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THE FUNCTIONAL DETERMINANT OF A

FOUR-DIMENSIONAL BOUNDARY VALUE PROBLEM

THOMAS P. BRANSON AND PETER B. GILKEY

ABSTRACT. Working on four-dimensional manifolds with boundary, we consider formally self­
adjoint, elliptic boundary value problems (A, B), A being the interior and B the boundary
operator. These problems (A, B) should be valued in a tensor-spinor bundle; should depend
in a universal way on a Riemannian metric 9 and be formally self-adjoint; should behave in
an appropriate way under conformal change 9 -+ n2 g, n a smooth positive function; and the
leading symbol of A should be positive definite. We view the functional determinant det AB of
such a problem as a functional on a conformal dass {n2g}, and develop a formula for the quo­
tient of the determinant at n2g by that at g. (Analogous formulas are known to be intimately
related to physical string theories in dimension two, and to sharp inequalities of borderline
Sobolev imbedding and Moser-Trudinger types for the boundariless case in even dimensions.)
When the determinant in a background metric 90 is explicitly computable, the result is a
formule. for the determinant at each metric 02 g0 (not just a quotient of determinants). For
example, we compute the funetional determinants of the Dirichlet and Robin (conformally
covariant Neumann) problems for the Laplacian in the ball Bol, using our general quotient
formulas in the case of the conformal Laplacian, together with an explicit computation on
the hemisphere H 4 .

O. INTRODUCTION

The zeta fWlction determinant det A of an elliptic differential operator A is important in
Quantum Field Theory because it provides a regularization of the functional integral, for­
mally identical to a functional determinant. (The adjective "functional" indicates that the
integral, 01' determinant, is taken over an infinite-dimensional function space.) Originally of
interest on four-dimensional manifolds, these objects have recently been intensively studied
by physicists and mathematicians in two dimensions, in connection with String Theory,
the isospectral problem, and uniformization problems. In each of these applications, the
operator A = Ag should be buHt naturally from a Riemannian metric 9 on a compact
manifold M (and possibly some related extra information, like spin structure), and one is
concerned with det Ag as a functional on the cone {g} of Riemannian metries on M, 01'

more precisely, the quotient of {g} by the action of the diffeomorphism group Diffeo(M).
A key point has been the behavior of the determinant under conformal change of g; that
is, replacement of 9 by 0,2g, where 0, is a smooth positive function. The idea is that if
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2 BRANSON AND GILKEY

A has reasonable conformal behavior, then the behavior of det A should be predictable,
much as the behavior of the fundamental solution of Ais. In the two-dimensional case, this
thinking gets one qmte far, as the quotient of {g} by the groups Diffeo(M) and Cf(M)
(the positive functions n acting by 9 1-+ n2g) is a finite-parameter objectj see, e.g. [0,
OPSl-2]. Since diffeomorphisms act on conformal factors 11, this quotient has the form
Q = {g} / (Diffeo(M) t< C+(M) )j i.e., the total group is a semidirect product. In dimen­
sions three and higher, Q is much larger, and in particular is in no sense a finite-parameter
object. Even though it is not dear how one would go about tracking the behavior of the
funetional determinant as the metrie 9 cuts across conformal dasses, it seems timely to
return to four dimensions, and, inspired by two-dimensional suceesses, at least handle the
behavior of det A as a fWlctional on a conformal dass C+(M) . g.

For compaet manifolds without boundary, same results are already in place. For a
computation in conne.ction with Yang-Mills theory on four-manifolds, see [CT]. In [B03],
Branson and 0rsted derived a formula for the functional determinant of a strongly ellip­
tic differential operator, with reasonable conformal properties, over a Riemannian four­
manifold without boundaryj this is analogous to the much-studied Polyako1J formulaJ on
two-manifolds. Branson, Chang, and Yang [BCY] used these fonnulas to study the isospec­
tral and extremal (uniformization) problems in four dimensions, trying to get analogues of
the two-dimensional results of Onofri [0] and of Osgood, Phillips, and Sarnak [OPSl-2].
The conformal behavior of the funetional determinant in dimension two is intimately re­
lated to the Moser-Trudinger inequality, which expresses the continuity (and, in its sharp
form, is the norm calculation for) the embedding

(0.1)

of the Sobolev dass L~ in the Orlicz dass eL . (0.1) may be regarded as a limit of borderline
Sobolev inequalities L; ~ L 2/(1-II) (where V is the usua! Lebesgue dass) as v i 1, or as
m ! 2. Roughly speaking, the log-determinant (logarithm of the functional determinant ) is
the quantity that (0.1) asserts to be nonnegative. In general dimension m, the borderline
Sobolev inequalities correspond to the imbeddings L; ~ L 2 m/(m-'JII) , and the limiting eRBe
is an inequality of Moser-Trudinger type, corresponding to the imbedding L-:n/2 ~ eLj

this has been studied by Adams [A] and by Beckner [Be]. In dimension four, [B03]
and [BCY] show that the logarithm of the funetional determinant is a linear combination
of two terms, one of which describes the embedding L~ ~ eL , and the other of which
deseribes the "ordinary" borderline Sobolev embedding L~ ~ L4 • Up to normalization,
the L~ ~ eL and L~ ~ L 4 terms are connected by one coupling con"tant, say a. The two
inequalities "work together" (the quantities asserted to be nonnegative do not appear with
opposite signs) if and only if a ~ O. a = a[A] depends on the elliptic operator A whose
functional detenninant we are studyingj for example, A could be the conformal Laplacian
Y or the square YJ2 of the Dirac operator Y;. But arA] is universal in the sense of being
independent of the particulai manifold and Riemannian metric; indeed, the number arA]
ean be computed from a knowledge of the heat invariants, which are similarly universal.
Fortunately, a[Y] and a[YJ2] are positivej this makes possible, among other things, the
extremal results of [BCY, Sec. 5] for the log-determinant on 54.
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In this paper, we begin the extension of this program to four-dimensional manifolds with
boundary, inspired by the quite complete two-dimensional treatment of [OPSl-2]. As will
beeome clear, this is qualitatively harder than the boundariless case, but still traetable on
on a eoneeptual as weIl as eomputationallevel. (Incidentally, the three-dimensional ease is
not interesting for manifolds without boundary, a.s the functional determinant is very rigid
eonformally in odd dimensions; see See. 2 below. The boundary value version of this three­
dimensional problem is, however, interesting, though not as rieh as the four-dimensional
theory. Dur results on the three-dimensional problem will appear separately. ) It would
seem that an effeetive treatment of isospectral and extremal problems in the boundary­
value case would have to await a theory of boundary-value inequalities of Moser-Trudinger
typej we note that an excellent theory of sharp borderline Sobolev inequalities is already
in plaee [El-2].

Y'le shall need to be precise about three types of assumptions on the elliptic operator A
and the boundary operator B which define our problem: (1) analytic a~~umption~,Le. the
strength of the ellipticity needed; (2) naturality a3sumption~j and (3) conformal a.Mump­
tion~. Since we wish to invoke invariant-theoretie properties of loeal speetral invariants
associated to (A, B), specifically the heat invariants, we need to know that (A, B) enjoys
suitable invariance propertiesj this is the rationale behind (2). (3) makes precise the "eon­
formally reasonable behavior" mentioned above. We work out two examples in detail: the
conformal Laplacian Y = ß + T/6 (T = sealar eurvature) with Dirichlet conditioos, and
Y with conditions of Neumann type called Robin conditioTW by physicistsj specifically, the
boundary operator here is N - H /3, where N is the inward unit normal derivative, and H
is the trace of the boundary embedding's second fundamental form.

This paper is orgarnzed as follows. In Sec. 1, we summarize the invariant-theoretic
background needed to extract information from the heat asymptoties on manifolds with
boundary. Sec. 1 also describes a natural fourth-order differential operator P, originally
introdueed by Paneitz ([Plj see also [Br2, ES]) in eonneetion with the interaction of the
gauge and eonformal groups on Maxwell fieldsj P seems to be absolutely central to four­
dimensional functional detenninant problems. In Sec. 1, we also make preeise statements
of the above-mentioned analytic and naturality assumptions. In Sec. 2, we define the
functional determinant and prove a formula of Polyakov type for its eonformal variation.
(See also [R, B 0 2] in the boundariless case.) Though the funetional determinant is a
nonloeal invariant of the speetrum of (A, B) (i.e., it is not the integral of a loeal expression),
its eonformal variation is loeal, and in fact is a heat invariant. In Sees. 3 and 4, we apply this
variational formula in concert with invariant-theoretie and eonformal geometrie knowledge
of the heat invariants in dimension four to get explicit loeal formulas for the quotient of
funetional determinants. At this point, the operators A and B have not been pinned down,
apart from their naturality and eonformal behavior; thus our formulas at this point depend
on (exaetly 13) parameters. In Sec. 6 we compute these parameters for the two ehoices
of (A, B) mentioned above: the conformal Laplacian with Dirichlet and Robin conditions.
In Sec. 5, still in the abstract (parameter-dependent) setting, we eompute determinant

. quotients on special manifoldsj specifieally the unit four-hemisphere H\ the unit four­
ball B4, the spherical shell A: = {x E IRm I 1 ~ Ix I ~ s} for s > 1, and the ey!inderC: = [0, h] X 53 for h > 0, all with their standard metrics. H 4 is eonformally equivalent
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to B 4 and A ~ to C: (when h = log s); this provides checks on our calculations. It also
provides a value for the functional determinant on the ball since, 88 we show in Sec. 7,
everything is explicitly computable on H 4

• For example, we find that if Y_ (resp. Y+) is
the conformal Laplacian with Dirichlet (resp. Robin) conditions, then

-logdet Y± = kCk(-3) + kCk( -1) + 2~8 ± tCk(-2) on H 4
,

-Iogdet Y- = lCk(-3) +!(k(-1) + 2~8 - !(k{-2) + (4 log 2 + ~i)/360

-log det Y+ = kCk{ -3) + kCk{ -1) + 2~8 + tCk( -2) +{4Iog 2 - t )/360

where (R is the Riemann zeta function. This shows, in particular, that the minimality
result of [Bey, Sec. 5] for det Y in the conformal class of the standard metric 00 54
does not readily extend to the hemisphere: passage from the round H 4 metric to the flat
B4 metric "improves" (lowers) both functionals. In an appendix (Sec. 8), we collect in
one place the definitions of Iocal invariants used in developing the determinant quotient
formulas, and prove some facts (used in Sec. 7) about zeta functions associated to spheres.

Special thanks are due to Bent 0rsted for enlightening discussions.

1. LOCAL INVARIANTS, NATURAL DIFFERENTIAL OPERATORS

AND BOUNDARY VALUE PROBLEMS, AND THE HEAT INVARIANTS

Let M be a smooth, compact, rn-dimensional Riemannian manifold with smooth bound­
ary aM. Denote by 9 the metric tensor on M; the pullback of gunder the inclusion
aM ~ M is a Riemannian metric on aM. Let R be the Riemann curvature tensor oI 9,
with the sign convention that makes R1

212 positive on standard spheres. We adopt the
convention that letters i,j, ... run froln 1 to m, and index a Iocal coordinate frame and
coframe on M. We raise and lower indices using the metric tensor, and sum over repeated
indices. The Ricci ten30r p of M has Pij = Rk ikj , and the 3calar curvature of M is T = pii.

Additional invariants describe the embedding of aM, and are defined as tensor fields
over ßM (as opposed to M). Let N be the inward umt geodesie normal in a colIar for aM
in M, and consider local coordinates (xi) in a neighborhood of a point of 8M for which
8/8x m = N, and for which the xa

, a = 1, ... rn - 1 are local coordinates on 8M. Letters
a, b, . .. will run from 1 to m - 1, and index coordinate frames and coframes oI this type
on 8M. The subscript N will be interchangeable with m in this setting, and will serve
to indieate that we are working in such a coordinate system. We denote the coordinate
coframe element dx m by N~. The (3econd) fundamental form L oI the boundary embeddiog
is asymmetrie 2-tensor defined by

Lab := -tN gab·

The trace H := La a of L is a multiple of the mean curvature. Here we have used 918M ,
the pullback of 9 to 8M under the incIusion, to raise the boundary index; we shall always
use gl8M as the metric on 8M. Repeated boundary indices are, of course, summed trom 1
to m - 1. L measures the deviation of the boundary embedding from total geodesYj that
is, it is the obstruction to the possibility of finding coordinates xi which are normal on
both M and aM.
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Asymmetrie 2-tensor G is defined by

and we let F := ca a' The symmetrie 2-tensor T is defined by

5

Note that (T + C)ab = Pab , and that Ta a = Rca ca = T - 2F. We use 9 and its pullback
glaM to define quantities like IpI2 = pijPij , ILI2 = LabLab, (L, G) = LabGab ,ete. Intrinsie
objects on aM which are analogous to objects on M will usually be denoted with a tilde;
for example, 9 = glaM ; V, V are the Levi-Civita connections on M and 8M respectively;
and .6., Li are the Laplacians on functions. The Riemannian measure on (M, g) will be
denoted by dx, aod the Riemannian measure on (aM, g) by dy. Dur sign convention for the
Laplacian gives .6. = -cf} /dx 2 on RI . We shall sometimes use a standard abbreviation in
which indices after a bar indicate covariant differentiations with respect to V, for example
<.pijlkl = V,Ve.pij := (\7V<.p)II;ij; and indices after a colon similarly indicate covariant
diffentiations with respect to V.

Let

(1.1)

J = r/2(m -1),

V = (p - Jg)/(m - 2),

Ci jkl = R i
jkl + VjkÖi I - VjlÖ

i
k + Vi 19jk - Vi kgjl •

C is the Weyl conformal curvature tensor. C, V, J carry the information in R in a way
which is better adapted to conformal variational ealeulations than are R, P, T. Specifically,
let the metric run through a eonformal curve g[ew] = e2~Wg[0] for w E COO(M) and e areal
parameter. Then (d/de)le=o(g[ew]) = 2wg[O] and

(1.2)

(1.3)

(1.4)

(d/de)le=oC[ew] = 0,

(d/de)le=oJ[ew] +2wJ[O] = ß[O]w,

(d/de)le=oV[ew] = -(VV)[O]w.

Here we have used the following convention, which will be maintained throughout this
paper: given a conformal dass of metries

(g[O]) := {e2W g[0] Iw E COO(M)},

and a metric-dependent quantity T, we indicate that T should be evaluated in g[w] :=
e2wg[O] by writing T[w]. For example, the conformal invariance of ICl2dx on four-manifolds
can be expressed as

(1.5) (IC12dx )[w] = (IC12 dx )[0] , m = 4, w E COO(M).
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We shall need the Paneitz quantity

(1.6)

and Paneitz operator

m-4
P=ß2 +8{(m-2)J-4Y·}d+ 2 Q.

Here d is the exterior derivative, 8 is the formal adjoint of d, and y. is the bundle endo­
morphism ep = (/Pi) t--+ (Vii <Pi) on the cotangent bundle T· M. By [P], [Br2, Theorem
1.21], [ES], P is conformally covariant: given a conformal dass (90),

(1. 7) m =f 1,2,

where for any u E COO(M), Jl(11) denotes multiplieation by u. The infinitesimal form of
(1. 7) is

(1.8)
m-4

(d/d€)I~=oP[€w]= -4wP[O] + 2 [P[O]'Jl(w)].

A conformal variational formula for the loeal scalar invariant Q in dimension m = 4 will
be important for uso To get this, let m 2: 3 be arbitrary for the moment, and let

m-4
Po=P- 2 Q=ß2 +8{(m-2)J-4Y·}d.

