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CHERN FUNCTORS

by J. Franke
This is the second of four papers in which we try to come to terms
with Deligne’s problem of constructing a functorial Riemann-Roch
isomorphism for the determinant line bundle of the cochomology of a

proper smooth morphism p: X——3S

(1)

det Rp,8 — (I cb(E)xb(Tx/s)) . (1)

X/S
The first step in such a construction is to give live to the right
hand side of (1). This was done by Deligne and Elkik ([D]1, [El)},
who treated (1) as a global expression. It is our approach to give
live to each ingrediant of the right hand side of (1), i1.e., we can
not only integrate the Chern functors along the fibres, we can also
say what the Chern functors themselves are. Such an approach allows
us to approach (1) by copying Grothendieck's proof of Riemann-Roch
via embeddings into projective spaces, as we shall see in a forth-
coming paper.

As the first step in this program, Chow categories as target cate-
gories for the Chern functors have been introduced in [Fl]. Here we
study the Chern functors themselves. Because of difficulties with
the intersection product for non-smooth schemes over Spec(Z), we
introduce Ck(ﬁ) not as a mere object of the Chow category @%k(X),
but as a whole intersection product functor

+k
P

ck(‘S)ﬁA: Sgp(x) ) (595 X). (2)

In the first five paragraphs of §1, we introduce Cl(x)ﬁA for a line
bundle £, using a functorial version of the product

s +1,q9-1
Hl(x,xl)aEp UX) s El; l.q

2 (X),
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where E2 is the Ez-term of Quillen’s spectral sequence. Starting
from this point, in the remaining paragraphs of §1 we construct
(2), copying Grothendieck’'s definition of the Chern classes, We
also prove a Whitney isomorphism for the Chern functors. The second
paragraph considers further properties of the Chern functors (like
relation to the Gysin functor i! constructed in {Fl]), which are
useful both for §3 and for the proof of functorial Riemann-Roch. In
£3 we give an axiomatic characterization of the Chern functors,
relating them to lef)ﬁA for a line bundles by means of six natural
isomorphisms (3.2.1.~-4. and AX 0, AX 1) and four compatibilites AX
2-5 (of which the last one, AX 5, is very likely to be redundant)
between these six isomorphisms. This is similar to the axioms for
IC2 in [D]. Finally we compare our functor E*(C2(8)) with Deligne'’s
functor IC2 and indicate how a similar comparison can be carried
out for Elkik’s line bundles.
The first paragraph almost coincides with §6 of [F2] (save for the
correction of some sign errors) and has been announced in [F3]. I
owe thanks to A.A. Beilinson, Ju.I. Manin, and A.N. Parchin for a
number of helpful discussions. This paper has been finished during
the author’s stay at the Max-Planck-Institute in Spring 1989. I
want to thank the MPI for its hospitality, and in particular
G. Harder for his help in printing out the text.
Notations: We use all the notations of [F1] for the Chow categories

~ " |
E%k and G%k} the functors f£ , £, By and Bpk between them, and for

the E_-term of Quillen’s spectral sequence. In particular,
k,-k k-1,-k

9 {X) and Gk(X)=E2 {X). The product in the higher

algebraic K-theory is Waldhausen's. As we did in [Fl1], we suppose

CHk(X)=E

schemes to be noetherian, separated, and universally catenary.
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1. Construction of the Chern functors

1.1. Some preparations: For a topological space X, a sheaf F on X,

and a covering U={U_}. of X, let
i"i

€l
x
¢ (U,F)= I l I I F(Ui A...ru; )
t=0 10,...,1teI 0 t

be the complex of &ech cochains. We denote by 2 (%,F) and B (U, F)

the groups of closed and exact cochains and by
q
(d o0, = 2 (-1)"a .
O igr--sadg i i i
k=0 (o R "
the Cech differential do. We will often denote g-cycles by bold and

their evaluation on open subsets by usual letters.

b 4
For a complex of sheaves F with differential dl we put

g @ et
k+1l=1i

1
= - +
d (-1) dD dl

. i i
and define B® and 2 by means of d.

q

X =
Let U be a covering of X . To an element o of ZQ(U,E Y we

Zar ~ 1
associate an object O(o) of Gﬁq(x) as follows. For an open subset W

in x(q), we denote by UNW the covering of W by the Uimw and define

(o) (W)= (xec™ (w7 d(x):-alw}/sq“l(mrm,af'"q). (1)

Since the sheaves Ei’q

~

are flabby, every geGq(w) defines
gqu-l(ﬂTm,E:’-q) and acts on the set (1) by the rule x——+x+g. It
is easy to see that O(at) is an object of &gq(x).

Let a,a’ezq(u,at’"q) and ye(cq'l/Bq‘l)(u,e:f"q) such that dy=o -o.
Then there is an isomorphism O():0(a)==0(a’) which sends x in
(1) to x—ylw.

Let WE{Vj}jE be a refinement of U, and let &:J—I be a function

J

with Vv.€U_. ... It defines a homomorphism
1i778(1)
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-C* o *,.q c* ¥ *,q
EQ' ( !El )_) ( ,El )

and a canonical isomorphism

: O
§¢ () weme——p ®(f¢(0)) (2)

by the rule x——f (x) in (1). If ¥ is a refinement of ¥ indexed by

¢
K and ¥: Ke—J an admissible function, then E@ngwzﬁ and ééwziwf .

* *
Let E and F be complexes of sheaves on X, G a presheaft on X,
* * *
and {.,.} : E 8 = F a homomorphism of complexes. If xeCp(u,E )

and yqu(ﬂ,G), we define {x,y} by the usual formula
(3)

x L] - - = 0 . » . . -
{ y}l y e {xl R | U, S Y . . . wn . 3
0 t Q r-agt i i r—c rli i

We have
d({x,y 1) ={d(x),y}+(~1)"{x,d(y)}. (4)
1.2. The functor Cl(f)ﬁn: Let AeOb(@%k(x)), k>0, and £ be a line

bundle on X. We choose a covering U of XZar and non-vanishing

ti . of £ U.. Let @=(p, )=(<L./£.)e0 (U.MJ_DSK (U.NU.) be
sections £, o on U . Let ¢ (le) (JJ/ 1) X( ; J) 1( N J)
the l-cycle defined by the Ji.

Let the product {.,.}: ET"q(x)aKi(x) —_ Epiuq‘l be defined by
{(ax)xexp’p} = (axp)xexp

Now (3) defines

{.,.}:cp(u,s’:"k)acq(u,nl) —_ cp‘”q(fu,e*i'k'l

).
Let aeér(x) be a rational section. We put

Kk “k
(cl(f)ng)u,ti,a = 0((-1)"(e(a),preop (8% (x)) (5)

where ¢(a) is the cycle defined by a (cf. [F1, §3.3.1).

If a’ is another rational section of A, then a-a’eETul’_k(X)/im(dl)
and dl(a*a’)zc(a)—c(a’). Since d(@)=0, we have by (4)
k ,“ .
O((-1) {a’-a,9}): (Cl(f)ﬁﬁ)u,li’a — (Cl(f)ﬁﬁ)ﬂ,ti,a" (6)
I1f £. are other trivializations of £ on Ui’ we put aij:{j{;l and
wiztifgl. Then d(w):@wﬂl, hence
O({c(a),y}): (cl(x)nﬁ)u,fi,a — (Cl(f)“ﬁ)u,zi,a- (7)
If ¥ is a refinement of U and & as in (2), we have
: 8
z§. (cl(f)m) —_— (Cl(l’)ﬁﬁ)q,’z (8)

Y.L .o $(i)’ 2

Of course, there are several compatibilities which must be checked.
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For instance, if we replace a by a’ and Ji by Ei’ we have
-1)%(a’-a,g3+(c(a’), yd=(-1) (a’~a, B+ {c(a) - (-1 (a"~a,d() 1+
+{d(a’-a),y}
:(—1)k{a’-a,a}+{c(a),¢}+d({a'*a,w}

hence

®({C(a’),v})°®((*l)k{a’“a,¢})=®((-l)k{a’-a,a})=®({C(a),¢});
which proves the compatibility of (6) and (7). The two other cases

are verified in a similar manner.

By means of (&), (7), and (8), the objects (cl(f)ﬁﬁ)u ! a can be
Si!

glued to one object ¢ ()M, It defines a biladditive functor
1ﬁc(x)x&%k(x)-4@5k+ (X), where Pic(x) is the gruppoid of line bun-
dles on X. Biadditivity means that there are canonical isomorphisms
cl(fﬁmjﬁﬁ S cl(f)ﬁﬁecltﬂ)ﬁﬁ
cl(f)ﬁ(AQB)  — Cl(f)ﬁnecl(ﬁ)ﬁa
which satisfy the additivity conditions of [DM, &1.8.] in sach

ofthe two variables and make the diagram

Cl(.f@aﬂ)ﬁ(f-‘ceB) » Cl(f)ﬁ(ﬂeB)Gcl(aﬁ)ﬁ(AﬁB) (9)

Cl(fa‘/ﬂ)ﬁﬁmcl(f@ﬁl}ﬁB —_— cl(f)mecl(.?)rweecl(A)ﬁaecl(ﬁ)ﬁa

commutative.
Let V and W be zariskoi-open subsets of X, aeA(v), ¢ a non-vani-
shing section of £ on V. We want to define

dﬁae(cl(f)Pn)(VLM). (10)
Without loosing generality we may assume X=VUW. For a moment we

also assume that V is open and dense in X later we can get rid

(k)’
of this assumption. In the notations of (53),.
k-1 X, -k
({e(£),4/4,3), ; mod(B" "(U,E " 7)) (11)
defines an element of ®({C(a),pij})(X)z(cl(f)ﬁA)u,ti,a(x). The

product in (11) is well-defined because the supports of c¢(a) and
div({) are disjoint. It is easy to see that (11) is compatible with

(7), (8), and (9), hence it defines (10).
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If g is a rational function on X which has no zeros or poles inter~

secting the support of ¢(a), then there is a well-defined product

c(a)ng=(n (x)g ) eG . (X), and we have
C +
(a) Spec K(x) xexk k+1
(gl)na-1na=c(a)ng (12)
Let geGk(U), where U is a Zariski-open subset of X containing

Z=supp(div({)). Since the sheaves gP> 9

are flabby, g defines a
. k-1, * -k .
hypercohomology class in H (U,E1 ) which we denote by the same
letter g. The section £ defines a cohomology class
1 * 1
Z,DeH” (X, H s
( JE Z( Ox) —) Z(X .‘Kl)

with support in Z. The product

*,-K + ¥, -k-1
m: HEOGX DT (ULE T — WY Nk E] ) (13)
defines
(£,H0ge8, . (X) (14)
If U is open and dense 1in x(k), then
N(gra)-na=(Z,4HNg. (15)
Since in the definition of (14) we do not assume that U is open and
dense in X(k), formula (15) may be used to define {a for aea(U)
without the assumption that the Zariski-open subset U is also open
in X .
(k)

If AeOb(@ﬁo(x)), then we define cl(f)ﬁﬁ by formula (5) with a=8

(ef. [F1, 3.5.]). Since there is only one rational section , we do
not need (&). The transformations (7) and (8) are defined by the
same formulas as above.

If k<0, the Cl(ﬁ)ﬁ.: @gk(x) —_— &%k+l(x) is defined to be the only
additive functor between these categories.

1.3. Example: Let X bs a smooth curve over a normal base scheme S,

and let £ and M be line bundles on X. We assume that £ and m are
rational sections of £ and M on X whose divisors do not intersect.
Wea put

<J,m>=p*(hn)eg*(cl(f)ﬂcl(.ﬂi))(s) '
where p:X—S is the projection. In this case, (12) and (15) imply
that <£,m> satisfies the transformation rules [D, (&6.1.2.)], and
consequently g*(cl(£)ﬁcle)) can be identified with the line bundle

<E,M> defined in [D,§6].
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1.4. Compatibility with direkt and inverse images: Let p:X===Y be a

. . *;*k -1
flat morphism, U a covering of xZar’ and aEZ(u,El ). Let p (W
be the covering of Y by the sets ph (U.). There is a natural mor-
. * , K
phism p : & (u,e )-»C (U, E ) which on the cohomology groups

1,Y
defines the homomorphlsm p of [Fl, §1]. There is an isomorphism in

Tk
€Y (v)
* *
e (O(o))——0(p (o)) (18)
4
sending % in (1) to p (x).
Let q: Y—X be proper of relative dimension d. Formula [F1, 1.(7)]

defines a homomorphism of complexas

a,: € (a TwLe D — e
If ﬁEZk(pul(U),El’Y ), then there is an isomorphism
8, (0(f3))——0(a () (17)

sending x in (1) to q*(x).

Let £ be a line bundle on X, U a covering of xZar on which £ is
trivialized by sections J —J /i , p:Y=—X a flat morphism
q: Z-—»X a proper morphlsm of relatlva dimension d, AeOb(@% (x)),
BeOb(S% (Z)), a and b rational sections of A and B.

Then p*({c(a),p})z{c(a),p*¢), hence (16) defines

* *
o (¢, (£)MA) ) — (¢ (P £)M0) . (18)

* ,
(W,p (Ji),p (a)
It is easy to see that (18) is compatible with (&), (7), and (8),

U, L. ,a
i

hence it defines

g*(cl(.f)m)—_ml(p*x)m. (19)

In a similar manner one constructs

9*((0 (q .t’)m) ) —— (C_(£)Ng_A) (20)
a t(w,a"(¢),a" (@) D T
using (17) and the adjunction formula. We get
a, (¢, (3 £)M8) — ¢ (£)Na,A. (21)

The isomorphisms (19) and (21) are compatible with composition of
flat and proper morphisms and with the base change isomorphism of
[F1,§3.12.]. More precisely, this means the following. If X-schemes
are denoted p: Y—X, then @%'(Y) is a bifibred Picard category
over (X-schemes, proper morphisms of const. rel. dim., flat mor-

N - ~
phisms). Then it is easy to see that Cl(p L)N.: % (Y)=—EH (Y),
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equiped with the transformations (19) and (21), is a biadmissible
functor (in the sense of [Fl, 3.11.]) bstween bifibred Picard
categories.
Let p: Y=pX be flat, £ a line bundle on X, ﬁeOb(@%k(x)), { and a
rational sections of £ and A. It is easy to see that the image of
o (8a) by (19) is p (Orp (a). If p is proper, Beb(ES (Y)),
beBr(Y), then p*(p*(f)ﬁb) is mapped to ﬂﬁp*(b) by (21).

