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eHERN FUNCTORS

by J. Franke

This is the second of four papers in which we try to come to terms

with Deligne's problem of constructing a functorial Riemann-Roch

isomorphism for the determinant line bundle of the cohomology of a

proper smooth morphism p: X~S

( 1 )

The first step in such a construction is to give live to the right

hand side of (1). This was done by Deligne and Elkik ([D], [E]),

who treated (1) as a global expression. It is our approach to give

live to each ingrediant of the right hand side of (1), i.e., we can

not only integrate the Chern functors along the fibres, we can also

say what the ehern functors themselves are. Such an approach allows

us to approach (1) by copying Grothendieck's proof of Riemann-Roch

via embeddings into projective spaces, as we shall see in a forth-

coming paper.

As the first step in this program, Chow categories as target cate-

gories for the ehern functors have been introduced in [Fl]. Here we

study the Chern functors themselves. Because of difficulties with

the intersection product for non-smooth schemes over Spec(Z), we
k

introduce Ck(~) not as a mere object of the Chow category ~~ (X),

hut as a whole intersection product functor

( 2 )

In the first five paragraphs of §1, we introduce C1(2)~A for a line

bundle 2, using a funetarial version of the product

p+l,q-l( ).• E
2

X ,
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where E
2

is the E
2
-term of Quillen's spectral sequence. Starting

from this point, in the remaining paragraphs of §1 we construct

(2), copying Grothendieck's definition of the Chern classes. We

also prove a Whitney isomorphism for the ehern functors. The second

paragraph considers further properties of the Chern functors (like,
relation to the Gysin functor f' constructed in [Fl), which are

useful both for §3 and for the proof of functorial Riemann-Roch. In

§3 we give an axiomatic characterization of the Chern functors,

relating them to C1(2)nA for a line bundles by means of six natural

isomorphisms (3.2.1.-4. and AX 0, AX 1) and four compatibilites AX

2-5 (of whieh the last one, AX 5, is very likely to be redundant)

between these six isomorphisms. This is similar to the axioms for

IC
2

in [D). Finally we compare our funetor ~*(C2(~» with Deligne's

functor IC
2

and indicate how a similar comparison ean be earried

out for Elkik's line bundles.

The first paragraph almost coincides with §6 of [F2) (aave for the

eorrection of some sign errors) and has been announced in [F3). I

owe thanks to A.A. Beilinson, Ju.I. Manin, and A.N. Parchin for a.

number of helpful discussions. This paper has been finished during

the author's stay at the Max-Planck-Institute in Spring 1989. I

want to thank the MPI for its hospitality, and in particular

G. Harder for his help in printing out the text.

Notations: We use all the notations of [F1) for the Chow categories
k -k * ,

~~ and ~~ , the functors L , X', &*' and SPA between them, and for

the E
2
-term of Quillen's spectral sequence. In particular,

k k t -k (k-l, -k ..CH (X)=E
2

(X) and G
k

X)=E
2

(X). The product ln the hlgher

algebraic K-theory is Waldhausen's. As we did in [Fl], we suppose

schemes to be noetherian, separated, and universally catenary.
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1. Construction of the ehern functors

1.1. Some preparations: Far a tapological space X, a sheaf F on X,

and a covering U={U.}. of X, let
1 l.EI

~*CU.F)= 1-1 r---l FCU. n ... nu. )
t=O i , ... ,i EI 1 0 1 to t .

be the complax of ~ech cochains. We denate by 2l
CU,F) and eiCU,F)

(d (1). . =o 1. , ••• ,1.o q

the ~ech differential d . Wso

the groups of closed and exact cochains and by
q

2: C-l)ko . . .

k
1 , ... ,1

k
,···,1

=0 0 q

will often denote q-cycles

their evaluation on open subsets by usual letters.

*For a camplex of sheaves F with differential d
1

we put

i * k 1<:: (U,F)= E9 ~ (U,F )

k+l=i
1

d = (-1) do+d
1

and defins Ai and Zi by means af d.

by bald and

q * -q
Let U be a covering of X . Tc an element 01 of Z CU,E

1
' ) ws

Zar .....
associate an abject ~COI) of ~~q(X) as folIows. For an open subset W

in X(q)' ws denate by UhW the covering of W by the uinw and define

Since the sheaves E~,q are flabby, evsry geGq(W) defines

~eHq-l(~,E:,-q) and acts on ths set (1) by the rule x~x+g. It

is easy ta see that ~(OI) is an abjact of ~~q(X).

Let OI,OI'e2QCU,E:,-Q) and rE(Cq-l/sq-l)(U,E:,-q) such that dr=OI'-~»

Then there is an isomarphism ~(r):~(OI)~~(OI') which sands x in

(1) to x-rl w.
Let o/={v.}. J be a refinement of U, and let ~:J~I be a function

J JE
with ViSU~(i). It defines a homomorphism
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* * q * * q
F : <:: ('U E ~ ) ----+<:: (er E ' )
\~ ~ 1 " , 1

and a canonical isomorphism

~: ~(a) ) ~(e~(a.1) (2)

by the rule x~~~(x) in (1)~ 1f ~ is a refinement of 0/ indexed by

K and ~: K~J an admissible function, then e~~=~~~w and ~~=~~.

* *Let E and F be complexes of sheaves on X, G a presheaf on X,

* * p *and {.,~} : E @G ~ F a homomorphism of complexes. 1f xeC (U,E )
q

and yee (U,G), WB define {x,y} by the usual formula
(3)

{x,y}. . = {x. . lu n u ,Y. . lu n nu }~1. ,_ •• ,1 1, ... ,1 . .... 1 , ... ,1 .....o r 0 r-q 1. 1. r-q r 1 1.o r 0 r

We have

(4)

Let the product {.,.}:

{(a) X ,~} =
X XE

P
Now (3) defines

d({x,y})={d(x),Y}+(-l)P{x,d(y)}.
""k

1.2. The functor C
1

(2)nA: Let Aeob(~~ (X», k~O, and ~ be a line

bundle on X~ Ws choose a covering U of X and non-vanishing
Zar *

sections l. of :e on U.. Let rp=(tp .. )=(l./l.)e'D (U.r1.J.)SK (U.nu.) be
1. . 1 1J J 1 X 1. J 1 1. J

the l-cycle defined by the l ..
1

P -q EP,-q-i
E

1
' (X)0K

i
(X) ~ 1 be defined by

(a f(J) X·
>< XE

P

(7)

(6)

(5)

-----f) (e (.:e)ItA)O/' ,.
1 u..,"".,a

1
-1

on U .• we put ?J • .=l.l. and
1- 1J J1

1f l. ars other trivializations
",,1 -1 -1

~.=l.l. . Then d(~)=~ , hence
1 1. 1

(1)({C(a),~}): (C 1 (:e)flA)U,l.,a --+ (C 1 (.t)rlA)U,l.,a"
1. 1.

1f 0/ is a refinsment of U and Was in (2), ws havs

(cf. [Fl, §3.3.J).
k-l -k

1f a' is another rational section of A, then a-a'EE
1

' (X)/im(d
1

)

and d
1
(a-a')=c(a)-c(a'). Since d(~)=O, we have by (4)

k '
(1)«-1) {a'-a,rp}): (Cl (~)ttA)U,l. ,a

1

of 2

P *,-k q p+q *,-k-l
{., .}:~ (U,E

1
)oc (?J.,K

1
) --+ ~ (?J.,E 1 ).