Applying the conformal covariance relation (1.7) to the function 1, we get

m; 4Q[wJe~w = (Po [0] + m; 40[OJ) e"'rw

= Po[OJ (e"'r w_ 1) + m; 4Q[OJe"'rw,

since Po annihilates constants. This leads to the identity

(1.9)
Q[w]e~W = 2 Po[O] (emrtw

- 1) +Q[O]e JITiw
m-4

= P[O](w + (m - 4)w2a«m - 4)w)) + Q[O] + (m - 4)wb«m - 4)w),

where a and bare entire functions. This identity holds for rn =I- 4, but since all confonnal
variational calculations can be done within spaces of polynomial invariants with rational­
in-rn coeffients, analytic continuation in rn is justified, and we get

(1.10) P[O]w + Q[O] = Q[w]e4w
, m=4,

Taking the variation of (1.10), we have

(1.11) P[O]w = (d/de)I~=oQ[ew] + 4wQ[O], m=4.
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1.1 Remark. We shall work with differential operators on bundles of tensor-"pinor" over
(M, g). One way to describe these is as folIows. A tensor-spinor bundle V is a vector
bundle associated to the principal O(m)-bundle of orthononnal frames, the SO(m)-bundle
of oriented orthonormal frames, or the Spin(m)-bundle of spin frarnes. (The grOUp8 H =
O(m), SO(m), and Spin(m) are the natural structure groups of Riemannian, oriented
Riemannian, and Riemannian spin geometry respectively.) That is, V has the form
:FH X pV, where (V, p) is a finite-dimensional representation of H, and :FH ia the appropriate
frame bundle. Since the defining representation T of SO(m) and the spin representation
E of Spin(m) are faithful, any irreducible tensor-spinor bundle can be realized as a direct
summand of an iterated tensor product

We shall need a quick review of some basic results on the small time asymptotic ex­
pansion of the trace of the heat operator. Details can be found in [G2], especially Sec.
1.9.

1.2 Analytic Assumptions. Let A be a differential operator ofpositive order on sections
of a tensor-spinor bundle V over M. Suppose that A has seH-adjoint and positive de:B.nite
leamng symbol O'lead (A),. that is, 0lead (A) (x, e) is positive de:B.ni te in End Vx for 811 x E M
and 0 f; eE T; M. Let B be an operator on the bund1e of Caucby data for A on 8M witb
the property that the pair (A, B) is elliptic and forma1ly self-adjoint.

1.3 Remark. The assumption on the leading symbol makes sense because tensor-spinor
bundles over a Riemannian manifold come equipped with Riemannian vector bundle struc­
tures. Since O'lead(A)(x, -e) = (_l)ord(A)O'lead(A)(x, e), the assumption of positive definite
leading symbol forces the order of A to be even. We shall always denote ord(A) by 2i > 0,
so that olead(A) = O'u(A). We do not give the definition of ellipticity for a boundary value
problem here as it is somewhat technical and distracting; see [G2, Sec. 1.9] for this.

1.4 Remark. The bundle W of order 2.e Cauchy data for seetions of V has a natural
grading by subbundles

W = Wo EB ... ffi W2l- 1

where Wj holds the jth Cauchy datum. The boundary operator B for an elliptic boundary
value problem is valued in an auxiliary bundle W' which admits a similar grading

W' = W~ EB ... EB W~l-l

but which has dirn W' = t dirn W. (See the examples below.)

Let AB be the restrietion of A to the subspace

COO(M, V)B = {F E COO(M, V) IB(CD 21 F) = O}.
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Here CD2l : Coo(M, V) --*' Coo(8M, W) is the operator which assigns the order 2i Cauchy
data. If f E COO(M), there is an asymptotic expansion

(1.12)

where

(1.13)

00

Tl"L2 f exp( -tAB) "J L a n (!, A, B)t(n-m)/2l, t! 0,
n=O

n-1

an(J,A,B) = j fan(x,A)dx+ L1 (WJ)an.p(y,A,B)dy.
M ,,=0 8M

The an(x, A) and an,v(Y, A, B) are locally computable from the total symbols of A and B
in local coordinates.

1.5 Remark. The auxiliary function f is a device which allows us to observe the dis­
tributional behavior of the heat kernel at the boundary. We are forced to deal with tros
extra infonnation because, as we shall see below, conformal defonnation of the asymptotics
of Tr exp( -tAB) and of the functional determinant naturally lead to the asymptotics of
Tl" w exp( -tAB), where w is the infinitesimal conformal factor as above. Here and below,
we write simply "Tr" for TrL2 , and use the notation "tr" for traces over vector bundle
fibers.

1.6 Naturality Assumptions. Suppose tbat A and B are given locally by universal,
polynomial formulas in tbe jets oE a lliemannian metric 9i tbe inverse g' oE g; plus (iE
orientation is involved), a volulne lorm Ei plus (il spin structure is involved) tbe funda­
mental tensor-spinor ,. Suppose that, witb respect to uniEorm dilations oE the metric, A
has homogeneity degree - ord A, and the boundary condition does not change:

wbere N is tbe null space. Suppose Eurther tbat A satisfies the analytic assumptions 1.2
categoricallYi that is, the realization of (A, B) on any lliemannian manifold (M, 8M) with
boundary satisfies the analytic assumptions.

1.7 Remark. H M has spin structure, the fundamental ten.!or.~pinor, or Clifford .!ection
, is a section of TM 0 End~M "JSpin(m) TM 0 r.M 0 r.. M, where TM is the tangent
bundle and EM the spinor bundle. , satisfies the Clifford relation.!

where ,i is the loeal section of End r. gotten by tensoring with dx i and eontraeting the TM
argument. The sealings of E and 'Y posited in (1.14) are those whieh are consistent with
the scaling of the metric; the scaling of, being foreed by the Clifford relations. The Levi­
Civita connection on TM is lifted to the spinor bundle (if any), and extended to i terated
tensor products of TM, r.M, and their duals, so that we may take eovariant derivatives
of tensor-spinor fields. \7g, \7E, and \7, all vanish when defined.
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1.8 Remark. Since a scaling 9 = 02 g of the metric induces a scaling N = 0-1N of the
inward unit normal, the operator CDu is sensitive to uniform dilationj thus we had to
speak of CD2l in (1.14).

1.9 Remark. By Weyl's invariant theory, A is buHt polynomially (using tensor product
and contraction) frorn g, its inverse g#, V7, and iterated covariant derivatives of R; plus (if
orientation is involved) Ei plus (if spin structure is involved) ,. B is similarly buHt from g,
g#, N, Np, V7N, \7, and tangential covariant derivatives of R and L, plus the restrietions
to 8M of E and/or , if applicable. As a result, the an(x, A) are polynomial in g, g#, and
iterated covariant derivatives of R; plus E and/or , if applicable. The a n ,I'(Y' A, B) are
polynomial in g, g#, N, Np, and iterated tangential covariant derivatives (V) of RaM and
of L, plus the restrietions to 8M of E and/or , if applicable.

1.10 Remark. We shall say that a local scalar invariant on M or 8M, or a. natural
differential operator A on some COO(M, V), has level n if it scales according to .A = Q-nA
under uniform dilation 9 = 029 of the metric, 0 < Q E IR (with the compatible scalings
E = omE, t = 0-1 ...,. if applicable). For example, it is part of the naturality assumptions
1.6 that A has level 2.e (equal to its order). It is straightforward to show that we may
measure the level as folIows. If A is a level n monomial loeal invariant or monomial
natural differential operator on M, of degree (kR, kv) in (R, V7), then

2kR +kv = n.

If Ais a level n monomiallocal invariant or monomial natural differential operator on 8M,
of degree (kR, kL ,kv ,kN ) in (R, L, V, V7 N), then

In the study of the index, analytic torsion, and functional determinant , a. special role is
played by quantities of level ffi, the dimension. Thus in this paper, we shall be especially
interested in level 4 objects on M, for example the Paneitz quantity Q and operator Pi
and level 3 objects on 8M.

1.11 Remark. By the last two remarks, the assumption of categorically positive definite
leading symbol implies that U2l(A) is polynomial in 9 and gei plus, if applicable, E and/or
,; that is, no higher jets of these objects are involved.

1.12 Remark. Parity considerations force aodd(x, A) = 0, hut the a odd,I'(Y' A, B) are
generally nonzero. Homogeneity eonsiderations (Le., comparison of the behavior of the
two sides of (1.13) under uniform dilation of the metrie) iroply that an(x, A) has level n.
Similarly, the an,,.,(Y, A, B) roust have level n - 1 - v.

2. THE FUNCTIONAL DETERMINANT AND ITS CONFORMAL VARIATION

We retain the notation of Sec. 1, and assume that our boundary value problem (A, B)
satisfies the analytie and naturality assumptions 1.2, 1.6. The analytic assumptions guar­
antee that (A, B) has real eigenvalue spectrum ),0 ~ ),1 ~ ... i +00, with corresponding
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eigensections in COO(M, V)B. We define the zeta function of the problem (A, B) by

(A,B(S) = L IAjl-"·
Aj #0

There exist € > 0 and jo E N such that Aj ~ je whenever j ~ ja , so (A,B (s) is manifestly
well-defined and holomorphic for large Re s. Since there are only finitely many nonpositive
Aj , the heat expansion (1.12) gives

(2.1)

N

L e-tl>'jl = -q(A, B) + 2 L sinh tAj + L an(A, B)t(n-m)/21 + 0 (t N-27+
1

)

Aj #0 >'j <0 n=O

N

= L an(A, B)t(n-m)/2l + 0 (t N-27+ 1
) ,

n=O

where an(A, B) = an (l, A, B), q(A, B) is the multiplicity of 0 as an eigenvalue of (A, B),
and

(2.2)

an(A, B) - q(A, B), n = m,

an(A,B)+2LAj/k!, n=m+2l(1+2k), kEN,
Aj <0

an(A, B) otherwise.

Applying the Mellin transform, we get a meromorphic continuation of (A,B( s) to C:

(A,B(S) = r;s) (~ (s - m2~ n) -I an(A,B)

+1\.-10 (tN-,j±!) dt +1""e- I L e-tl).j1dt),
o 1 ~#O

where O(t(N-m+l)/21) is the error term from (2.1). In particular , (A,B(S) is regular at
S = 0, and we define the functional determinant of the problem (A, B) by

2.1 Remark. It is important to note that the functional determinant is not invariant
under uniform dilation of the metric. Suppose, as before, that 9 = 0 2 g, aod if applicable,
E = a m E, t = 0-1,. Then

(2.3) (A,B(O) = (A,B(O),
- 21' (0)det AB = 0- A,B det AB .
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That is, the quantity (A,B(O) is seale-invariant, and the funetional determinant has aseale
homogeneity which depends on (A,B(O). Thus the funetional

P(A, B, g) = vol(g )2/'A,B (a)/m det AB

is a seale-invariant "version" of the determinant. An added advantage of P( A, B, g) is
that, like the determinant, it is a speetral invariant, since

aa(A, B) = C vol(g),

where C is a constant depending only on 0'2l(A). (The number 2l/m can be recovered
from the spectrum beeause -m/2l is the leading exponent in the heat asymptotics (1.12).)
We emphasize that there is no reason to expeet detAB or P(A,B,g) to be the integral of
a loeal expression, as is an(A, B).

2.2 Remark. If m > 1 and 8M =F 0, the funetional

(2.4) P>.(A, B, g) = vol(g )2l>./m vol(g)2l('A,B (a)->.)/(m-I) det AB , AE R,

is also seale-invariant, and this raises the interestiog prospeet of interaction with the isoperi­
metrie problem, especially in conneetion with extremal problems. The new ingredient,
vol(g), is often a spectral invariant: aI (A, B) has the form C vol(g) for some eonstant C
whieh depends on (A, B) hut not on M. Thus vol(g) is determined by the speetrum when
C =F O. To preserve the spirit of the endeavor, and with a view toward the isospectral
problem, one would like to choose exponents in (2.4) whieh are spectral invariants, per­
haps hy ehoosing A = 0 or A = (A,B(O). (See Theorem 4.10 below.) If M and/or 8M is
disconneeted, there is also the possibility of giving different components different weights in
making scale corrections. Specifically, if Mu and (8M)v are the (finitely many) connected
components of M and 8M respectively, and 9u = 9lM

il
, 9v = 9!(8M)v , we cau consider

(I] vol(gu)20··/m) (I! V01(9u)2t~./(m-I)) det AB ,

where LAu + LXv = (A,B(O).
u v

The problem ia that this may move us outside the realm of speetral invariants.

2.3 Remark. Suppose we are given an elliptic boundary value problem (D, b) in which
D is formally self-adjoint, but does not necessarily have positive definite leading symbol.
Let d be the order of D. If r E Z+, we can form a new elliptic problem (Dr, her») by taking
the rili power: the boundary condition determining her) is

The operator corresponding to the problem (Dr, b(r») will be ealled (Db)r. H (D, b) 18

natural, then so ia (Dr, b(r»), and if r ia even, nr has positive definite leading symbol.

We shall now impose some additional conform.al assumptions.
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2.4 Conformal Assumptions. Suppose that A is a positive integer power of a natural
differential operator D, A = D h , whicb is conformally covariant in the sense that given a
conformal dass (9 [0]),

(2.5) eo.+2l/ h D[w] = D[O]I-'(eOW
), w E COO(M),

for some a E IR. Here, in case orientation and/or spin structure are used, E[w] := emwE[O],
,[w] := e-W,[O]. for some a E IR. Suppose that B arises as b(h) as in Remark 2.3,
where (D, b) is an elliptic boundary value problem, and that the conformal bebavior of b
is compatible with (2.5) in the sense that N((boCD2l/ h )[W]) = N((boCD2l/ h )[O]Jl(eo.W

)), or
equivalently,

(2.6)

2.5 Remark. Dur conformal assumptions are weaker than the assertion that (A, B) is
conformally covariant; this is the special case h = 1. When we work in this generality, we
can handle, for example, the conformal Laplacian D on middle-forms (m/2-forms for m
even) with a suitable boundary operator B. By [Brl], D has the form

öd - d8 + (Rieei tenn),

where d is the exterior derivative, and 8 is the formal adjoint of d. If M is oriented,
D interchanges the two eigenbundles A±/2M of the Hodge * operator, unlike the form

Laplaeian ß = öd + d8, which preserves both A';./2 M and A~/2M. There do, in fact exist
boundary eonditions which are suitable in the sense of ellipticity and conformal eovarianee
of the right weight. On the leading symbol level, the resulting boundary eonditions are
absolute or relative conditions [BG, Sec. 7], and the necessary lower-order corrections are
given by actionsof the fundamental form L. (These results will appear separately.) Note
that since

D 2 = 6.2 + (lower order),

D is elliptic. 00 the other hand, the DiricWet problem for the spin Laplacian, i.e., for
the square of the Dirac operator Y1 on the spinor bundle EM, is outside the framework
we have described, even though Yl is conformally covariant. The reason is that Dirichlet
boundary conditions for 12 do not arise from the iteration process of Remark 2.3. In
fact, there are no local boundary conditions for 17 which are elliptic in the sense we need;
this is, of course, what leads to the eta invariant of Atiyah-Patodi-Singer. (Yl, V) is not
elliptic, even though this problem satisfies our conformal assumptioos Cf is conformally
covariant) .

2.6 Remark. The infinitesimal form of the conformal covariance relation (2.5) is

(2.7) (d/tk)Il!::;oD[€w] = -(U/h)D[O) +a[D[O],Jl(w)).

The finite and infinitesimal forms of the conformal eovariance rela.tion are, in fact, equiv­
alent: an application of (2.7) with g[€ow] in plaee of g[O] gives

(2.8)
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for any eo E IR, so that (2.5) is obtained. In practice, the way in which we shall enforce
(2.6) is to show that

(bo CD2l/h)[W] = A[w](bo CD2l/h)[0]Jl(eaw),
where A[w] is a smooth, functorial, w-dependent section of Aut W', with the curves A[ew]
smooth and e[o] = Idw'. An argument like (2.8) shows that this is in turn enforced by
its infinitesimal form

(d/de)le=o(bo CD2l/h)[ew] = a(bo CD2l/h)[0]Jl(w) +e[w](bo CD2l/h)[0],
where e[w] := (d/de)le=oA[ew] E Ccx>(8M, End W'). In fact, in our examples, the entries
of A[w] in the block decomposition corresponding to the grading of Remark 1.4 have the
form Jl( eCW

) for various powers c.

2.7 Example. Let A be the conformal Laplacian, or Yamahe operator
m-2

Y=~+ ( )7.4 m-l

Y is conformally covariant 0/ bidegree ((rn - 2)/2, (m + 2)/2):

Y[w] = e-~wY[O]Jl(e~W).

