،TERMINATION OF SUCCESSIVE BLOWING=UPS

ALONG EXCEPTIONAL CURVES IN THREEFOLDS

Noboru NAKAYAMA

Max-Planck-Institut

für Mathematik

Gottfried-Claren-Str. 26
5300 Bonn 3

Department of Math. Faculty of Science Univ. of Tokyo Hongo Tokyo 113 Japan

Termination of successive blowing-ups along exceptional curves in threefolds

Noboru NAKAYAMA

Introduction. Let X be a three-dimensional complex manifold, $C \subseteq X \quad$ a closed compact smooth curve and let $\mu_{1}: X_{1} \longrightarrow X$ be the blowing-up of X along C Then the exceptional divisor $E_{1}=\mu_{1}^{-1}(C)$ is a ruled surface over C. There exist at most one section C_{1} of the ruling $E_{1} \longrightarrow C$ with $\left(C_{1}\right)_{E_{1}}^{2}<0$. We call this section by a negative section. If E_{1} has a negative section C_{1}, then let us consider the blowing-up $\mu_{2}: X_{2} \longrightarrow X_{1}$ along C_{1}. In this way, we have a sequence of blowing-ups

$$
\left(B_{k}\right): x_{k} \xrightarrow{\mu_{k}} x_{k-1} \xrightarrow{\mu_{k-1}} \ldots x_{1} \xrightarrow{\mu_{1}} x
$$

the exceptional ruled surfaces E_{i} on $X_{i}(1 \leq i \leqq k)$ and the negative sections C_{i} on $E_{i}(1 \leq i \leqq k)$ such that the μ_{j}
 for $1 \leq j \leq k$. The purpose of this note is to prove that the normal bundle $\mathrm{N}_{\mathrm{C}_{\mathrm{k}}} / \mathrm{X}_{\mathrm{k}}$ is semi-stable for some k , if $\mathrm{C} \subseteq \mathrm{X}$ can be contracted to a point. In the case $C \cong \mathbb{P}^{1}$ and $N_{C / X} \cong O \oplus O(-2), M . \operatorname{Reid}[5]$ has proved this and constructed the flip at C. Recently T. Ando [1] also treated this problem.

The author is grateful to the Max-Planck-Institut fir Mathematik at Bonn for their hospitality.
§ 1. Preliminaries

Let E be a locally free sheaf of rank two on a smooth compact curve C .

Lemma (1.1). (1) If E is a semi-stable vector bundle, then there exist no curves Γ on the ruled surface $\mathbb{P}_{C}(E)$ with $r^{2}<0$.
(2) If E is unstable, then there exists a unique (up to isomorphisms) exact sequence

$$
0 \longrightarrow L \longrightarrow E \longrightarrow M \longrightarrow 0,
$$

which satisfies the following conditions:
(i) L and M are invertible sheaves on C,
(ii) $\quad \operatorname{deg}_{C} L>\operatorname{deg}_{C} M$.

Proof. (1). Let $O(1)$ be the tautological line bundle on $\mathbb{P}_{C}(E)$ with respect to the E. Then E is semi-stable if and only if the line bundle $0(2) \otimes \pi^{*}(\operatorname{det} E)^{-1}$ is nef on $\mathbb{P}_{C}(E)$, where π is the ruling $\mathbb{P}_{C}(E) \longrightarrow C \cdot(1)$ is an easy consequence of this fact.
(2). Since E is unstable, there exists an exact
sequence satisfying (i) and (ii). Assume that there is another sequence

$$
0 \longrightarrow L^{\prime} \longrightarrow E \longrightarrow M^{\prime} \longrightarrow 0
$$

satisfying (i) and (ii). Since $\operatorname{deg} M^{\prime}<\operatorname{deg}(\operatorname{det} E)$, the homomorphism $L \longrightarrow E \longrightarrow M^{\prime}$ must be zero. Therefore $L^{\prime} \simeq L$ and $M^{\prime} \simeq M$.
Q.E.D.