Let aeA (X) be a rational sBction. Ws put
r k ""k+l
(c ( 2) i'tA ) 0I' = (1) ( ( - 1) { C ( a) , rp} eO b ( {t'~ ( X) )

1 u..,"". ,a
1"

where c(a) is the cycle defined by a

e;F,: ( C1 ( 2) ()A ) U l --+ (C 1 ( :e) nA ) (V l ( 8 )
~ ~ i,a r, ~(i),a

Of course, there are several compatibilities which must be checked.
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For instance, if we replace a by a' and l. by l., we have
k k 1 1 k

(-1) {a'-a,~}+{C(a'),~}=(-l) {a'-a,~}+{c(a),~}-(-l) {a'-a,d(~)}+

+{d (a ' - a) , ~}

=(-l)k{a'-a,~}+{c(a),~}+d({a'-a,~)

hence

which proves the compatibility of (6) and (7). The two other cases

are verified in a similar manner~

By means of (6), (7), and (8). the objects Ce (~)r""IA)OI 9 . can be
1 u.,{,. ,a

1

glued to one abjact C (~)nA. It defines abiadditive functor

~C(X)~~k(X)~~~k+f(X),where ~C(X) is the gruppoid of line

dIes on X. Biadditivity means that there are canonical isomorphisms

Cl (.t0.At) r"'IA ---+ C1 (.t)~ec1 (.At.) l"1A

Cl(~)n(AaB) ---+ C1(~)nA~1(~)ns

which satisfy the additivity conditions of [DM, §1.8.J in each

ofthe two variables and make the diagram

c (.t0.M.) rl( AaS)

1 1
Cl (20.At.) rlAEBC 1 (20.At.) ns

commutativs.

(9)

Let V and W be zariskoi-open subsets of X, aeA(V), l a non-vani-

shing section of 2 on V. We want to define

lrlae(C
l

(.t)rlA) (Vu,..J). (10)

Without loasing generality we may assume X=VUW. For a moment ws

also assume that V is open and denss in X(k)' later ws can get rid

of this assumption. In the notations of (5),

( {c ( f ) , l/ l. } ) . mod ( jjk-1 (U. E* ,- k ) ) ( 11 )
1 lEI 1

defines an element of <J)({C(a),rp .. })(X)=(C
1
(.t)r1A)U' (X). The

lJ ,{,.,a
1

product in (11) is well-defined because the supports of c(a) and

div(l) are disjoint~ It is easy to see that (11) is compatible with

(7), (8), and (9), hance it defines (10).
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If 9 is a rational function on X which has no zeros or poles inter­

secting the support of C(a), then there is a well-defined product

c(a)~g=(nC(a)(X)gl ) EX EG k+1 (X), and we have
Spec k(x) x k

(gl)~a-lna=C(a)ng (12)

Let gEGk(U), where U is a Zariski-open subset of X containing

Z=supp(div(l». Since the sheaves E~,q are flabby, 9 defines a
k-l. *-k

hypercohomology class in H (U,E
1

' ) which we denote by the same

letter g. The section ~ defines a cohomology class
1 * 1(Z,l)EHZ(X,O ) ~ H (X,~ )

X Z 1

with support in Z. The product
p q * -k p+q * -k-l

rt: H
Z

(X,9<'l)0H (U,E
1

' ) ~ H (X,E
1
') (13)

defines

(.:e,l)/lgeG
k
+

1
(X)

If U is open and dense in X(k)' then

/rl ( 9 +a ) - /rla =(Z , l) ng .

(14)

(15)

Since in the definition of (14) we do not assume that U is open and

dense in X(k)' formula (15) may be used to define ~ for aEA(U)

without the assumption that the Zariski-open subset U is also open

in X(k).

If Aeob(~~O(X», then we define C
1

(2)rtA by farmula (5) with a=ß

(cf. [Fl, 3.5.J). Since there is only ane rational section , we do

not nead (6). The transformations (7) and (8) are defined by the

same formulas as above.

( ~) ~~ k ( ) ~ ~;:. k +1 ( X). .If k<O, the Cl ~ rt.: ~~ X ~ ~~ 15 def1ned to be the only

additive functor between these categories"

1.3. Example: Let X be a smooth curve over a normal base schema S,

and let ~ and ~ be 1in8 bund1es on X. We assume that land mare

rational sections of ~ and ~ on X whose divisors do not intersect.

Ws put

<l,m.>=p*(lf"\m.)EQ*(C
I

(2)r'lC
1
(~»(S),

where p:X~S is the projection. In this case, (12) and (15) imply

that <l,m> satisfies the transformation rules [0, (6.1.2~)], and

consequently ~(Cl(2)ncl(A») can be identified with the 1ine bundle

<~,~> defined in [0,§6J.
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1.4. Compatibility with direkt and inverse images: Let p:X~Y be a
* -k -1flat morphism, U a covering of X , and oeL(U,E' ). Let p (U)

Zar 1

be the covering of Y by the sets p-l(u.). There is a natural mar­
1.. * * *.-k * *,-k .

ph~sm p : C (U, E· )--.,C (U, E ) wh~ch on the cohomology groups
1,X * 1.Y

defines the homomorphism p of [F1, §1J_ There is an isomorphism in

<t~k (Y)

* *~ (<oe (1) ) ----..<0 ( p (01»

*5ending x in (1) to p (x)_

Let q: y--.,X be proper of relative dimension d. Formula (F1, 1.(7)]

defines a homomorphism of complexes
* -1 * -k * * -k

q*: ~ (q (91) , E1 • Y ) --+ ~ (U E' ) .
'. 1. X

k -1 * -k •If ßE2 (p (U),E
l

: y )' then there is an isomorphism

g*(~(ß» .<D(q*(ß»
sending x in (1) to q*(x).

Let ~ be a line bundle on X, U a covering of X on which 2 i5
Zar

trivialized by sections l .• 'P ..=l./.l .• p:Y----.x a flat morphisrn~
~ ~J J ~ ..... k

q:Z--+X a proper morphism of relative dimension d, AEOb(~~ (X».

8eob(~~k(Z», a and b rational sections of A and B.

* *Then p ({c(a).~})={c(a),p ~), hence (16) defines

* *Q. «Cl (2)r'lA)U,l ,a) • (Cl (p 2)rIA) -1 * _ * (18)
i p (U) ,p (l.), p (a)

1.

It is easy to see that (18) is compatible wi th (6), (7), and (8),

hence it defines

(19)

In a similar manner ons constructs

--~. Cl(2)~A. (21)

and (21) are compatible with composition of

--~. (C1(.:e)ng~A)U,l.,a
1.

*~ « c 1 (q ~) ()A) -1 * *)
q (U),q (l.) ,q (a)

1.

using (17) and ths adjunction formula.