Though Y can be viewed as a conformally invariant operator between density bundles, we
choose not to do so, and instead view it as acting on sections of a trivial line bundle over
M. Accordingly, Dirichlet conditions for Y are obtained by letting Wo be a trivial line
bundle over 8M, setting WI = 0, and setting

B o 0 = Id, Bo 1 = BI 0 = BI 1 = 0
I '"

in the block decomposition of Remark 1.4. Dirichlet conditions are, of course, conformally
compatible.

2.8 Example. There is also a conformally compatible Newnann condition, sometimes
calied the Robin condition by physicists. This is obtained by "playing off" the conformal
variation of the mean curvature against that of the normal vector field N, just aB the
variation of the scalar curvature 7 compensates that of the Laplacian ~ to form the
conformal Laplaeian. By [BG, Appendix],

(d/de)le=oN[ew] = -wN[O], (d/de)le=oH[w] +wH[O] = -(m - l)wINH[O].
Thus for all a, a E IR,

(d/de)le=a(N +aH)[ew] +w(N +aH)[O] - a[(N +aH)[O], p(w)] = (~a(m -1) - a)Jl(wIN)'
As a result, there is an infinitesimal conformal covariance law for V +aH for each a E IR:

(d/de)le=o(N + aH)[ew] = -w(N + aH)[O] - a(m - l)[(N + aH)[O],Jl(w)].
In particular, the boundary operator

N- m-2 H
2(m - 1)

is conformally compatible with Y. More precisely, to set up the Robin condition, we
let W{ be a trivial line bundle, W~ = 0, B I ,I = Id, BO,1 = -(rn - 2)H/2(m - 1), and
Bo,a = BI,o = O. The Robin condition is important in the study of the Yamabe problem
on manifolds with boundarYj see [E2].
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2.9 Remark. If (A, B) satisfies 1.2, 1.6, and 2.4, then 80 does (Ar, B(r» for each r E Z+.
This is sometimes useful in that it allows us to get rid of the (finite multiplicity) negative
spectrum of (AB) by passing to (A B)2.

An extremely important property from our point of view is a generalization of the
scale-invariance property (2.3) to pointwi3e (conformal) scalings Wlder the conformal aB­

sumptions 2.4. Following {B01], we call this a conformal index property.

2.10 Conformal Index Theorem. H (A, B) satisfies 1.2, 1.6, and 2.4, and g{O] is a
Riemannian metric on M, then tbe quantities q(A, B), #{Aj < O}, am(A, B), and (A,B(O)
are constant on the conformal dass (g{O)).

Proof. Let D be as in 2.4. The spectral invariants of A[w] on N«Bo CD21 )[W]) are the
same as those of (j.t(e-(a+21/h)w)D[0]j.t(eaw ))h on N{(Bo CD21){0]j.t(eaw )). The spectral
invariants of the latter problem are the same as those of

on N«Bo CD21 )[O]). Here we have applied a "global gauge transformation" in conjugating
by j.t( eaw ); this does not affect spectral data, and has the advantage of transfonning the
original problem into one in which the boundary condition ia fixed. Note that all of the
boundary value problems mentioned are elliptic because the original oue iso Beeause AB
has pure eigenvalue speetrum, the null spaces N(A) and N(D) in CrxJ{M, V)B agree. But
by the eonformal covariance relations, the dimension of N(D) in CrxJ{M, V)B is confor­
mally invariantj thus q(A, B) is eonformally invariant. By a straightforward extension of an
argument in [BI, Proposition 1], the number of negative eigenvalues of (j.t{ e-2Iw/h)D{O])h
on N«Bo CD21 ){0]) is independent of ej this uses the fact that the number of zero eigen­
values is independent of e. Sinee (A,B{O) = am(A, B) - q(A, B), we just need to show that
am(A, B) is conformally invariant.

For this, fix w E COO(M), and consider the conformal curve of metrics g{ew] = e2ewg{0].
If we ean show that the variation operator (d/dc)le=o annihilates the functional am{A, B),
we are done, since this result may then be applied with any g[eow] in place of g[O], and w is
arbitrary. By the preeeding paragraph, it is sufficient to show that (d/de )Ie=o annihilates
am{A{ew], B{D]). The estimates in [GS] justify the following formal computation:

L(d/de)!€=oan(A[cw], B[cw])t(n-m)/21 = L(d/de)I.!=oan{A{ew], B{0])t(n-m)/21
n=O n=O

f"V (d/dc)le=o Trexp( -t(A{cW])B{O])

=-t Tr{«d/dc)I.!=o(A[cw])B [0]) exp(-t(AB )[O])}

(2.9) = -t Tr{«d/de)le=0(j.t(e-2Iew/h)D{0])h)B[O) exp( -t(AB)[O])}

=Ut Tr{w(AB exp( -tAB)){O]}

=-Ut(d/dt) Tr{w exp{ -t(AB)[O])}
rxJ

f"V L(m - n)an{w, A{O], B{0])t(n-m)/2l,
n=O
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(2.10)

where the asymptotics are for t ! o. Here we have used the fact that that exp(-t(AB )[0])
is a smoothing operator for t > 0, with the consequence that

Tr(UVe- tAB ) = Tr(VUe- tAB )

as long as U and V are finite-order pseudo-differential operators, and V commutes with
AB , Comparing coefficients for n = m, we get the result. 0

In the course of the proof, we have actually computed the conformal variation of
an{A, B) for every n:

2.11 Corollary. Under the assumptions oE Theorem 2.10,

(d/dc)I~=oan{A[ew], B[ew]) = (m - n)an{w, A[O], B[On. 0

The corollary shows that an(A, B) is a conformal primitive, or integral, for an{w, A, B)
provided n =F m. The following variational formula, which will be fundamental to our
computations, shows that the functional determinant supplies the "missing" primitive for
am(w, A, B), at least when the conformal invariant q(A, B) vanishes.

2.12 Theorem. Suppose (A, B) satisnes 1.2, 1.6, and 2.4. Let (M, g[O]) be a particular
manifold with boundaIJ' togetber witb a conformal dass on which N{A B ) = 0, and let
w E Coo(M). Then

Proof. First assume that (AB )[0] is positive. By the conformal invariance of q{A, B) and
of #{Aj < O} (Theorem 2.10), (AB)[ew] is positive for all e E IR, 80 that the Mellin
transform relates the zeta function to Tr exp{-tAB), without the modifications of (2.2).
The estimates in [GS] allow UB to conclude that (d/de)!e:=O(A,B(S) is meromorphic, and
that we can interchange the order of conformal variation and analytic continuation. For
Res large,

(d/dc:) 1~=o(~[e:w],B[e:w] (s) = (d/ds)(d/dE )Ie=o (A[~w),B[ew](s)

= (dl ds) {r~s) 1"" t·- 1
{(dldö )1.=0 Trexp( -t(AB)[öW]))dt}

= -(dlds) {r~~) 1"" t'(dl dt) Tr{w exp(-t(AB)[O])} dt }

= (dlds) { :t:) LX> t·-1 Tr{w exp( -t(AB )[O])} dt } .

Here we have integrated by parts in t, and used the computations in (2.9). Analytically
continuing this formula, the value at S = 0 is the same as that of

2i 100

f{s) 0 t"-l Tr{wexp{-t{AB)[O])}dt,

that being 2iam {w, A[O], B[D]).
To dispense with the positivity assumption on AB , note that we have proved the result

for the positive operator {AB)2. (Recall Remark 2.9.) But (A2,B(2){S) = (A,B(2s), so
(~2,B(2){D) = 2(~,B{0). But by a straightforward extension of [FG, Theorem 2.4] to

boundary value problems, am{w, A2 , B(2») = am(w, A, B). 0
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2.13 Remark. The effeet of zero spectrum on this argument is as follows. Since q{A, B)
is conformally invariant, nothing in (2.10) changes until we apply the e-derivative; the
trace on the third line becomes

Tr(w exp(-t(AB )[0]) - P), P = ProjN(A(O])nN«Bo CD2l)[O)) •

The kernel funetion of w{exp( -t(AB)[O]) - P} is

W(X) { H(t, x, y) - >.~o 'Pj(x) 0 'Pj(y) } ,

where H(t, x, y) is the kernel function of exp( -t(AB)[O]), and {c,oj} is an orthonormal basis
of eigensections, A[O]<;?j = Aj<;?j , (Bo CD21 )[0]c,oj = O. The conclusion is that

Thus an explieit formula for the local heat invariant am(w, A, B), or such a formula together
with an explicit knowledge of the null space N(AB ) when this null spaee is nonzero, is
sufficient for an understanding of the conformal behavior of the funetional determinant.
Note that an explicit knowledge of N{AB) is not an unreasonable expectation: if the
scalar eurvature of the background metrie has positive scalar curvature, there can be no
null space for an elliptie boundary problem YB based on the eonformal Laplacian Y. For
more general (A, B) satisfying 2.4, if M and 8M are locally ßat (for example, if M is a
standard flat half-torus), N(AB) can be given explicitly in the background metrie, and
thus in eonformal metrics by the eonformal eovariance law.

The strategy for eomputing the funetional determinant within a eonformal class will
be to integrate the variational formula along a oue-parameter family g[ew] = e2ewg[0].
The result will be a formula for the differenee (~[w],B[w] (0) - (~[O],B[O](O); that is, for the
quotient of determinants

(det(AB )[w))/(det(AB )[0]).

The formulas involve integrals of differential polynomials in w, hut such quantities cannot
necessarily be re-expressed as integrals of sealar loeal invariants in the sense of Remark
1.9. For exarnple, the quantity JwPw, where P is the Paneitz operator, appears in our
formulas; it eannot, in general, be expressed as the integral of a loeal sealar invariant
of g[w]. This phenomenon is one eonformal manifestation of the nonlocal nature of the
functional determinant. To express everything in terms of differential polynomials, at least
via the eurrent methods, it is very important that we stay within a conformal class.

The problem of computing (det(AB )[0]), so that we have formulas for funetional de­
terminants instead of just quotients of such, may be approaehed separately; see Sec. 7
below.
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3. VARIATIONAL FORMULAS AND CONSEQUENCES

OF THE CONFORMAL INDEX PROPERTY

In this seetion, fix w E COO(M), and again coßsider the variation (d/de)le=o aB the
metrie 9 runs through the eonforrnal eurve g[ew] = e2ewg[O] for a fixed (but arbitrary)
w E COO(M). We extend the definition of loeal sealar invariant to f -augmented loeal sealar
invariants, f E COO(M), by adding df (or df and N f for boundary invariants) to the list
of ingredients in Remark 1.9. (Note that suitable derivatives are also ingredients, so it is
only the ()!h. derivative of f that does not come into play.) When there is no chanee of
confusion as to the ehoiee of manifold or measure, or when these choices are arbitrary, we
shall sometimes abbreviate IM' dx by I " and I8M .dy by § '.

We begin by ehoosing a nonstandard basis of the interior invariants.

3.1 Lemma. Witb notation as in Sec. 1, the 4 quantities ICI2
, Q, J2, tJ"J span tbe spaee

oE level 4 loeal scalar O(m) invariants on M for m ~ 3; for m ~ 4 tbey are a basis. H
m ~ 5, these 4 quantities are also a basis oE the level 4 local sealar SO( m )-invariants. H
m = 4 and C± are the selE- and anti-self-dual parts oE C, the 5 quantities IC+12

, IC_12
, Q,

J2, ßJ are a basis oE the level 4local scalar SO(4) invariants on M.

Proof. Let m ~ 3. By (1.1), ßT is a scalar multiple of 6.J, Ipl2 is a linear eombination
of J2 and IVI2 , and IRI2 is a linear eombination of J2, IVI2

, and ICI2
• IVI2 is a linear

eombination of Q, J2, and tJ"J. By, e.g., [GI], the 4 quantities [RI 2, Ip1 2 , r 2, ßT span the
O(m) invariants, and are a basis for m ~ 4. For m ~ 5, all O(m )-irreducible summands
of the veetor bundle of which R is a seetion are also SO(m)-irreducible. For m = 4, this
is true exeept for the O(4)-bundle of which C is a section; this splits into two irreducible
summands under 80(4) [8], and this induces the splitting C ::;; C+ + C_ . 0

Using the invariant theory of [BG], we ean write down all the invariants that can
appear in a4(f, A, B). In Table 3.1, we introduce abbreviations for sorne level 3 loeal
scalar invariants on ßM. tr L3 is an abbreviation for the Ioeal scalar invariant La bLbcLca .
For eonvenience, all indices are written as subseripts, the eonvention being that one index
in each pair is raised before summing.

Abbreviation Invariant Index expression

Xl NT R····INIJI]

X2 TB RijijLaa

X 3 FH RaNaNLbb

X 4 (G,L) RaNbNLab

Xs (T,L) RcacbLab

X6 B 3 LaaLbbLcc

X7 HIL[2 LaaLbcLbc

Xa tr L3 LabLbcLca
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Table 3.1

Let! E CCO(M) be an auxiliary function. In Table 3.2, we introduce abbreviations for
sorne !-augmented level 3 local scalar invariants. Note that because the inward unit normal
is extended to a collar as the tangent to a unit speed geodesie, the iterated partial deriva­
tives N . .. N! agree with the iterated covariant derivatives tIN ...N = (V ... V!)N ...N .

Abbreviation Invariant Index expression

Y1(/) (N/)r flNR ijij

Y2(/) (N2 f)H /INNLaa

Ya(f) (-~f)H f:aaLbb

Y4(!) (Nf)H 2 flNLaaL bb

Ys(t) (Nf)F /INRaNaN

Y6 (/) (VV /, L) f:abLab

Y7 (/) (N!)IL1 2 tiN LabLab

Ys(/) N( -t::,.)/ fliiN

Table 3.2

l.From [BG, Lemma 2.3] and the above , we get:

3.2 Lemma. Suppose that eitber (A, B) is not orientation-sensitive or m > 4. Under tbe
analytic and naturality assumptions 1.2, 1.6, a4(f, A, B) has the form

a4(j, A, B) = Jf {Cl:I,I!CI2+ Cl:I,2Q + Cl:l,3 J2 + Cl:l,4 ßJ}

+f (f~ Cl:2,~X~ +t Cl:3,VYV(J))

for same constants QU,ll whieb depend only on the formal funetarial expression for (A, B),
and on m. (In particular, they do not depend on the particular manifold or metric.) H
m = 4 and (A, B) is orientation-sensitive, the same is true witb at llC+ 1

2 + a 11 1C-12 in
I I

place of 0'1,11C1 2 for for constants O'~l • 0

When f = 1, the invariants Y".(f) vanish, and integration by parts gives

(3.1)

Thus a4(A, B) has the fonn

s

(3.2) a4(A, B) = J{Cl:I,IICI2+ Cl:l,2Q + Cl:l,3 J2 } +f L a2,~X~,
p=l
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where the &2,1 are constants with the same dependence as above. eWe make the obvious
adjustment if m = 4 and (A, B) ia orientation-sensitive.) Under the conformal assump­
tions 2.4, the number of undetermined eoefficients in Lemma 3.2 and (3.2) is cut down
considerably; the 'laxe" is the Conformal Index Theorem 2.10. To apply this, we need to
know the conformal variations of the quantities involved.

3.3 Lemma. Let m = 4. For tbe conformal variation above,
(a) {d/de)I€=o{ICI2dx)[ew] = O. H M is oriented, (d/dc;)I€=o{IC±12dx)[ew] = O.
(b) (d/lk)lo!=o J(J 2dx)[ew] = 2J w«ßJ)dx)[O] +t J( {-wX1+Y1(w)}dy)[0].
(c) (d/de) [o!=o J([VI 2dx)[ew] = 2 J w«ßJ)dx)[O] +J({-twX1- ~Y1(W) - Y3 (w) +Y5 (w) +
Y6 (w)}dy)[0].
(d) (d/de)lo!=o J(6Jdx)[ew] = (d/de)I~=o f(J1Ndy)[ew] = J( {-!Y1(w) - Ys(w)}dy)[O].
(e) t(d/de)lo!=o J(Qdx)[ew] = §(S(w)dy)[O], where S(w) = !Y1(w) + Y3(w) - Y5(w) ­
Y6 (w) - !Ys(w).