1.5. Commutativity: We want to define an isomorphism

% & cl(f)ml(m)m —_— cl(au)ncl(.t’)m. (22)
tet 4 be a covering of xZar on which £ is trivialized by Ji. Our
first step is to define an isomorphism

c,(£)MD(0) —— 0((-1)" (a1 ¢)) (23)
for aezk(ﬂ,Ei’—k),where pi.zt./ij. It will identify Cl(f)ﬂG(y) with
O((-1) (r.0h) if ye T (%E) ) and a(p)zor-an
Let ge@(a)r(x) be a rational section. By definition (1), one checks
easily that g has a representative geck_l(u,E:’*k)with the property
d(g)+a=c(g)eET’—k(X)SCk(%,E*’—k). If x is a section on WEX of

X ok-1 * -k . k
((cl(i‘f)f"ﬁ)(a)) , 1.e., x&k (‘U,El ) and d{(x)=z ~(-1) {c(g),¢l}

usii!g
on W, then yzx+(—l)k{g,¢} satisfies

d(y)=d(x)+(~ 1) {d(g) . @3=-(-1)°(c(a) , @3+ {c(a), @3- (-1) (o1, 03 ,

hence ye@((*l)k{a,¢})(w). It is easy to see that the function X——ay
commutes with (&), hence it defines the isomorphism (23). The
transformation (23) is compatible with the isomorphisms (7), (8),
(19), and (21).
Now we assume that M too is trivialized on U, by sections m&, with
transition functions wij:mj/mi' Our next step is to construct an
isomorphlism

Xy, 2.8 Mom. .ot O(-{o, ¥, 9}) —— O(-{at,0,%}) (24)
for ank(%.ET’&k). ;ﬁ (24), {.,.,.} denotes the iteration of {.,.}.
An easy calculation, using repeatedly the fact that d{¢@)=d(y)=0,

shows
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(G- yp) . . =@, . ¥. ~¥. .P. Py 5¥ 5kt ¥ (25)

ijk "ij7 3k Tijv ik ij

Pk 5k Pk sk TPk 157 P ik ik Pk ik P %5
:_d(?’)ijk’
where ?aﬁ:paﬁwaﬁ' By (25), xﬂ,f,tivﬂ,mﬁ,a may be defined by

k
O((~1) {o,¥}). In the special case £=M and $i:mi’ the well-known
identity between Steinberg symbols
paﬁpaﬁzpaﬁ[—ll in K, (k(x))
can be used to compute xu,fyti,f,ti,a on O({o,¢,e}):

xu,r,zi,x,zi,aza‘p'[‘lls (26)

where the first product is (13) with X=%zU and the second product
is
HE O K 8K, OOt HE O, K)

Now we are ready to define (22). For a rational section aeﬂr(x),
consider the isomorphism

cl(f)ﬁ®(EC(a),w})——+®({C(a),w,p})-—»®({C(a),v,w})——+ (27)

——+C1LM)0®({C(3),¢}),

where the first and the third arrow is of type (22) and the middle
one is (23). We want to check that it commutes with the isomor-
phisms (&), (7), and (8). For (&), we have to prove the

commutativity of

O((-1)"tc(a). 7))

O(-{c(a), v, }) y O(-{c(a),@,4})
®(-{b~a,w,¢})1 « O(-{b-a,@,y})
O(-(c(b),p, 0}y —2L) €)7o re(n),0,43)

But
(-1)%Ce(a),7I-(b-a, @, ¥}~ (1) (c(b),¥}+{b-a, ¥, ¥}

={b-a,d(7))- (-1 (a(b-a).7} = -(-1)"a((6-a,7)),
and the diagram commutes. For (7) the compatibility is verified in
a similar manner, and for (8) it is trivial.
We have seen that the isomorphisms (27) fit together, defining

(23). Since @=-yp, we have ¢ =Id. By (26), the action of

.MM, £
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03,2 on cl(f)ﬁcl(x)ﬁﬁ is given by

ox’x=[$]°[-l]ﬁﬁﬁ], (28)
where the products are the same as in (26). It 1s easy to see that
af,dlis compatible with (19) and (21).
Let £,m, and a be rational sections of £, M, A on X whose divisors
and cycles meet properly, i.e., such that {a, ma, {NHmNa, m¥Na
are rational sections of cl(x)ﬁﬁ,...,clLM)ﬁcl(f)ﬂﬁ. We want to
prove

ax’AF&Wwﬂa)=nfwha. (29)
The first thing we have do is toc compute the image of {wwa under
the isomorphism (23):

¢ ()NCe (MM, ——y O{c(F), %, 0)).

n i’
Q({c(f),y}) has a rational section g=mNa given by g:{c(a),m/mﬁ};
Applying the definition of (23), we find that the image of {MmMNa in

O(~-{c(f),y,p}) is given by the class of

K
{C(mﬁa).f/fi}*(ﬂ) {C(a),m/mi,qoij} (30)
modulo Bk+l(ﬂ,E:’_k_2). In a similar manner we find that the image
of m{dna in O({c(f),ep,y}) is given by
[
{C(&“a),ﬂwﬁni}—(‘l) {C(a),i/ii,wij}- (31)
By (30), (31), and the definition of ¢ the proof of (29) is re-~

£, M
duced to the investigation of the difference

K
(-1) ({C(a).'5/151,tavij}-{c(a),m/rni,qD:.L;.}}“{C(a),@ij,i,uij})+

+{c(ma), &4 1-{c(na), m/m. 3
Since the supports of div($), div(m), and ¢(a) intersect properly,
m/mi and J/li have residue classes (nu%ni)(x)ek(x)*, (Z/Ji)(x)ek(x)*

for xe(Ui)kmsupp(c(a)). Consequently, there is a well-defined ele-
k,-k—-2
ment of El (Ui)=

A.={c(a), /L., m/m. } (33)
1 1 1

where C(a):(nx)x. Ssince the divisors of { and m have no common

component intersecting the support of ¢(a), the tame symbol of (33)



is given by
dl(Ki)z{c(ﬂ“a),m/n%}-{c(mfm),t/li}.

For the Cech differntial of N we find

dy(A)={c(a) ,m/mi,qoij}*{c(a),J/fi,wij}ﬂc(a) ’pij’wij}
Consequently, the Cech hyperdifferential of A is

CDRCCea) in/n ey I-T6(a), /2w, J+{e(a) e ;D)
+{c(a’\a),m/mi}~{c(nv’\a) .f/fi}

and (32) is a complete differential. The proof of (29) is
complete.
Let £, M, 4 be line bundles on X, and Ae@%k(x). We want to prove the

commutativity of

cﬁfﬂtﬁﬁﬁtﬁﬂym._—»cﬁﬁytﬁfytﬁﬂym (34)

L 2 L 4

cl(X)ﬁclLX)ﬁclﬁM)ﬁﬁ cl(ﬂjfcl(ﬂjfcl(f)ﬁﬁ

< +

cl(J}’)ﬁcl(.f)ml(th)ﬁﬁ S cl(i)%l(ﬁ)ﬂcl(f)ﬁﬁ.
If A, £, M, & have rational sections a, £, m, n whose cycles and
divisors meet properly (i.e., m s etc. are rational sections),
then (34) follows from (2%9). In the general case, let p: E—X be
the fibre space of the bundle LoMdA. Because g* is an equivalence
of categories, it suffices to prove {(34) after base-change to E. On
E, there are tautological sections £, m, n of p*f, p*ﬂ, p*ﬂl If A
i1s any rational section of A on X, then the previuos remark can be
applied to £, m, n, and p*(a). The proof of (34) is complete.
Eximali: Let us return to the situation of 1.3.. By (29), g*(ox’AQ
is the isomorphism <F, M>—a<M, E> which sends <{,m> to <m,{>. Inte-
grating (28) along the fibres, we get the well-known identity

<2, 2>=(-1)®9)

<L,
in <£.8> (cf. /D, 6.2./).



1-10

1.6. Lemma: Let & be a vector bundle of dimension e on X,

b 4
p:P(8)—X its projective fibration, and O(-1)cp % the tautological
line bundle. It has a first Chern class cl(@(l))eHl(P(E),%I). Then

the homomorphism
e-1 p-j,q+]

T e (X) — EPI(P(8)). (35)
. 2 2
J=0
e-1 .
J x
(a,) — z e (0(1)7%p (a))
J 1 J
j=0
is an isomorphism, where the product in (35) is the product
k,1 +k,g~1
Hp(y,%q)sz (") — 57T

defined in [G, p.281].
Proof: This is [G, Note (i) on p.287]. The proof is similar to the

proof of [G, Theorerm 8.10.].

1.7. Corollary: The functor

e-1 ~ s ~
X 637 () —— 5" (P(2)) (36)
=0 e-1 j_oo*

(A — @ c e e (a;)

j=0 .
is an eduivalence of categories. Here the symbol Cl(x)JﬁB danotes
the iteration cl(ﬂ)ﬁcl(f)ﬁ...FB.
Proof: It follows from 1.6. that (36) induces isomorphisms between

nl and no of the Picard categories on both sides of (36).

1.8. Definition of theChern functors: We amy compose the functor
= T
E°(X) —— 6%° “(P(3))
e *
A —— cl(O(l)) ™ (A)

with the inverse of (36) to obtain additive functors
~ o
c. ()M : %P (X) — 68" T(x), 1<ife
MNAz=A
00(3)

and an additive functor-isomorphism
=]

@ c, (00’ (e ($Hrm) — 0. (37)

j=0
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The Chern functors are unique up to unique functor-isomorphism: If
gj(S)ﬁ. are other additive functors functors with ;O(E)ﬁﬁzﬁ and an
isomorphism (37), then there exists a unigue functor-isomorphism
cj(B)ﬂﬁ——»gj(z)ﬁA compatible with (37) which is the identity if
Jj=0.
If 8 is a line bundle, we have P(%)=X and @(1)=8—1, and it follows
easily that (37) is solved by the functor Cl(E)ﬁA defined in 1.2..
Let ¢p: & — &’ be an isomorphism of vector.bundles. It induces an
isomorphism P(%)—=P(8’), hence there is a unique isomorphism
cj(E)ﬁﬂ —_— cj(E’)ﬁA which is compatible with (37} and is the
identity if j=0.
Let & be a vector bundle on X, T:Y—3X a flat morphism and g:Z-—X
a proper morphism of relative dimension d. Using the results of

1.4. it is not hard to construct natural isomorphisms

¥ (e ($)rm)—sc ("H)nt'a AEES” (X) (38)

g*(cj(g*z)ﬁa)——»cj(s)ng*a , Bel€H(z).
They satisfy the following compatibility with compoistion of flat
and proper morphisms and the base-change isomorphism (F1,3.12.]: If
for an X-scheme f:Y—pX we consider the functor

cj(f*z)n.: B9 (X) —— &% (V),

then (38) defines on it the structure of a biadmissible functor
between bifibred Picard categories over (X-schemes, proper
morphisms, flat morphisms).
Our next steps aim at proving the functorial version of the Whitney
sum formula. First we need the following isomorphisms:

1.9.: Let

r.\a\>I 34§ be a commutative diagram in which i is a regular
immersion of codimension one and p and g are flat.
We put O(D)rjrl, where % is the sheaf of ideals defining D. There

is a natural isomorphism

x

o A (39)

cl(O(D))ﬁg*A — i,
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which sends "1"Ng (a) to ip (a), where a is a rational section of
A on S and "1" is the canonical section of ®(D). This isomorphisms
is (in an obvious sense) compatible with flat base-~changes X ——X,
flat maps S—S’, and proper base~changes S—5’. If £ is a line
bundle on X, the diagram

¢, (0(D))Ng (¢ (L)) ——sip (¢ (£)r0) (40)

¢, (a7 £)Re (0(D))Ng Am—mc (a £)Ni o A
commutes.
Proof: We have only to check that the above definition of (39) is
independent of the choice of a, i.e., that

¢, (0(0))Na” (1=ip (1)

for yeAut (A)=G (S). If {ieox(ui—D) are trivializations of

Tk
€% (s)
©(D) on an open covering U of X, then the l.h.s. of the last

y K

. . ) * K *
equality is given by the cohomology class of {q y,p}eZ (U,E 3,

1
k-1,-k . .
where yeEl (s8) is a representative for y, and pij=£j/£i. If

4
q (Y):(gx)xex , then because D is flat over S and of codimension
K

one in X, gx#l implies that x does not belong to D, hence the image

of £. in k(x) is well-defined. Consequently, the product

= o™ (p)e =|g ¢
o= [q (¥) i]ielq[gx i]iel
xexk

is well-defined. It satisfies
* * * *x
d(a)={q (y),qo}+dl( (g (r)zi)ielﬁ{q (7)"'0}“"1( (liq ("))iex)'

By [Fl1, Lemma 1.6.], we have
K.~k

-1
),

dl(iiq*(;v)):i*p*(;v) o, in E
proving the desired identity.
1.10.: Now we are ready to construct the Whitney isomorphism for
exacrt sequences of the form

O F ey §eey L) O

where £ is a line bundle. We apply 1.9. to the diagram
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P (F ) sy P (8 ) .
;\“xz//P There is a natural isomorphism i O(l)8 2@(1)3”
so we may denote both line bundles by the same
*
symbol ©(1). Restricting & to the subbundle ©{(-1)cp & we obtain
* *
a section ¥ of Hem(O(-1),p £L)=p £&0(1) on P(¥). The subscheme de-
fined by the vanishing of ¢ is P(¥). By 1.9., there is a canonical
isomorphism
R * v * o .
i,9 B —— ¢ (q £80(1))"g B, Be€H (X)
¥ X
which sends i*q (b) to £#Np (b). Applying this to (37) (for the

bundle #), we find an isomorphism

f
0 — 1, @ ¢ 00 Ing"(c (Fma)) (a1
=0
f
£oj . %
— &P Cl(@(l)) nia (Cj(f)”A))
3=0
f
— P c o) Tnfe (T )np e (Frnajec (0 (1) (¢ (F)na)
1 ' 1'P LS 1 B ARV
3=0

— B (C, (£)nc (F)ra)ec (0(1)) e’ (c (#)ra)e
f
e-j. % 4 )
® P ¢, (0(1))" "np (e (£)nc,  (F)naec (F)na) .