Definition (1.2). When E is unstable, we call the exact sequence

$$
0 \longrightarrow L \longrightarrow E \longrightarrow M \longrightarrow 0
$$

satisfying the above conditions (i) and (ii), the characteristic exact sequence of E. Here we also define $d^{+}(E):=\operatorname{deg}_{C} L$, $d^{-}(E):=\operatorname{deg}_{C} M$, and $\delta(E):=d^{+}(E)-d^{-}(E)$. When E is the conormal bundle $N_{C / X}$ of a curve $C \subseteq X$ as in the introduction, we simply denote $d^{ \pm}(E)$ and $\delta(E)$ by $d^{ \pm}(C)$ and $\delta(C)$, respectively.

Definition (1.3). A compact smooth curve C in a smooth threefold X is called an exceptional curve, if there exists a proper bimeromorphic morphism $f: X \longrightarrow Z$ such that $f(C)$ is a point and that f is isomorphic outside C.

```
We have the following criterion.
```

smooth threefold. Then C, is an exceptional curve if and only if there exists a coherent 0_{X} - ideal J on a neighborhood of C satisfying the following condition
(E) : $\operatorname{dim}\left(\operatorname{Supp}\left(O_{X} / J\right)\right)=1, \quad \operatorname{Supp}\left(O_{X} / J\right) x C$,
and $\left(J \otimes \rho_{X} C\right) /$ torsion is an ample vector bundle on C.

Proof. First we assume that C is an exceptional curve. Then there exist two effective Cartier divisors S_{1} and S_{2} on a neighborhood of C such that $\left(S_{1} \cdot C\right)<0,\left(S_{2} \cdot C\right)<0$, and $\operatorname{dim}\left(S_{1} \cap S_{2}\right)=1$. Let J be the ideal $\dot{0}_{X}\left(-s_{1}\right)+o_{X}\left(-s_{2}\right)$. Then we have

$$
J \otimes 0_{C} \cong\left(0_{C} \otimes 0_{X}\left(-s_{1}\right)\right) \oplus\left(0_{C} \otimes o_{X}\left(-s_{2}\right)\right)
$$

Thus J satisfies the condition (E) .

Next we assume that there is an O_{X}-ideal J satisfying the condition (E) . By considering the primary decomposition of J, we have an O_{X}-ideal $J_{0} \supseteq J$ such that $\operatorname{Supp}\left(0_{X} / J_{0}\right)=C$ and Supp $\left(J_{0} / J\right) \neq C$. Hence there is an injection ($J \otimes O_{C} /$ torsion $) \longrightarrow$ $\left(J_{0} \otimes O_{C}\right.$ /torsion) , where $\operatorname{rank}\left(J \otimes O_{C} /\right.$ torsion $)=\operatorname{rank}\left(J_{0} \otimes O_{C} /\right.$ torsion $)$. Therefore J_{0} also satisfies the condition (E). Let $\mu: V \rightarrow X$ be the blowing-up by the ideal J_{0}, i.e., $V:=\underline{\operatorname{Projan}}_{\mathrm{X}}^{\mathrm{d}}\left(\underset{\mathrm{d} \geq 0}{\dot{\omega}} \mathrm{~J}_{0}^{\mathrm{d}}\right)$. we have an exceptional Cartier divisor $E:=\underline{\text { Projan }} x\left(\underset{d \geq 0}{\oplus} J_{0}^{d} / J_{0}^{d+1}\right)$. Let W be a component of E. If $\mu(W)$ is a point, then $O_{W} \otimes O_{V}(-E)$ is ample, since $O_{V}(-E)$ is μ-ample. If $\mu(W)$ is not a point, then $\mu(W)=C$ and W is also
a component of $\frac{\operatorname{Proj}}{C}$ ($\underset{d \geq 0}{\oplus} J_{0}^{d} \otimes O_{C} /$ torsion $)$. Since $\left(J_{0} \otimes 0_{C} /\right.$ torsion $)$ is an ample vector bundle, $O_{W} \otimes O_{V}(-E)$ is also ample. Therefore $O_{E}(-E)$ is an ample invertible sheaf. Then by the contraction criterion (cf. [2], [3]), we have a morphism $v: V \longrightarrow z$ such that $v(E)$ is a point and v is an isomorphism outside E . Therefore we have the contraction $\mathrm{f}: \mathrm{X} \longrightarrow \mathrm{Z}$ of C.
Q.E.D.