Proof. (a) was already remarked as (1.5). (The statements about C± follow from the fact
that the splitting into C+ and C_ is conformally invariant.) For (b), we use (1.3) and
integrate by parts to get:

(d/de)I.=o j(J2dX)[ewl = 2 j J(6.w)dx = 2 j (dJ, dw)dx +2f JWINdy

= 2Jw(6.J)dx - 2f JINwdy + 2f JwlNdy,

where everything after the first "=" sign has an implicit [0] (is evaluated in g[O]).
For convenience in the rest of the proof, we write all indices a.s subseriptsj one eopy

of eaeh repeated index should be raised before summing. For (e), we use (1.4) and the
Bianehi identity Vijl i = Jlj l and integrate by parts:

(d/dE )1.=0 j (1V1 2dx )[ew] = -2 j (V, VVw)dx = 2 j (dJ, dw)dx +2f V;Nwlidy

= 2 j w6.Jdx - 2f JINwdy + 2f V;Nwlidy.

Again, everything after the first "=" sign is evaluated in g[O]. But

and

f VNaW:a = - f VaN:aW = -tf paN:aW .

By (BG, Lemma A.l(b)),
paN:a = H: aa - Lab:ab .

Since VN N = !F - 112 T, integration by parts over 8M (which haq no boundary) gives

(3.3)
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This and J = r/6 give (c).
The first equality in (d) is obtained by integrating by parts; the second ia Lemma 3.4(a)

below. For the proof of (e), we use (1.10):

!(d/dc)I.=o j(Qdx)[cwJ = ! j(PW)dx =! j Wliiiidx - j[{J - 2V·}dw]ilidx

= -! f w1iiNdy + f[{J - 2V·}dw]Ndy

= -! f w1iiNdy + f(JWIN - 2VNiWli)dy.

(3.3) now finishes the proof. Alternatively, we could use the definition (1.6) of Q together
with parts (b-d) to derive (e). 0

We shall also need the conformal variations of the boundary invanants that do not
automatically vanish far w = 1. The following can be read off from the vanational formulas
in the appendix to [BG]. (Note the differences in sign conventiona.)

3.4 Lemma. Let Xi(w) = (d/de)le=o(e3twXi [ew]) = (d/de)lt=oXi[ew] + 3wXi[O]. Then:
(a) X~(w) = -2Y1 (w) - 2(m - I)Ys(w).
(b) X~(w) = -(m - l)Y](w) - 2(m - I)Y2 (w) - 2(m - I)Y3(w) + 2(m - I)Y4 (w).
(c) X~(w) = -(m - I)Y2(w) - Y3(w) + Y4(w) - (m - l)Ys(w).
(d) X~(w) = -Y2 (w) - Ys(w) - Y6 (w) + Y7 (w).
(e) X~(w) = -Y](w) - Y3(w) + Y4(w) + 2Ys(w) - (m - 3)Y6 (w) + (m - 3)Y7 (w).
(f) X~(w) = -3(m -1)Y4 (w).
(g) X?(w) = -2Y4(w) - (m - I)Y7 (w).
(h) X~(w) = -3Y7 (w). 0

We retain the "prime" notation of Lemma 3.4 to derive some straightforward conse­
quences in the next two lemmas.

3.5 Lemma. Let
1

L4 = - m _ 1X 2 + X 3 - (m - 3)X4 + X s ,

2 rn-I
LS = -3(rn _1)Xa+X7 - 3 Xs .

Tben L~(W) = 0, s = 4,5. 0

3.6 Lemma. Let m = 4, and let

Tben S'(w) = -S(w), where S(w) is as in Lemma 3.3(e). 0

We can now harvest the eonsequences of the eonformal index property, reducing the
number of undetermined eoefficients from the 20 in Lemma 3.2 to just 13 under the eon·
formal assumptions.
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3.7 T heorem. Let m = 4, and suppose (A, B) satis/ies 1.2, 1.6, and 2.4. Suppose that
(A, B) is not orientation-sensitive. Then a4(!, A, B) has the form

a4(J, A, B) = ßI JflCl2+ ß2 { !JfQ + f f S }

+ ßa {J fboJ - ~ f fXI} + ß4f fL.4 + Ps f fL.s +f ~1t"Y,,(J),

where tbe constants ßI!' J.l = 1, ... ,5 and K,jI' v = 1, ... ,8 depend only on the formal
functorial expression far (A, B). In particular,

H (A, B) is orientation-sensitive, tbe same is true witb ß1,+IC+12 + ß1,_IC_12 in place ol
ß11Cl 2 in each formula.

Proof. Changing basis in the fonnula of Lemma 3.2, we may write a4(!, A, B) in the form

ßI JflCI2+ ß2 { ! JfQ +f f S} + ßa {J fboJ - ~f f XI } + CJfJ2

8

+f f {ß4L.4 + ßsL.s + ")'1 XI + ")'2 X 2+ ")'3 X 3 + ")'4 X 4 + ")'6 X 6 +")'8X8} +f~ It"Y,,(J)

for some universal constants ßi, C,;j. In particular, by (3.1),

By Lemmas 3.3-3.6,

(d/dc:)I.=oa4(A[c:w], B[c:wJ) = 2cJw(boJ)dx - tcf wXI

+ (tc - 2")'1 - 3")'2)f YI(w) + (-6")'2 - 3")'3 - ")'4)f Y2(w) + (-6")'2 - ")'3)f Y3(w)

+ (6")'2 + ")'3 - 9")'6)f Y4(w) + (-3")'3 - ")'4)f Ys(w) - ")'4f Y6 (w)

+ (")'4 - 3")'8)f Y7 (w) - 6")'1 f Y8(w)

By the linear independence of the invariants § Yj(w), we conclude that C= ;1 = ;2 = ;3 =
;4 = ;6 = ;8 = O. 0

It is now time to clarify the notion of confonnal primitive.
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3.8 Definition. Areal functjonal P on a conformal dass (g[O]) on M is .!mooth jf the
functions

(3.5)

are Coo for all N E Z+ and functions Wi E COO(M). P has degree n E Z+ jf tbe maps
(3.5) are polynomial in e of degree n, and we use tbe terminology linear, quadratic, etc.
for degree 1,2,. . .. A map 'R. from (g[O]) to COO(M) js smooth (resp. has degree n) jf
9 t-t R(g[w))(x) js smooth (resp. is polynomial of degree n in e) for eacb x E M, and
similarly for maps to COO(8M).

3.9 Definition. Let P and T be smootb functionals on a conformal dass (g[O]) on M. P
is a conformal primitive {ar T jE

(3.6) (d/de) Il!=oP(g[TJ +ew)) = T(9[77))

for al1 77, w E COO(M). H in addition, a base metric go is given and P(g[O)) = 0, P js a
ba.!e-pointed conformal primitive for T.

3.10 Remark. A base-pointed confolmal primitive P for T, if it exists., is unique, sinee
the eurve o(e) = P(g[ew)) solves the initial value problem (d/de)o(e) = T(g[ew]), 0(0) = O.
Ir a funetional T and a prospeetive eonformal primitive P are given by universal formulas,
it is sufficient to prove (3.6) at 77 = 0, sinee universality allows UB to replaee g[O] by g[7]].
If T(g[w)) is a homogeneous polynomial functional of degree n > 0, then T(g[w])/n is a
base-pointed eonformal primitive for T(g[w]). Thus a decomposition of a given functional
into homogeneous polynomial funetionals is sufficient information for the eomputation of
a base-pointed eonformal primitive. We ahall sometimes use the abbreviation T[w] for
T(g[w]).

Motivated by Remark 3.10, we go on to eompute the higher eonfonnal variations of the
loeal invariants in Theorem 3.7. The formulas for V[w], R[w], L[w], ~[w], and N[w] show
that eaeh term in that expression for a4(w, A[w], B[w]) ia polynomial of degree ~ 4; this
will also emerge from our ealeulations, so we omit the abstract proof. We first introduee
abbreviations for some f-augmented loeal invariants whieh are quadratie and eubie in f.
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Abbreviation Invariant Index expression

ZI{/, f) , (Nf)N 2 f flNflNN

Z2(f, f) (N1)(-Li)f IIN laa

Za(f, f) (N f)2 H flN/INL aa

Z4{f, f) Id/1 2H !:a f:a Lu

Zs{f, f) (df ® df, L) !:a f:"Lab

Z6{f,f) (df, d{Nf)) f:a(fIN ):a

E I(f,f, f) (Nj)ld/1 2 fIN!:af:a

E2(f, f,/) (N/)3 fINfIN/IN

Table 3.3
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The notation Zi(/, f) indieates that Zi ean aetually be thought of as a quadratie form
Zi(/I ,/2) after polarizationj similarly for the eubie form determined by Ej(f, /, f). Lem­
mas 3.11-3.18 immediately following are obtained by direet eomputation with the varia­
tional formulas and identities of [BG, Appendix], and integration by parts.

3.11 Lemma. Let Yi'(w,w) = (d/de:)le=o(eaeW~(w)[ewD = (d/de:)le=o~(w)[ew]

+3wYi(w)[O]. Thell:
(a) Y{(w,w) = -2(m - l)Zl(W,W) - 2(m - 1)Z2(w,w) + 2(m - 1)Z3(w,w).
(h) Y;(w,w) = -(rn - l)Z}(w,w) - Za(w,w) + Z4(W,W).
(e) Y;(w,w) = -(rn - 1)Z2(w,w) + (m - 3)Z4(W,W).
(d) Y~(w,w) = -2(m -1)Z3(w,w).
(e) Y~(w,w) = -(m - l)Z}(w,w) - Z2{W,W) +Za(w,w).
(f) Y~(w,w) = -Z2(W,W) +Z4(W,W) - 2Z5(w,w).
(g) Yi(w,w) = -2Za(w,w).
(h) Y~(w,w) = 2(m - 3)Zl(W,W) - 2Z2(w,w) +2Za(w,w) +2(m - 2)Zs(w,w)
+2(m - 2)Z6(W,W). 0

3.12 Lemma. For a11 f,w E COO{M),
(a) f Z6(!, I) = - f Z2(f, f)·
(b) § I Z6(/, I) = - § I Z2(/, I) - f EI{/, f, I).
(e) (d/de)le=o(§(Ys(w)dy)[ew]) = (m - 4) f w(Ys(w)dy)[O] + f{2(m - 3)Z}(w,w)
-2(m - 1)Z2(w,w) + 2Z3 (w,w) + 2(m - 2)Zs(w,w)}. 0

3.13 Lemma. Let Z:Cw,w,w) = (d/dc)le=o(eaew Zi(w,w)[ew)) = (d/dc)le=OZi(w,w){ew] +
3wZi(W, w)(O]. Then:
(a) Z~ (w,w,w) = E 1 (w,w,w) - E2 (w,w,w).
(b) Z~(w,w,w) = (m - 3)E1 (w,w,w).
(e) Z~(w,w,w) = -(rn -1)E2 (w,w,w).
(d) Z~(w,w,w) = -(m - 1)E1(w,w,w).
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(e) Z~(w,w,w) = -E](w,w,w).
(f) Z~(w,w,w) = -E](w,w,w). 0

3.14 Lemma. The quantities E~(w,w,w,w)= (d/d~)I€=o(e3€wEi(W,W,W){~w])

= (d/dc)I€=OZi(W,W,W){~w] +3wZi(w,w,w){O] vanish identically. 0

3.15 Lemma. For m ~ 2, let

t\(w) = -Y4(W) + (m - 1)Y7 (w),
1

l2(W) = -Y](w) - (m - 3)Y2(w) +Y3(w) - m _ 1Y4(W) + (m - l)Y~(w),

m2 - 3m - 2 2m m2
- 5m + 2

l3(W) = m _ 1 Y2(w) - m _ 1Y3(w) - (m _ 1)2 Y4(w)

- (m - 4)Y~(w) + (m - 2)Y6 (w) +Ys(w).

Then l~(w,w) = 0 for s = 1,2, and (d/d~)I€=oJ'(l3(W)dy)[~w] = (m - 4) f W(l3(W)dy)[0].
In particular, ifm = 4, then (d/d~)I€=o §(l,,(w)dy){ew] = 0, S = 1,2,3. 0

3.16 Lemma. Let

Then A"(w,w) = O. 0

3.17 Lemma. Let

ql(W) = Y3 (w) - (m - 1)Y6 (w),

Q2(W) = (m - 3)Y](w) + (m - 3)(m - 2)Y2(W) - 2(m - 2)Y3 (w),

Q3(W) = (m -1)Yl(W) - (m -l)(m - 2)Y2(w) +2(m - 2)Y4(w).

Then Q:'(w,w,w) = 0, S = 1,2,3, with tlle result that

3.18 Lemma. H f E COO(M), then on ßM,

m=4. o

fl/ N = fl NNN + (fiN ):a a +2Va(LabVb f)

- H:af:a - FtlN -ILI 2 tiN - HtI NN ' 0

The following lemma is a consequence of Lemmas 3.4, 3.11, 3.12, and 3.13.

3.19 Lemma. Hm = 4 and S is as in Lemma 3.6, then
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4. FORMULAS FOR TUE QUOTIENT OF FUNCTIONAL DETERMINANTS

Suppose we have a compact 4-manifold M with boundary 8M, and a base-pointed
conformal dass (g[O]) is given. Suppose also that we have a boundary value problem
(A, B) satisfying the assumptions oe Theorem 2.12. A change of basis in the formula of
Theorem 3.7 allows us to write

(4.1)

a4(w, A, B)[w] = ßI Jw(ICl2dx )[w]

+ ß2 { tJw(Qdx)(w] + f((wS - tY3 (W»dY)(W]}

+ ß3 {J w((~J)dx)[wl + t f((Yi(w) - WXI)dY)[W]}

+ ß4 f w(L:4dy )(w] + Ps f w(L:sdy )(w]

3 3

+LAi f (ei(w )dy)[w] + L <Tj f (qj(w )dy)[w]
1=1 )=1

+ C3 f(Y3(W)dy)[w] + C4 f(Y4(W)dy)[w],

where ßv, Ai ,Uj ,c3 ,c4 are universal COllstants depending on the universal polynomial
expression for (A, B).

By Theorem 2.12, we can find a formula for

-log Idet{AB )I[w] + log Idet{AB )1[0]

by finding a base-pointed conformal primitive for each term in (4.1). By Theorem 2.10,
the sign (-1)# p.j <O} of det AB is conformally invariant, so this gives a formula for

det{AB)[w]
det(AB)[0] .

4.1 Lemma. In (4.1), tbe ßlI terms for v = 1, 4, 5 and tbe Ai terms for i = 1, 2, 3 bave
base-pointed conformal priInitives

Psf w(L:sdy)(O], Aif (ei(W )dy) (0]

respectively.

Proof. By Lemmas 3.3{a) and 3.5, IC12 dx, 'c4dy, and L.sdy are conformal invariants in
dimension 4; thus the relevant ßv terms in (4.1) are linear on the conformal dass (g[O]).
Hy Lemma 3.15, the Ai terms are also linear. We now apply Remark 3.10. 0
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4.2 Lemma. A base-pointed confonnal primitive for Jw(Qdx)[w] is

B[w] := tJw(P[O]w)dx[O] +Jw(Qdx)[O].

Proof. H TJ, w E CCX)(M),

(dlde)I<=oB[1] +ew] = tJ{1](P[O]w) +w(P[O]1])}dx[O] +Jw(Qdx)[O].

Evaluation at 1] = cow shows that the curve 8[ew] satisfies the initial value problem

(dlde )<=<.B[ew] =J{eow(P[O]w) +wQ[O]}dx[O], B{O] = o.

But by (1.10), the right side of this ordinary differential equation is

Jw(Qdx)[eow],

as desired. 0

4.3 Lemma. A base-pointed confonnal primitive for C{w] := §«wS - tY3(w))dy){w] is

j w(Sdy)[O]- t j(Y3(w)dy)[O] - t j w(S(w)dy)[O]

+t j(Z2(W,w)dy)[O] - kj(Z4(w,w)dY)[Ol.