Jj=1
This is of the form (37) for the vector bundle ¥.Sine (37) defines

the Chern functors up to wunique isomorphism, (41) defines the
Whitney isomorphism we are looking for:

A=C0(8)ﬁA if j=0 {42)
Cj(x)ﬁA———+ Cl(f)ncj_l(?WHAGCJ($ﬁﬁAif 1<j=<f

1(3)“Cf(3")f"A if j=e
We can write this in the shorter form

C.(8)NA —— Cc.(£)c. (F)a,

(% )NA= BﬁA'(S~'X.
where C.(%)MA EB Cj( ) in €% (X)

Jz0
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1.11. Symmetry: Before we can prove the analogue of (42) in the

general case we have to define a symmetry isomorphism between the
Chern functors and to explain its relation to (42).
Let 8 and ¥ be vector bundles of dimension e and f on X. Let
r:P(3)XP(F)—X be the projection. By applying 1.7. twice, we find
that the following isomorphism in G%e+f(P(8)MP(F)) characterizes
ck(E)ﬁcl(ﬁ)ﬁﬁ up to unique isomorphism:
e f
B P e a0 e (T o)) I (e (Bre, (F)rm) — 0

Jj=0 k=0
(p and q are the projections of P(8)MP(F) to P(8) and P(F)). In a

similar manner ckcajrcj(z)na is characterized by the isomorphism
e T

¢ (0 0(1) % re a0y ) R (e, (e, (F)m) — 0

D D cr 3 19 F SIS k :

J=0 k=0
tet £ and M be line bundles on a scheme and a and b integers. We

define an isomorphism cl(.f)ar\:l(m)b_,cl(m)arcl(x)b by the

following prmutation of the factors:

1 2 3 - a a+l a+?2 ...a+b (43)
b+l b+2 b+3 .. b+a 1 2 b A
In (43), 1;...;a are the factors of the product cl(fj and
b
a+l;...;a+tb are the factors of CltM) . In other words, we apply
ox,ﬂ.ab times but we never apply of,Lf or qM,AV If an isomorphism

cl(f)aﬁclﬁﬁ)b——+clLﬁ)ahcl(x)b is used without comment, it is
supposed to be of the form (43).

There is a unique isomorphism 08,53 cj(8)ﬁck(3jfﬁ-—qck(3jfcj(8)ﬁﬁ
which is the identity if jk=0 and makes the diagram
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e T (44)
. .
B P c, (@0 e (7010 e (B, (F)rm)
3=0 k=0 j
e f

* e-j X f-k  *

B D c (o)) “ne (@ ol)g) "ne (e (3)0e, (7)) 0

j=0 k=0 T

. , .
K e-) * Ff-k *x

B D c (e o)) Tne (a0(l)) Tn (e (B)e (F)0A) ——d

Jj=0 k=0

commutative.

We have an analogue of (34) and the identity o feg
o (34) entIty 9% #°%.%

these properties are satisfied for line bundles. It is also clear

=1 because

that 03 3,15 compatible with flat pull-back and proper push-for-

ward.Let 0——aF—8—9f—930 be an exact sequence with dim(£)=1, and

let & be a vector bundle on X. It follows from (40) that the

diagram
C-(f)ﬁc-(?)ch(g)”ﬂ :c.(E)ﬁcj(g)ﬁA (45)
q?.g
c.(.f)ﬁcj*(yg)rt.(&")m %%.¢
ox.s
cjctﬁ)ﬁc.i'-f)ﬂc.(?)ﬁa NOINCOLE
commutes.

1.12. Let 8 and ¥ be vector bundies on X of dimensions e and f, and

let A=(91)051<m50b($§'(x)). We define an element
T.(8,?,A)=(Tk(8.y,ﬁ))lsk<m§%;1Gk(X) (46)
by N
7, (8,%,0) z z (e=i)(f-3)c (B)e (F)[AI[-1], (47)
150 i+3%k-1 .

whare Ci(E)[A] is defined as the isomorphism class of Ci(B)ﬁﬁ,and

[-1] is —leKl.
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The aim of 1.12. is to prove the following formula: Let

0 > F y 8 n_¢ LM —p O

be an exact sequence of vector bundles, with dim(E)=dim(AM)=1. Ws
-1 -1 Tk . .
put $=n “(M), F=n “(£). Let AcOb(EYH (X)). Then the following dia-

gram commutes:

c.(8)ma 2y c.(E)rc. (€)M Ly ¢ (£)ne. (M)re. (F)ra - (48)
T.(£. M, c.(8)Ma) oz’ﬂ
Y &

C.{(8)M 4 c.(M)NCc.(FIMA — Cc. (M)Nc. (EINC, (F)Ma,
where the horizontal arrows are in an obvious manner constructed
from the Whitney sum isomorphism.
Let t:Y-=pX be the fibre space of the bundle faﬂsﬁve(e-l), where 38"
is the dual of ¥. The e-2 8Y-coordinates define sections RS,...,XQ
of t*sv. The L- and M-coordinates define sections ¢ and m of t*x
and tfﬁ on Y. We define rational sections kl, Rz of t*8v by
Rl(§)=0, Rl(£)=1 and Kz(ﬁﬁ=0, Az(mjzl.

We have a cartesian diagram of projective fibrations over Y

i’ P 3’ and denote the projections from P(¥), P(%),
P(g) P(%) P(g¢), and P(F) to Y by p, 4, r, and s. By the
}\NP(E) . isomorphism between &Y and p*Q(l)g, Ki defines

sections Ai of ©(1) on [P(%) (rational sections
if i=z1 or i=2). To avold awkward expressions, we denote the
restrictions of Ai and of (D(l)8 to one of the projective subspaces
of P(8) by the same letters Ai and ©(1).
Let a, be a rational section of F)M on X. Then

e-2 N
£ex AN, .NA Ns t (a
69 e nt3 ( n)
n=0

is a rational section of

e-2
e-2-n__ ¥ %X
g@ocl(@(l)) Ns t (¢ (F)M)

*
on P(¥F). Let be(Gk+e_2)r(P(t F) be the image of &£ by (37). We de-
note the isomorphism Cc.{(M)NC. (F)—aC. (%) by [. It is easy to see

X %
that A2®m.is the canonical section & of p t MO(1) which has 3
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simple zero along P(%). Using this and (41), we see that the image

of

@

-2 (49)
O[Aen"'nAn+SnA20c(an)$Aeh'"nAn+3nc(an)]e |

3
i

e-1
e[ an cl(_@(1))e'l'”m-_*;_*(cn(g)nm]r(ﬂ?(ﬁ))
n=0

- * . .0y .
in (G1+e—1)r(P(t §)) is i (b). The lax notation (49) means more

precissly
e-2 X X ¥ OX
’ AN NA N AL .N e
¢ { D A, A PA "t (e Yeh AL orte(a ) ],
Nn=0
whare

-2
0 @ (e, (000" 0 e (mmre
0

@

3
I

ecl(®(1))e‘2”n

Lo

cl(o(l))e‘l‘”ng*g*(cm(s)m
0]

L S
e e, (e (5)0m)]

@

3
"

is the isomorphism derived from {. A similar computation can be

applied to the image of (53) by ;*. Its result is that the image of

(50)

-1 -1 -1 -1
[Aen...nAn+3nA2nAlna R ORI S SN R CAN T

-2

0]

0

3
i

-1

-1 -1
8] ~ 2 8 N
aA M., An+3 Alﬁa 3 (mﬂan)el\8 - An+3a

e

ﬁ_l(éﬁmﬁen)e

e
= [S@Ocl(ou))e“”nn*;.*(cm(a)nm]r(?(t*sn
in (Gk+e)r(P(t*8)) is i*i;(b). The meaning of (50) is similar to

that of (49), a and {3 ara isomorphisms in (48). Applying the same

method to the embeddings j and j’, we find that the image of
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o
-1.-1 -1.~-1
M M M
g?o [A N, An+3 Al Azﬁy S (an)mAeﬁ...nAn+3ﬁAlmy & (mﬂan)e

-1.-1
™, LN I
A A +3 Azﬁy S5 T (

a jeh a...oh 2 8 N mnena )
e n n e n+3 n

. * . . . — -y
in (G ' )r{P(t g)) is J*J;(b)—l*l*(b). It follows that (50) and

k+e
{51) are eaqual. By (29) and 1.7., this reduces the proof of (48)

to the proof of

X X x %
AL N AA AA N A N...N A NA A )=
A Aea”hMAP P (e DA ALy A TP R (a) (52)
-n- x %
e-n 1ﬁE £ ¥

=Cl(®(1)) (£,M,Cc.(F)NA)).

Tken+l
By (28) and (29), the difference in (52) is
c1(©(1))e_z_Jﬂ[{ul]ﬁ[O(l)]ﬁp*t*([CJL?)HA]]

=Cl(®(1))e_l-jﬁp*ﬁ*(Tk+n+1(f'ﬂ”c'(y)ﬁA))’
and the proof of (48) is complete.
1.13. Let
Z: 0 » F y 8 I » ¢ - 0

be an exact sequence of vector bundles, and let 0=§0c§1c...c§g=§ be

. . . . _ -1 ~
a filtration of ¥ with dlm(ﬁi/gi_l)—l. Let Ei-ﬂ gi and £ _yi/gi_l.

A successive application of 1.10. gives us isomorphisms

C. MA c.(£ ¢, NA P .0 y C. (L )N, .. .NC{(E)INA
(§InA — C. (£ )rc. (g ) (£) (£,)

C{F)INA = C, (£ I, (8 JMA > oo » C. (L ... ."c. (£ )NC.(F)na
24 g-1 g 1

We want to prove that the isomorphism

ég P CHE)INC (F)INA —— C.(8)NA (53)

is independent of the filtration §. of §. We proceed by induction
on the dimension of F.
1.13.1.: Let F be a line bundle. The sheaf M of splittings of the

exact sequence I is a principal homogeneous sheaf for ¥em(%,7),

hence it is representable by a smooth X-scheme M and [G, Theorem
P54
2

Quillen spectral sequence, such that it is sufficient to prove our

8.3.] asserts that pull-back to M is an isomorphism on E of the

assertion after pull-back to M.
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We may thus achieve that £ has a splitting s: § —— %. Let
Z': 0 — £ y % F » 0

-

be the exact sequence defined by this splitting. We want to prove

that
ki
cC.{E)C.(F)INA — C.(F)INC.(E)INA —— ¢.(8)NaA (54)
T.(F,%,A)
c.{.‘fg)n...nc.(xl)nc.(sc‘)m - C.{(8)NA

commutes. Since the arrows in the upper row are independent of §.,.
we conclude that (53) is independent of §.. |
We prove (54) by induction on g. If § is a line bundle, (54) is

(48) in the special case where the line bundle occuring in (48) is

zero, If g»1, we put 3%§g_1 and consider the following diagram:

(55)
“g,¥
CHEINC, (FINA ey C.(F)NC ., (B)NA 3 C.(%)NA
& AFLE L (FE)NA
(A) ) T g (%€)NA)
o cC.(FINC.(¥ nc, (YA v
g c.(£ )e. (8 )N A=—C . (% }PA
o g g-1
g ,E
g . Y
v 5,8 l (B)
c.(fg)r‘»c.(%)r“rc.(&“)ma —— c.(fg)ﬁc.(&*‘)nc.(ge)m
. ) ? . N K
B (D) T.(8,%,c.(£ )n4) T.(8,%,c. (L )0A)
C.{L ... nC. (£ INC, (FINA w0y C.(fg)ﬁc.($)ﬂc.(ﬁﬁﬁA 5> C.,(8)NA
The arrows o and & in (55) are defined by O——»ﬁ%—»?——»fg—~a0, 3 is
defined by by the ascending filtration (gk)0<kﬁg—1 of ¥, ¥ is

defined by the sequence O——+%LE+$E_ —38—30. The commutativity of

(A) is consequence of (45}, (B) is t&e induction assumption, (C) is

{48), and (D) is trivial. An easy calculation shows
‘r.(3’,.‘6’8,(:.(gf)ﬁAHT.(B,W,C.(fg)ﬁAhT.(ff’,g,A).

It follows that the outer contour of (55) is (54), and the proof of

{564) is complete.

1.13.2.: The splitting principle: Let & be an e-dimensional vector

bundle on X, and let p:Y—3X be its flag fibration parametrizing

maximal flags.
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¥ P < P . .
(a) p : CF (X)) — €% (Y) is a faithful functor.

(b) Let p

1.2 be the projections of YXY to its factors and r=pp =
y

1
~ X * X

=PP, - If A and B are objects of E%FRX) and if ¢:p A—»p ‘B is as
isomorphism, then f is of the form p (w) for a (unique) Y:A=—B if
and only if

E 3 ¥

e (p)=p (p) (56)

* *

in Hom{(r A,r B).