*g* ( C1 (q .:e)(")A )

The isomorphisms (19)

Ws get

(20)

flat and proper morphisms and with the base change isomorphism of

[F1,§3.12.]. More preci5ely, this means the following. If X-schemes
.....

are denoted p: Y~X, then ~~'(y) is a bifibred Picard category

over (X-schemes, proper morphisms of const. rel~ dirn., flat mor­

*phisms). Then it i5 easy to see that C1(p ~)(").: ~~·(Y)~~~·(Y),
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equiped with the transformations (19) and (21), is a biadmissible

functor (in the sense of [Fl, 3.11.J) between bifibred Picard

categories.
"'k

Let p: Y~X be flat, ~ a line bundle on X, Aeob(~~ (X)), land a

rational sections of 2 and A. It is easy to see that the image of

* * * "'kp ( tna) b y (1 9 ) i s p (l) np (a). I f pis proper, BEO b (<t~ (Y)),

*bEBr(Y), then p*(p (l)~) is mapped to ~*(b) by (21).

1.5. Commutativity: Ws want to define an isomorphism

0/0 JJ: C (2)nc (.At)1iA l C (..M.)nc (:t)f"lA. (22)
~,~ 1 1 1 1

Let U be a covering of X on which :e is trivialized by l~. Dur
Zar 1

first step is to define an isomorphism
k

Cl (.:t')r.Q)(0I) • <O( (-1) {OI,fP}) (23)

f 0 r oeZk
( CU, E* ,- k) , whe re rp. . =l. / l .. I t wi 11 i den t i f y C ( .t) r{> ( r) wi t h

k 1 k _ 1 1. J * 1_ k J 1
4) ( ( - 1) { Y , f/'}) i f y~ ( CU, E1 ' ) a nd d ( y) =01' - 01.

Let g~(OI) (X) be a rational section. By definition (1), ons checks
r

. 1 h h t· _;0:. k- I ( ?J. * • - k ) . t h t h teaS1 y t at 9 as a represen atlve g~ ,E
I

- Wl e proper y

k -k k *-k
d(g)+OI=C(g)eE' (X)~ (U,E' ). If x is a section on w~X of

1 1
k-1 * -k k«e (.t)n1)(oe))OI l ' i.e., x~ (U,E' ) and d(x)= -(-1) {C(g),tp}

1u., .,g 1
1 k

on W, then y=x+(-l) {g,f/'} satisfies

k k - k
d(y)=d(x)+(-l) {d(g),f/'}=-(-l) {c(g),f/'}+{C(g),f/'}-(-l) {0I,f/'} ,

hence ye<D«-l)k{OI,f/'})(W). It is easy to see that the function x~y

commutes with (6), hence it defines the isomorphism (23). The

transformation (23) is compatible with the isomorphisms (7), (8),

(19), and (21).

Now we assume that .At too is trivia1ized on U, by sections ~., with
1

transition functions VJ • •=m.../m..~. Dur next step is to construct an
lJ J 1

isomorphism

x . ~(-{0I,~,f/'})
U,:e,l. ,..M.,m... ,01·

1 1.

for ae2k(U~E:,-k). In (24), {. ,.,.} denotes the iteration of {~,.}.

An easy calcu1ation, using repeatedly the fact that d(~)=d(~)=O,

shows
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(tpyrlW). ·k='P· .lp ·k-lp· ,'P 'k='P· ,lp 'k+P ·klp· .lJ 1J J 1J J lJ J J lJ

='P, k VJ •k- rp . k VJ 'k+rp . k VJ •. =f(J. k VJ •k-" . k VJ .k- f(J . •VJ· .1 J J J J lJ 1 1 J J lJ lJ

(25)

=-d(y). 'k'lJ
where r~n=rp~nlp~n. By (25), X01 ~ l ~ may be defined by

"-"If..l "-"If..l "-"If..lu.,-", • ,..tn,.fTL.,oe
k 1 1

~«-1) {oe'Y})M In the special case 2=.Ai. and l.=.fTL., the well-known
1 1

identity between Steinberg symbols

"aß'Po.ß='Paß[-1]

can be used to compute XU,:e,l,',:e,l.,oe on <D({oe~fP,'P}):
1 1

X =~(-1], (26)
U,2,l. ,2,l. ,01

1 1

where the first product is (13) with X=S=U and the second product

is

H1 ( X , 9(1 ) @K 1 (X) • H
2

( X , 9(2) "

Now ws are ready to define (22). For a rational section aEA (X),
r

consider the isomorphism

C1(:e)~({c(a),~})~~({c(a),~,~})~<D({c(a),~,~})~ (27)

~C1 (.At)~ ( {C (a) , fP} ) ,

where the first and the third arrow is of type (22) and the middle

one is (23)M WS want to check that it commutes with the isomor-

phisms (6), (7), and (8). For (6), we have to prove the

commutativity of

(]) ( - {c ( a) , ~, qJ} )

cD( -{b-a. ~.'P})1
<D(-{C(b) ,l/J,f/J})

But

k
<0«-1) {c(a),y})

•

k
([>«-1) {C(b),y})

•

<D(-{C(a),~,~}) .

lcD(-{b-a.'P.~})
<D(-{C(b) . ."l/J})

k k
(-1) {C(a),y}-{b-a,~,~}-(-1) {C(b),y}+{b-a,~,qJ}

k k
={b-a,d(y)}-(-l) {d(b-a),y} = -(-1) d({b-a,y),

and the diagram commutes. For (7) the compatibility is verified in

a similar manner, and for (8) it is trivial.

We have seen that the isomorphisms (27) fit together, defining
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0'2,2 on C1(2)~1(2)0A is given by

0'2,~=[2Jn[-1]n[AJ, (28)

where the products are the same as in (26). It is easy to see that

0'2 A is compatible with (19) and (21).,
Let l,m, and a be rational sections of 2, A, A on X whose divisors

and cycles maat proparly, i~e., such that lha, m0a, ~a, ~na

are rational sections of C
1

(2)nA, ... ,C
1

(A)nc
1 C2)nA. Wa want to

prove

0'~ AC lr1mna) =mfLlna. (29),
Tha first thing ws have da is to compute the image of ~a under

the isomorphisrn (23):

c (.t)n(c (A)IiA)ol -----t. (])({C(f),l/J,rp)).
1 lu.,m.,a

1

tJ) ( {C ( f ) , l,JJ}) has a ra t i 0 na 1 sec t i on g=mf"la gi ve n by 9 ={C( a) , m./ .(TL • ).
J

Applying the definition of (23), we find that the image of lh~ in

~(-{C(f),l/J,~}) is given by the class of

k
{ C ( m0a) , l/ l. }- ( - 1) { C ( a) , m/ m. ,rp. .} ( 30 )

1 1 1 J

k+l * -k-2module S (U,E
1

' ). In a similar manner ws find that the image

of mfLlna in tJ)({C(f),rp,l,JJ}) is given by
k

{ C( lha) , m/ m.. }- ( - 1) { C ( a) , l/ l. ,VJ. .}. ( 31 )
1 1 1J

By (30), (31), and the definition of 0'2 A the proof of (29) is re-,
duced to the invastigation of the difference

k
( - 1) ({ C ( a) , -l/ l. ,VJ. .} - {C ( a) , m/m. ,'P. .} - { C ( a) , tp. ., Vi. .}) +

1 1J 1 1J 1J 1J

+{C ( mfIa) , l/ l. }- {C ( .tna) , m/ m. }
1 1

Since the supports of div(l), div(m), and C(a) intersect properly,

* *m/ m. a nd -l/ -l . havere 5 i du e c 1asse s (m./ m.. ) ( x ) ek ( x ) , ( -l/l. ) (x )ek ( x )
1 1 1 1.

for xe(Ui)knsupp(c(a»). Censequently, there is a well-defined ele-

ment of E~,-k-2(Ui):

A . ={C( a) , l/ l. ,m/m. }
1 1 1

(33)

where C(a)=(n ) . Since the divisors of land m have no common
x x

component intersecting the support of C(a), the tarne symbol of (33)
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is given by

d ( A . ) ={C ( tr"a) , mj.fnt. } - { C ( mJia) , l/ l. } .
1 1. 1 1."