Proof. By Lemma 3.19, C[w] is a quadratic functional. By Remark 3.10, its base-pointed
conformal primitive is

j w(Sdy)[O]- t j(Y3(W)dy)[O]

+t j(wS'(w)[O] - tY;(w,w)[O])dy[O].

The last line of this is computed using Lemmas 3.6 and 3.11. 0

4.4 Lemma. Tbe ßa tenn in (4.1) has base-pointed conformal primitive

Proof. This is arestatement of Lemma 3.3{b). 0
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4.5 Lemma. The Bum oE the Uj, Ca, and C4 terms in (4.1) has base-pointed confonnal
primitive

0"1 {f(ql(w)dy)[O) + f{{ -Z4 + 3Zs)(w,W)dY)[O)}

+0"2 {f(q2(W)dY)[O) + f{{ -6Z1 + 3Z2+ 2Z3 - Z4)(W,W)dY)[O)}

+0"3 {f(Q3(W )dy)(0) + f {{-9Z2 - 3Z4)(w,w)dY)[O)}

+cJ {f{Y3(W )dy )[OJ + f {{-~Z2 + !Z4)(W, w)dy)[O] - f (EI (w, W, w)dy)[O]}

+C4 {f{Y4(W)dY)[O]- 3 f(Z3(W,w)dy)[O] + 3 f(E2(w,w,W)dY)[OJ}.

Proof. By Lemma 3.17, the U j tenns in (4.1) are quadratic on the conformal c1ass (g[O)) ,
and by Lemmas 3.11,3.13, and 3.14, the C4 and C7 terms are cubic. We now app1y Remark
3.10, using Lemmas 3.11 and 3.13 to compute expansions into homogeneous po1ynomial
terms. 0

We collect al1 this information in the following.

4.6 Theorem. Under the assumptions oE Theorem 2.12, if (A, B) is not orientation-
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-1 det(A B)[W] J 2
-(2f) log det(AB)[O] = ßl w(ICI dx)[O]

+ß2 { i- Jw(P[O]w)dx[OJ +tJw(Qdx)[OJ + f w(Sdy)[O]- t f(Ya(w)dy)[O]

-t f w(S(w)dy)[O] + fm Z2 - kZ4 )(w,W)dY)[01}

+tßa J{(J2dx)[w]- (J2dx)[O)) + ß4 f w(.c4dy) [0] + ßs f w(.csdy)[O]

3

+ :E Ai f(ii(W)dy)[O]
i=l

+<71 {f(Q1(W)dy)[0] + f«-Z4 +3ZS)(W,w)dY)[01}

+<72 {f(Q2(W )dy)[0] + f «-6Z1+ 3Z2 + 2Z3 - Z4)(W, w)dy)[O]}

+<73 {!<Qa(w )dy)[OJ + f «-9Z2 - 3Z4)(w, w)dY)[O]}

+C3 {f(l'j(w)dy)[O] + f« -tZ2 + tZ4)(w,w)dy)[O]- f(E1(W,W,w)dY)[O]}

+C4 {f(l'4(W)dY)[Ol- 3 f(Z3(W, w)dy) [0] + 3 f(E2 (w,w,W)dy)[O]} .

H(A, B) is orientation-sensitive, ßl Jw(IC1 2dx)[0] should be replaced by
ßl

l
+ Jw(IC+1 2dx)[O] + ßl,- Jw{IC_1 2dx)[0]. IEP>. is the Eunctional oE Remark 2.2, then

(4.2)

-(2f)-1 I P>.(A, B, g[w]) = _ AI Je4W dx[0] _ a4(A, B) - AI ! e3W dy[0]
og P>.(A, B, g[O]) 4 og v [0] 3 og v[O]

_ (2f)-1 I det(AB )[w]
og det(AB )[0] ,

wbere v[O] = vol(g[O]) and v[O] = vol(g[O]). 0

In the above, recall that a4 (A, B) is conformally invariant. A more manageable version
of this formula is obtained when we notice that several of its terms are also terms in a
formula for a4(w, A, B). Indeed, if w,.,., E COO(M), (4.1) can be modified to give a fonnula
for a4(w, A, B)[.,.,] just by replacing each [w] by [.,.,]. To make the fonnula even more easily
applicable, we add the mild assumption that our chosen background metric on M has
constant scalar curvature. We immediately have:

4.7 Corollary. Suppose (M, (g[O]) and (A,B) are as in Tbeorem 2.12, and that g[O] bas
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constant scalar curvature TO. Let w E COO(M). Tben
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-(2i)-11 det(AB)[w] = ( A B)
og det(AB )[0] a4 w, ,

+ß2 { t Jw(P[O]w)dx[O]- ! f w(S(w)dy)[O) + f«!Z2 - tZ4)(W, w)dy) (0) }

+! ß3 {J {( J2 dx )[w] - (J2 dx )[0] - tTo f wlN } + 0'1 f «-Z4 + 3Z5 )(w, w)dy)[0]

+<72 f (( -6Z1+ 3Z2+ 2Z3 - Z4)(w,w)dy)[O) + 0'3 f «(-9Z2 - 3Z4)(w,w)dy)[O]

+C3 {f ((- ~Z2 + !Z4)(W,W )dy)[0) - f(E1(w,w,W )dy) (0)}

+C4 {-3 f(Z3(W,w)d y)[0] + 3 f(E2(W,W, w)dy) [0)}. 0

Now recall the functionals P" of Remark 2.2, which involve the conformal index a4(A, B).
It is sometimes useful to express the conformal index in terms of the Euler chara.cteristic
of M. Recall that X(M) = x(8M) + X(M, 8M)j thus if m is even, X(M) = X(M,8M). By
the Chern-Gauss-Bonnet formula, if m = 4,

(4.3)
X(M) = (3271"2)-1 L(r 2

- 41pl2 + IR12 )dx

+ (241T2)-1 i (3TH - 6FH - 6(T, L) + 2H3
- 6HILj2 + 4 tr L3 )dy.laM

The interior integrand can be rewritten as ICI2 - 81V1 2 + 8J2 = ICI2 + 4{Q - ßJ}, and
thus the interior term in (4.3) equals

Thus

X(M) = (3271"2)-1 L(ICI2 + 4Q)dx

+ (241T2)-1 i (-tTIN + 3TH - 6FH - 6(T, L) + 2H3
- 6HILI2+ 4tr L3 )dy,hM

or more compactly,

At a background metric g[O] with constant scalar curvature as in Theorem 4.7, the TIN

contributions to the boundary integrals in the formulas for X(M) and a4(A, B) disappear.
It is now appropriate to distinguish two types of "model backgrounds":



30 BRANSON AND GILKEY

4.8 Definition. (M, g[O]) js a model background of type I jf (VR)[O] = 0, 8M js totally
geodesie, and M js connected. (M, g[O]) is a model background of type 11 jE g[O] js :Rat,
(VL)[0] = 0, and 8M js connected.

4.9 Lemma. In a model background (M, g[O]) oE type I, the boundary integrals in (3.4)
and (4.4) vanish, and

In a model background (M, g[O]) oE type 11, the interior integrals in (3.4) and (4.4) vanish,
and

a4(A[0], B[O]) = 41r2 ß2X(M) + (ß4 + 6(2).e4[O]v[O] + (ßs + 6fJ2).e5 [O]v[O].

Proof. In the type lease, '7R = °=> VC = 0, so the connectedness of M guarantees
that ICI2[0] is constant. In the type 11 case, R = 0, VL = 0 => V.e4 = V.e5 = 0, so the
connectedness of 8M guarantees that .e4 [0] and .es [0] are constant. 0

We combine these considerations to get a more natural form of (4.2):

4.10 Theorem. Under the assumptions oE Theorem 2.12, iE (M, g[O]) js a background oE
type I and A = a4(A, B), or jE (M, g[O]) js a background oE type 11 and A = 0,

_(2i)-110g;:~~:~',~~~g= &(1 or 11) + ß2 { ~Jw(P[O]w)dx[O] -l j(Y3(w)dY)[Ol

-t j w(S(w)dy)[O] + j((!Z2 - !Z4)(W,w)dy)[0]}

3

+!ß3 J{(J2dx)[w)- (J2dx)[O)} + ?= Ai j (li(W)dy)[O]
1=1

+0"1 j ((-Z4 + 3Zs)(w,w)dy)[0]

+0"2 {j (q2 (w )dy)[0] + j (( -6Z1+ 3Z2+ 2Z3 - Z4)(W,W )dy)[0) }

+0"3 {Fq3(W)dy)[O) + j((-9Z2 - 3Z4)(W,w)dy)[0]}

+C3 {j(l/i(w)dy)[O) +j((-~Z2 + tZ4)(w,w)dy)[0]- j(EI(w,w,W)dy)[O]}

+C4 {j(Y4(w)dy)[O]- 3 j(Z3(w,w)dy)[01 +3 j(E2(w,w,W)dY)[Ol} ,

where
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a4(A, B) § e3(w-w)dy[0]
Cu = - 3 log ii[O]

= - {~7t"2ß2X(M) + !(ß4 + 6ß2).e4[0]v[0] + !(ßs + 6ß2).eS [0]ii[0]).

Here w := (f wdx[O])/v[O] is the mean value oE w over M, and w:= (f wdy[O])/v[O] is tbe
mean value over 8M.

Proof. In the type I case, ~e absorb terms totalling (ßIICI 2 [0] + tß2Q[O]) f wdx[O] (or
(ßl,+IC+12 [0] +ßl,_IC_1 2 [0] + !ß2Q[0]) f wdx[O] if (A, B) is orientation-sensitive) into the
first exponential term of (4.2); the coefficient of the second exponential term is O. In the
type II case, we absorb terms totalling (ß2 5[0]+ß4.c4[0] +ßs.es[0]) § wdy[O] into the second
exponential term of (4.2); the coefficient of the first exponential term is O. We also make
use of the fact that §(Ql(w)dy)[O] vanishes, since (~L)[O] = 0 in both the type I and type
II cases. 0

4.11 Remark. The choice A = a4(A,B) or A = 0 makes P>..(A,B,g) a spectral invariant
(recall Remark 2.2). The presence of the ICI2 term in the case of a model background
of type I is an indication that the analysis of the determinant functional will be heavily
dependent on conformal geometry as weIl as on topology. See [Bey] for this analysis, and
the effect of the ICl2 term, in the boundariless case. Similarly, for a model background of
type 11, the .c4 and .es terms indicate a dependence on conformal geometry.

4.12 Remark. There need not be a model background of type I or 11 in a given conformal
dass, of course. It CRD happen, however, that there are model backgrounds of both types
in the same conformal dass. For example, the round metric on the closed hemisphere H 4

(type I) is conformal to the Bat metric on the closed ball B 4 (type 11). The standard metric
on the cylinder ct = [0, h] X 53 of height h is conformal to the Hat metric on the spherical
shell A~ = {x E IR4

I 1 ~ 1x 1 ~ s}, s = eh. Here the cylindrical geometry is type I; the
sheIl geometry faHs to be type 11 only because of its disconnected boundary.

5. SPECIAL MANIFOLDS

We would now like to do some computations in the special cases of the hemisphere, ball,
cylinder, and spherical shell. Since the hemisphere and ball are conformally equivalent,
and the cylinder of height h is conformally equivalent to the spherical shell of outer/inner
radius ratio s = eh, this will provide checks on our formulas, in that we can compute certain
determinant quotients in two different ways. Moreover, since we can write down the spectra
of the Dirichlet and Robin problems for the conformal Laplacian on the hemisphere, and
compute the determinants of these problems explicitly (Sec. 7), we shall be ahle to compute
the determinants of the similar problems on the ball. The following elementary observation
will be useful.

5.1 Lemma. H 8M is totally geodesie and K. is tbe intrinsic scalar curvature of 8M, then
T = K+2F on 8M.

Proof. We use total geodesy to pick coordinates at a point of 8M which are normal for
both 9 and g, then use the characterication of the Riemann tensor as the second-order
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part of the Taylor expansion of the metric, to show that K. = Rabab. Since T = Rij ij =
Rab ab +2Ra NaN, the result follows. 0

Now consider the upper hemisphere Hm in sm, the boundary of which is the equa­
tor sm-I, with the standard round metric g[O] as background. Here the interior met­
ric has "VR = 0 and the bOWldary embedding is totally geodesic, so (Hm, g[O]) is a
model background of type I. In this background, C = 0, V = !g, and J = m/2. H
'lJ2 := ß + (m - 1)2/4, then the Paneitz operator and quantity are

Q = m(m + 2)(m - 2)/8.

In particular, if m = 4, then P = ß(ß + 2) and Q = 6. By (1.1),

Thus on the bOWldary aHm = sm-l of Hm,

G=g, F=m-l, T = (m - 2)g.

L and H vanish, and by Lemma 3.18, if f E coo(Hm),

Ys(f) = N(-ß)f = N 3 f +(-iS.)(Nf) - (m - l)Nf.

We also have

Xi = 0, i = 1, ... 8;

Y2 (/) = Y3(/) = Y4 (/) = Y6 (/) = Y7 (/) = Z3(/, I) = Z4(/, I) = Z5(/, I) = 0;

and
Y1(f) = m(m -l)Nf,

As a result, on aHm,

Y5(/) = (m -1)NI.

[,4 = [,5 = 0,

1\(/) = 0, [2(/) = -(m - l)NI,

1-3 (/) = -(rn - 4)(m - I)Nf +N(-ß)j = N 3 f +(-ii)(N f) - (m - 3)(m -l)Nf,
ql(f) = 0, q2(f) = m(m - 1)(m - 3)NI, q3(/) = m(m - 1)2 N f.

OnaH\

8=0, S(f) = NI - tN (-ß)I = -tN31 - t( -/5,,)(Nf) + !Nf·

Since vol(H4) = 41r2 /3,
a4(A, B) = 27r2ß2Q[0]/3 = 41r2 ß2

for (A, B) satisfying 1.2, 1.6, and 2.4. (Alternatively, we can use the formula of Lemma
4.9 and the fact that X(Hm) = 1.) Speeializing Theorem 4.10, the conclusion is:
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5.2 Theorem. Suppose that (A, B) saUmes 1.2, 1.6, and 2.4, and that N(AB) = 0 on
(H4,g(O]), where g(O] is tbe round metric. Let ..\ = 4tr2 ß2' Tben for w E coo(H4 ),

-(2e)-1 I P.\(A, B, g[w]) = _ 2ß 1 JH" e
4
(w-w) dx[O]

og P.\(A,B,g[O]) tr 2 og 4tr2 /3

+ Ciß2 + 30"2 - 90"3 - !C3) 1 ((Nw)(-~w)dy)(O]
loH"

+ß2 {~ [ w((ß(ß + 2)w)dx)(0] - ~ 1 w((Nw)dy)[O] + ~ 1 W((N3w)dy)[0]}
JH" laH" hH"

+tß3 {L. (J2
dx)[w]-161r

2 /3}
+(-3..\2 - 3..\3 + 120"2 + 360"3) 1 ((Nw)dy)[O] +..\3 i ((N3w)dy)[0]

laH" ~H"

-60"2 1 ((Nw)(N2w)dy)(0] - C3 1 ((Nw)ldwI2dy)[0] + 3C4 1 ((Nw)3dy)(0].
laH" JaH" laH"

A formula for the determinant functional

-(2e)-11 det(AB)(w]
og det(AB )[0]

is obtained by replacing

by

in the formula for
-(2e)-1Iog P.\(A, B, g[w]) . 0

P.\(A, B,g[O])
Ta set up the confonnal diffeomorphism between the hemisphere and the ball, view sm

as the unit sphere of jRm+l with coordinate function ~ = (u, s) E Km X R. Identify Rm,

whose coordinate will be called x, with the complement sm \ (0, -1) of the south pole via

u
x=-­

1 +8'
2x

u=-~

1 +r 2
'

1- r 2

8 = = cosp,
1 + r 2 Q' = lul = sinp,

_ ;r,.2
9ntm - "I! gsm,

where r = lxI, and p is the azimuthai angle between the vector (u, s) and the ray emanating
from the origin (0,0) and passing through the north pole (0,1). The standard metries are
related by

1 2 1
~ = 2(1 +r ) = -- .