Proof: The projection p admits a factorization

(1) (e-1)
v=y —E v bot Y =X
© ! (r ()%
into j-dimensional projective fibratiobns p J . By 1..7., p J is

faithful, and (a) follows. Condition (54) in (b) is certainly ne-
cessary. If f exists we have p*([A])=p*([B]) in CHk(Y). By 1.6., p*
is injective on the Chow groups, and we conclude that there is a
homomorphism h:A——»B Then f’ f-p (h)EG (Y) satisfies

p (f )=p, *(£) in G (YXY) (57)

Let 0=% Cilc...cg =p § be the unlversal flag of p 8 and let

,-8 /81 L Iterating 1.6., we have
e-1 J J
1 e-1_ *
= LI I n-..m m
EB GB cl(fl) cl(Ze_l) P [Gk—zj,(x)] (58)
=0 =0 1
1 -1
6, (vxt)= @B 1 ¥ ) e, (b2 )jim (59)
k(X0 = B D C1iPrFy ) T Rty ) e
31339950 J 09, 470
J J’

e-1 * e-1

* *
...ﬁcl(plfe_l) ﬁcl(pzxe_l) Nr [Gk-EJi-EJ;(X)]

If we represent f' in the form (58), then (59) implies that (57) is
valid if and only if all compoonents of f’' are zero save for the

component belonging to (j .,je_1)=(0,...,0) in (58), i.e., if

1’
x
and only if f'=p (g’), and (b) follows.
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1.13.3.: Now we are ready to perform the induction argument
announced at the beginning of 1.13.. Let dim(F)=f>1, and assume
that our claim (i.e., that (53) is independent of the filtration)
has already been verified for bundles of dimension less than e. By
part {(a) of the splitting principle we may assume that F has a
subbundle ¥ of dimension f-1. We consider the following commutative

diagram, in which each arrow is in the obvious manner constructed

from (42):
c. (e, (F)NA -—2—+ c.(£ )ﬁ...ﬁc.(fl)ﬁc.(y)ﬁA —-£~—+ c.(%)NA
/| | d
&

c.(§)c . (F/&)hA —— C.(.E,’g)ﬁ. ..ﬁC.(.t'l NC (F/E)NC . (F)NA
£
c.(8/%)Nc . (X)NA
By the induction assumption,‘(s is independent of the filtration
yi' By the result of 1.13.1., the same is true about 6_16. It fol-
lows that 3 is independent of the ?i. Since f3aa is (53), we are
through.
1.14. The Whitney isomorphism: Let

z: 0 y F y 8 g » O

be an exact sequence of vector bundles on X. We denote by p:Y—X

the flag manifold of ¢, by pl_z:YXY——aY the projections to the
’ X

*
factors and put r=pp,=PP,. Let 3.=(O=§OC§IC...c§g=p £) be the
universal flag of §. It defines an isomorphism (53)

® * * * *
§§ tCc.{pg)c.(p F)'p A— Cc.(p 8)"p A.
Since (as one proves easily) (53) is compatible with flat base
change, we have

E:(é X C (e E)NC. (2 F)NE A — C.(r 8)Nr A.

g. 8.
By the main result of 1.13., this is independent of ie{1;2}. By
part (b) of the splitting principle 1.13.2., we conclude that there

exists a unique
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5 C. (P E)C.(p F)p A — C.(p 8)Np A (60)

* )
with §§=p (@Z). If ¢ is a line bundle, we have Y=X and (60) coin-

cides with (42),.
If € has a flag 0=FOCF1C...ch=§ with one-dimensional gquotients

A =" /T, then the diagram
i it oa-

1’
c.(:ﬂ)ﬁc.(&‘)ﬁA—a—bc.(Ag)ﬁ...f‘\c.(Al)ﬂc.(E)ﬂA (61)
@Z — C.(8)MA l—ﬁ—]
commutes. Indeed, ﬁa=§r., hence E*(ﬁa)=§p*r.=§g.=g*(§2)-py the main

result of 1.13., and (61) follows from the splitting principle.

Let 0c9%<¥<® be a filtration of ¥, Then the diagram

c.(8)nA y» C.(8/F )¢, (§)NA (62)

commutes. By the splitting principle, it suffices to prove (62) in

the case that /% and /% have flags with one-dimensional quo-
tients, in which (62) follows from (61).
It is easy to see that (64) is compatible with isomorphism Z——p%'’
of short exact sequences and with flat and proper bagse-changes
Y—X. By (61) and the splitting principle it is possible to extend
(45) to the case dim(£)z1.
Let 8 and ¥ be vector bundles on X. We have sequences

Z ! O3 8 BF ey F— 0

1

22: O F D F ——9 8 0 .

The diagram

Py
¢ (F)NC. (8)NA 1 c.(%eF)ra (63)
ag,y pz T.(8,%,A)
C.(8)nc. (7)na 2 c. (%07 )mA
commutes. This is a consequence of 1.12.,, (61) and the splitting

principle.

<K k+3i
1.15.: If i»0 and A€Ob(8% (X)), then Ci(E)ﬁAEOb(Kﬁ 1(X)). For X has
a Zariski covering on which 8 and hence ci(E)ﬁA are trivial, and we

apply [F1, 3.8.].
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1.16. Let
Y——)X . , . .
be a commutative diagram with p and q flat and i a
l—» +—J regular closed immersion of codimension one. If &

is a vector bundle on S, then the diagram

i,9 (C, (8)PA) — (¢ (a8)na’A) —— ¢ (p'8)Ni,a'A  (64)
* * *
¢, (@ (0))np" (¢ (8)na) ¢ (' 8)c (0_(D))np A

L—» ¢, (0, (D)), (' 8)"p A —-]

Proof: If % is a line bundle, (64) coincides with {40). Let
0 - F » 3§ » 9 y O

commutes.

be an exact sequence such that (64) is true for ¥ and §. Then we

have the diagram

1,9 (c.(8)n4) 5 ©, (0, (D))Np"(c.(8)0A)
NT
i, (€. (§)Rc. (7)0a) » ¢, (0, (D))ne" (c.(§)nc. (F)a)

* ; ¥ ¥ ¥
(e @fnet e @rn] W e e (27)% e (7)0m)

A 4

- \L’
C.(p7E)Ni,a (. (F)MA) s . (B §)NC (D (D))AR (c. (F)0a)

c.(pging,fe.(a"Fna™m] @) e ()N @ (D). (77 )nm A
. (pINC. (p F)NL g A — C.(p'§)NC. (b F)nC (0, (D))rpA
NT

* E S *
c.(&)Ni ,a A » C.(p 8)f"cl(®x(D))"‘p_ A
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(A) and (B) are (64) for § and F. As we did in [Fl1], we used the
label NT to denote squares which commute just because the arrows
involved in them are natural transformations. By the biadmissibili-
ty of the Whitney isomorphism ¢, (38 )NA—a¢ . (E)NC,(F)NA, the composi-
tion of the left column is the top row of (64). By the generaliza-
tion of (45), the composition of the right column is the bottom row
of (64). It follows that (64) is true for %. Thus it is possible to

prove (64) by induction on dim(%¥), using the splitting principle.
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2. Further Properties of the Chern functors

2.1. Relation between c1 and specialization: Let DxX be a closed

subscheme of X whose sheaf of ideals is in some neighbourhood of D

generated by f. For a line bundle £ on X and AeObHﬁ%k(X—D)), we

want to construct an isomorphism e

Ce,t
To this end we fix a covering 9=l Ui on which £ is trivialized by
i
non-vanishing sections ti. We denote by % X-D’ U D the coverings
* .=
p=l) (mUi) and X-D=lJ ((x-)nui). Let C (%,E i P) be the absolute

:cl(éf D)ﬁepf(A)—»epf(cl(xlx_D)ﬁA). (1)

Cech complex with differential d. The closed and exact Cech chains

"P). 9“’P)

* «1-P * 'y p .
are denoted Z (U,E ) and B (U,E For ceZ (U,E 1

~ 1 1
®(c)e@§p(x) has been defined in 1.(1). In our situation, we have a
homomorphism

P’q

sSp {X- D)——»E 1

f:

(cf. [F2,81.71). The induced homomorphism

* *
spf.C (U X-D)_’C (U D)

turns easily out to be a homomorphism of complexes. Consequently we
have an homomorphism

8p(0(c))—0(sp (<)) (2)
for cect (U, E ) If veE(X- D) is open and aeD(C)(V) is given by x
as in 1.(1), then (2) maps Sp (a)esp ®(c)(D (X-D-V)) to the secﬂf;n
of ®(spf(c)) defined by the Cech cycle spf(x)ez (%| ).

D-{X-D-V)

Now we are ready to define the isomorphisms (1). If aEAr(X—D) and

¢ij denotes the Cech cycle li/Zj, then
(cl(x)nA)ﬂ,f,azo({¢ij’C(a)})'

Since Spf({¢ij,C(a)})={¢ij D,spf(C(a))}={¢ij D,C(Spf(&))}s (2)

defines an isomorphism



8p (¢, (£MA) ) =8P (®({¢ ,C(a)))—+®({¢ p'éisp.la))})=

U,1l,a
=(c_(£]_)1sp _(A)) .
1 D f U'D,JlD,spf(a)
It i8 easy to see that these isomorphisms are compatible with the
isomorphisms for changing { or a and refining U (cf. §1.2.).

Consequently they define (1).

2.2, Relation between ck and specialization: Let X, D, and f be the

same as before, and let ¥ be a vector bundle of dimension e on X.

We denote by P(8) the corresponding projective fibration and by

p:P(%8)—>X the projection. If de%P(X-D), then from the isomorphism

c e-k__*
P ¢, (01" "rp (¢ (8)na)—0

in G% P(S)) we derive by (1) an isomorphism
@c (©(1))% Frp" (8P (C, (8)N4) )

N e-k *

—p ¢, (0(1) )oomep . (B (€, (3)NA)) ——
k=0 X-D p (f)

e Sk %
—8p [ GB C (0(1)) "p (Ck(g)”A))] —_—0
P (f) k=0

Since Spf(C0(8)ﬁA)=8pf(A)=CO(8|D)ﬁspf(A), this isomorphism and the

definition of the Chern functors in §1.8. give an isomorphism

o&g,fzepf(ck(ﬁ)ﬂA)—-)Ck(E'D)ﬂspf(A). (3)

2.3. Properties of the isomorphism (3): The following properties

are easily verifieqd:
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2.3.1. Compatibility with pull-back and push-forward: Let Ksp be

the category defined in [F2,§3.137]. Let objects of Ksp\(X,D,f) be

- *
denoted by (q:Y—X,q 1(D),q (f)), and let Ksp\(X,D) be
(Ksp\(X,D), flat morphisms, proper morphisms of c¢.r.d.). Then

€% '(Y) and 6%'(q-1(D)) are bifibred over KSP\(X,D,f), and the

functors

sp , 6% (Y)—6% (a (D))
q (f)

* ~. ~0
ck(q BN, €H (Y)—EH (Y)
* ~o _1 ~o "'1
a8y 637 (a7 0] 88 (a7 (1))
are biadmissible. The property is that the isomorphism

* *
sp [Ck(q 3)0.]—»ck(q ElD)ﬂep
g (f)

is biadmissible.

*
q (f)

2.3.2. Compatibility with the Whitney sum isomorphism: If
0 y F »y & » & » 0
is an exact sequence of vector bundles on X, then the diagram

c.<3'|D)ﬁc.(§|D>%pf(A) — <. (8| 8P _(A)

|

c.(ﬁ‘lD)ﬁspf(c.(g)ﬁM

l V

Spf(C-(y)ﬁC-(g)ﬁA) o) 9pf(c (8)MA)

(4)

commutes.
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2.3.3. Let Dicx (ie{1;2}) be regular closed immersions of coidmen-

sion one, with sheaf of ideals trivialized by f,. We assume that
the sequence {f ; f } is regular in a neighbourhood of Dlr"iD2 If %
is a vector bundle on X and AEOb(@% {X- D1 D Y, then the diagran
N 5 N
epf (pr (Ck(‘é) A)) ﬁspf (pr (Ck(E) A))
1 2 2 1
8P, (€, (5[, 108P, (A) %P, (¢, (3] )EP, (A))
fl k D2 fz f2 k D1 f1 (5)
ck(8|D ﬁDz)rﬂspfl(epfz(m) ——-»ck(EIDlﬁDz)nepfz(spfl(A))

commutes. The horizontal arrows have been defined in [F,§3.15],

2.3.4, If in the commutative triangle

;\3 eﬂ{ p and q are flat and 8 is a vector bundle on Z,

z then the diagram

a

,q8
Spf[g (c (E)ﬁA)] —_— sp (c (q 8)”3 A)) =————— C (p 8)ﬁepfg A)

l Lo

*c g)NA (*Eﬁ*
Ek() ﬁckp)pA

commutes.

2.3.5.: Let £ be a line bundle on X, AeOb(G%k(X—D)), aeAr(X—D). We
assume that { is a rational section of ¢ on X whose divisor meets
c(a), D, and DMsupp(C{(a)) properly. Then
¥/al = ¢|.n £ .
af,k(Spl( a)) D sp)\(a) e(cl( D)%p)\A)r(D)

1
2.4.Relation between Ck and f'

Proposition: There exists a unique collection of isomorphisms

! * !
Be gt £ (€ (8)NA) — c (£78)0F A (1)
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for a local complete intersection morphism f:X—Y which admits an
immersion into a smooth Y-scheme (abbreviated: an slci-morphism
f:X—Y), a vector bundle & on Y, andjmdzgk(Y) such that the fol-
lowing properties are satisfied:

2.4.1. Compatibility with pull-back and push-forward: Let S be a

scheme and 8 be a vector bundle on S. Let chi S be defined by
’

by "S-scheme" in the definition of‘chi {(cf.

tr

replacing "scheme
[F2,§4.7.]). If objects of this bicategory are denoted f:X—Y, then
EX and EY refer to the pull-backs of 8 to X and Y. Then

ck(EX)ﬁ.:G% (X)—aEH (X)),

¢ (8,)0.:6% (Y)—€%H (Y),

and ilzﬁg'(Y)——aﬁg'(x)

are biadmissible functors between bifibred Picard categories over

K. . . The condition is that
lci, S
f t
5 —_C, al
Be g L€, (8y) (8 N
Y
is a biamissible functor-isomorphism.
f
2.4.2. Compatibility with composition: If X - Y g » Z are

lci-morphisms such that g and gf (and hence f too) are slci, then

the diagram

1 * ' * % 1o
;’g’(ck(g)m) —— £ (c (8 8)Ng A) —c (f g 8)NL'E A

| |

(1) (¢, ($)nA) :ck[(gf)*s]ngggm

commutes for every vector bundle 8 on Z.

