TERMINATION OF SUCCESSIVE BLOWINGHUPS ALONG EXCEPTIONAL CURVES IN THREEFOLDS

Noboru NAKAYAMA

e

Max-Planck-Institut für Mathematik Gottfried-Claren-Str. 26

5300 Bonn 3

•••

Department of Math. Faculty of Science Univ. of Tokyo Hongo Tokyo 113 Japan

.

Termination of successive blowing-ups along exceptional curves in threefolds

Noboru NAKAYAMA

<u>Introduction</u>. Let X be a three-dimensional complex manifold, $C \subseteq X$ a closed compact smooth curve and let $\mu_1: X_1 \longrightarrow X$ be the blowing-up of X along Constrain the exceptional divisor $E_1 = \mu_1^{-1}(C)$ is a ruled surface over C. There exist at most one section C_1 of the ruling $E_1 \longrightarrow C$ with $(C_1)_{E_1}^2 < 0$. We call this section by a negative section. If E_1 has a negative section C_1 , then let us consider the blowing-up $\mu_2: X_2 \longrightarrow X_1$ along C_1 . In this way, we have a sequence of blowing-ups

$$(B_k) : X_k \xrightarrow{\mu_k} X_{k-1} \xrightarrow{\mu_{k-1}} \cdots \to X_1 \xrightarrow{\mu_1} X_k$$

the exceptional ruled surfaces E_i on $X_i (1 \le i \le k)$ and the negative sections C_i on $E_i (1 \le i \le k)$ such that the μ_j is just the blowing-up of X_{j-1} along C_{j-1} and $E_j = (\mu_j (C_{j-1}))$ for $1 \le j \le k$. The purpose of this note is to prove that the normal bundle N_{C_k/X_k} is semi-stable for some k, if $C \subseteq X$ can be contracted to a point. In the case $C \cong \mathbb{P}^1$ and $N_{C/X} \cong 0 \oplus 0(-2)$, M. Reid [5] has proved this and constructed the flip at C. Recently T. Ando [1] also treated this problem.

The author is grateful to the Max-Planck-Institut für Mathematik at Bonn for their hospitality.

§ 1. Preliminaries

Let E be a locally free sheaf of rank two on a smooth compact curve C.

Lemma (1.1). (1) If E is a semi-stable vector bundle, then there exist no curves Γ on the ruled surface $\mathbb{P}_{C}(E)$ with $\Gamma^{2} < 0$.

(2) If E is unstable, then there exists a unique (up to isomorphisms) exact sequence

 $0 \longrightarrow L \longrightarrow E \longrightarrow M \longrightarrow 0$

which satisfies the following conditions:

(i) L and M are invertible sheaves on C ,

(ii) $\deg_{C}L > \deg_{C}M$.

Proof. (1). Let $\theta(1)$ be the tautological line bundle on $\mathbb{P}_{C}^{\cdot}(E)$ with respect to the E. Then E is semi-stable if and only if the line bundle $\theta(2) \otimes \pi^{*}(\det E)^{-1}$ is nef on $\mathbb{P}_{C}^{\cdot}(E)$, where π is the ruling $\mathbb{P}_{C}^{\cdot}(E) \longrightarrow C$. (1) is an easy consequence of this fact.

(2). Since E is unstable, there exists an exact

- 2 -

sequence satisfying (i) and (ii). Assume that there is another sequence

 $0 \longrightarrow L' \longrightarrow E \longrightarrow M' \longrightarrow 0$

satisfying (i) and (ii). Since deg M' < deg (det E), the homomorphism $L \longrightarrow E \longrightarrow M'$ must be zero. Therefore $L' \simeq L$ and $M' \simeq M$. Q.E.D.

Definition (1.2). When E is unstable, we call the exact sequence

 $0 \longrightarrow L \longrightarrow E \longrightarrow M \longrightarrow 0$

satisfying the above conditions (i) and (ii), the characteristic exact sequence of E. Here we also define $d^+(E) := \deg_C L$, $d^-(E) := \deg_C M$, and $\delta(E) := d^+(E) - d^-(E)$. When E is the conormal bundle $N_{C/X}^{\vee}$ of a curve $C \subseteq X$ as in the introduction, we simply denote $d^{\pm}(E)$ and $\delta(E)$ by $d^{\pm}(C)$ and $\delta(C)$, respectively.