1+8
This version of the stereographie projection identifies the upper hemisphere in sm with
the unit ball in Rm j our two conformal metries agree on the common boundary of Hm and
Em. The total interior volumes of our lllodels differ, as

l(H m ) = (41r)m/2r(m/2)
vo 2r(m) ,
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so that

in particuIar,
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vol(Bm) r(m)
= jvol(Hm) 2m- 2mr(m/2)2

vol(B 4
)/ vol(H4

) = 3/8.

The inward unit normal in Hm is N = -8p • Here we use p, together with any coordinate
system on the Iatitudes s = const, to get Ioeal coordinates on Hm. Since N s = -8p s = a
and 8a fi = -s/o:,

on Hm \ {(O, I)}. In particuIar,

In the notation of Theorem 5.2, if g[O] is the hemisphere metric and g[w] the ball metric,
then w = - Iog(1 + s). In partieular,

Jw = 0, ~w = 0 on H m
\ {(O, 1)},

w=O, -Nw=N2w=-N3w=1 on8Hm
.

Specializing to the case m = 4 now, and looking at the fonnula of Theorem 5.2, our
first need is for (ß(ß +2))[O]w = P[O]w. Applying our covariant setup in the form (1.10),
we can immediately conclude that

P[O]w = Q[w]e4w
- Q[O] = -Q[O] = -6,

since alliocal scalar invariants vanish in the Hat metric g[w]. J2[w] also vanishes for trus
reason. The surviving boundary terms in Theorem 5.2 all come from the expressions

1 ((Nw)dy)[O] = 1 ((N3w)dy)[0] = 1 ((Nw)(N2w)dy)[0]laH4 raH4 laH4
= 1 ((Nw)3dy)[0] = -vol(8H4 ) = -vol(S3) = -21r1 .raR4

(Note espeeially that no ß2 boundary terms survive, sioce w vamshes 00 the boundary.)
Thus Theorem 5.2 specializes to

In this, the w and Jw terms combine to give
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Ta compute the Jw term, let d8 be a volume form on a standard (radius 1) 8 3
; then Q

3 d8
is a volume form on the latitude in H 4 with radius 0', and

is a volume form on H 4 \ {(O, I)}. Since vol(83
) = 27r2 and w = w(s) = -log(1 + s) ia

constant on latitudes,

r wdx[O] = 21l"2 1\1 - s2)w(s )ds = -211"2 [2 t(2 - t) log t dt = 1I"
2e: - i log 2).1H4 0 11

Here we have used the integral formula

J tn+l ( 1 )tn(logt)dt = -- logt - -- +const
n+l n+1

in the cases n = 1,2. Since vol(B4 ) = 1T
2 /2, we have:

5.3 Corollary. With BSsumptions BS in Theorem 5.2 and g[w] tbe B.at B4 metric,

-(Vn-1 logP.\(A, B, g[w]) =
P.\(A, B, g[O])

1l"2 {( 163 - log 6)ß2 - ~ ß3 + 6..\2 +4..\3 - 120'2 - 720'3 - 6C4}' 0

In the expression for the quotient of determinants (as opposed to scale-invariant deter­
minant functionals) is simply missing the vol(B4 ) / vol(H4) contribution:

5.4 Corollary. With assumptions BS in Tbeorem 5.2 and g[w] tbe Bat B 4 metric,

-(2f)-1l det(AB)[W] =
og det(AB )[0]

71"2 {( 163 - 4 log 2)ß2 - ~ß3 + 6..\2 +4..\3 - 120'2 - 720"3 - 6C4}' 0

An interesting check on our calculations can be made by specializing Theorem 4.10 to
the Hat metric on the unit ball B 4

, a model background of type 11, and viewing the round
H4 metric as the perturbation rather than the background. This is not simply the same
calculation in disguise; different terms from the determinant quotient formula contribute to
the answer , which is , of course, the reciprocal of the determinant quotient just computed.
Ta set up the calculation, let the dimension m be unrestricted for the moment. Since all
interior invariants vamsh in a flat metric,

The fundamental form and normalized mean curvature are

L= g, H = rn-I,
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X 7 =(m-1)2, X s = m-1.

Because the Riemann tensor R vanishes,

As a result of the formulas for the Xi ,

By Lemma 3.18,

Ys(/) = N 3
/ +(-ii)(N /) + 2(-ii)/ - (m - 1)N2

/ - (m - l)N /.

Furthermore,

Y1(/) = Ys(f) = 0

Y2(/) = (m - 1)N2 I, Y3(/) = (m - 1)(-ii)/,

Y6(/) = (-6)1, Y7 (/) = (m - 1)NI,

and

eI(/) = 0, l2(/) = -(rn - 3)(m - 1)N2f + (m - 1)(-6)/ - (m - l)NI,
l3(/) = N 3f +(-~)(N f) + (m2

- 4m - 1)N21- m( -iS.)1 - (m2
- 4m + l)N f,

ql(f) = 0, q2(f) = (m - 3)(m - 2){(m - 1)N2f - 2(-6)f},

q3(/) = (m - 1)2(m - 2){ _N21+ 2Nf},

Z3(f, I) = (m - l)(N /)2, Z4(f, f) = (m - 1)ldwI2, Z5(f, I) = Idw12.

Hm=4, ,

S = 2, S(/) = -tN3 f - t(-ii)(Nf) + ~N2 / + (-ti)/ + ~Nf.

The conformal index, being a conformal invariant, is that already computed in the H 4

background, viz. 41r2ß2. Specializing Theorem 4.10, we have:

5.5 Theorem.. Suppose tbat (A, B) satisfies 1.2, 1.6, and 2.4, and that N(AB) = 0 on
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(B4, g[OD, where g[O] is tbe standard Hat metric. Then for w E C OO(B 4
),

_(2l)-1 1 Po(A, B, g[w]) = _ 47f2 ß2 10 f8B4 e3(w-w)dy[0]
og 'Po(A,B,g[O]) 3 g 27f2

+ (iß2 + 30"2 - 90"3 - ~C3) 1 ((Nw)(-~)dy)[O]
TaB4

+ß2 {~ [ wß2[O]wdx[O] + t 1 w((N 3w)dy)[O]
JB4 JaB4

-i 1 w((N2w)dy)[O] - t 1 W((NW)dY)[O]}
laB4 JaB4

+!ß3 [ (J2dx)[w] + (-3A2 - .\3 + 60"2 - 180"3) 1 ((N2w)dy)[O]
JB4 JaB4

+(-3.\2 - A3 + 360"3 +9C4) 1 ((Nw)dy)[O] + A3 1 ((N3w)dy)[0]
JaB4 TaB"

-60"2 1 ((Nw)(N2w)dy)[0] + (60"2 - 9C4) 1 ((Nw)2dy)[0]
JaB4 J8B4

+ (-30"2 - 90"3 + !C3) 1 (ldwI2dy)[0] - C3 1 ((Nw)ldwI 2dy)[0]
JaB4 laB4

+3C4 1 ((NW)3dy)[O].
JaB4

A formula for tbe determinant functional

-(2e)-11 det(AB)[W]
og det(AB )[0]

is obtained by replacing

37

in the forrnula for
-(2e)-1 log 'Po(A, B, g[wD . 0

'Po(A, B, g[O])

Now specialize further to the case where g[w] is the round hemisphere metric. In this
case,

2
w = log 2 '

l+r
so

By (1.10),
ß 2 [O]w = Q[w]e4W

- Q[O] = 6e4w
•
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To evaluate IB. we4Wdx[O], note that e4W dx[O] = dx[w] is the measure on the round hemi­
sphere, so our previous calculations give

Thus the surviving terms in this special case are

_ (2e)-11
0

Po(A, B, g[w]) = -(2l)-llo det(A B )[w]
g Po(A, B,g[O]) g det(AB)[O]

= !7r2( llog 2 - 193) + 2ß3 vol(H4) + vol(S3){ -3.-\2 - 2.-\3 + 60"2 + 360"3 + 3C4}

= 7r2 {(4Iog2 - 163)ß2 + ~ß3 - 6).2 - 4.-\3 + 120"2 + 720"3 + 6C4};

that is, we get the answer predicted by Corollary 5.4.

The case of the ball is helpful in getting adeterminant quotient fonnula in the ease of
the spherieal shell

A~ = {x E IRm 11 ~ Ix] ~ s},

where we assume s > 1. What we need to know is the ease of the unit ball Bt treated
above, plus the ease of the ball B~ of radius s. Formulas for the larger ball ean be obtained
by sealing those for Bt and keeping traek of the effeet of the unit normal's direction on
the sign of eaeh term. Note that our setup is in terms of Riemanman measures rather
than volume elements, so dy ia not signed. All level 3 loeal invariants on 8M, including
f-augmented ones, reverse sign when the direetion of N is reversed. (Recall that L changes
sign with N.) The result of this bookkeeping is the following:

5.6 Theorem. Suppose that (A, B) satisfies 1.2, 1.6, and 2.4, and that N(AB ) = 0 on
(A~ ,9[0]), where 9[0] is tbe standard Hat metric. Let X = -ar, wbere r is the radial
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spherical coordinate in IRm. Then for w E COO(A~),

1 det(AB)[w] 3 3 (1 1) -
-(2e)- log det(AB)[O] = (.ß2 + 30"2 - 90"3 - '2 C3 ) Js: - Js~ ((Xw)(-ßw)dy)[O]

+ß2{ 47r
2
(w(S;) - w(Sm + t L: wb.

2
[O]wdx[O] + t (t: -t~) w((X

3
w)dy)[O]

- ~ (8-1t: -t~) w«(X
2
w)dy)[O)- ~ (8-2t: -t~) w«Xw)dy) [0) }

+~ß31 (J 2dx)[w] + (-3).2 - '\3 +6(12 - 18(13) (8-11 - 1 ) ((X 2w)dy)[0]
A: ~ ~~

+(-3>'2 - >'3 +360"3 +9C4) (8-2i: -i~) (Xw)dy)[O]

+>'3 (t: -t~) ((X
3
w)dy)[O] - 60"2 (t: -t~) ((Xw)(X

2
w)dy)[0]

+(60"2 - 9C4) (8-1t: -t~) ((Xw)2dy)[O]

+( -30"2 - 90"3 + tC3) (8-
1t: -t:) (lkI2

dy)[O]- C3 (i: -i~) (Xw)ldw I
2

dy)[O]

+3C4(t: -t:) ((Xw)3dy)[0).

Here 5~ is the sphere oE radius r centered at the origin in IR4, and w(5~) is the mean value
oE w over this sphere. 0

We now specialize further to the case where the perturbed metric g[w] is the standard
metric on the cylinder C: = [0, h] X 53 with h = log s, that being dt2+dD2, where t is the
parameter on [0, h], and d(J2 is the standard metric on 53. The shell A: is diffeomorphically
the cylinder [1, s] x 53; in these coordinates, its standard metric is dr2 +r2dD2. Thus the
diffeomorphism (t,D) ~ (et,D) from C: to A: is conformal:

dr2 +r2 dD2 = r2(dt 2 + dD2
).

That is, with A~ as the background, the C: metric is g[w] for w = -logr; with C: as the
background, the A~ metric is g[w] with w = t.

Let g[O] be the flat A~ metric. We first note that the term in Theorem 5.6 which
involves ß2[0]w vanishes by (1.10), since J[w] = 1 and 2V[w] = -dt2 + dD2 , so that
Q[w] = O. (Alternatively, we could use the fact that logr is a constant multiple of the
fundamental solution of f:,,2 in R4 .) The fact that J[w] = 1 also evaluates the ß3 term in
Theorem 5.6 as !ß3hvol(53). To evaluate the other terms, note that

Xw=r- 1
, X 2w = r-2

, X 3w=2r-3
j
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we need this at r = s and r = 1. No boundary integrals except the mean value of w over
S: survive the computation, and the result, using vol(S3) = 211'"2, is:

5.7 Corollary. Witb asswnptions as in Theorem 5.6 and g{w] tbe standard C: metric,

-1 det(A B Hw] 2 1
-(2P) log det(A

B
HO] = 21r h(-ß2 + 2ß3)' o

Now let g{O] be the cylinder metric dt 2 + d(j2j this is a model background of type I.
Computing for the moment in a general dimension m ~ 3, we have

J = (m - 2)/2, V = !(-dt2 + d82
), C = 0, Q = m2 (m - 4)/8.

The Paneitz operator is

Since L = 0 and T is constant, Xi = 0 for i = 1, ... 8j in particular, L4 = L5 = 0, and if
m = 4, S = O. We have F = 0, and for all I E COO(Cr),

Y2(!) = Ya(!) = Y4 (f) = Y5 (/) = Y6 (/) = Yr(!) = 0,

Ys(/) = Na1+ (-~)(NI).

As a result,

Y1(/) = (m - l)(m - 2)Nf,

PI (f) = ql (I) = 0, P2(f) = -(rn - l)(m - 2)NI, Pa(!) = N 3 I + (-Li)(NI),
q2(/) = (m - l)(m - 2)(m - 3)Nf, q3(f) = (m - l?(m - 2)N f,

and if m = 4,

S(/) = 2N f - tN3 f - t(-ii)(N f)·

Furthermore,

Z3(/, I) = Z4(f, f) = Zs(/, I) = o.

Now specialize to the case m = 4. The conformal index varushes by the above and
(3.4), or by Lemma 4.9, since X(Cr) = Oj thus the scale-invariant functiooal involved in
the specializatioo of Theorem 4.10 is Po. Collecting information, we have:

5.8 Theorem. Suppose tbat (A, B) satisfies 1.2, 1.6, and 2.4, and that N(AB) = 0 on
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(Cl ,g[O]), wbereg[O] is tbestandard cylindermetric. Let y = -at. Tbenforw E COO(ct),

-(2f)-11og P(A, B, g[w]) = -(U)-llog det(AB )[w] =
P(A, B, g[O]) det(A B )[0]

ß2 { t 1: w«ß2[O] +4a:))wdx[O]- ! f w«2Yw - !Yw - H-.i)(YW))dY)[O]}

+!ß3 (1: (J2dx)[w)- hVOl(S3)) + (-6..\2 + 60"2 + 18u3)r(Yw)dy[O]

+..\3 f (y3w)dy[O) +..\3 f «-.i)(Yw)dy) [0]

-6U2f (Yw)(y2w)dy[O) + (!ß2 + 3U2 - 9U3 - ~C3)f (Yw)«-.iw)dy)[O]

-C3 f (Yw)(ldwI2dy)[O] + 3C4 f (Yw)3dy[O],

where

We specialize further to the perturbation which gives the shell A: with s = eh i that is,
we set w = t. The surviving terms on the right in Theorem 5.8 are

(5.1) ß2 {-! i=h w(2Yw)dY[OI} + !ß3(-hvol(S3)) = 21r2h(ß2 - !ß3).

This checks with Corollary 5.7.

6. THE DIRICHLET AND ROBIN PROBLEMS FOR THE CONFORMAL LAPLACIAN

The determinant quotient formulas of Theorem 4.6 involve coefficients ßJI (1 ::; v ::; 5),
Ai (i = 1,2,3), Uj (j = 1,2,3), CI: (k = 3,4) that depend only on the universal formula for
(A, B), and not on the particular manifold M. In this section, we compute these constants
for the two boundary value problems described in Examples 2.7-2.8.