2.4.3. Compatibility with specialization: Let (f,X,Y,D,\) be an

object of Kici sp {cf. [F2,§4.7.]). It is given by a Cartesian
3

diagram



£ 1 (D)ex
fDl lf
Dc Y

and a function N\ in a neighbourhood of D defining D. If % is a

-1
vector bundle on Y and A€Ob(€% (Y)), then the diagram

8p , £'(c (8)na) —— £(8p, (, (£)NA)

£ (\)
1
8p (B, o) £ (a )
£* o £,% PN
sp [c (f*s)nf’A] f’[c (3{_)rep A]
f*(k) Kk = -pl "k |D PN (9)
o f?
f*8,f (N) fn’glb'

* ! * !
ck(fnle)nspf*(M_f_ A —— Ck(fD?SID)ﬁiDSp}\A_

commutes.

2.4.4.: If in

X ¥
N F
z

p and q are flat and f is slci, then the diagram

ﬁ *
* * f,p 8 * X X
(p ) p A]  — Ck(q E)Nf p A)

l . {(10)

* 3 *
q [Ckﬂ?» Na > ck(q g)Ng A

!X £ ) !
_tln[ck()A]——-bﬁ[Ck

commutes for every vector bundle & on Z.

2.5. Proof of 2.4.: We proceed in four steps. In 2.5.1.-3. we prove

that Bi exigts and is unique for regular immersions i. In 2.5.4.,

&

we extend this to the general case.
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2.5.1.: Let i:Xo—->X1 be a regular closed immersion. We denote by

m:MO—éMl its deformation to the normal bundle (cf. [Fu,§5]1 or

[F2,§£4.2.]. This is a regular closed immersion

"ol . 1”1
ixP

xleI _ xlel.

The following properties are satisfied:

. . . . a
(i) . is an isomorphism. Let the superscript (a) denote the res-

0
triction of morphisms with source Mi to Mia,

=rz;1{x>dP1)-. Then
Lle) ,M(a)

1 . . .
——»xlxﬁ is an isomorphism.

A |
n .
.. L i 1
(ii) Let pi denote the composition Mi S XixP — Xi.
(iii) Let the superscript () denote the restriction of morphisms
w -1 w
with source M, to Mi )=ni (m)cMi. Then pi ) factors over a map
w
P :Mi )—+X0, and p00 is the projection of a vector bundle with zero
, w i) 0 X oo - . 0] ,
section m( ): Mé )—+Mi ). Hence Em:G% (XO) — B (M; )) is an

equivalence of categories.
(iv) The formation of M is compatible with any base change Y1 — Xl
after which i remains regular of the same codimension.

Let Ael(P1-{0},0
1
P
the sake of simplicity it is denoted by the same letter A for all

) be the inverse of the coordinate function. For

projective lines over an arbitrary scheme. There is a cancnical
isomorphisn
! (a)* ! (a)! (a)* (0) (a)*
A
iA—8pp, 1A Spm B, A= nmn 8P p, -
* =1 (a)*
A, 11

(cf. [F2,54.4]) for AeObUS%’(Xl)). For a vector bundle ¥ on Xl’ we

define Bi % by the composition
]
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;’[ckwm] - (g;)'l[spx[pia’*(ck(a,m)]] -

a
»
X,p ¥
* -1 * *
= ()7} [op, (e, (P}5)0]* "a) ——y
* -1 * (a)*
— (p,) [Ck(pm8ixo n8p, (py A)]

(a)*

1

* -1 ¥
- ckusixo)h(pw) [Spkg A] = ck(zslxo nila. (12)

By applying 2.4.1., (9), and (10) to the isomorphisms in (11), we
see that a system of isomorphisms ﬁi,E satisfying 2.4.1., 2.4.3,
and 2.4.4. for regular closed immersions must be given by (12).
Conversely, since (12) contains only transformations compatible
with flat and proper base change and with specialization, 2.4.1.
and 2.4.3. are consequences of (iv). 2.4.4. follows from 2.3.5. by
an easy computation.
2.5.2,: It remains to prove that ﬁi,E satisfies2.,4.2. in the case
of regular closed immersions. First we prove (8) in the following
case: A and B are the bundle spaces of vector bundles & and 2 on X,
f:X — A is the zerov section, g: A — B is an injective homomor-
phism of vector bundles, and 8=r*$, where r:B —+ X is the bundle
projection and ¥ is a vector bundle on X,
Without loosing generality we may assume that there is a projection
P: B — A of vector bundles. Otherwise we consider the X-scheme

n: Z={projections from & to B) — X,
which is & principal homogeneous space for the vector bundle

ﬁbmb (B/#,4). Since E*: EH (X)) —m €H (Z) is an equivalence of
X

categories, it suffices to verify (8) after base-change to Z, where

the desired projection p exists.

! ¥ -1
Now we consider the projections B P » A 3 » X. Then f ' =(gq ) ~,
! ¥ -1 ! ¥ -1 )
g =(p ) , (&f) =({ap) ) , and the diagrams
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t'gl — @HTEHTT e n) — e (£TEine ()
L L L L
{gf) —— ({pa) ) (a ) (¢, (q )N} — ¢ (F)N(a )

commute (for the right one, this is 2.4.4.). Since the analogues of
the right diagram for g and gf are also commutative, our claim
follows from the properties of the isomorphisms 1.(38).

2.5.3.: To prove (8) in the case of arbitrary regular immersions
f
XO —_— Xl ——2—+ Xz, we consider the deformation to the normal
bundle
m m
M —2y M — Y M
0 1 2

nol nll nzl
1 1 1
XoxﬂD —_ xlx[P — sz[P
with the following properties (cf [F2,§4.2.1]1):
(a) denotes res-

(X x& ), then ni : (a)

(i) T is an isomorphism, and if the superscript

0 (a)

triction of morphisms to M - X XQ is

an isomorphism, -
i 1
{ii) We denote by pi the projections Mi ——L—+ XixP el Xi.

{iii) 2.5.2. is applicable to the composition

lll(00) m(cn)
M(()c:o) 0 Mioo) 1 Méco)

Let X be the same as in 2.5.1. By the construction of the isomor-

1o !
phism f' g° — (gf} in [F2,54.8.], the diagram

f g A — Sﬁ)\p(a’) I g'A — mém) Spk ;a)*g'A
o (@)t () (a)*
(gf) A o, m, 8P\ B, A

NL 1

8P, B, al*oe)'a : Lm(‘;) (°°)1 8P, p ;a’*A
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commutes. Using this, we can deduce (8) from 2.5.2., 2.4.1., and
2.4.3..

2.5.4.: We have proven that ﬁi,% exists and is unique for regular
immersions i. Let f: X — Y be an slci-morphism, and let % be a
vector bundle on Y. We choose a factorization of f

o: X l:S P:Ys

Pl L %
where p is smooth. Then i'§§0=i p f{cf. [F2, §4.10]). We define

Beg bY B
T ! * * i,p¥ * X

ip Ck(E)”A —_— i (Ck(p &)"p A) —m Ck(f )i 'p A. (13)

By 2.4.4., 2.4.2., and our result about the uniqueness of ﬁi p.E' a
b
system of isomorphisms ﬁf 8 satisfying 2.4.1.-4, must be given by
3

(13) if it exists.
Our first task is to prove that (13) is indepenent of ¢. This
follows from 2.4.4. (applied in the case of regular immersions) and

the construction of the change of factoriazation isomorphism

ﬁ; —+£; in [F2,§4.9-10]. Now 2.4.1., 2.4.3, and 2.4.4. can immedi-
1 2

ately be reduced to the case of regular immersions.

The proof of (8) can be split up into the following four cases:

(o) f and g are regular closed immersions. This case has alreay

been dealt with.

(3) £ is a regular closed immersion, and g is smooth. This case

follows from definition (13) and [F2,584.12,,Sublemma 1). We note

that this is the only case of 2.4.2. which does not follow from the

other points of 2.4..

{(y) f and g are smooth., This case follows immediately from (13).

(6) f is smooth, and g=i is a regular immersion. By our assumption,

if factors over a smooth z-scheme S. Consider the diagram
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The square is Cartesian; i, i’, and j are regular immersions, p,
and f are smooth. By the definition of the isomorphism (?7):
ﬁ!g}-—élgji! in [F2, & 4.11.], the following diagram commutes:

t t (?) !
£iA——— (if) A

l(a) (d)l[

Jo¥ ! R
ipiA (ji’) g A
P,k
di’''ga A .
The compatibility of the isomorphisms 3 *8 with the arrows (a),
g
(b), (c), (d) follows from case ({3), 2.4.1., case (o), and case

(3). It follows that these isomorphisms are compatible with (?},

which is (11). The proof of 2.4. is complete.

2.6, For our axiomatic characterization of Chern functors we need

some further properties of the isomorphisms ﬁf,g'
2.6.1. Let i: X —3 Y be a regular closed immersion, £ a line
bundle on X, and Ae@%k(X). We assume that a and { are rational
sections of A and £ on X such that ¢(a), div({)} and Y meet

properly. Then ﬁ"ae(cl(f)ﬁA)r(X), i!(ﬁﬁa)e(l!(Cl(f)ﬁA)r(Y), and

* ' * t
i ({)ﬁi'(a)e(cl(i $)ﬁl'A)r(Y). We claim that the isomorphism ﬁi P
y

;!(cl(f)ﬁA) —— Cl(i*f)ﬁl!A maps i!(&ﬂa) to i*(f)ﬁi!(a).

Proof: Step 1: First we assume that we are in the following situ-
ation:

- X is a vector bundle over Y, with bundle projection p.

* * * *
- 2=p 31, {=p (Jl), Asp A asp (al) for some fl and A. on Y.

1’ 1
Then the assumption follows from 2.4.4.
Step 2: In the general case we consider the deformation to the

normal bundle

d)



~ M —
/jk/ﬁ l
n
1 1 - - 1
Y{F —ET+ XqP P ) M(w)=n 1(oo), M(a)=ﬂ l(xx& }, superscripts
q
l l (a) or (m)=restriction to M(a) or M(m)
V —) X
* 1
and denote by A a coordinate function on P~ as in 2.5.1.. We consi-
* x
der the rational section spx(p(a) (a)) of prp(a) A. In the fol-
lowing computatuion we will use the canonical isomorphism
*
Splg(a) A~A without warning. By the axioms of 2.4., we have
! (a)* !
i (IN = i (LM
61’3(1 ({Na)) SP, P (Bi,f(l ({na))) (14)
" (a)* a)*
= sp}\B~ L« (17 (p J)ﬁp( T (a)))
i,p £
T{oo)!  (o0)* {00)*
= M .
ﬁ?(m) (00)% (i P (£) SP, P (a)))
i P £
We have used 2.4.1. in line 2 and 2.4.3, and 2.3.5. in line 3. Now
. * X 1
we note that spkp(a) (a)=p(m) i (a), where p(w):M —— Y is the

restriction of p. This allows us to apply step 1, hence (14) is

eaqual to

i*ﬁﬂi(w)!(spxp(a)

where the last equality holds for similar reasons as in (14). This

* * )
(a))=i (£L)Ni (a),

proves 2.6.1..

2.6.2. Let

D —2 4 X
a\\\s lp S be a commutative diagram with p and g smooth,
(15) . i a regular immersion of codimension ?ne, and
s a section of p. We assume that s (D} is
regular of codimension one in Y and denote by iY: s_l(D) —_— Y,
sD: s-l(D) —— D the restrictions of i and s. Furthermore we
assume that there is a flat map r: Y——Z whose restriction rD to D

remains flat:



Z
Note that there are isomorphisms
x X % %
c1(®(D)>ﬁE LA-—— iaqgrA
c (@(S_I(D)ﬁr*A —_— 1 r*A 1.(39)
1 = =Y*TD )
We assert that the diagram
t *x X I S
8 (CI(O(D))ﬁE r A) + s iarA (16)
L 4 \L
(s Hp)yns'p A i s'a'r'a
Cl‘ s s pr LY*QDQ r
¢ (0(s~} p))nc’a a
11748 - * LyaLp

commutes. The lower vertical arrows are of type [F1l, 4.7.1.], and
the right upper vertical isomorphism is the base-change isomorphism
for §! provided by [Fl1, 4.7.1].

Proof: Let a be a rational section of A, and let "1" be the
cononical section of ®(D) (resp. of @(s_l(D))) which has a zero
along D (resp. s “(D)). Then by 2.6.1., the construction of 1.(39),
and the construction of the remaining arrows in [Fl]}, the diagram
(16) acts on s!("l"ﬁp*r*(a)) as follows:

! x % ! ¥ X
s ("1""p r (a)) —————y s (igar (a))

"1onst ¥ (a) L alatr )
s r (a ix8p2 T (a
1"y e x . vk
1 (a) » i, rpla)l

which proves our claim.
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2.6.3.: We consider again (15) under the assumption that p and g
are smooth, 1 is a regular immersion of codimension one, and s is a
section of p. Now we assume that the images of i and s are dis-

L]
joint. Then s8'i. has a canonical trivialization. On the other side,

=%
* *
s ©(D) is trivialized by s ("1"), and we obtain another trivial-
ization

! x

*
g'l*g A —— s!(cl(®(D)ﬁE*A)  — Cl(s*@(D))ﬁg!p*A s ((17)

0

We claim that these trivializations coincide.
Proof: This is similar to 2.6.2.. The first trivialization maps
s!i*q*(a) to zero, while the second one maps it to
s!i*q*(a) —_ s!("l"ﬁp*(a)) —_ s*("l")ﬂs!p*(a) — O
2.6.4. Let f: X —— Y be slci, % and ¥ be vecrtor bundles on Y,
and AeOb(@gk(Y)). Then the diagram
£'(c ($)re (F1ra) — ¢ (£78)0L' (¢ (F)ra) — ¢ (£78)nc (£%F)nz' A

l"z | F l% | F

! * ! * * !
T (cl(y)ﬁck(g)ﬁA) —_ Cl(f F) £ (Ck(E)ﬁA) — Cl(f ?)ﬁck(f & )NfTA

commutes.