Definition (1.3). A compact smooth curve C in a smooth threefold X is called an <u>exceptional curve</u>, if there exists a proper bimeromorphic morphism $f: X \longrightarrow Z$ such that f(C) is a point and that f is isomorphic outside C.

- -----

We have the following criterion.

Proposition (1.4). Let $C \subseteq X$ be a compact smooth curve in a

smooth threefold. Then C is an exceptional curve if and only if there exists a coherent θ_{χ} - ideal J on a neighborhood of C satisfying the following condition

(E) : dim(Supp(
$$\theta_v/J$$
)) = 1 , Supp(θ_v/J) $z \supset C$,

and $(J \otimes {}_{0_X} {}_{C}^0)/torsion$ is an ample vector bundle on C .

Proof. First we assume that C is an exceptional curve. Then there exist two effective Cartier divisors S_1 and S_2 on a neighborhood of C such that $(S_1 \cdot C) < 0$, $(S_2 \cdot C) < 0$, and $\dim(S_1 \cap S_2) = 1$. Let J be the ideal $\theta_X(-S_1) + \theta_X(-S_2)$. Then we have

$$J \otimes \mathcal{O}_{C} \cong (\mathcal{O}_{C} \otimes \mathcal{O}_{X}(-S_{1})) \oplus (\mathcal{O}_{C} \otimes \mathcal{O}_{X}(-S_{2})) .$$

Thus J satisfies the condition (E) .

Next we assume that there is an \mathcal{O}_X -ideal J satisfying the condition (E). By considering the primary decomposition of J, we have an \mathcal{O}_X -ideal $J_0 \supseteq J$ such that $\operatorname{Supp}(\mathcal{O}_X/J_0) = C$ and $\operatorname{Supp}(J_0/J) \supseteq C$. Hence there is an injection $(J \otimes \mathcal{O}_C/\operatorname{torsion}) \longrightarrow (J_0 \otimes \mathcal{O}_C/\operatorname{torsion})$, where $\operatorname{rank}(J \otimes \mathcal{O}_C/\operatorname{torsion}) = \operatorname{rank}(J_0 \otimes \mathcal{O}_C/\operatorname{torsion})$. Therefore J_0 also satisfies the condition (E). Let $\mu: V \to X$ be the blowing-up by the ideal J_0 , i.e., $V:= \operatorname{Projan}_X (\bigoplus_{d\geq 0} J_0^d)$. We have an exceptional Cartier divisor $E:= \operatorname{Projan}_X (\bigoplus_{d\geq 0} J_0^d/J_0^{d+1})$. Let W be a component of E. If $\mu(W)$ is a point, then $\mathcal{O}_W \otimes \mathcal{O}_V(-E)$ is ample, since $\mathcal{O}_V(-E)$ is μ -ample. If $\mu(W)$ is not a point, then $\mu(W) = C$ and W is also

- 4 -

a component of $\underline{\operatorname{Proj}}_{C}$ ($\bigoplus J_{0}^{d} \otimes \mathcal{O}_{C}/\operatorname{torsion}$). Since $(J_{0} \otimes \mathcal{O}_{C}/\operatorname{torsion})$ is an ample vector bundle, $\mathcal{O}_{W} \otimes \mathcal{O}_{V}(-E)$ is also ample. Therefore $\mathcal{O}_{E}(-E)$ is an ample invertible sheaf. Then by the contraction criterion (cf. [2], [3]), we have a morphism $\forall : V \longrightarrow Z$ such that $\forall(E)$ is a point and \forall is an isomorphism outside E. Therefore we have the contraction $f: X \longrightarrow Z$ of C.

Lemma (1.5). Let $C \subseteq X$ be an exceptional curve.

(1) If the conormal bundle $N_{C/X}^{\vee} \cong I_C/I_C^2$ is semi-stable, then I_C/I_C^2 is an ample vector bundle.

(2) If I_C/I_C^2 is unstable, then $d^+(C) > 0$.

Proof. Take an ideal J satisfying (E) and the maximal integer k such that $J \subseteq I_C^k$. Then we have an injection

$$J/J \cap I_C^{k+1} \longleftrightarrow I_C^k/I_C^{k+1} \simeq Sym^k (I_C/I_C^2)$$
.