For the Cech differntial of ~ ws find

dO(A)={C(a) ,m/~. ,fJ . . }-{c(a) ,l/l. ~VJ •• }+{C(a) ,'P . .,VJ .. }
1 1.J 1. lJ 1.J 1.J

Consequently, the ~ech hyperdifferential of A is
k

( - 1) ({ C( a) , ~/m. ,fJ. .} - { C( a) , l/ l. , 1fJ. .} + { C( a) ,tp. ., 1fJ. .})
1 1.J 1 1J 1.J lJ

+{ c( .lna ) , m./ m.. }- {C( mna) _l/ l. }
1. 1

and (32) is a complete differential. The proof of (29) is

complete.
"'k

Let ~,A,ff be line bundles on X, and A~~ (X). We want to prove the

commutativity of

If A,

c (2) rIC (.At) rlC (.K) nA
1 1 1 1

C (.:e) rIC (.K) rIC (.At) rIA
1 1 1 1

C (.AI) rlC (.:e) nc (.At) l"'lA
1 1 1

2_ .At, .K have rational

---t. C (A)rx: (2)rlC (JY)r'lA (34)
1 1

1
1

C (.At) rx:
1

(JY) fit c.ce) nA
1

1
1

----+. Cl (.K) liC1 (.At) rx: 1 (.ce) nA .

sections a, l, ~, n whose cycles and

divisors mest properly (i.s., l~ etc. are rational sections),

then (34) fellows fram (29). In the general cass, let p: E~X be

*the fibre space of the bundle 2e..M.e.K. Becauss ~ is an equivalence

of categories, it suffices to prove (34) after base-change te E. On

* * *E, there are tautological sections l, .fTL, n of p 2, p .At, p JY. 1f A

is any rational section of A on X, then the previuos remark can be

*applied to l, ~, ~, and p (a). The proof of (34) is complete.

~x~m~l~: Let us return to the situation of 1.3 .. By (29), ~(a.ce,A)

is the i somo rphi sm <J;, ..M.>--+<.At,:e> which sands <l, m..> to <m.., l>. In tE3­

grating (28) along the fibres, ws get the well-known identity
- d (2)-

<l, l> =(-1) eg < l, l>

in<.:e. 2> (c f. / D, 6 _2 . / ) .
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(35)

1 ..6. Lemma: Let 'S be a vector bundle of dimension e on X,

*p:~(~)~X its projective fibration, and O(-l)cp ~ the tautological

line bundle. It has a first ehern class cl (O(l»eHl(~('S),9(l·). Then

the homomorphism
e-l p-j,q+j
nE2 (X) ----+ E~,q([P(~»).
j=O

e-1
(~j) ~ 2 Cl (O(l))jp*(~j)

j=O
is an isomorphism, where the product in (35) is the product

HP(Y'~q)~~,l(y)~ E~+k,q-l(y)

defined in [G, p.281J.

Proof: This is [G, Note (i) on p.287]. The proof is similar to the

(36)

8-1

---tL Eb Cl (0(1) jnp* (A j)(A .)
J

proof of [G, Theorerm 8.10.J.

1.7. Corollary: The functor
e-1X ct~p-j(X)
j=O

j=O .
is an equivalence of categories. Here the symbol C (~)J0S denotes

1

the iteration C (~)nc (~)~ ... na.
1 1

Proof: It follows fram 1.6. that (36) induces isomarphisms between

IT
1

and IT
O

of the Picard categories on both sides of (36).

1.8. Definition of theChern functors: We amy compose the functor

~~p(X) ~~p+e([p(~»

A ~ C C{)(1»8rlQ,*(A)
1

with the inverse of (36) to obtain additive functors

c. (~) r"'lA : <t~p ( X) ----+ <t~p +i ( X) , 1~ i :58
1

CO(~)flA=A

and an additive functor-isomorphism
e

----to~ O. (37)

j=O
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The ehern functors are unique up to unique functor-isomorphism: 1f

Cj(~)~. are other additive functors functors with CO(~)~A=A and an

isomorphism (37), then there exists a unique functor-isomorphism

C.(~)nA~C.(~)nA compatible with (37) which is the identity if
J J

j=o~

1f ~
-1

is a line bundle, we have ~(~)=X and V~l)=~ , and it follows

(38)

easily that (37) is solved by the functor C
1

('S)rlA defined in 1.2 ..

Let ~: ~ ~ ~' be an isomorphism of vactor bundles. It inducas an

isomorphism ~(~)~~('S'), henee there is a unique isomorphism

C.(~)nA ~ C.(~J)~ which is compatible with (37) and is the
J J

identity if j=O.

Let 'S be a vector bundle on X, f:Y--+X a flat morphism and g:Z--+)(

a proper morphism of relative dimension d. Using the results of

1.4. it is not hard to construct natural isomorphisms

* * *f (C.(~)~A)~C.(f ~)~f A , A~~·(X)
J J

*9*(C.(g 'S)~B)~C.('S)~gB 8~~·(Z).
J J *

They satisfy the following compatibility with compoistion of flat

and proper morphisms and the base-change isomorphism (Fl,3.12.J: 1f

for an X-scheme f:Y--+X ws consider the functor

*C . (f 'S ) ~.: (i~. (X) ----+ <t'~. (Y) ,
J

then (38) defines on it the structure of a biadmissible functor

between bifibred Picard categories ovar (X-schemas, proper

morphisms, flat morphisms).

Dur next steps aim at proving ths functorial version of the Whitney

sum formula. First ws need the following isomorphisms:

1.9.: Let
i

D .x
~~

s
be a commutative diagram in which i is a regular

immersion of codimsnsion one and p and q are flat.

Ws put O(D)=3- 1
, where 3 is the sheaf of ideals defining D. There

is a natural isomorphism

(39)



(40)

*(l.q (y». r)'
1 lE

1-12

* *which sands "1"nq (a) to i*p (a), where a is a rational section of

A on Sand "1" is the canonical section of O(D). This isomorphisms

is (in an obvious sense) compatible with flat base-changes X'~X.

flat maps S~S', and proper base-changes S~S'. If 2 is a line

bundle on X, the diagram

* *Cl(~(D»~ (Cl(2)nA)--~.i*~ (C 1 (2)nA)

* 1 * * LCl (q 2)rlC
l

(O(D) )()g, A .C
l

(q 2)(li*~ A

commutes.