Proof: By deformation to the normal bundle, we can reduce this to
the case of the zero section of a vector bundle, which is clear
from 2.4.4. because ¢ is compatible with flat pull-back.

&,F
2.6.5. Compatibility with the Whitney isomorphism: Let f:X—Y be

sclci, and let Qe——F——38—s8—)0 be an exact sequence of vector

-k
bundles on Y. Then for AcOb(C% (Y)) the diagram

£ e, (8)na) y c.(£8)nE' A

£ . (8)nC. (FINA) — €. (£ €)NE (CAFINA) — C. (£ €)NC.(F F)NL A

commutes.

Proof: If f is smooth, this is clear. This reduces us to the case
of a regular closed immersion f. In this case the diagram commutes
because (12) contains only transformations which are compatible

with the Whitney isomorphism (cf. for instance 2.3.3.).
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2.7: Relation between Cl and the determinant: For a vector bundle $§
e
of dimension e, we denote by det(¥)=A% its determinant line bundle.

If £: 0—F—8—%—0 is an exact sequence of vector bundles, then
there is a canonical isomorphism
i‘Z: det (¥ )odet(§) = det(¥).
Proposition: There is a unique system of isomorphisms
N Ly Cl(det(E))ﬂA —_ Cl('&)ﬁA (17)
for AeOb(@%k(X)) and a vector bundle 8 on X such that the following

properties are satisfied:

2.7.1: Compatibility with pull-back and push-forward: If X-schemes
~

are denoted p:Y—X, then 8% (Y) is a bifibred Picard category over
the bicategory (X-schemes, proper morphisms of c¢.r.d, flat mor-
* * o -
phisms), &ndisl(det(p )., and Cl(p )N, 8% (Y)—CH (Y) are biad-
missible functors. The condition is that
* 3

t *,: ¢ (det{p §}))N., = C_(p &),

pd 1 1
is a biadmissible functor-iscomorphism.

2.7.2. Compatibility with the Whitney isomorphism: If
: 0 - F - 3 » ¢ » O

is an exact sequence of vector bundles on X, then the diagram
63
Cl(g)ﬁAecl(F)ﬁA :Cl(g)ﬂA

Clt_det(g)_)ﬁAeCl(det(ﬁ"))ﬁA —_— Cl(det(§)®det(?))ﬁA -i—>c1(det(8))ﬁA
z

commutes.,

2.7.3. Normalization: If £ is a line bundle, Lf is the identity.

These conditions characterizet8 uniquely. In addition, the follo-

wing properties are satisfied:

2.7.4.: If % and ¥ are vector bundles on X, then the diagram
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Ydet(8),det(F)

cl(det(E))ﬁclfdet(?))ﬁA — cltdet(F))fcl(det(z))ﬂA
N
tg LyJ’ 1 Lyntg
Iog
C. (8)ne (FINA — 3.7 y C_(FHuc_ (8)MaA
1 1 | 1
commutes.
2.7.5.: The isomorphisms Lg and ﬁf B (for a lci-morphism f) are

compatible.

Proof: By the splitting principle it is clear that 2.7.1-3.

characterize Lguniquely and that 2.7.4., and 2.7.5. can be reduced

to the case of line bundles in which they are clear.

It remains to construct an isomorphism L8 with 2.7.1-3.. Let
8.:0=8 <8 <...c8 =8 be a full flag of ¥ with quotients £ =% /8. _.
0 1 e i it i-1

We have an isomorphism

e
cl(det(E))ﬁA-——b GCI(JQ)ﬁA—)Cl(E)ﬁA, (18)

i=1

where the first isomorphism is derived from t_ and the second

z
isomorphism is derived from the isomorphisms pz. It suffices to

prove that (18) is independent of the filtration 8., for then we
can use 1.13.2.(b) to descent (18) from the flag manifold of & to X
(cf. the construction of 1.(60)). Because A is isomorphic to an ob-
ject 1*B for BeOb{@go(Z)) and i: Z—X a closed subscheme of codi-
mension k and since (18) conatains only biadmissible transforma-

tions, we may assume AeOb(G%O(X)). Then the restriction functor

el (x) — X 6% (Spec k(n))

nGXO
is faithful, so we may assume X is the spectrum of a field. Let
p:F—3X be the full flag manifold of €. Because (18) contains only
transformations which are compatible with the functor g! for s:X—F
a section of p, it suffices to prove that the isomorphism between
line bundles

Cl(p*(det(z)))ﬁl —_ C1(p*8)ﬁ1

is constant on F. This is clear because F is a proper variety.
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2.8. Transition to the virtual category: For an exact category $,

we denote by ®(P) its virtual category in the sense of [D, §4]. For
a scheme X, we denote by R(X)=K(P(X)) the category of virtual
vector bundles on X. By the universal properties of the virtual
category ([D,§4.3.]), there exist unigue (up to unique functor-iso-
morphism) additive functors

¢, ($)ra: ® OXES "  (x) —— 655 (x), 120

cO(E)ﬁA=A
together with additive (in A) functor-isomorphisms
Ci(O)ﬁA —_— 0 if i>0
C.(8BF )NA ey C, (B ). (F)NA

such that
(1) ci(8)0A=ci([8])ﬁA if € is a vector bundle and [8] the corres-
ponding virtual bundle.
{ii) If £: 0—F—8—§%—0 is a short exact sequence of vector
bundles, then the following diagram involving the Whithney sum
isomorphism and the isomorphism [8]—{$]@[F] induced by &
commutes:

c.(3)NA + C.(G)C.(F)nA

C.{[§1e[FI)NA —— C.([E])c.([F]1)NA.
In the rest of this paper, we will for the sake of simplicity not

distinguish between vector bundles themselfes and the virtual vec-
tor bundles defined by them. Using the universal property of the
virtual category, we get isomorphisms

¢C . (B)¢ (FYNA — ¢ (F)NC, (8)NA
i J J 1
* * *
ci(f E)Nf A ———m f (ci(‘&)ﬁA)
cicf*a)ni"A — ;’(ci(zm)
X
ci(S)ﬁg*A —_— g*(ci(g E)INA)

Cl(x)ﬁA —— Cl(det(E))ﬁA
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because the corresponding isomorphisms for "real" bundles are com-
patible with the Whitney sum isomorphism. These isomorphisms for
virtual vector bundles satisfy the same compatibilities as the
corresponding isomorphisms between "real" vector bundles.

2.9. Polynomials in the Chern functors: Let P(ci(Ej) be a poly-

nomial with integral coeffitients in the Chern classes of vector

bundles 8j,jeJ on X. For a total ordering j1<j2<...<jN of J and

virtual vector bundles Bj we put

[P(c.(8.)] NA = (19)
i J <
al,il Ol2,11 0‘1,12 dz,iz
P nc. (8, ) nc (8. ) n.oone (8, ) nc, (8. ) N...NA,
a1 i 2 1 1 1 2 i
o 1 1 2 2
where

a. .,
1)
P= -3 .
Z“a JTe)
1,3
This means, all monomials of the polynomial P are ordered lexico-

graphically according to the indices j {(coming first) and i. If o

and 3 are multi-indices, then there exists a unique isomorphism

o al o o (20)
1,11 2,11 l,i2 2,12
c (8. ) nc (8. ) N...ne (8. ) nc (8. ) M., .N
1 1 2 1 1 i 2 i
1 1 2 2
r"1,11 !?2,11 ﬁl,iz ﬁz,iz ,
e (8. ) nc (8. ) MNeone (3. ) e (8. ) N, .NA
1 1 2 1 1 1 2 1
1 1 l 2 2
Ol1,11*'61,11 O'z,il"ﬁz,il
c_ (8. ) ncz(Ei ) o T
1 1 o o
1,12 2,12
L (8) nC (8. ) M. ..NA
1 i 2 i
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defined by applying the transformations 0. to the permutation
which brings all factors into the right oréer with the minimal
number of transpositions, i.e., without interchanging identical
factors Ci(Ej)ﬁCi(SJ). From the isomorphism (20) we derive a
canonical isomorphism
[P, (3,)] NlQ(c, (8.)] A —— [(PQ)(c, (8 )] NA.- (21)

The diagram

[(PQR)(c . (8 )] NA L [P(c.(8.)] N{(QR)(c, (8 )] na (%)
i jg < i j < i j <

l l

[(PQ)(C (8 )] N[R(c (8 )] NA—a[R(Cc (8 .)] N[R(c (§.)] "{R(Cc (8,)] NA
i g < i 3 < i J °< i g °< 1 g <

commutes.
Let « be another ordering of J and Rn:J—J be the prmutation with

n(ikam({j) iff i<j. For each monomial there exists a unique permu-

tation
°‘1,11 o‘2,11 °‘1,12 0‘2,:12
c. (8. ) e, (8, ) n...ne (8 ) nc, (8, ) M. . .OA
1 1 1 2 2
al,n(il) “z,n(il)
&l
€1y "By X
1 1 . a .
1,n(12) 2,n(12)
cesC (8 ) ) nc, (% . ) N, ,.NA
1 n(12) 2 n(12)

defined by the permutation which brings all factors to the right
order with the minimal number of transpositions. We get a canonical
isomorphism
[P(C_ (8.)] NA = [P{C.(%. )] NA. (23)
i g °< i J K

These isomorphisms satisfy the necessary compatibility to glue the
objects [P(Ci(8j)]<ﬁA to one object P(Ci(ij)ﬁA. If confusions are
impossible, we will also write m(ﬁj)ﬁA for P(ci(Bj)ﬁA. The
isomorphisms (21) and (23) commute, giving a canonical isomorphism

H:iP(C (8. )NQ(C (8 )NA —— (PQ)(C, (% )NA (24)

1 J 1 J 1 J

satisfying the analogue of (22).
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Let us stress that IHEJ)ﬁA behaves bad if we identify some of the
vector bundles Ei. For instance, if P(ci8),cj(?)) is a polynomial
in two vector bundles and if Q(ci(E)):=P(ciE),cj(8)), then there is
now canonical isomorphism
P(E,B)NA —— R(E)NA
unless we fix an order of the two variables in P.
There is, however, the following substitution principle: Let 5%@1)
be a functor in virtual bundles 31, and let a functor-isomorphism
a: ck(f(gl))ﬁA —_— Qk(Cm(gl))”A
be given. If P(ci(y),ci(ﬁj)) is a polynomial in Chern classes, then
o induces a canonical isomorphism
P(Ci(ﬁ(gl)),ci(gj))ﬁA —_— R(Ci(gj),cm(gl))ﬁA, (25)
where
R(ci{EJ),cm(Kl))=P(Qk(cm(§l)),ci(SJ.))-
The isomorphism (25) is independent of the choice of order of the

.

varibles gk, El
If our polynomials have the more general size P(dim(Ej),ci(Ej)),

then these methods apply also. We get a functor

P(dim($ ),c_ (8 _.))NA = P(¥ )naA
J i 9 J ~
in virtual vector bundles Ej and A€Ob(€%H (X)) satisfying similar
properties as above.

2.10, Twist by a line bundle: Let

J . )
i dim(%)+1-
Pj(dlm(E),ck(‘&),cl(g))=: [ 1m(l) 3

1=0
be the polynomial with the property

j-1
]cluf) nc (8)  (26)

c . (8L )=P (dim(3),c (8),c_ (£)).
J J k 1
We have the obvious identities

Pj(dim(g).ck(E),cl(3)+cth))= (27)
=P (dim(%),P . (dim(%),c, (8),c_ (M)),c (£)).
J J k 1 1
P {(dim(8)+dim(%’),c_(£),T____c (8’’)c (8’))= (28)
1 1 k+l=1 © 1

=EEE§§ Pk(dim(E'),cm(E’),cl(x))pl(dim(gs,),cn(g,,)’CI($)).
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Theorem: There exists a unique functor isomorphism
cjme:e)m —_— Spj(f,a)rm (29)
with the following properties:

2.10.1. Compatibility with direct and inverse images: If £ and $§

are &8 line bundle and a virtual bundle on S and if S-schemes are
denoted p: X—3S, then

C (pgep £)N. : 6% (X) — E%°(X)
and J - ~
fl)j(-fmn. : B9 (X)) — Y (X)

are biadmissible functors between bifibred Picard categories over
S-schemes. Then (29) is supposed to be biadmissible.

2.10.2., Normaligation: If & is a line bundle, then (29) 1in dimen-

sion zero is the identity of A, (29) in dimension one is the ca-
nonical isomorphism CI(SQE)NA-—+C1(3)0AGC1(8)ﬁA, and (29) in di-
mension larger than one is the identity of the zero object.

2.10.3. Compatibility with the Whitney sum isomorphism: If % and ¥

are virtual vector bundles, then the diagram
¢ (($aF)eL)na —— P ¢, (88L)Nc (FL)NA (30)
k i k

i+j=k

P (86F,2)04 —— P P, (3,£)7P F,£)04
it+j=k
commutes up to a correcting sign

Aktg,?,f,A)=c1(f)ﬁT _1(833,3E$,A) (31)

k

=01(B)ﬁ[:::::: (dim(%)-n)(dim(?)-m)cn(ﬁ)ﬁcm(?)ﬁ[A]ﬁ[—I].
n+m=k-2
The lower horizontal arrow is defined by (28), (25), (24) and the

Whitney sum isomorphism.
These properties suffice to characterize (29). The following pro-

perties are also satisfied:
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2.10.4, If M is another line bundle, then the diagram

ci(8®x®ﬁ)ﬁA (32)
Pi(dim(e),cl(.t’)ecl(ﬁ) ,cj(?s ) INA Pi(dim(8®.1‘?) ,Cl(dﬂ) ,ck(gax’) )NA

N /

Pi(dim(8),CILM),Pk(dim(g),Cl(f),cl(S)))ﬁA

commutes.