Lemma (1.5). Let $C \subseteq X$ be an exceptional curve.
(1) If the conormal bundle $N_{C / X}^{V} \cong I_{C} / I_{C}^{2}$ is semi-stable, then I_{C} / I_{C}^{2} is an ample vector bundle.
(2) If I_{C} / I_{C}^{2} is unstable, then $d^{+}(C)>0$.

Proof. Take an ideal J satisfying (E) and the maximal integer k such that $J \subseteq I_{C}^{k}$. Then we have an injection

$$
J / J \cap I_{C}^{k+1} \longleftrightarrow I_{C}^{k} / I_{C}^{k+1} \simeq \operatorname{Sy}^{k}{ }^{k}\left(I_{C} / I_{C}^{2}\right)
$$

By the condition (E), $J / J \cap I_{C}^{k+1}$ is an ample vector bundle. Therefore we have proved (1) and (2). Q.E.D.

Let $C \subseteq x$ be ansexceptional. curve such that I_{C} / I_{C}^{2} is unstable. Let us consider the blowing-up
$\mu_{1}: X_{1} \longrightarrow \mathrm{X}, \quad \mathrm{E}_{1}=\mu_{1}^{-1}(\mathrm{C})$, and the negative section C_{1} corresponding to the characteristic exact sequence of $\mathrm{I}_{\mathrm{C}} / \mathrm{I}_{\mathrm{C}}^{2}$.

Lemma (1.6). $\quad C_{1} \subseteq \mathrm{X}_{1}$ is also anexceptional curve. Proof. Let $0 \rightarrow L \longrightarrow I_{C} / I_{C}^{2} \longrightarrow M \longrightarrow 0$ be the characteristic exact sequence. Assume that I_{C} / I_{C}^{2} is ample. Then from the natural exact sequence

$$
\begin{gathered}
0 \rightarrow 0_{C_{1}} \otimes O_{X_{1}}\left(-E_{1}\right) \longrightarrow I_{C_{1}} / I_{C_{1}}^{2} \longrightarrow 0_{C_{1}} \otimes o_{E_{1}}\left(-C_{1}\right) \longrightarrow 0, \\
M \\
M
\end{gathered}
$$

and the condition $\operatorname{deg} L>\operatorname{deg} M>0$, we see that $I_{C_{1}} / I_{C_{1}}^{2}$ is also ample. Next assume that I_{C} / I_{C}^{2} is not ample. Then $\operatorname{deg} M \leq 0$. Take an 0_{X} - ideal J satisfying the condition (E) for $\mathrm{C} \longleftrightarrow \mathrm{X}$. Let us consider the $0_{\mathrm{X}_{1}}$ - ideal $J^{\prime}:=$ Image $\left(\mu_{1}^{*} J \longrightarrow \mathcal{O}_{1}\right)$. Since $J \subseteq I_{C_{1}}$, we have $J^{\prime} \subseteq O_{X_{1}}\left(-E_{1}\right)$. Take the maximal integer ℓ such that $J^{\prime} \subseteq O_{X_{1}}\left(-\ell E_{1}\right)$ and let $J_{1}:=J^{\prime} \otimes \partial_{X_{1}}\left(\ell E_{1}\right) \leftrightarrow O_{X_{1}}$. We shall prove that the J_{1} satisfies the condition (E) for $C_{1} \longleftrightarrow X_{1}$. Since $\left(J \otimes O_{C}\right.$ /torsion) is ample on C, ($J^{\prime} \otimes O_{C_{1}}$ /torsion) is also ample on C_{1}. Now we have a natural
homomorphism

$$
J^{\prime} \otimes o_{C_{1}} \longrightarrow o_{X_{1}}\left(-\ell E_{1}\right) \otimes o_{C_{1}} \otimes o_{C_{1}} \cong M^{\otimes \ell} .
$$

Since deg $M \leq 0$, this homomorphism must be zero. Therefore $J_{1} \subseteq I_{C_{1}}$. On the other hand, $\left(J_{1} \otimes O_{C_{1}} /\right.$ torsion $)$ is ample, because

$$
\begin{aligned}
J_{1} \otimes O_{C_{1}} & \cong\left(J^{\prime} \otimes O_{C_{1}}\right) \otimes\left(O_{X_{1}}\left(\ell E_{1}\right) \otimes O_{C_{1}}\right) \\
& \cong\left(J^{\prime} \otimes O_{C_{1}}\right) \otimes M^{\otimes(-\ell)} .
\end{aligned}
$$

Therefore J_{1} satisfies the condition (E). Q.E.D.