Proof: Ws have only to check that ths above definition of (39) is

independent of the choice of a, i.e., that

* *CICO(D»~ (Y)=i*~ (r)

for reAut _ (A)=G (S). 1f l.eO (U.-D) are trivializations of
ct~k ( S ) k 1 X 1

O(D) on an open covering U of X, then the l.h.s. af the last
* k *-kequality is given by the cahomology class of {q y,~}e2 (U,E

l
' ),

k-l,-k( ) . . f l /lwhere rEEl S 1S a representatlve or y. and ~ .. =. .' If
* lJ J 1

q (y)=(g) , then because D is flat over Sand of codimension
x XEX

k
ans in X, 9 ~l implies that x daes not belang to D, hence the image

x
of l. in k(x) is well-defined. Consequsntly, the product

1. 01= (q*(y) l. ). I=(9 l.). I
1. lE X 1 lE

XEX
k

is well-defined. It satisfies

* * *d(OI)={q (r) ,lp}+d
l

( (q (r)li)iEI)={q Cr) ,~}-di (

By [FI, Lemma 1.6.J, ws have

(l *( »' *() I k.-k-1 C )
d 1 i q Y =1 *p Y U. in E1 Ui '

1

proving the desired identity.

1.10.: Now ws are ready to canstruct the Whitney isomorphism for

exacrt sequences of the form

where ~ is a line bundle. We apply 1.9. to the diagram
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*There is a natural isomorphism i {).(1)-S ~(1)$"

so we may denote both line bundles by the -same

*symbol {)(1). Restricting ~~2 to the subbundle O(-l)cp ~ we obtain

* *a section ~ of.~em(O(-1),p 2)=p 2@O(1) on ~(-S). The subscheme de-

fined by the vanishing of ~ is ~ ($'). By 1.9., there is a canonical

isomorphism

* *. *i*g B ---+ Cl (q 20<0 ( 1 ) )fig B,

* *which sends i*q (b) to ~np (b). Applying

bundle $), we find an isomorphism
f

BE<tt> · (X")

this to (37) (for the

o ----. 1.* (E9
j=O

f

(41 )

----+E9
j=O

f

----+ E9 c 1 (<D ( 1 ) ) f - jn (c 1 (p*.:e )n:Q*(C j (3" )nA )ec 1 (<D ( 1 )n:Q*(C j (3" )nA )]

j=O

* e *----+ ~ (c 1 (2 )fiC f (3" )nA)et 1 (<D ( 1 » fi~ (c 0 (se' )fiA)$
f

j=l
This is of the form (37) for the vector bundle l.Sine (37) defines

the ehern functors up to unique isomorphism, (41) defines the

Whitney isomorphism we are looking for:

A=c 0 ('$ ) fi A i f j =0

c . (~ )fiA----+t 1 (2)1IC. 1 ($')fiAeK:: . (se' )fiAif l~j~f
J J- J

1 (.t)lICf($')n A if j=e

We can write this in the shorter form

C • ('$ )nA ---+ C. (.t)nc • (se' )nA,

( 42 )

where C.(~)nA= 69
j20

C . ('S )fiA i n <t~. (X) •
J
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1~11. Symmstry: Bsfors ws can provs the analogue of (42) in the

general case ws have to define a symmetry isomorphism between the

ehern functors and to explain its relation to (42).

Let ~ and ~ be vector bundles of dimension e and f on X. Let

r:~(~)XW(~)~X be the projection. By applying 1.7. twice, we find

that the following isomorphism in ~~e+f(~(~)xf(~)) characterizes

Ck(~)~l(~)~ up to unique isomorphism:

e f

* f- k * e- j *EB EB C1 (q <D ( 1 )~) nc1 (p <D ( 1 ) '«$ ) fl,r. (C j ( OS) nck (~) flA ) --. 0
j=O k=O

(p and q are the projections of ~('S)Xf(~) to ~(~) and ~(~)). In a

similar manner Ck(~)nc.(~)nA is characterized by the isomorphismJ .

e f

j=O k=O
Let ~ and ~ be line bundles on a scheme and a and b intsgers. Ws

define an isomorphism C1(~)anc1(~)b~C1(~)ancl(~)bby the

following prmutation of the factors:

(43)

and

1 2 3 a a+1 a+2

11111 1
b+l b+2 b+3 b+a 1 2

In (43), 1; ... ;3 are the factors of the product
b

a+l; ... ;a+b are the factors of Cl(~) . In other words, ws apply

a~,~ ab times but ws nevsr apply O~,L2 or aA,~. 1f an isomorphism

C (2)anc (~)b~C (~)anc (2)b is used without comment, it is
1 1 1 1

supposed to be of the form (43).

There is a unique isomorphism o~ ~: C.('S)llCk(~)nA~Ck(~)nc.(~)1lA
~, J J

which is the identity if jk=O and makes the diagram
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(.44 )

*L (C/~)rl(\(8")nA)~

o
1

e f

e f

j=O k=O

e f

j=O k=O

j=O k=O

commutativs.

Ws havs an analogue of (34) and the identity a~,$a~,~=l because

these properties are satisfied for line bundles. It is also clear

that a~ $ is compatible with flat pull-back and proper push-for-
,

ward.Let O~$~~~~~O be an exact sequence with dim(~)=l, and

let ~ be a vector bundle on X. It follows fram (40) that the

diagram

(45)

commutes.

1.12. Let ~ and $ be vector bundles on X of dimensions e and f, and

let A=(Al)O~l<ooEOb(~~·(X)). Ws define an element

(47)

(46)

by

T.(~,$,A)=(Tk(~,$,A))l~k<ooEllk>Gk(X)
_1

k

T (~,~,A)= \ \ (e-i)(f-j)c.(~)c.($)[AJ[-lJ,
k l' . .Lk 1 1 J-0 l+J- -

where c.(~)[A] is defined as the isomorphism c1ass of C.(~)nA,and
1 1

[ - 1 ] i s - 1eK 1 .
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The aim of 1.12. is to prove the following formula: Let

o ----+ ~ ---+ ~ ~ 2a..M. ----+ °
be an exact sequence of vector bundles, with dim(2)=dim(.Ai,)=I. We

put ~=rr-l(..M.), ~=rr-l(~). Let Aeob(~~k(X)). Then the following dia-

gram commutes:

C.(~)IIA ~ C.(~)liC.(~)flA~ c.(~)~"(..M.)IiC.("")nA (48)1T. (:e •.Al.C. (~)r1A) 6 0:e,.Al 1
c. (~)flA ~ c. (.M.)I1C. (ge)fIA ----+ c. (..M.)rc. (~)rIC. (3"')nA,

where the horizontal arrows are in an obvious manner constructed

fram the Whitney sum isomorphism.
a(e-l)

Let t:Y~X be the fibre space of the bundle ~e~~v , where ~v

is the dual of ~. The 8-2 ~v-coordinatss define sections A , ... ,A
* 3 * e

of t ~v. The L- and M-coordinates define sections land m of t 2

* *and t A on Y. Ws define rational sections A , A of t ~v by
1 2

Al (~)=o, Al Cl)=l and A
2

CYe)=O, A
2

Cm..)=l.

We have a cartesian diagram 9f projective fibrations ovar Y

and denote the projections fram ~(~), ~C~),

By theand s.p, q, r,

isomorphism between ~v and p O(I)~, A. defines* iZl' 1.

of 0(1) on [p(") (rational sections

[p(~), and [P(St") to Y by

., [p(3'")" ~'

~ ~
~(~) ~(~)

~ ~
[pC~)

sections A.
1.

if i=1 or i=2). To avoid awkward expressions, we denote the

restrietions of Ai and of O(l)~ to ane of the projective subspaces

of [p(~) by the same letters A. and 0(1).
1.