By the condition (E), $J/J \cap I_C^{k+1}$ is an ample vector bundle. Therefore we have proved (1) and (2). Q.E.D.

Let $C\subseteq X$ be an exceptional curve such that $I_C/I_C^2 \mbox{ is unstable. Let us consider the blowing-up}$

 $\mu_1:X_1\longrightarrow X$, $E_1=\mu_1^{-1}(C)$, and the negative section C_1 corresponding to the characteristic exact sequence of $I_C/I_C^2 \ .$

Lemma (1.6). $C_1 \subseteq X_1$ is also an exceptional curve. where

Proof. Let $0 \longrightarrow L \longrightarrow I_C/I_C^2 \longrightarrow M \longrightarrow 0$ be the characteristic exact sequence. Assume that I_C/I_C^2 is ample. Then from the natural exact sequence

$$0 \longrightarrow \mathcal{O}_{C_{1}} \otimes \mathcal{O}_{X_{1}}(-E_{1}) \longrightarrow I_{C_{1}}/I_{C_{1}}^{2} \longrightarrow \mathcal{O}_{C_{1}} \otimes \mathcal{O}_{E_{1}}(-C_{1}) \longrightarrow 0,$$

$$a \qquad \qquad a \qquad a \qquad \qquad a \qquad \qquad a \qquad \qquad a \qquad a \qquad a \qquad \qquad a \qquad a \qquad \qquad a \qquad$$

and the condition deg $l > \deg M > 0$, we see that $I_{C_1}/I_{C_1}^2$ is also ample. Next assume that I_C/I_C^2 is not ample. Then deg $M \le 0$. Take an \mathcal{O}_X - ideal J satisfying the condition (E) for $C \longleftrightarrow X$. Let us consider the \mathcal{O}_{X_1} - ideal J': = Image $(\mu_1^* J \longrightarrow \mathcal{O}_{X_1})$. Since $J \subseteq I_{C_1}$, we have $J' \subseteq \mathcal{O}_{X_1}(-E_1)$. Take the maximal integer ℓ such that $J' \subseteq \mathcal{O}_{X_1}(-E_1)$ and let $J_1 := J' \otimes \mathcal{O}_{X_1}(\ell E_1) \longleftrightarrow \mathcal{O}_{X_1}$. We shall prove that the J_1 satisfies the condition (E) for $C_1 \hookrightarrow X_1$. Since $(J \otimes \mathcal{O}_C/\text{torsion})$ is ample on C, $(J' \otimes \mathcal{O}_C_1/\text{torsion})$ is also ample on C_1 . Now we have a natural homomorphism

$$J' \otimes {}^{O}_{C_{1}} \longrightarrow {}^{O}_{X_{1}}(-{}^{LE_{1}}) \otimes {}^{O}_{C_{1}} \otimes {}^{O}_{C_{1}} \cong {}^{M^{\otimes \ell}}.$$

Since deg $M \le 0$, this homomorphism must be zero. Therefore $J_1 \subseteq I_{C_1}$. On the other hand, $(J_1 \otimes 0_{C_1}/\text{torsion})$ is ample, because

$$J_{1} \otimes O_{C_{1}} \cong (J' \otimes O_{C_{1}}) \otimes (O_{X_{1}}(lE_{1}) \otimes O_{C_{1}})$$
$$\cong (J' \otimes O_{C_{1}}) \otimes M^{\otimes(-l)}.$$

Therefore J₁ satisfies the condition (E). Q.E.D.

Lemma (1.7). Let $C \subseteq X$ be an exceptional curve and let J be an ∂_X - ideal satisfying the condition (E) for $C \subseteq X$. Then it is impossible to construct an infinite descending filtration $I^{(k)}(k \ge 0)$ of the defining ideal I_C which satisfies the following two conditions (α) and (β):

- (a) $I^{(k)}$ is a coherent ∂_X ideal for all $k \ge 0$ and $J \notin \bigcap_{k \ge 0} I^{(k)}$,
- (β) $I^{(k)}/I^{(k+1)}$ is an θ_{C}^{-} invertible sheaf and not ample for all $k \ge 0$.

Proof. By (α) , we can take the maximal integer k such that $J \subseteq I^{(k)}$. Then we have an injection $J/J \cap I^{(k+1)} \rightarrow I^{(k)}/I^{(k+1)}$. Since $(J \otimes 0_C/\text{torsion})$ is ample, $J/J \cap I^{(k+1)}$ is also ample. This contradicts to (β) . Q.E.D.