Lemma (1.7.). Let $C \subseteq x$ be an exceptional curve and let J be an O_{X} - ideal satisfying the condition (E) for $C \subseteq X$. Then it is impossible to construct an infinite descending filtration $I^{(k)}(k \geqq 0)$ of the defining ideal I_{C} which satisfies the following two conditions (α) and (β) :
(α) $\quad I^{(k)}$ is a coherent 0_{X} - ideal for all $k \geqq 0$ and $J \not \ddagger_{k \geqq 0} I^{(k)}$,
(B) $\quad I^{(k)} / I^{(k+1)}$ is an O_{C} - invertible sheaf and not ample for all $k \geq 0$.

Proof. By (α), we can take the maximal integer k such that $J \subseteq I^{(k)}$. Then we have an injection $J / J \cap I^{(k+1)} \rightarrow I^{(k)} / I^{(k+1)}$. Since $\left(J \otimes O_{C}\right.$ /torsion) is ample, $J / J \cap I^{(k+1)}$ is also ample. This contradicts to (β) .
Q.E.D.

§ 2. Termination

Let $C \subseteq X$ be an exceptional curve such that I_{C} / I_{C}^{2} is unstable. Then we have the characteristic exact sequence:

$$
\begin{equation*}
0 \longrightarrow L \longrightarrow I_{C} / I_{C}^{2} \longrightarrow M \longrightarrow 0 \tag{e.1}
\end{equation*}
$$

Let us consider $\mu_{1}: X_{1} \rightarrow X$ of $\left(B_{k}\right), E_{1}$, and C_{1} (see the introduction). Then we have an exact sequence:
$0 \rightarrow O_{C_{1}} \otimes O_{X_{1}}\left(-E_{1}\right) \rightarrow I_{C_{1}} / I_{C_{1}}^{2} \rightarrow O_{C_{1}} \otimes O_{E_{1}}\left(-C_{1}\right) \longrightarrow 0 \quad$ (e.2).
a
2
M
$L \otimes M^{-1}$

Assume that $I_{C_{1}} / I_{C_{1}}^{2}$ is also unstable. Then we have the characteristic exact sequence

$$
\begin{equation*}
0 \rightarrow L_{1} \longrightarrow I_{C_{1}} / I_{C_{1}}^{2} \longrightarrow M_{1} \longrightarrow 0 \tag{e.3}
\end{equation*}
$$

The following lemma is easily proved.

Lemma (2.1). (1) If $\operatorname{deg} L<2 \operatorname{deg} M$, then (e.2) is isomorphic to (e.3).
(2) If $\operatorname{deg} L \geqq 2 \operatorname{deg} M$, then $\operatorname{deg} M \leq r \operatorname{deg} M_{1}$ and

```
deg L}\mp@subsup{L}{1}{}\leq\operatorname{deg}L-\operatorname{deg}M.\mathrm{ Here }\operatorname{deg}M=\operatorname{deg}\mp@subsup{M}{1}{
(or equivalently }\operatorname{deg}\mp@subsup{L}{1}{}=\operatorname{deg}L-\operatorname{deg}M\mathrm{ ) , if
and only if (e.2) is split.
```

Definition (2.2). Let $C \subseteq X$ be an.exceptional curve. C is called of type S, if I_{C} / I_{C}^{2} is a semi-stable vector bundle. C is called of type P (resp. type N), if I_{C} / I_{C}^{2} is unstable and ample (resp. not ample). C is called of type I , if there exist two prime divisors S_{1} and S_{2} on a neighborhood of C such that C is just the scheme-theoretic intersection $S_{1} \cap S_{2}$.