Let a. be a rational section of ~)nA on X. Then
1.

e-2
* *€=~ A ~ ... ~A ~s t (a )

~ e n+3 n
n=O

is a rational section of

*on lP(3'"). Let bE(G
k

) ([P(t St") be the image of e by (37). Ws de-
+8-2 r

note the isomorphism C.(..M.)~«(~)~C~(~) by C. It is easy to see

* *that A 0m is the canonical section e of p t A00(l) which has a
2
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simple zero along ~(~). Using this and (41), we see that the image

of

e-2 (49)
E9 (Ae 11 ••• IIAn+3I1A2r{. (an )EBAs(J ... IIAn+3 ll( (an») E

n=O
e-1e( 89 Cl(O(I»e-1-n~L*i*(Cn(~)nA»)r(~(~»
n=O

*in (GI 1) (~Ct ~» is i*'(b). The lax notation (49) means more+e- r
precisely

8-2

( * * * * )C' ~ A ~ ... nA (JA IIr t (a )EBA (J ••• (JA Ilr t (a) ,
~ e n+3 2 n e n+3 n
n=O

where

e-2
( ': 89 [c1 «CI ( 1 ) ) e - 1- n(Jr*t* (Cn CJ/) rIA ) EB

n=O

$Cl(O(I))e-2-nnL*~*(Cl(~)ncn(~)nA))

6-1 1
69 Cl(OC1»e-1-nllr*~*(Cm(~)llA)
m=O

is the isomorphism derived from C. A similar computation can be

applied to the image of (53) by i*. Its result is that the image of

e-2

89
n=O

(50)

(A 11 ••• (JA nA IIA na- 1ß- 1 Ca )EBA n ... nA nA na-1ß-l(~ )EB
e n+3 2 1 n e n+3 2 n

-1 -1 -1 -1
EBA n ... IIA 3nA na ß ( mfIa ) EBA n ... nA a ß (lr\mJla) E

e n+ 1 n e n+3 n

E (EB CI (iO ( 1 ) )e - nnL* t,* ( Cm( ~ ) "A )) r ( [P ( t * 'S) )

m=O
*in (G ) (~(t ~» is i i'(b)_ The meaning of (50) is similar to

k+e r * *
that of (49), a and ß are isomorphisms in (48). Applying the same

rnethod to the embeddings j and j', we find that the image of
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-1 -1 -1 -1
~A rI ••• r1A ~ rlA 2"Y eS (lrJa )~A rl ••. rlA 3r 6 (mnlrla)

e n+3 n e n+ n

*in (Gk+e)r(~(t ~» is j*j;(b)=i*i;(b). It follows that (50) and

(51) are eaqual. By (29) and 1.7., this reduces the proof of (48)

to the proof of

* * * *A rl ••• rlA rlA" rlA rlp p (a ) -A rl ••• rlA rlA2r1A "p p (a ) = (52)
e n+3 1 2 n e n+3 1 n

e-n-1 * *
=C

1
(V(1») IlQ.t. (Tk+n+1(.:e,.M,c.(~)r1A»).

By (28) and (29), the difference in (52) is

Cl (0 ( 1 ) )e- 2 - j() ( [ -1 ]() [0 ( 1 ) ]()p*t *{[C j (3" )()A] )

e-1-j * *=c 1 «() (1 ) ) rl:Q Q (T k (2 ,.Ai, c • (,J;")rlA) ) ,
+n+1

and the proof of (48) is complete.

1.13. Let

l:: O~,J;"~'g~'§--+0

be an exact sequence of vector bundles, and let O='§O~lc"'~g=~ be

a filtration of ~ with dim(~./'§. 1)=1. Let ~.=rr-1'§. and 2 =~./~. L'
J. 1- 1 1. 1 1-,

A successive application of 1.10. gives us isomorphisms

c • (~)r1A ----+ C. (~ )fIC. ('§ 1 )(JA --+ ...--+ c. (2 )r1 ••• rte. (.:eI )rlA
"~, g g- g

C.(,J;")rlA --. c.(2 )nc.(~ )r1A --. ••• ----+ C.(:e )rl ••• rlC.(21)nc.(3t)rlA
g g-l' ' g

We want to prove that the isomorphism

~'§.: c. ('§)nc. ($' )r1A --. c. (~)r1A (53)

is independent cf the filtration ~. of ~. We proceed by induction

on the dimension of $'.

1.13.1.: Let $' be a line bundle. The sheaf ~ of splittings of the

exact sequence L is a principal homogeneous sheaf for ~em('§,,J;"),

hence it is representable by a smooth X-scheme M and [G, Theorem

8 3 ] t h 11 b k t M . . h . EP , q f th. . asser s t at pu - ac 0 J.S an lsomorp 1sm on 2 0 e

Quillen spectral sequence, such that it is sufficient to prove our

assertion after pull-back to M.
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We may thus achieve that ~ has a splitting s: ~ ~ ~. Let

be the exact sequence defined by this splitting. We want to prove

that

C • (~ )nc • ($' )flA -~~ c. ($)rte. (~)nA ----. c. (~)flA (54)

1 1T.(3",'§,A)

C • ueg)n ••• rte • (.:e 1 )fiC • (3" ) r"'IA ----~) C. (~ )nA

commutes. Since the arrows in the upper row are independent of ~."

we eonelude that (53) is independent of ~ ..

We prove (54) by induetion on g. If ~ is a line bundle, (54) is

(48) in the special ease where the line bundle occuring in (48) is

zero. If g>l, we put ~=~ and consider the following diagram:
g-l

( 55)

C.('§)fiC.($')(')A -----+ C.($')(,)C.('§)r"'IA ------ -+ c.(~}nA

(A) 16 (C) T. (3" ,.'t ,e. (gf)nA) 1
e.(3")ne.(.'t )ne.(gf)nA g

g 1 C • (2 )nc. ('S )f"lA--+C • (~ )f"lA
O'-s :e gIg-1

, g r
O'~,~ <S)

C • (.:e )r"'C. (ge)nc • ($')n A -----+ c. (.:e )IlC. ($' )1iC • (ge)IlA

g ß 1 (0) T.('S,gf,e.(.'t:)nA ) 1 T. ('S ,gf,e. (.'tg)nA)

C.(.l' )lI ••• ilc.(2)lIc.($')f"'lA ---+ c.(.:e )IlC.($')rlC.(ge)lIA -+ C.('S)lIA
g

The arrows a and 6 in (55) are defined by ~~~'§~:e --...0, ß i~
g

defined by by the ascending filtration (~k)O~~g-l of ~J r is

defined by the sequence ~~~$ l~~---+O. The commutativity of
g-

<A) is consequence of (45), <S) is the induction assumption, <e) is

(48), and <D) is trivial. An easy calculation shows

T • (3t ,2 ,C. (ge )IlA ) +T • (~ ,ge ,C • (2 )IlA) =T • (3" ,~ ,A ) •g . g

It follows that the outer eontour of (55) is (54), and the proof of

(54) is complete.