The starting point is a formula of Branson and Gilkey [BG] for a4(A, B) for elliptic
boundary value problems (A, B) in the case where: (1) A is a second-order differential
operator with metric leading symbol on sections of a vector bundle V over M, i.e.

for all (x,~) E T*M, and (2) B gives either Dirichlet conditions, or Neumann conditions
of the form

(6.1) (<PIN + S<p)18M = 0,

where S is a smooth section of End VI 8M . For convenience, we state these results in the
present notation. There is 00 restrietion on the dimension m, and there no assumptions
on naturality or the conformal behavior of (A, B).
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6.1 Theorem [BG]. Under the above assumptions on A, there is a unique connection V
on V such that A = ß V - e, where ß v = - 9 iiViVi is the Bochner Laplacian oE V, and
e is a smooth section oE End V. H B gives Dirichlet conditions, we write an (I, A, V) for
an (!, A, B), and bave

360(471" )m /2 a4 (J,A, D) = Jtry f{ -60b.End Y t: +60Tt: + 180t:2

+30niinij - 12ßr + 5r2
- 21pl2 + 21R1 2

}

+f trYl8M (f{-120EIN -18T IN + 120EH

+20rH - 4FH + 12{G,L) - 4{T,L) - 246.H

+:!S!H3 _ 88 HlLI 2 +lli tr L3 }
21 7 21

+flN{ -180e - 30T - l~O H2 + 67° ILI2
}

+24 fINNH + 30(b.J)IN).

wbere n is the cunrature ofV. 0

The connection V determines a connection on End V, and this is used to fonn ßEnd v.
The invariants §1Lab: ab = §('Q'Q /, L), § /naN:a , and f IINF, which could appear in the
above fonnula, do so with coefficient O. Note that we have not quite written things in the
fonn (1.13)j (ß/)IN has been used instead of fjNNN in our basis of invariants. This turns
out to be convenient for most practical purposesj if desired, Lemma 3.18 can be used to
switch to a basis consistent with (1.13).

6.2 Theorem [BG). Under the above asswnptions, ifB gives Neumann conditions of the
(ann (6.1), we write an(/, A, S) for an(/, A, B), and bave

360(471" )m /2 a4 (J ,A, S) = Jtr y f{ -60b.End Y t: +60TE + 180E2

+30niinij - 12ßr +5T2
- 21pl2 + 21R1 2

}

+f trYl8M (f{240EIN + 42TIN + 120EH

+20TH - 4FH + 12{G,L) - 4{T,L) - 246.H

+~O H 3 +SHILI2 + 332 tr L 3

+720S& + 120ST + 144SH2 +48SILI2

2 3 -+480S H +4808 - 120ßEnd Vl8M S}

+!IN{180E + 30T + 12H2 + 121LI2 + 72SH + 240S2
}

+fINN{24H + 120S} -30(b.J)IN). 0
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Again the invariants f fLab: all = §(VVf,L), § fnaN:a, and f flNF appear with coef­
ficient 0, as does the new invariant f fSF.

For the eonformal Laplacian Y with either Dirichlet or Robin conditions,

0,=0,
m-2 m-2

&= - 2 J = - 4(m _ 1) T.

Ta evaluate the interior terms of a4 for either problem, we eompute that

T 2 = 4{m - 1)2 J2 ,

Ipf2 = (m - 2)2jV12 + (3m - 4)J2,

IRI2 = ICl2 +4(m - 2)IVj2 +4J2
•

Reeall the formula (1.6) for Q. Writing (Y, V) and (Y, 'R) for the Diriehlet and Robin
problems, we have:

6.3 Lemma. The interior terms oE 360(47r)m/2 a4 (f, Y, V) or oE 360(47r)m/2 a4 (f, Y, 1(,) in
tbe formula oE Tbeorem 6.1 or 6.2 are

Jf (21C12 - 2(m - 2)(m - 6)1V12+ (5m - 16)(m - 6)J2 + 6(m - 6)t.J)

=Jf(2 ICI 2 +2(m-6)Q-2(m-4)(m-6)1V12

+ 4(m - 4)(m - 6)J2 +4(m - 6)t.J). 0

In the last expression, we have used a highly linearly dependent list of loeal invanantsj
the terms that Burvive upon restrietion to dimension m = 4 are linearly independent. The
faetor of m - 6 in the terms that are not loeal eonformal invariants is expeetedj see [BG,
Lemma 3.1(e)]. Recalling the notation oi Tables 3.1 and 3.2, we have:

6.4 Lemma. Tbe boundary terms oE 360(47r)m/2 a4 (f, Y, V) in tbe fonnula oE Theorem
6.1 are

f ( {6{2m - 7) 1O(m - 4) 40 88 320}
f m _ 1 Xl - m _ 1 X2 - 4X3 + 12X4 - 4Xs + 21 X 6 - "7X7 +21Xs

15(m - 4) 180 60 )+ m _ 1 YI(f) +24Y2(f) +24Y3(f) - 7 Y4 (f) + "7Y7 (f) - 30Ys(!) .

(The invariants Ys(f) and Y6 (f) appear with coefficient 0.) D

We now change the basis of invariants to that oi Theorem 3.7, aod check that the
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(m =4)(6.2)

coefficients c and ;i vanish as asserted there. For this, note that in dimension 4,

[,4 = -iX 2 + X 3 - X 4 + X s ,

'cs = -~X6 +X 7 - X 8 ,

i 1(f) = (-Y4 + 3Y7 )(f),

i 2(f) = (-Yl - Y2 +Y3 - ~l'4 +3Ys)(f),

i 3 (f) = (jY2 - ~Y3 + %Y4 +2Y6 + Y8 )(f),

ql (f) = (Ya - 3Y6 )(f),

q2 (f) = (Y1 + 2Y2 - 4Ya)(f),

qa(f) = (3Y1 - 6Y2 +4Y4 )(f)·

We then change to the basis of (4.1) and compute the following.

6.5 Theorem. If ßlI = (411'")2 .360ßlI and similarly for Ai , U j , and Ck , tben for tbe problem
(Y, V) in dimension m = 4,

o

ß1 = 2,
- 20
Al = T'

11'1 = -20,

Ca = 8,

ß2 = ß3 = -8, ß4 = -4,

'x2 = 0, A3 = -30,
- 35 - 31
(12 = T , (13 = - 9' ,

-- ill
C4 - - 63 •

- 88
ßf:J =-7'

For the Robin problem,
m-2

S = -2(m _l)H.

The easiest way to compute is to find the difference between the Robin and Diri.chlet heat
invariants; this we do in dimension m = 4 only:

(6.3)

(411")2 . 360(a4(f, Y, n) - a4(f, Y, V» = f (n-~~H3 + 372 HILI 2

- 372 tr L3+ 40t.H} + flNfWH2 + 2741L12} - 40fiNNH - 60(~J)IN)

= f (n-~~ X a+ 372 X 7 - 372 X s} - 40Y2(f) - 40Y3(f)

+ s241sY4(f) + 274Y7(f) + 60Ys(f»)

Using (6.2), we write this in terms of the invariants [,V , ii(f), qj(f), Y3 (f), and Y4(f):

(411")2 . 360(a4(f, Y, n) - a4(f, Y, V» = f (3N1:-5 + ~el (f) + 60e3(f) + 40ql (f)

- 20q2(f) + 23° q3(f)+ ~i Y4(f»), m = 4.

This gives:
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6.6 Theorem. H ßv = (41r)2 .360ßv and similarly for Ai , (7j , and CI. , tben for tbe problem
(Y,1<.) in dimension m = 4,

ßI = 2,

:XI = 4,

UI = 20,

C3 = 8,

ß2 = ß3 = -8, ß( = -4,

X2 = 0, X3 = 30,
- 25 - 12.
(72 = -"'3' (73 = 9 '

- 8 0
C( = -9"

ßs = -8,

Apropo~ Theorems 5.2, 5.5,5.6, and 5.8, we remark that

(~,82 + 3<72 - 9<73 - !C3)(Y, V) = 48,

(tß2 + 3<72 - 9(73 - ~C3)(Y' 'R) = -72,

(-3:X2 - 3:X3 + 12u2 + 36&3 )(Y, V) = 106,

(-3:X2 - 3:Xa + 12i12 + 36(73)(Y, R) = -74,

(-3:X2 - :X3 + 6(72 - 18ü3 )(Y, V) = 162,

(-3:X2 - :X3 + 6i12 - 18i13 )(Y, 'R) = -138,

(-3:X2 - :X3 +36(73 +9C4)(Y, V) = -810/7,

(-3:X2 - :X3 +36(73 +9(4)(Y, 'R) = 78,

(6U2 - 9C4)(Y, V) = 642/7,

(6172 - 9(4)(Y, R) = -42,

(-3U2 - 9(73 + !(3)(Y, V) = (-3(72 - 9i13 + ~C3)(Y' 'R) = 8,

(tß2 + 3172 - 9173 - !ca)(Y, V) = 50,

(tß2 + 3&2 - 9&3 - !C3)(Y, 'R) = -70,

(-6:X2 + 6i12 + 18(3)(Y, V) = (-6X2 + 6172 +18u3)(Y, 'R) = 8.

By Corollaries 5.3 and 5.4 and equation (5.1), we have:

6.7 Corollary. H g[O] is tbe standard H oi metric and g[w] the standard B 4 metric, tben
a4(Y, V) = a4(Y, 'R) = -1/180. For.x = -1/180,

P,\(Y, V, g[w]) ( 17)/
log P,\(Y, V, g[O]) = - log 6 + TI' 360 < 0,

det(Yv)[w] 17
log det(Yv)[O] = -(4 log 2 + 2i" )/360 < 0,

P,\(Y,'R,g[w]) 1/
log P,\(Y, 'R, g[O]) = -(log 6 - "3) 360 < 0,

det(Y1l)[w] I
log det(Y

1l
)[O] = -(4 log 2 - "j )/360 < O.
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If g[O] is the standard C: metric and g[w] tbe standard A~ metric, s = eh, then a4(Y, V) =
a4(Y, 'R) = 0, and

10 Po(Y, V, g[w]) = 10 det(Y'D )[w] = h/360.
g Po(Y, 'D, g[O]) g det(Y'D )[0]

Proof. Aside from direct computation, what we need to verify is that the null spaces of
the problems vamsh on the spaces in question. But the lowest possible eigenvalue of either
problem on H4 or C~ is 1/6 times the (positive) constant scalar curvature of g[O]. 0

Branson, Chang, and Yang [Bey, Sec. 5] have shown that the scale invariant determi­
nant functional for Y on the conformal class of the round metric g[O] on 54 is minimized
exactly at g[O], and at the metrics h+g[O] gotten by pulling g[O] back under a confonnal dif­
feomorphism h of (54, g[O]). In light of this, Corollary 6.7 can be interpreted a.s saying that
passage from H 4 to B 4 has improved (Le. lowered) the scale-invariant determinant func­
tionals for both (Y, V) and (Y, "R.). Roughly speaking, round is "best" in the boundariless
case, but Hat is "better" when boundaries are allowed.

7. THE VALUE OF THE FUNCTIONAL DETERMINANT ON THE HEMISPHERE AND BALL

In this section, the index j will always run over the natural numbers N.
The Hurwitz zeta functions are

(a(05) = L(j +a)-", a > 0,
j

and the Riemann zeta function is (R(05) = (1(05). Note that

(7.1)
(d/da)(a(05) = -o5(a(05 +1),

(a(05) - (a+1(o5) = a-".

Consider the double zeta functions

j

fa(05) = L(2j +2a + l)[(j +a)(j +a +1)]-".
j

In analogy with (7.1), we have

(7.2)

(7.3)

(7.4)

(7.5)

(d/da)ha(05) = -sfa(s + 1),

(d/da)la(s) = (2 - 4s)ha(s) - sha(s + 1),

ha(s) - ha+1(s) = [a(a + 1)]-",

fa(05) - la+1(S) = (2a+ l)[a(a + 1)]-".

All these zeta functions have isolated simple poles. All identities below are valid in their
elementary form for large Re s, and for all s in the sense of analytic continuation. In
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particular, a quantity expressed as a SUffi or product of terms, some of which are singular
at a given value of s, might still be regular at that s.

The Riemann zeta function satisfies

(7.6) (R( -2m) = 0, (R(l - 2m) = (_I)m B m /2m (m E Z+); (R(O) = -t,
where the B m are the Bernoulli numbers: BI = 1/6, B'J = 1/30, B 3 = 1/42, Bol = 1/30,
B s = 5/66, ... (WW, 13.15]. Further (WW, 13.21],

(a(O) = t - a.

A generalization of a calculation in (W, Appendix C] gives, for the double zeta functions,

(_I)m(m!)2 m I; (m)
(7.7) h.(-m) = 2(2m + 1)2 + {;(-1) k (.+1(-2m + k), m E N.

(See the appendix to this paper for this calculation.) Differentiating using (7.2), we get

(7.8) 1.(1- m) = ~ ~(-1)k(7)(2m - k)(.+1(-2m + k + 1), mE Z+.

(H is tedious, but possible, to check the derivative of this formula against (7.3); the values
given in (7.6) are necessary for this.) In particular,

ha(O) = -a, ha(-1) = -1
1
8 + (a+l{ -2) - (a+l( -1),

/0(0) = ! - a2
, /a( -1) = 2(a+l( -3) - 3(a+l(-2) + (a+l( -1).

If a is a natural nlUllber in the above formulas,

by (7.1) and (7.6). (These formulas are actually good for general a > 0, and follow from
(8.2) below.)

Now consider s-derivatives, denoted by a prime. In analogy with

(~ (0) = log r(a) - t log 21r

(WW, 13.21], and again generalizing [W, Appendix Cl, we have:

(7.9)

h~(O) = 2(~+1(0) -loga,

h~(-l) = 2(~+1(-2) - (a2 +a) log a,

/~(O) = 4(~+1(-1) - t - (2a + l)loga,

/~(-1) = 4(~+1(-3) + 2(~+1(-1) - a(a + 1)(2a + 1) log a + 2
1
4.
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(Again, see the appendix to trus paper for the calculation.)
Vardi [V, Proposition 3.1] has calculated (H:;)'(O) for the functions

00 kd

H:;(s) = L, -klJ-(k-+-n-)lJ '
k=1

d,n E Z+.

These can clearly be related to our double zeta functions; for example,

hl = HJ, 11 = 2Hl + HJ, hl /2(S) = 4"H~(s) - HJ(s),

11/2(s) = 4lJ (H;(s) + H~(s)) - 2Hf(s) - HJ(s).

In fact, we shall only really be interested in haand Ja for a E !N, so by (7.4, 7.5), the H;;
with dEN, n E Z+ would be sufficient for our purposes. Furthermore, since

knowledge of the behavior of the H;; at s = 0 will give us knowledge of the behavior the
H;;, and thus the ha and Ja for a E !N, at all nonpositive integers. More specifically, let
drange through N, n through {1,2}, and a through !N. Hwe know H;;(O) and (H;;)'(O),
then we also know ha(-m), h~(-m), la( -m), I~(-m). Vardi shows:

7.1 Theorem [V]. Hd,n E Z+,

(H")'(O) = ~(k - n)d log k _ ~ (_n)d+l ~ r 1 +(' (-d) + (_n)d~ (d'\ (k(-r) .
d L...., 2 d + 1 ~ R L...., r) (-n)r

k=1 )=1 r.=O

In particular,

o

Dur fonnulas (based on Weisberger's method via (7.7, 7.8, 7.9)) check with Vardi's
where applicable.

An understanding of the double zeta functions is sufficient to compute the determinant
of the conformal Laplacian Y, with Dirichlet or Robin conditions, on the hemisphere 'H,m
in sm, the boundary of which is the equator sm-I. By standard theory of spherical
harmonics, Y takes the value

\ (. m-2) (, m)
A m ,):= J + 2 J +"'2 '

on the space Ern,) of spherical harmonics of degree j. Since

d· E N m + 2j - 1( . 2) ( , 1)1m m,) = m,) = (m _ I)! m +J - ... J + ,
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(r (s) = (m ~ I)! ~(m + 2j - 1){(m + j - 2) ... (j + In { (j + m ; 2) (j + ;)r'
m 2: 3.

Noting that the factors in both ).,m,j and Nm,j exhibit a certain symmetry about the value
j + m;-l, we can perform the following trick. If m is even, define a polynomial Bm(x) and
integers bo,m by

m;4 m;2

Bm(x) = TI (x - p(p + 1)) = L ba,m xa .
p=O a=l

Then

(7.10)
~

sm 1 '"(y (05) = (m _ 1)! ~ ba ,m/m;2 (05 - a), m even.