1
2.10.5. Compatibility with f : The diagram

c (£ (882))NL'A ——1'(c (36£)7A)(33)
P78t 2 A — 2 (P (5,£)10)
commutes.
Ergoi: Step 1: It follows from the splitting principle that
2.10.1.-2.10.3. characterize (29) uniquely. 2.10.5. for a line
bundle & follows from 2.10.2., and the general case of 2.10.5.
follows from this case and 2.10.3. by the splitting principle. It
remains to construct an isomorphism with the properties 2.10.1-4.,
It suffices to consider "real" vector bundles % and to consider
short exact sequences O0———F—e——aFeueop¥—0 in 2.10.3..
Step 2: To construct (29) for a vector bundle ¥ we use the identi-

fications P(8@£)=FP(8¥) and ©(1) =0{1) 03_1. Let p: P($)=3X be the

et b
projection. We have canonical isomorphisms
e J
e-j.. * etk-j k
P c @l)ge,) B [@ [ " ]cl(.f) ﬁcj_k(z)ﬁA]
j=0 k=0
e ‘j -
e+k-j e-) * k. % ~
P P [ - ]cltommf) re (2'2) np" (e (8)0a)
J=0 k=0
e A 4
- * .
@ c, 0y e may) 20, o

1=0
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defining (29). The proofs of 2.10.1., 2.10.2., and 2.10.4. are
straightforward. It remains to prove 2.10.3..
Step 3: First we prove (30) in the case of an exact sequence

0 y F - X > & y O {33)

of vector bundles with dim($)=1. We have the diagram

P(F) ——y P(%)
q P
L,

of projective fibrations. We consider the diagram
f

. : f-j. *
;*[@ c1(©(1)5¢‘®.1?) Na (f[)j(&“',f)ﬁA)]

\ . (34)
Jj=0 £ 1

. £-g ¥
o (A 1, eyt et e #om))
£ 3=0

w f-‘j * .~
D ¢, (0(1) ) "Nc (88£(1))0p (P (F,2)n4) 3

J=0 v

& £ i
. £ *

(B & ¢ (0(1),)" “nc, ($8£(1))"p (cJ_(?)ﬁA)

j=0

e

¥+
D €10 gpyp)
Jj=0

e-j. ¥ “
Jrp (Epj(sc’,f)ﬁA)

L

e
e-j * +
» M (o] M
@ cl(O(l)ge) e j(E) A)
Jj=0
The isomorphisms & and {3 interchange i*
1.{39). The two lower vertical arrows are built of (24), (25), and

and Cl(®(1)) and apply

the Whitney sum isomorphism. The isomorphism ) interchanges

Cltf_l)k with C1(8®2(1)) and applies (24). The two other arrows are

of type (24).

-1.1
The commutativity of (A) follows from 1.(40). If Cl{ﬁ )” occurs
f-j
1

{with multiplicity [
(61(8(1)93))f_J, then ¥y involves interchanging cl(f) 1 times with

]) in the binomial resclution of the power

-1
cl(f ). Since the other arrows in (B) use only minimal permuta-

tions, (B) commutes up to the sign
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£ - _ N ]
— l[fIJ]clf@(l)ge)f j lmclf.t’ l)lmp*(P.(dim(ﬁ),c,(m,cl(g)n[_”ﬁ[ﬂ):
j=0 1=0 3 i
£-1 i .

By 1.6., the definition of (29) in step 2, and the definition of
the Whitney isomorphism in 1.10. we conclude that (30) commutes up
to the sign

(f+2-k)c1(f)ﬁck_z(Fﬁﬁ)ﬁ[-l]”[A]=Ak(3p?,2,A),
proving (30) in the special case of an exact sequence (33) with a
line bundle ¥. For an arbitrary exact sequence {33), {(30) follows
by induction on the dimension of ¥, using the splitting principle.
For arbitrary virtual bundles ¥,F (30) follows by the universal
property of Deligne’'s virtual category. The proof of 2.10. is

complete.
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3. Axiomatic Characterization of the Chern Functors

3.1. The trivialization T, S: Let & be a vector bundle of dimension
2y j—

e on X. A non-vanishing global section s of % defines a short exact

sequence
0——-><£>X » 8 y § » O (1)
and hence a trivialization
T :C (8)NA —p ¢ g )NC NA — 0.
g,s e( ) e—l‘ ) 1(®x) A °

Proposition: (i) Let ¢: X—=[P (%) be the section of P(8) defined by

X ' *
s, Because ¢ 0(1)=®x canonically, ¢ (Cl(O(l)ﬁp A)zcl(ox)ﬂA has a

!
canonical trivialigzation if k>0. Hence by applying ¢ to the mor-

phism
e
@C1(0(1’E-J”E*(cj(3)m)—»o 1.(37)
Jj=0
defining ¢.(%)NA, we obtain a trivialization
(2)
e
——p ! e-J. ¥ 1%
0 4 [@ c_(0(1) Mp (C(‘G)ﬁA)] —_— o p (C (3)NA) — ¢ (8)NA
— 1 J o .
Jj=0

ot‘ce(ﬁ)ﬁA. We claim that this trivialization coincides with T8 <
b}

(ii) Let 0—)5*“'—)‘8-11435—)0 be an exact sequence of vector bundles
on X, with dim($8)=1. We assume that &8 has a non-zero section s such
that i:D——X is a regular immersion of codimension one, where D 1is
the subscheme defined by the vanishing of n(s). Then n(s) defines
an isomorphism ZzOX(D). We agssume also that r:X-—Z7Z is a flat

morphism whose restriction rD to D is also flat.
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Then
c_(8)np A 3 c (£)nc (F)ne (3)
o
3’3; cf(&")"‘cl(x’)ﬁg*A
n(s) * e
> Cf(f"‘)ﬁcl(@X(D))ﬁL A(f=g-1)
1.(39 . ¥
-2 cf(?)ﬁ;*;DA
. 3‘ ﬁ *
. 5 ;*[Cf( ‘D) LDA]
71yl

D . _
—— L0
defines a trivialization of’Ce(E)ﬁg A. We claim that this trivia-

lization coincides with T

3,s’

splits, because this can be achieved by passing to a certain p.h.s.
for the dual of ¥. By 1.(63), the diagram
a! al
ce(g) A —— cl(ox)me_ltg) A

N e

C _1(3)'C1(®X)”A
commutes up to the sign

[dim(§>-(e—1)]nce_l(§>n[-11n[A1=o

Hence, TE o coincides with the trivialization defined by the
’
complementary sequence
o] » ¢ > 8 > f=®x-———+ 0 (4)

and c:l(@X )nce_l(g)ﬁA—ao.
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Now we consider the diagram

D=P (€ )—P (% )

P s
q
S .

X
By our construction of the Whitney isomorphism associated to (4)

{cf. 1.10.}), the diagram
e

1 e-i * 0!(1.(37))
o [ @ ¢ 00 e’ jBrm)] = ;
Jj=0
l 1.(42)
e-1
! e-1-j *
o [ GB C1(®(1)) ﬁCl(O(l))ﬁE (cj(y)hA)e
J=0

e-1

e @ c, 1) Inp¥(e teine (g)na)]
J=0 l 1.(39)
e-1
o’[ P cl(O(l))e'l‘jn;*g*(cj(fwnA)]
9=0 l 1.(38)

e-1 3’;*(1.(37))

1

Z'i*[ S °1(®(1))e_l—jﬁg*(cj(ﬁdﬁA)]
J=0

commutes. By the additivity of the canonical functor-isomorphism

! ]
a';*—ao, the right vertical isomorphism o'i*(l.(37)) coincides with

1

the canonical trivialization of a';*. Using this and 2.6.3.,wve

conclude that the composition
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-1
¢ (@7 0(1))
520
e-1 l
o [ @ < @) e 01))me’ (e FInnre
J=0

1]

e (@ie(1)ne e (e (50

e-1
e-1-j_  *
o @ e, 0N It e (e (g)n)]

§=0 ,
z'i*(l.(37))ol.(38)o1.(39)

0

coincides with the trivialization defined by the canonical

b 4
isomorphism ¢ f(l):@x. We get the commutative diagram

e ! (5)
! oi % o (1.(37))

o [@ ¢, (0(1))” “np (C_j(‘é)ﬁA)] » O

j=0 1.(42) a*(x(l)) canonicaliQ

X
e-1
* e-1-j * !o*®

P cl(g ©(1)) ﬂcl(o L(1))o p (Cj(f)ﬁA)
Jj=0

(we have not yet used the fact that 3=®X in (4)). Now, by the ca-
*
nonical isomorphisms 3=@x and ¢ ®(1)2®X, the vertical arrow in the

last diagram is (2), and the composition of the two other ones is

T. .
%,s
Proof of {(ii): We consider the fibre square
D —— X
o (24
=D . -
J

P(F) — P(%).
The projections from P(8) and P(¥F) to X are denoted by p and q. The
assertion is proved by applying 2.6.2. to this situation. In fact,
let us consider diagram (6) on page 3-5. In the definition of the
arrows (d), (f), and (n) we have used the canonical isomorphism
0*0(1)3@x defined by the section s. The commutativity of (A) is
essentially 2.4.1., (B) follows from 1.16., (C) is 2.6.2., (D) is
essentially 2.6.4. and (E) is a consequence of 2.6.5.. The commu-

tativity of the other squares is more or less obvious.



Diagram(6):(cf.p.3-4)

f
0 - i (@D o 0 et (e ()0 )]

k=0
¢ I(g) l (n)
)

d![.i*@ c (@(1)) g (e (#1nc" ]

E )

k=0
. 1o ALX * (1) . *
—= i,0,4 (Cf(?) r A)ml (3'“)0ng r *a — ;*C-f(?:)f";DA
(f)
(A (k)

v * <+ * ! ¥ X

o (i,a (Cf(ﬁ‘“)ﬂ; A))4——-Cf(3‘)f‘a d,a x A
T—c (?)”;dgrA-l—C (Tf')ﬁ_i,*L;A
(e) (B) 4
* X *
Cl(f(l))ﬁg (Cf(ﬁ“)ﬁz A)«—Cf(ﬁ')ﬁg (Cl{f(l))ﬁﬂ r A) C) (3)
1ok % *
(D) c (F)NC, (£)0 ' p r A (F)Nc (£)0r A
(d) f 1 - f 1
(i)

' * * * B *
o cl(p £)Np (cf(é“)ﬁz A) €—— Cl(f)ﬁcf(é*‘“)ﬂo PrA¢—— Cl(f)ﬁcf(ﬁ”}ﬂ;: A
Z A d

(c) (E) {(h)
* %

o'p (¢ (8)NL"A) em——mr—mmm c_(8)00 27 LA b ¢ _($)nz A



" By part (i) of the proposition, the composition (o)e(n)e(m)e (1)

coincides with j7| ol Consequently, the composition (o)es...o(h)
D'7|D

is (3). On the other side, it follows from the explicit description
of the Whitney isomorphism in 1.10. and part (i) of the proposition
that the composition (g)e...e(a) is TE,S' It follows that (3) and
TE,S coincide. The proof of the proposition is complete.

3.2.The axioms: We assume that for a vector bundle ¥ on X

c (8. c5X(x) — o559 (x) (7)

is an additive functor, and that the following natural

transformations are given:

3.2.1.: A symmety isomorphism
: N M
0’8,3“ cj(z)ﬁck(ﬁ‘) A — ck(&”)ﬁcj('é) A (8)
3.2.2,: For a flat morphism f, an isomorphism
* * *
cJ,(f E)Nf A ey f (cj(‘é)ﬁA). (9)
3.2.3.: For a proper morphism g of constant relative dimension, an
isomorphism
*
c. (8)ng A ——— g _(c. (g8 8)NA). (10)
J * '

3.2.4.: A Whitney sum isomorphism
C(E)NA —— . (§)Ne. (F)NA (11)
for every short exact sequence

0] y F » & » § > 0 (12)

of vector bundles (the case F=0 or ¥=0 is not excluded).

The following axioms must be satisfied:
AX 0 (Vanishing): cj(E)ﬁ. is the zero functor if j<0 or j>dim(¥),

and CO(E)ﬁA=A. For =0, this implies c¢.(§¥)NA=A.

AX 1 (Normalization): cl(£)0A=cl(2)ﬁA for a line bundle £, where
Cl(f)ﬁ. is the additive functor introduced in 1.2.. If ¥ and § are
line bundles, then {(8) coincides with the symmetry introduced in
1.5.. Also, int the case of line bundles (9) and (10) coincide with

the isomorphisms introduced in 1.4..
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AX 2 (Compatibilities for (9) and (10)): If % is a vector bundle on
X gsnd if X-schemes are denoted by p:Y=X, then (9) and (10) define
for the additive functor§

cj(p*z)ﬁ.: 6%'(Y) ) Sé'(Y)
the structur of a biadmissible functor between bifibred Picard
categories over (X-schemes). If € and ¥ are vector bundles on X,
then the isomorphism (8)

* * * X
cj(p g)ne, (p FIN. —— ¢, (p 3“)ﬂcj(p &)n

is a biadmissible functormorphism. Similar, if (12) is an exact
sequence of vector bundles on X, then the isomorphism (11)

c-(p*8)ﬁ. —_ c.(p*g)“C-(P*&‘)ﬁ.

is biadmissible.

AX 3: The analogues of 1.(45) (for vector bundles of arbitrary di-
mension) and of 1.(62) for the isomorphisms (8) and (11) commute.
Note that this would allow us to apply 2.8. to the functors
cj(8)ﬁ., but it will not be necessary to do so.

Corollary: ¢ =Id, and the analogue of 1.{(34) for the isomor-

8,777 .8
phisms (8) commutes. Note that this will enable us to apply 2.9. to

the functors Cj' Hence for a polynomial P in Chern classes the
polynomial P(dim(gj),ci(8j))ﬁA=?(8j)ﬁA in Chern functors is well-
defined. This will be important for the formulation of AX 4.
Proof: This is clear from AX 1 if all the vector bundles involved
are line bundles. The general case follows by induction on the di-
mension of the vector bundles, using AX 3 and the splitting prin-

ciple.

AX 4 (Twist by a line bundle): The analogue of 2.10.1.-4. for the
functors Ci and the isomorphisms (8)-(11) is true, i.e., there
exists an isomorphism

cj(8®$)ﬁA —) ?j(E,f)ﬁA (13)
satisfying 2.10.1.-2.10.4. (The uniqueness of such an isomorphism

is clear).
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AX 5: By the previous axioms, the definition of the trivialization
T.eg 5 of ce(S)ﬁ. defined by a global non-vanishing section s of %.