1.13.2.: The splitting principle: Let ~ be an e-dimensional vector

bundle on X, and let p:Y--...X be its flag fibration parametrizing

maximal flags.
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(a) Q*: ~~p(X) ---4 ~~p(Y) is a faithful functor.

(b) Let P
1

,Z be the projections of YXY to its faetors and r=PP
1

=

.... X * *
=PP

Z
. If A and Bare objects of ~~p(X) and if ~:Q A~Q·B is as

*isomorphism, then f is of the form Q (VJ) for a (unique) VJ:A~B tf

and only if

(56)

( 57 )

* *in Hom(.x: A,..!:. B).

Proof: The projection P admits a faetorization

(1) (e-I)
Y=YO P .Y1---4 •.. P .Ye~l=X

( ') (J')* ,
into j-dimensional projective fibratiobns p J • By 1.7., Q 15

faithful, and (a) follows. Condition (54) in (b) is certainly ne-

* * k *eessary. If f exists we ~ave p ([A])=p ([B]) in eH (V). By 1.6. I P

is injeetive on the Chow groups, and we conclude that there is a

*homomorphism h:A~B. Then f'=f-Q (h)eG (Y) satisfies

* * k
P~(f')=P2(f') in Gk(YXY). *

Let O=~OC~lC...C~e=P ~ be the universal flag of p ~, and let

2.=~./~. 1. Iterating 1.6., we have
1 1 1-

G
k

(Y)= Eäl
... E9 Cl (2

1
) jl("l ••• ("lc

l
(2e-l ) j e-l("lp*(Gk_~ j . (X)] (58)

j =0 j =0 ~ 1
1 e-1

e-1

Gk(YXY)= EB
j1;j~=O

( 59)

If we represent f' in the form (58), then (59) implies that (57) is

valid if and only if all compoonents of f' are zero save for the

component belonging to (j1, ... ,je_1)=(O, ... ,O) in (58), i.e., if

*and only if f'=p (g'), and (b) foliows.
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1.13.3.: Now we are ready to perform the induction argument

announced at the beginning of 1.13 .. Let dim(~)=f>l, and assume

that our claim (i.e., that (53) is independent of the filtration)

has already been verified for bundles of dimension less than e. By

part (a) of the splitting principle we may assurne that $ ~as a

subbundle ~ of dimension f-l. We consider the following commutative

diagram, in which each arrow is in the obvious manner constructed

from (42):

c. (~)0(: • (3" )r'lA

rl
c . (~)r'C • (Ji' /ge )nA

a ß
~ e. (.:t'g)n. • "1" (.:t' 1 )ne " (3" )nA ----..1;f~ )nA

e • (.:t' g )n" " .ne " (.:t' 1~re • (3"IX)nc " (X )nA

C • (~/ge)nc . (.ge)nA

By the induction assumption, (e i8 independent of the filtration

~ .. By the result of 1.13.1., the same is true about s-16 . It fol­
1

lows that ßa i8 independent of the $ .. Since ßa is (53), we are
1

through.

1.14. The Whitney isomorphism: Let

I:: 0 ----+ 3t ----+ 'S ~ ~ ----+ 0

be an exact sequence of vector bundles on X. We denote by p:Y~X

the flag manifold of ~, by Pl'2:YXY~Y the projections to the
, X

*factors and put r=PPl=PP 2 , Let ~.=(O=~O~lC.. '~g=P ~) be the

universal flag of ~. It defines an isomorphism (53)

* * * * *~~.: C. (p ~)r'C. (p 3t )n~ A ----+ C. (p 'S )r"lQ A.

Since (as one proves easily) (53) is compatible with flat base

change, we have

* * * * * *~. (qi~ ) =qi • ~ : C. (r ~) r""C • (r $)n~ A ----+ c. (r 'S)n 1: A.
1 \1' 'P.\1·

1

By the main result of 1.13., this is independent of ie{1;2}. By

part (b) of the splitting principle 1.13.2., we conclude that there

exists a unique
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( 60 )

eoin-

* * * * *~~: c. (p ~)nc. (p $' )n~ A~ C. (p ~ )ll~ A

* .with ~~=~ (~L). If ~ is a line bundle, we have Y=X and (60)

eides with (42).

If ~ has a flag o=rOcr1c ...crg=~ with one-dimensional quotients

A.=r./r. l' then the diagram
1. 1. 1.-

a
C.(~)IIC.($)rlA • c.(A )rl ••• nc.(A1)1IC.(~)rlA (61)

l,-- c.(~)nA~
L * *commutes. Indeed, ra~r.' henee ~ (ra)~p.r.=~~.=~ (~L)· Py the main

result of 1.13., and (61) follows from the splitting principle.

Let ~c$cl be a filtration of ~. Then the diagram

(62)

prove (62) in

-----....,.. c. (~ /$)rlC • (~)I"'"'1A

1
c. ('~/$ )nc. ($ t§ )f""A

principle, it suffices to

C.(!)rlA

1
c . (~/~)fIC • (~ )ilA

By the splittingcommutes.

the ease that ~/$ and $~ have flags with one-dimensional quo­

tients, in which (62) follows from (61).

It is easy to see that (64) is compatible with isomorphism ~~~'

of short exact sequences and with flat and proper base-ehanges

Y--4X. By (61) and the splitting principle it is possible to extend

(45) to the ease dim(2)21.

Let ~ and ~ be vector bundles on X. We have sequences

LI: ~'S--4~e$--4.1'---+o

L
2

: Ü---+$--4'!e$--4~--4o.

The diagram

commutes.

iPL
c. ($)IIC • (~ )nA, l_......~c. (~e$ )nA

10'~.3" Pr IT.(~.3".A)
C • ('! ) r"'lC • ($ )nA 2.c . ('S$$' )nA

This is a consequence of 1.12., (61) and the

(63)

splitting

principle.
-k k+i

1.15.: If i>O and AEOb(<t~ (X», then C. ('S )nAeOb(<tf> (X». For X has
1.

a Zariski covering on which 'S and hence C.('S)ilA are trivial, and we
1.

apply [F1, 3.8.].



1 . 16.: Let
i

y • X

qL s Jp

1-23

be a commutative diagram with p and q flat and i a

regular closed immersion of codimension one. If ~

i8 a vector bundle on S, then the diagram

* * * * *.!.*.9. (Ck(!)f"'lA) • ..1.*(C
k

(q ~)f"'l.9. A) • Ck(p ~)()i.*.9. A (64)

1* * 1 *Cl (OX(D) )rI:Q. (C
k

('! )rlA) Ck(p ~ )llC
1

«(!)X{D) )(")]2 A

L Cl «OX(D) )nck(p*-g )r"l}!*A~
commutes.