_

,

§ 2. Termination

Let $C \subseteq X$ be an exceptional curve such that I_C/I_C^2 is unstable. Then we have the characteristic exact sequence:

$$0 \longrightarrow L \longrightarrow I_C / I_C^2 \longrightarrow M \longrightarrow 0 \qquad (e.1).$$

Let us consider $\mu_1: X_1 \longrightarrow X$ of (B_k) , E_1 , and C_1 (see the introduction). Then we have an exact sequence:

Assume that $I_{C_1}/I_{C_1}^2$ is also unstable. Then we have the characteristic exact sequence

$$0 \longrightarrow L_1 \longrightarrow I_{C_1} / I_{C_1}^2 \longrightarrow M_1 \longrightarrow 0$$
 (e.3).

The following lemma is easily proved.

Lemma (2.1). (1) If deg L < 2 deg M, then (e.2) is isomorphic to (e.3).

(2) If deg $L \ge 2 \deg M$, then deg $M \le \deg M_1$ and

deg $L_1 \leq \deg L - \deg M$. Here deg $M = \deg M_1$ (or equivalently deg $L_1 = \deg L - \deg M$), if and only if (e.2) is split.

Definition (2.2). Let $C \subseteq X$ be an exceptional curve. C is called of <u>type S</u>, if I_C/I_C^2 is a semi-stable vector bundle. C is called of <u>type P</u> (resp. <u>type N</u>), if I_C/I_C^2 is unstable and ample (resp. not ample). C is called of <u>type</u> <u>I</u>, if there exist two prime divisors S_1 and S_2 on a neighborhood of C such that C is just the scheme-theoretic intersection $S_1 \cap S_2$.

Lemma (2.3). If C is of type P, then one of the following conditions are satisfied:

(i) C_1 is of type S,

(ii) C_1 is of type P and C_2 is of type I,

(iii) C_1 is of type P and $0 < \delta(C_1) < \delta(C)$.

Proof. Assume that C_1 is not of type S. Then by (e.2), C_1 is of type P. If $d^+(C) < 2d^-(C)$, then by Lemma (2.1) -- (1), C_2 is just the intersection of E_2 and the proper transform E'_1 of E_1 on X_2 . Therefore the condition (ii) is satisfied. If $d^+(C) \ge 2d^-(C)$, then by Lemma (2,1) - (2), we have

$$d^{-}(C) \leq d^{-}(C_{1}) < d^{+}(C_{1}) \leq \delta(C) < d^{+}(C)$$
.

Therefore the condition (iii) is satisfied. Q.E.D.

Proposition (2.4). If C is of type P and of type I, then there is a positive integer k such that C_k is of type S.

Proof. Let S_1 and S_2 be prime divisors with $S_1 \cap S_2 = C$. Then S_1 and S_2 are smooth surfaces near C, and $I_C/I_C^2 \cong O_C(-S_1) \oplus O_C(-S_2)$.

Assume that $(S_1 \cdot C) > (S_2 \cdot C)$. Then we have $d^+(C) = -(S_2 \cdot C) = -(C) \frac{2}{S_1} > d^-(C) = -(S_1 \cdot C) = -(C) \frac{2}{S_2}$. Let us consider the $\mu_1 : X_1 \longrightarrow X$ and let S_1^i be the proper transform of S_1 on X_1 for i = 1, 2. Then C_1 is just the complete intersection $S_2^i \cap E_1$, and $I_{C_1}/I_{C_1}^2 \cong O_{C_1}(-E_1) \oplus O_{C_1}(-S_2^i)$.

(Fig. 2)

Here we have

 $d^{+}(C_{1}) = \max (\delta(C) , d^{-}(C)) ,$ $d^{-}(C_{1}) = \min (\delta(C) , d^{-}(C)) .$

Therefore C_k is of type S for some k. Q.E.D.

Lemma (2.5). If C is of type N , then one of the following conditions are satisfied:

(i)
$$C_1$$
 is of type S,
(ii) C_1 is of type P,
(iii) C_1 is of type N and $O \ge d^-(C_1) > d^-(C)$,
(iv) (e.2) is split.