M
works for the functors cj. We assume that Proposition 3.1.(ii)

remains true for the functors cj.

Remark: It seems very likely that AX 5 is a consequence of the
other axioms. I hope I will be able to return to that subject in

the forthcoming paper on functorial Riemann-Roch.

3.3. Theorem: If cj(B)ﬁ. satisfies the properties listed in 3.2.,

then there is a unique additive functor-isomorphism

cj(ﬁ)ﬁA —) CJ(E)HA (14)
which commutes with the transformations 3.2.1.-4. and is the iden-
tity if j<0, j>dim(8), or if & is a line bundle.
Ergof: The uniqueness of (14) is clear. To prove the existence, we
first consider some consequences of the axioms:

Step 1: Let £ and M be line bundles and ¥ an arbitrary vector bun-

dle. We want to check that the diagram

%, 7
cj(zex)nc (M)NA ————y cl(au)ncj(mr)m

1

P (8, 2)Nc_ (M)NA — ¢ (MNP (8,£)NA
J 1 1 J

commutes {(cf. AX 4. The lower horizontal arrow is 2.(24)). By
2.10.2., this is clear if ¥ is a line bundle. The general case
follows by induction on the dimension of 8%, using 2.10.3. and the
splitting principle. Here 1.{(45) is used again, because the induc-
tion argument involves using the Whitney isomorphism.
Step 2: Let
D —1 X
qL_* +—pre a commutative diagramwith p and q flat and ia

S regular closed immersionof codimension one. Fora

vector bundle % on S, we want to check that the diagram
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i, (e (8)PA) ————— 3 (c (a8)N @A) ———— ¢ (2 8)p A
1.(39) 1..{(39)
* *
¢, (0,(D))NE" (¢ ($)4) ¢, (p 8)Nc (0(D))np A

J
L - J
CI(OX(D))”cj(p &) p A

If 8 is a line bundle, this is 1.(40). The general case follows by

commutes.

the splitting principle from 1.(45) {(cf. AX 3) and AX 2. The de-
tails have been presented in 1.16..
Step 3: Now we are ready to construct (14). For a vector bundle ¥
of dimension e on X, we denote by p: P(%$)—X the projective fib-
ration. Then

8(1):=p 880 (1)

has a canonical non-vanishing global section s, defining a trivial-

ization
e
P cl(ou))e"’mp*(cj(z)mm AX L, ax 7, c (8(1))na) (15)
J=0 1T3(1),s

0
Because the isomorphism 1.(37) characterizes Cj(B)ﬂA up to unigque
isomorphism, (15) defines an isomorphism (14). The compatibility of
(14) with the isomorphisms 3.2.2. and 3.2.3. is clear because (14)
contains only biadmissible transformations. It remains to prove
that (14) commutes with 3.2.1. and 3.2.4..
Step 4: The hard part is the compatibility with (11). By the split-
ting principle and because 1.(62) was supposed to be commutativ, it
suffices to consider short exact sequences (12) with dim(¥)=1. We

consider the following diagram.
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f e
i [ @@ e ntTIng e (F)na) @B ¢, (101 Inp (. (3)na)
=x 1" J 1 1 '
Jj=0 a £ J=0 A
£-3j * *
B e, (0 (1)) N (pTFINC (§(1))np A
3=0
€ v (B) | "
(A) £ d
@ e s 1ne 011 e (" F)np"A
J=0 é
+ x l « - *
i*(cffy(l))ﬁg A) ———— cl(ﬁ(l))ﬁcf($11)ﬁp A —— ce(E(l))ﬁE A
)
¢ 5
L 5 0 « )

Here o is given by first interchanging ch?)ﬂ. and g*, then inter-
changing both cjtﬁ)ﬁ. and 01(0(1))0. with 1*, and finally applying
1.{37). By step 3, the result of first interchanging cl(O(l)) with
i,» applying L*g*(cj(ﬁdﬁA) —_— 01(3(1))02*(cjb?)ﬁA), and then
bringing cjb?) to the left side would be the same. Consequently, f3a
is 1.(41). The pentagon (A) commutes by a combination of 2,10.2.
(cf. AX 4) and step 2. The pentagon (B) would by 2.10.3. (i.e., AX

4} commute up to the sign

c (O(1))Ne. (F(1))N[-11N[p Al= (16)
1 £-1
f-1 1+1 * *
=y (l+l)c_ (©(1)) Nc (p F)N[-11n[p A}
— 1 £-1-1

if 6y was the bottom horizontal arrow in 2.(30). However, &
involves (f-J) times interchanging 01(0(1)) with itssgelf, whereas
the arrow in 2.(30) uses only minimal permutations. Hence & pro-
duces the additional sign |

f .
. f-3 * *
) (f—J)cl(O(lj) ﬁcj(p FiN[-11n{p Al
Jj=0
cancelling (16). Hence (B) commutes.



3-11
By AX 5, (C) also commutes. Now [& is (15) for # and 6n is (15) for
8, whereas 300 is 1.(41). This proves compatibility between {(14) and
the Whitney isomorphism.

Step 5: The compatibility between (14) and ¢ follows now by in-

8,5
duction on dim(3) and dim{(¥), using AX 1 for the start and the
result of step 4, 1.(45) (cf. AX 3), and the splitting principle

for the induction argument. The proof of 3.3. is complete.

3.4. Comparison with Deligne’s ICZ: Let p: X—3S be a proper smooth

morphism of relative dimension one, where S is normal and locally
factorial. For line bundles £, M on X, put
<.‘€,.M>=;g*[cl(f)"\cl(./ﬂ)]. (17)
Note that by 1.3. this is the line bundle on S constructed in [D].
If { and m are rational sections of ¥ and M whose divisors do not
intersect, then
<Zﬂn>=p*(lﬁm) {(18)
is a section of <¥,M> on S satisfying the transformation rules of
[D]. For a virtual vector bundle % on X, put
ICZ(E)=E*(CZ(3))- (19)
This functor has the following two structures:
3.4.1.: For a line bundle £ on X, a canonical isomorphism ICz(x)ZOX
defined by the canonical trivialization Cz(f)——+0 in(Séz(X).
3.4.2.: A Whitney isomorphism
102(893‘“) — ICZ(B )@ICZ(?)®<det(‘8),det(3“)> (20)
defined by the following arrows:

E*(Cz(ga?)) —_— E*(Cz(ﬁ))®E*(C2(5ﬁ)92*(C1(3)ﬁcl(3j) (21)
—— ICZ(E)@ICZ($)®E*[C1(det(8))ﬁcl(det(?} )]

 — IC2 (% )@Icz(&” y&<det(3),det(F)>,
where the first arrow is the Whitney isomorphism for the functors

c the second arrow is 2.7. plus definition (19), and the third

k!
one differs by the sign
(_l)deg(det(ﬁ))dim(fﬂ

from the tautological arrow given by (17).
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Proposition: 1IC together with the isomorphisms 3.4.1. and 3.4.2.,

9"
satisfies the axioms of (D, Proposition 9.4.]. Concequently, it is
canonically isomorphic to the functor which Deligne named ICZ'
Proof: Step 1: It is immediately verified that if T(¥8) is defined
as in [D, 9.5.1, then T becomes an additive functor between Picard
categories. In particular the compatibility of T(&) with the sym-
metries of its source and target categories follows from 1.(63) in

view of the sign convention we made in (21). It remains to verify

assumption (iii) of [{D,9.5.]. We start with a preparation for this.

Step 2: By 2.10., we have an isomorphism

IC, (38%) ICZ(B)®<det(8),£>e_1®<f,.‘ﬁ>e(e_l)/2, e=dim($). (22)
Let us consider the square
(23)
ICZ[(Eeﬁ)ef] 9 102(833)9102($®£)®<det(8®£),detb?®3)>

l

ICZ(E)®I02($}®<det(3),det($)>®

+f- - f -
e+f 1® e-1 19

102(365)®<det(3)edet(?),3> ®<det (8 ),£> ®<det (F),2>

®<£’£>(e+f)(e+f-1)/2 ®<det(8),$>f®<det($),3>e®
@(2’f>ef+e(f—1)/2+f(e—L)/2
By 2.10.3., the correct sign for (23) would be
(_l)deg(f)ef (24)

if there was no sign convention in (24). However, the sign conven-
tion modifies the top arrow by

(_l)f(deg(det(8))+deg(2)e)

and the bottom arrow by

(_1)fdeg(det(8))

cancelling (24). Consequently, {(23) commutes on the nose.
If 8 is a line bundle, (22) reduces to a canonical isomorphism
102(892)3102(8), and this isomorphism respects the canonical tri-

vializations of both sides.
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Step 3: Now we are ready to verify assumption (iii) in [D,9.5.]1. We
recall that this signifies the following:
Let Q' be a line bundle on S, s a section of p, Q=S*Q’ in §(X), £ a
line bundle on X together with an isomorphism Q’zs*ﬁ. Then the iso-
morphisms

os—-——p IC (E) —m—m ICZ[.'E(_-S(S))]@ICZ(Q)®<det(Q),Jf{—s(S_l)> Y

2
¥
—— ICZ(Q)QS Z(-s8(8})),

where the second arrow is given by (20) and the exact sequence
0—Z(-3(S) )—EL—Q—0, define
-1 *
N | ! - .
I.,e cz(Q) — Q' "@s @x( 8(S))

The condition is that If is independant of Z.

Because S is integral, we may assume S5=Spec(k)}) for a field k. Then

Q=®S, and £ has a trivialization at s. If A is another line bundle

on S, we have to check If=1ﬂf We claim that this condition depends
only on~i=ﬂ®2_1. Indeed, by step 2 we have the commutative square
I_ ICZ(.«?&//) —_— ICZ(_Z@JV(—S) 1@KE®RAN (-5 ) ,@X(sb@ICz(Q@J/} .
0
[ ICZ(E(—S))®<$(—S),@x(s)>®ICZ(Q)®

1€, (£) e OO (8)58H,0 (5)> " ,

reducing the proof of I$=Iﬂ.to the commutativity of
ICZ(Q) —_— Icz(wa)

-1
IC2(Q)®<J/,©x(s)> ,

where the horizontal arrow is given by the trivialization of & at
the point s, the vertical arrow is (22}, and the slanted arrow is
given by the trivialization of QM,OX(3)> which sends <n,"1"> to
n{(s), where "1" is the canonical section of @X(s) with a zero at s,
and n is any rational section of A& whose order at g8 is zero. It is
clear that the last diagram depends only on 4, which proves our

claim.
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Because the condition we have to verify depends only on f@ﬁfl, we
may assume that £ and M have global section { and m with
{(s)=m(s)=1 and whose divisors do not intersect. Then ¢o=({,-m) is a
global non-vanishing section of $=XY®AM, and @ is contained in

Fzker(8=£&M — Q) (25)

A D> —— A(8)+u(s).
We have a commutative diagram in R®(X)

& —— FeQ (26)

LaM Z(-s)oMaQ

l—b L{-s)0QoM —I .

The right vertical arrow is given by 0—3f(-8)=——F— H— 0, and the
horizontal arrow by 0—F—38—Q—0, with 8&—5Q defined in (25}.
The non-vanishing global section ¢ defines trivializations 20 of
ICZ(S) and ICZ(&”). Now the top row of (26) defines isomorphisms

T

o —2 IC,(8) —— IC,(F)®IC,(Q)8<det(F),0 (5)>
T
o

ICZ(Q)®<detL?),OX(s)>,

2

where the second arrow uses the canonical isomorphism det(Q)l@x(s).

In view of the canonical isomorphism <$®Jfl,©x(s)>—b(08, this defines

. *@ )
Ig' ICZ(Q) —_— 8 x(s .

We want to compare I_ and 1

-] £’

(26) gives us a commutative diagram

ICZ(S) 9 ICz(f)QICZ(Q)®<det($),OX(s))

IC (£)9IC _(M)® IC_ (£(-8))®IC_(Q)®<E(-8),0 (s)>®
2 2 — 2 2 X
&<l ,M> 9(2(—s),4ﬂ>®<4ﬂ,©x(3))@102(.4{) .
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By applying 3.1.(ii) to the exact sequence (—af-p¥—9M—0 and
the global section ¢ of &, we find that by the left vertical arrow
the trivialization To of ICZ(E) corresponds to the trivialization
of <£,M> which maps

&,-m> to (-1)9°8M) (27)
(of course, multiply by the canonical trivializations of ICz(f) and
ICZLM). The sign in (27) comes in because of the sign convention in
(21)).
In a similar manner, applying 3.1. to the short exact sequence
0 (-S ) Fy =0 and the global section ¢ of F, we conclude
that the trivialization To of ICZ(?) corresponds by the right hori-
zontal arrow to the trivialization of <£(-38),M> which maps

<,-m> to (_l)degLM)'

(28)
where { is viewed as a rational section of ¥(-s) which is singular
at s but regualar at the divisor of m.
If we identify both <det{$),®x(s)> and <f{—s),®x(s)> to s*OX(s)_l,
then under the right vertical arrow these identifications differ by
the trivialization of QM,@X(S)> which maps

<-m,"1"> to -1. (29)
By (27), (28), and (29), we conclude that IE=_IE' In a similar

manner, using the commutative diagram

0 ——— M{-3) y F s £ > 0
0 y M > 8 » £ » 0
Q Q
of exact sequences, one proves PA=-18. Consequently, I£=IAV

completing the verification of [D,9.5.(iii)] and the proof of the

propesition.
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In a similar manner one can compare the integrals of our Chern
functors over the fibres of a higher-dimensional morphism with
Elkiks line bundles (in case both functors are defined). The
starting point is the comparition for an integral of a product of
first Chern classes of line bundles, where one has to verify that
the integral of the product of Cl's satisfies the descent condition
used by Elkik. The extension of this isomorphism for c1 to the
general case is esier than the comparision with Deligne's IC2
carried out in the above proposition, because the construction we

used in 1.10. is also used by Elkik.
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