{(a+1)t
= t~lemot - ¢ dt
- 0 1—et
s—1 —ntdt ta —(a+1)i
{P(s) / ; I(s) / T—e }

d s

= z {a —8C0+1(8+1)}
a=0
= —loga — afa).
This gives

h, (0) = 2Ca+1(0) - log a,
as desired for (7.9).
For the s = —1 calculation, note that
ea(s) = 3s(s + 1)I(s), es(s) = gs(s +1)(s + 2)['(s),
ex(—1) = 1/k(k - 1), k>4

Thus
h:;(—l) = 2(;-4—1(—2) - 2(4’;+1("‘1) + (a+1(_1) - %Ca+1(0) _ %a(a) _ 1,4,
where
e—(a+1)t
T ./ 1 1—et T %
B j (7 — 236t = 1) 42472 — 13
o 6711 —et
d al~? 2q2—* 9 1
ds a=o{3— ey R R aSCa+1(s+1)}

= —a+aloga — 3a® + a’loga — 2(s41(~1) — 2¢,4,(~1) — 1 a{a).
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The total is
ha(—1) = 2¢041(=2) + 3Ca+1(=1) — 3¢at1(0) — (a® +a)loga + a + 3%

by (8.2),
hy(—1) =2¢,,,(-2) - (a® + a)log a,

as desired for (7.9).
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