Lemma (2.3). If C is of type P, then one of the following conditions are satisfied:
(i) C_{1} is of type S,
(ii) C_{1} is of type P and C_{2} is of type I,
(iii) C_{1} is of type P and $0<\delta\left(C_{1}\right)<\delta(C)$.

Proof. Assume that C_{1} is not of type S. Then by (e.2), C_{1} is of type P. If $d^{+}(C)<2 d^{-}(C)$, then by Lemma (2.1) -- (1), C_{2} is just the intersection of E_{2} and the proper transform E_{1}^{\prime} of E_{1} on X_{2}. Therefore the condition (ii) is satisfied. If $d^{+}(C) \geq 2 d^{-}(C)$, then by Lemma $(2,1)-(2)$, we have

$$
d^{-}(C) \leqq d^{-}\left(C_{1}\right)<d^{+}\left(C_{1}\right) \leq \delta(C)<d^{+}(C) .
$$

Therefore the condition (iii) is satisfied.
Q.E.D.

Proposition (2.4). If C is of type P and of type I, then there is a positive integer k such that C_{k} is of type S.

Proof. Let S_{1} and S_{2} be prime divisors with $S_{1} \cap S_{2}=C$. Then S_{1} and S_{2} are smooth surfaces near C, and $I_{C} / I_{C}^{2} \cong O_{C}\left(-S_{1}\right) \oplus O_{C}\left(-S_{2}\right)$.

(Fig 1)

Assume that $\left(S_{1} \cdot C\right)>\left(S_{2} \cdot C\right)$. Then we have
$\mathrm{d}^{+}(\mathrm{C})=-\left(\mathrm{S}_{2} \cdot \mathrm{C}\right)=-(\mathrm{C})_{\mathrm{S}_{1}}^{2}>\mathrm{d}^{-}(\mathrm{C})=-\left(\mathrm{S}_{1} \cdot \mathrm{C}\right)=-(\mathrm{C})_{\mathrm{S}_{2}}^{2}$. Let ús consider the $\mu_{1}: X_{1} \longrightarrow X$ and let S_{i}^{\prime} be the proper transform of S_{i} on X_{1} for $i=1,2$. Then C_{1} is just the complete intersection $\mathrm{S}_{2}^{\prime} \cap \mathrm{E}_{1}$, and $I_{C_{1}} / I_{C_{1}}^{2} \cong O_{C_{1}}\left(-E_{1}\right) \oplus O_{C_{1}}\left(-S_{2}^{\prime}\right)$.

(Fig. 2)

Here we have

$$
\begin{aligned}
& d^{+}\left(C_{1}\right)=\max \left(\delta(C), d^{-}(C)\right), \\
& d^{-}\left(C_{1}\right)=\min \left(\delta(C), d^{-}(C)\right) .
\end{aligned}
$$

Therefore C_{k} is of type S for some k. Q.E.D.

Lemma (2.5). If C is of type N, then one of the following conditions are satisfied:
(i) C_{1} is of type S,
(ii) C_{1} is of type P,
(iii) C_{1} is of type N and $O Z d^{-}\left(C_{1}\right)>d^{-}(C)$,
(iv) (e.2) is split.

Proof. Assume that C_{1} is not of type S. Since C is of type N, we have $d^{-}(C) \leq 0$. Therefore $d^{+}(C)>2 d^{-}(C)$ by Lemma (1.5) - (2). Hence by Lemma $(2,1)$ - (2), we have $d^{-}(C) \leq d^{-}\left(C_{1}\right)$. Here the equality holds if and only if (e.2) is split.
Q.E.D.

Proposition (2.6). There exist no pseudo-exceptional curves $C \subseteq x$ of type N such that C_{k} satisfies the condition (2.5) - (iv) for all k .