Recall that this really expresses (~m in terms of 11 , since

mr
I~(s) = /1 (05) - L (2q + l){q(q + 1)} -6.

q=l

In fact, the situation is even simpler than this: we can actually replace l(m-2)/2 by /1 in
(7.10), since

~

L ba,m{q(q + 1)}0 = Bm(q(q + 1)) = 0
0=1

for q = 1,2, ... , m;-4 . The result is:

(7.11)

m-2

sm 1 ~
(y (s) = (m _ I)! ~ b",m!J(s - a), m even.

The case m = 2 is exceptional in that the zero eigenvalue must be thrown out before the
construction of the zeta function; the result is (~2 (05) = /1 (05). Special cases of (7.11) are

If m is odd, define a polynomial Cm ( x) and rational numbers Ca, m by

~ m;l

Cm(x) = TI (x - (p + !)(p - !)) = L co,m xo .
p=O a=O
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m-l

Sm 2 ~
(y U > :); 0 Cu mhm;'(S m odd.

This is a formula in tenns of h1 / 2 , since

~

hET1 (s) = h~(s) - L {(q + k)(q - k)}-6.
q=l

In fact, since
m-l
-2-

L ca,m{(q + !)(q - t)}O = Cm((q + t){q - t)) = 0
0=0

for q = 1,2, ... , m;-3, we may simply replace h~ by h1 / 2 :

m-l

sm 2 ~
(y (S) = (m -1)1 0 Ca ,mh1(S - a), m odd.

As special cases, we get

(:+2. (s) = h1(s - 1) + th1(s),
4

(~:12 (s) = 1
1
2 { ht (s - 2) - th! (s - 1) - }36 h 1- (s)}.

4

Now consider the conformally covariant Dirichlet and Robin problems on the hemi­
sphere 'Hm with its standard metric g[O]. Since the equator is totally geodesie, the mean
curvature vanishes, so that the Robin problem is just the standard Neumann problem. The
spectral resolutions of these problems are as follows: Dirichlet eigenfunctions are spherical
harmomcs on sm which are odd across the equator, while Robin eigenfunctiollS are those
which are even. A standard counting argument from the theory of spherical hannonics
shows that the space Ej contributes multiplicities Nm,i,R and Nm,i,D to the Robin and
Dirichlet spectra respectively, where

N. = "N =(m+j-1) ... (j+1)
m,J,R L.-t m-1,); (m _ 1)1

o<k~i .
i-l even

" {m+j-2) ... j
Nm,i,D = L.-t Nm-1,k = (m -I)! .

O~);~i
i-k odd

l.From a representation-theoretic viewpoint, this can be derived from the branching rule
describing the decomposition of SO(m )-modules under restrietion to a standard (embedded
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by block stabilization) SO(m -1) subgroup, together with Weyl's dimension formula. See,
e.g., [Br3] for details of both the branching rule and dimension formula. Calculating as
above for m even, we get

m-2

(~~(s) = (m ~ 1)' ~ ba,mH!J(s - a) ± m;! h!(s - an, m even,

where ({f,~ is the zeta function of the Robin problem, and ({f,: is tbe zeta. function of the
Dirichlet problem. Ir m is odd, we define

m.::.! ~

- () Gm(x) rr2 ( ( 1)( 1)) '" - fJGm X = I = X - P+ 2' P - 2' = L CfJ,m X ,

X + 4 p=l {J=O

and compute tbat

r~(s) = (~)! {; Ca ht(s - a) ± m; 1 ; Z , L s - ß) }, m odd.

For example, on H2, the zeta function of the Robin problem is !(/1 (s) +h1(s )), as opposed
to !(II(S) - hI (s)) for the Dirichlet problem. On H\ the Robin zeta function is l2 /I (s­
1) + ihI(S -1), and the Dirichlet zeta function is 1

1
2 11 (s -1) - ihI(S -1). On H 3

, the
Robin zeta function is

!{i hl/2(S) + h1/ 2(S -1) + !/l/2(s)},

and the Dirichlet zeta function is

ttl hl/2{S) + h1/2(S - 1) - t/l/2(s)},
In particular:

7.2 Theorem. On H 2 , H 3
, and H 4 witb their standard metries,

«(f,~)'(O) = 2(k( -1) - t ± (k(O),

«(~~)'(O) = -i(k(-2) + t log 2 ± (-t(k{-1) - k- 2
1
4 log 2),

(e~~)'(O) = lek(-3) + tek(-1) + 2~8 ± lek(-2).

Proof. Besides the above computations, we use (7.9); the fact that (2 (s) = (R(s) - 1, so
that (~(s) = (k(s)j and the identity

(a+ 1/2 ( s) = 2.!l (2a (s) - (a (.9 )

in the case a = 1. 0

Theorem 7.2 gives the value of -log det Y± on H 4
• By virtue of Corollary 6.7, we can

also give the value of these functionals on B4:

7.3 Corollary. On B 4 with its standard metric,

-log det Y- = kek( -3) + kek(-1) + 2~8 - t(k( -2) + (4log 2 + ~i )/360,

-log det Y+ = lek(-3) + kek( -1) + 2~8 + lek(-2) + (4log 2 - l )/360. 0
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8. ApPENDIX

a. Local invariants. Here, for eRBe of referenee, we reeord the fonnulas from Sees. 1 and
3 which define the loeal invariants used in Dur eomputations. We refer to the beginnings of
those seetions for conventions on the use of the invariant index notation. In particular, we
shall not bother to use raised indices herei when an index oeeurs twiee in an expression, one
copy should be raised before summing. Dur sign eonventions for the lliemann eurvature
tensor and Laplaeian are

Rl212 > 0 on standard spheres,

ß = -(d/dx? on R l
.

The basic curvature and fundamental form quantities are

Pij = Rkikj ,

Lab = -tN gab,

Gab = RaNbN ,

Tab = Rcacb.

T = Pii,

H = Leu,

F = G aa ,

Note that Taa = r-2F. m always denotes the dimension of (the interior of) the underlyjng
manifold (M, 8M). The quantities

J = T/2(m - 1),

V = (p - Jg)/(m - 2),

Cijkl = Rijkl + Vjk9il - V j l9ik +Vi,9jk - Vik9jl .

are sometimes better adapted to conformal variational computations than are T, p, R. We
put

and similarly for other tensor quantities. The Paneitz quantity is

and the Paneitz operator is

m-4
P=ß2 +D{(m-2)J-4V·}d+ 2 Q,

where d is the exterior derivative, fJ is the formal adjoint of d, and V· ia the realization of
V as an endomorphism of the eotangent bundle T* M.

Indices after a bar indieate eovariant differentiations with respeet to the Levi-Civita
eonneetion of 9, and indices after a colon indieate eovariant diffentiations with respeet to
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the Levi-Civita connection of the boundary metric induced by g. Let f be an indeterminate
element of COO(M). We adopt the following Don-standard abbreviations:

Abbreviation Invariant Index expression

Xl NT RijijlN

X2 TH RijijLaa

X 3 FH RaNaNLbb

X4 (G,L) RaNbNLab

X s (T,L) RcacbLa&

X 6 H 3 LaaLbbLcc

X7 HILI 2 LaaLbcLbc

Xs tr L3 LabLbcLca

YI (/) (N/)T flNRijij

Y2(f) (N2f)H flNNL aa

Y3 (f) (-lif)H f:aaLbb

Y4(f) (Nf)H2 flNLaaLbb

Ys(!) (Nf)F flNRaNaN

Y6(!) (~~f,L) f:abLab

Y7(f) (Nf)ILI2 flNLabLab

Ys(!) N(-ß)f fliiN

ZI(/,f) (N!)N2! fIN/INN

Z2(f, f) (N f)( -6)f flN laa

Z3(f, f) (Nf)2 H flNflNL aa

Z4(f, f) Idfl 2H f:af:aLbb

Zs(!, f) (df ® df,L) laf:bLab

Z6(f, f) (df, J(N f)) f:a(fIN ):a

EI(f,f, f) (Nf)ldfI2 /IN f:ala

E2(f,f, f) (N/)3 fIN/IN/IN

Table 8.1
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S=-112X1+iX2-X4+!X6-lXs, m=4,

S(w) = lY1(W) +Y3(W) - Ys(W) - Y6 (W) - tyS(W), m = 4,

1
~4 = - X 2 +X 3 - (m - 3)X4 +Xs ,

rn-l
2 rn-l

~~= 3(m_1)X6 +X7 - 3 Xs ,

f 1(w) = -Y4(w) + (m - 1)Y7 (w),
1

f:z(w) = -Y1(W) - (m - 3)Y2 (w) + Y3(w) - m _ 1Y4 (w) + (m - l)Y~(w),

l ( ) _ m
2

- 3m - 2 Y; ( ) _ 2m Y; ( ) _ m
2

- 5m + 21": ( )
3 W - rn _ 1 2 W m _ 1 3 W (m _ 1)2 4. W

- (m - 4)Ys(w) + (m - 2)Y6 (w) +Ys(w),

A=X6 -(rn-1)2Xs ,

Q1(W) = Y3(W) - (m - 1)Y6 (w),

Q2(W) = (m - 3)Y1 (w) + (m - 3)(m - 2)Y2(w) - 2(m - 2)Y3 (w),

Q3(W) = (m - 1)Y1(w) - (m - l)(m - 2)Y2(W) + 2(m - 2)Y4 (w).
j

We note the identity

and the Ioeal expression

m=4,

for the Euler characteristic in dimension four.

b. Explicit zeta functions. AB in Sec. 7, we adopt the convention that the index j
always runs over N. a will always be a positive real number. We note at the outset the
integral formulas

(8.1) 1 100

e-
at

(a(8) = r( ) t"-l -t dt
8 0 1 - e

[WW, 12.2, 13.12), as weH as

(8.2) ( ( 1) - 1 2 1 1- - --a + -a--a 2 2 12 , (a( -2) = -ta(a - 1)(2a - 1).

[WW, 13.14 and 7.2).
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Consider the zeta function

lo(s) = L(2j + 2a + l)[(j + a)(j + a + 1)]-"
}

= L {(j + a)-"(j + a + 1)1-" + (j + a)I-"(j +a + 1)-"}.
j

Applying the Mellin transform, we get

/o(s) = 1 [00 [00(uv),,-2(u+v)Le-(j+O)(U+V)- t7dudv.
r(s)r(s-1)Jo Jo .

}

65

Switching coordinates to t = u +v, 8 = u/t (so that u = 8t, v = (1 - 8)t), and noting that
du 1\ dv = td8 1\ dt, we get

1 11 (100
e-(1-8)t-ot)

/o(s) = () ( ) [8(1 - 8)]"-2 t2
"-2 -t dt d8.

rsrs-1 0 0 1-e

We expand eSt in apower series, perform the 8 integration, and use (8.1):

1 00 1
fa(s) = r(s)r(s -1) {; klCk(s)Ia,k(s) ,

( ) . = [I [8(1 _ 8)]"-28kd8 = r(s - l)r(s + k - 1) k N
Ck S. Jo r(2s + k _ 2)' E,

[CO e-(a+l)t
[a,keS) : = Jo t2"-2+k 1 _ e- t dt = r(2s - 1 + k)(a+l(2s - 1 + k).

Thus

d ()
._ (2s+k-2)r(s+k-1)

k s .- k! .

(7.8) is immediate from this. The only singularity of (a+l(Z) is a simple pole with residue
1 at z = 1 [WW, 13.13]; in calculating f~(O), we encounter this pole at the k = 2 term; in
calculating f~(-1), at the k = 4 term. For the s = 0 calculation, we note that

do(s) = 2r(s), dI(s) = (2s -l)r(s),
k-2

dk(O) = k(k _ 1) , k ;::: 3.

This allows us to write
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~ ((k ~ I)! - ~!) t k = tee' -1- t) - 2(e' -1- t - !t2
) = (t - 2)(e' -1) + 2t.

Thus

(Note that in the first line directly above, the integral converges at t = 0, even though the
integrals of the individual terms do not.) This gives

f~ (0) = 4(~+ 1( -1) - t - (2a + 1) log a,

as desired for (7.9). To compute f~ (-1), note that

dJ(s) = ..'1(..'1 + 1)(2..'1 + 1)r(s)/6, d4 (s) = s(s + 1)2(s + 2)r(s)/12,
k-4

dk (-1) = k(k-1)(k-2)' k~5,

so
f~( -1) = 4(~+1( -3) - 6(~(-2) + 2(~( -1) +2(0+1( -2)

- 2(0+1 (-1) + k(0+1(0) - 2
1
4 - I~ ,

where
00 k - 4

I s : = (; k(k _ l)(k _ 2) (a+l(k - 3)

00 (1 6 12) {OO e-(a+l)t

= {; (k - 2)! - (k - I)! + k! Jot k -4 1 _ e_, dt.

But

~ (1 6 12) k (2 ) t
~ (k-2)! - (k-1)! +kT t = t -6t+12 (e -1)-12t,
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[~ ( e-(a+1)t)
I 5 = 10 (t-2 - 6t-3 + 12t-4)e-at - 12t-3 1 _ e-t dt

= .!!.-I {_1_ [~e,-2e-atdt __6_ [00 t"-3 e- atdt +~ f~ t"-4 e- atdt
ds ,,=0 r(s) 10 r(8) 10 r(s) 10

12 100 e-(a+1)t}
--- t"-3 dt

r(s) 0 1-e- t

d I { a
1

-... 6a
2
-" 12a

3
-.. 12 }= - -- - + - (a+1 s - 2

ds ...=0 s -1 (s - 1)(8 - 2) (s - 1)(8 - 2)(8 - 3) (8 -1)(8 - 2) ( )

= a(a + 1)(2a + 1) log a - a - !a2
- 131a3

- 6(~+1( -2) - 9(0+1(-2).

This gives

f~ (-1) = 4(~+1 (-3) + 2(~+1 (-1) + 11(a+1(-2) - 2(a+1( -1)

+ 131 a 3 + !a2 + ~a - k- a(a + 1)(2a + 1)log a.

By (8.2),

f~( -1) = 4(~+1( -3) + 2(~+1 (-1) - a(a + 1)(2a + 1) loga + -h,
as desired for (7.9).

Now consider

ho(s) = L[(j + a)(j + a + 1)]-'"
J

=~ [00 [00 (UV)"-l L e-(j+a)(u+v)-vdu dv
r(8) 10 10 .

J

=~ {I [8(1 _ 8)]'-1 ( (OO t2'-le9te-(a+~tt dt) d8
r(s) 10 Jo 1-e

1 00
= r(s)2 L q(s + l)Ia ,k(s + t)

k=O
1 00

= r(s) {; ek(s )(a+1 (2s + k),

where
ek(S) := r(s + k)/k!.

(7.7) is immediate from this; the first term on the right in (7.7) is produced by the singu­
larity of (0+1 at s = 1. In calculating h~(O), we encounter the singularity of (a+1 at the
k = 1 term; in calculating h~ (-1), at the k = 3 term.
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For the 8 = 0 calculation, note that

eO(8) = r(s),

ek(O) = 1/k,

el(S)=8r(8),

k ~ 2.

Thus

where a(a) is defined by
1

(a+l(1 + 8) = - + a(a) + 0(8),
8

and
00 1 00 1 100 -(a+l)t

k-l e
I 2 : = L k(a+l(k) = L k! t 1 _ e-t dt

k=2 k=2 0

1
00 e-(a+l)t

= (e t
- 1 - t)t- 1

-t dt
o 1- e

100 ( e-(a+l)t)
= t-1 e-at - dt

o 1 - e- t

d I {I 100 1100

e-(a+l)t }= - -- t',-l e- atdt - - t ß dt
d8 ß=O r(8) 0 r(8) 0 1 - e- t

dl _= d8 ß=O {a ß - S(a+l(S + I)}

= - log a - a(a).

This gives
h~(O) = 2(~+I(O) -loga,

as desired for (7.9).
For the 8 = -1 calculation, note that .

e2(s) = ts(s + 1)r(s),

ek(-1) = 1/k(k - 1),

Thus

e3(s) = ks(s + 1)(s + 2)r(s),

k ~ 4.

where
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by (8.2),

aß desired for (7.9).

h~( -1) = 2(~+1( -2) - (a2 + a) log a,
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