Proof. Assume that C_1 is not of type S. Since C is of type N, we have $d^{-}(C) \leq 0$. Therefore $d^{+}(C) > 2d^{-}(C)$ by Lemma (1.5) - (2). Hence by Lemma (2,1) - (2), we have $d^{-}(C) \leq d^{-}(C_1)$. Here the equality holds if and only if (e.2) is split. Q.E.D.

Proposition (2.6). There exist no pseudo-exceptional curves $C \subseteq X$ of type N such that C_k satisfies the condition (2.5) - (iv) for all k.

Proof. Assume the contrary. Let D_k be the effective divisor:

$$E_{k} + \mu_{k}^{*} E_{k-1} + \mu_{k}^{*} \mu_{k-1}^{*} E_{k-2} + \cdots + \mu_{k}^{*} \cdots + \mu_{k}^{*} E_{1}$$

on X_k . Then we have

$$K_{X_k} = \mu_k^* \dots \mu_1^* K_X + D_k$$
 (*)_k.

Let E'_i be the proper transform of E_i on X_k for $i \le k$. Then by the condition (2.5) - (iv), we can prove that $E'_i \cap E'_j = \phi$ for $|i - j| \ge 2$ and that all the double curves $E'_i \cap E'_{i+1}$ are disjoint from each other for $i \le k-1$. Further the negative section C_k on E_k has no intersections with E'_i ($i \le k-1$).

(Fig. 3)

Therefore -D_k is relatively nef over X and

$$(-D_k) \cdot C_k = -(E_k \cdot C_k) \leq 0$$
 (**)_k.

Let I^(k) be the ideal $(\mu_1 \circ \cdots \circ \mu_{k+1}) * {}^0 X_{k+1} (-D_{k+1})$. Then we have an infinite sequence of descending filtration I^(k) of I_C = I⁽⁰⁾. By the formula $(*)_{k+1}$, we have $I^{(k)}/I^{(k+1)} = (\mu_1 \circ \cdots \circ \mu_{k+1}) * ({}^0 C_{k+1} \otimes {}^0 X_{k+1} (-D_{k+1}))$. Hence by $(**)_{k+1}$, the filtration I^(k) satisfies the condition $(1.7) - (\beta)$. Thus by Lemma (1.7), we have $\bigcap_{k\geq 0} I^{(k)} \supseteq J$ for any ${}^0 X_k - i \text{deal } J$ satisfying the condition (E) for $C \subseteq X$. Let $x \in C$ be a general point and let H be a general smooth divisor on a neighborhood of x in X such that $H \cap C = \{x\}$ and this intersection is transversal. Then $H_{\vec{k}} := \mu_{\vec{k}}^* \cdots \mu_1^* H$ is also a smooth divisor on X_k . Let a be an element of $(\bigcap_{k\geq 0} I^{(k)} O_H)_X$ and let $\Delta := \text{div}(a)$ on H. Then the proper transform Δ_k of Δ in H_k always contains the point $C_k \cap H_k$. Therefore $(\bigcap_{k\geq 0} I^{(k)} O_H)_X$ is a prime ideal generated by one element.

Since dim Supp $(0_X/J) = 1$, we have dim Supp $(0_H/J \cdot 0_H) = 0$ for general H. This is a contradiction. Q.E.D.

By (1.6), (2.3), (2.4), (2.5), (2.6), we finally proved the following:

.

Theorem. If $C \subseteq X$ is an exceptional curve, then C_k is of type S for some k.

REFERENCES

- [1] T. Ando, On the normal bundle of the isolated \mathbb{P}^1 , preprint 1987.
- [2] M. Artin, Algebraization of formal moduli II: Existence of formal modifications, Ann. of Math. <u>91</u> (1970), 88 - 135.
- [3] A. Fujiki, On the blowing down of analytic spaces, Publ. RIMS, Kyoto Univ., <u>10</u> (1975), 473 - 507.
- [4] H. Laufer, On C P¹ as an exceptional set, in Recent developments in several complex variables, Ann. of Math. Stad. <u>100</u> Princton University Press (1981), 261 - 275.
- [5] M. Reid, Minimal models of canonical 3-folds, in Algebraic Varieties and Analytic Varieties, Adv. Stud. in Pure Math. <u>1</u>, Kinokuniya and North-Holland (1983), 131-180.