Proof. Assume the contrary. Let D_{k} be the effective divisor:

$$
E_{k}+\mu_{k}^{*} E_{k-1}+\mu_{k}^{\star} \mu_{k-1}^{*} E_{k-2}+\ldots+\mu_{k}^{\star} \ldots \mu_{2}^{\star} E_{1}
$$

on X_{k}. Then we have

$$
\mathrm{K}_{\mathrm{X}_{\mathrm{k}}}=\mu_{\mathrm{k}}^{\star} \cdots \mu_{1}^{*} \mathrm{~K}_{\mathrm{X}}+\mathrm{D}_{\mathrm{k}} \quad \quad(*)_{\mathrm{k}}
$$

Let E_{i}^{\prime}. be the proper transform of E_{i} on X_{k} for $i \leq k$. Then by the condition (2.5) - (iv), we can prove that $E_{i}^{\prime} \cap E_{j}^{\prime}=\phi$ for $|i-j| \geqq 2$ and that all the double curves $E_{i}^{\prime} \cap E_{i+1}^{\prime}$ are disjoint from each other for $i \leq k-1$. Further the negative section C_{k} on E_{k} has no intersections with $E_{i}^{\prime}(i \leq k-1)$.

(Fig. 3)

Therefore $-D_{k}$ is relatively nef over X and

$$
\left(-D_{k}\right) \cdot C_{k}=-\left(E_{k} \cdot C_{k}\right) \leqslant 0 \quad(* *)_{k} \cdot
$$

Let $I^{(k)}$ be the ideal ($\left.\mu_{1} \circ \ldots \cdot \mu_{k+1}\right) *{ }^{0} X_{k+1}\left(-D_{k+1}\right)$. Then we have an infinite sequence of descending filtration $I^{(k)}$ of $I_{C}=I^{(0)}$. By the formula $(*)_{k+1}$, we have $I^{(k)} / I^{(k+1)} \approx$ $\left(\mu_{1}: \circ \cdot \circ \circ \mu_{k+1}\right)_{*}\left(0_{C_{k+1}} \otimes 0_{x_{k+1}}\left(-D_{k+1}\right)\right)$. Hence by $(* *)_{k+1}$, the filtration $I^{(k)}$ satisfies the condition (1.7) - (β). Thus by Lemma (1.7), we have $\cap_{k \geq 0} I^{(k)} \supseteq J$ for any 0_{X} - ideal J satisfying the condition (E) for $C \subseteq x$. Let $x \in C$ be a general point and let H be a general smooth divisor on a neighborhood of x in X such that $H \cap C=\{x\}$ and this intersection is transversal. Then $H_{k}:=\mu_{k}^{*} \ldots \mu_{1}^{*} H$ is also a smooth divisor on X_{k}. Let a be an element of $\left(\cap_{k \geqq 0} I^{(k)} O_{H}\right)_{x}$ and let $\Delta:=\operatorname{div}(a)$ on H. Then the proper transform Δ_{k} of Δ in H_{k} always contains the point $C_{k} \cap H_{k}$. Therefore $\left(\cap_{k \geq 0} I^{(k)} O_{H}\right) x$ is a prime ideal generated by one element.

Since $\operatorname{dim} \operatorname{supp}\left(0_{X} / J\right)=1$, we have $\operatorname{dim} \operatorname{Supp}\left(O_{H} / J \cdot O_{H}\right)=0$ for general H. This is a contradiction. Q.E.D.

$$
\text { By }(1.6),(2.3),(2.4),(2.5),(2.6) \text {, we finally proved }
$$ the following:

Theorem. If $C \subseteq X$ is an exceptional curve, then C_{k} is of type S for some k.

REFERENCES

[1] T. Ando, on the normal bundle of the isolated \mathbb{P}^{1}, preprint 1987.
[2] M. Artin, Algebraization of formal moduli II: Existence of formal modifications, Ann. of Math. 91 (1970), 88 - 135.
[3] A. Fujiki, On the blowing down of analytic spaces, Publ. RIMS, Kyoto Univ., 10 (1975), 473 - 507.
[4] H. Laufer, on $\mathbb{C} \mathbb{P}^{1}$ as an exceptional set, in Recent developments in several complex variables, Ann. of Math. Stad. 100 Princton University Press (1981), 261 - 275.
[5] M. Reid, Minimal models of canonical 3-folds, in Algebraic Varieties and Analytic Varieties, Adv. Stud. in Pure Math. 1, Kinokuniya and North-Holland (1983), 131-180.