ErQo.f: If ~ is a line bundle, (64) coincides with ( 40) • Let

0 • :j: • ~ • ~ ) 0

be an exact sequence such that (64) is true for :j: and ~. Then we
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CA) and CS) are (64) for ~ and $. As we did in [F1], we used the

label NT to denote squares which commute just because the arrows

involved in them are natural transformations. By the biadmissibili­

ty of the Whitney isomorphism c.(~)nA~c.(~)nc.(~)nA, the composi­

tion of the left column is the top row of (64). By the generaliza­

tion of (45), the composition of the right column is the bottom row

of (64). It follows that (64) is true for ~. Thus it is possible to

prove (64) by induction on dim(~), using the splitting principle.
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2. Further Properties of the ehern functors

2.1. Relation between Cl and specialization: Let DcX be a closed

subscheme of X whose sheaf of ideals is in some neighbourhood of D
"'k

generated by f. For a line bundle 2 on X and AeOb(~~ (X-D», we

want to construct an isomorphism

0..2 , f:C 1 (.2 ID )lIgp f (A )-+Sp f (C 1 (21 X-D )~A) • ( 1 )

Ta this end we fix a ·covering U=U U. on which 2 is trivialized by
1

i

non-vanishing sections l .. We denote by UI ,UI the coverings
1 * X-D D

D=U (DlU.) and X-D=U «X-)nu.). Let C (U,E·
1
'-P) be the absolute

1 1

Cech complex with differential d. The closed and exact Cech chains

* 01 .,-p *(01 .,-p p( .,-p
are den",oted Z (u., E 1 ) and B u. , E 1 ). For ceZ U tEl )

~(c)~~p(X) has been defined in 1.(1). In our situation, we have a

homomorphism

(cf. [F2,§1.?]). The induced homomorphism

* *SPf:C (UIX_D)~C (91ID)

turns easily out to be a homomorphism of complexes. Consequently we

have an homomorphism

SP f (~ ( c ) )......~ ( s p f ( C ) ) ( 2 )

for ceCP(U,E;,-P).If VS(X-D)p is open and ae0(C)(V) is given by ;_

as in 1.(1), then (2) maps sPf(a)eSPf~(c)(D-(X-D-V) to the se2~~n

of ~(sPf(c» defined by the Cech cycle SPf(X)EZP(UI ).
D-(X-D-V)

Now we are ready to define the isomorphisms (1). If aeA (X-D) and
rtP . . denotes the Cech cycle l. /l ., then

1J 1 J

(C
1

(.'e)r"lA)01 P =O({4> .. ,C(a)}).
u.,-t,.,a lJ

Since SPf({4>ij,c(a)})={tPijID,sPf(c(a»}={tPijID,c(sPf(a»}, (2)

defines an isomorphism
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8p f (C 1 (.eflA )U , 1 , a ) =8p f (<D ( {~ i j ,C ( a) ) )-+<D ( {~ i j In' C ( sp f ( a ) ) } ) =

=(C1(~1 )nsPf(A) )U( II ().
D n' D,sP f a

It is easy to see that these isomorphisms are compatible with the

isomorphisms for changing l or a and refining U (cf. §1.2.).

Consequently they define (1).

2.2. Relation between C
k

and specialization: Let X, D, and f be the

same as before, and let ~ be a vector bundle of dimension e on X.

We denote by ~(~) the corresponding projective fibration and by

p:~(~)-+X the projection. If A~~P(X-n), then from the isomorphism

e
EB Cl (0 (1 ) ) e-kfl.2*(C

k
(~)nA )--+0

k=O

in ~~k+e(~(~» we derive by (1) an isomorphism

e
EB Cl «(>(1) )e-kn.2*(SPf(Ck(~)nA))--....

k=O

e
e-k *-+ffi Cl (0 (1) I ) nsp * (R (Ck(~ )lIA» ---+

k=O X-D p (f)

----+~O

Since SPf(CO(~)lIA)=SPf(A)=Co(~ID)rtsPf(A),this isomorphism and the

definition of the ehern functors in §1.8. give an isomorphism

( 3 )

2.3. Properties of the isomorphism (3): The following properties

are easily verified:
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2.3.1. Compatibility with pull-back and push-forward: Let K be
sp

the category defined in [F2,§3.13?]. Let objects of K \(X,D,f) be
-1 * sp

denoted by (q:Y~X,q (D),q (f», and let ~ \(X,D) be
sp

(K \(X,D), flat morphisms, proper morphisms of c.r.d.). Then
sp

"" -1
<t~.(y) and CI'f>.(q (D» are bifibred over [K \(X,D,f), and the

sp
functors

"" ""-1
Sp * :<t~ · (Y )----+<tf, · (q (D) )

q (f)

are biadmissible. The property is that the isomorphism

is biadmissible.

2.3.2. Compatibility with the Whitney surn isomorphism: If

o ---+~ 3" --...~ 'S ---+~ 0

is an exact sequence of vector bundles on X, then the diagram

c. ($'1 D)nc • (~I D)nsPf(A) ----+ C. (~I D)nsPf(A)

1
c. (3"ID)n8Pf(c.(~)nA)

1
SPf(C.(3")nc.(~)nA) ~ SPf(C (~)nA)

commutes.

(4 )
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2.3.3. Let D,cX (ie{1;2}) be regular closed immersions of coidmen­
1

sion one, with sheaf of

the sequence {fl;f
Z

} is

is a vector bundle on X

ideals trivialized by f .. We assume that
1

regular in a neighbourhood of D1no
Z

' If ~

"'1
and AEOb(~~ (X-D1-D Z)' then the diagram

H:;P
f

(SP
f

(Ck(~ )ilA»
2 1

commutes. The horizontal arrows have been defined in [F,§3.15].

2.3.4. If in the commutative triangle

p and q are flat and ~ is a vector bundle on Z,

then the diagram

() *
f,q ~

* *----+~ C k (p ~ )rtsp~ A)

1
* * *R Ck(~)nA ~~~~~~~~~~~~~~~~~~~) Ck(p ~)liR A

commutes.

( 6 )

"'k
2.3.5.: Let 2 be a line bundle on X, AEOb(~~ (X-D», aeA (X-D). We

r

assume that l is a rational section of 2 on X whose divisor meets

C(a), 0, and Dnsupp(C(a» properly. Then

C(2,A (sPA(lna» = llonsPA (a) E(C 1 (2Io)rfSPAA)r(O).

t

2.4.Relation between C
k

and f':

Proposition: There exists B unique collection of isomorphisms
, * I

ßf,-S: i'(C
k

('S)liA ) .......... Ck(f 'S)Ii.f·A (7)
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for a local complete intersection morphism f:X~Y which admits an

immersion into a smooth Y-scheme (Bbbreviated: an slci-morphism
"'k

f:X~Y), a vector bundle ~ on Y, Bnd A~~ (Y) such that the fol-

lowing properties are satisfied:

2.4.1. Compatibility with pull-back and_push-forward: Let S be a

scheme Bnd '! be a vector bundle on S. Let (}(l . S be defined by
Cl,

replacing "scheme" by "S-scheme" in the definition of IK
1

'. (cf.
C1

[F2,§ 4 . 7. 1). If objects of this bicB tegory are denoted f: X-. Y " then

~X and '!y refer to the pul i-backs of ~ to X and Y. Then

C k (~X )rl. : (t~ • (X )---+<t~ · ( X ) ,

Ck(~y)rl. :<t~. (Y).---+ct~· (y),

I

and 1.' :ttf> · (Y )---+<t'~ • (X)

are biadmissible functors between bifibred Picard categories over

~l . s· The eondition i8 that
Cl,

is a biamissible functor-isomorphism.

2.4.2. Compatibility with composition: If X
f

--...~ y --g.......~ Z are

lci-morphisms sueh that g and gf (and henee f too) are slei, then

the diagram

, 1

1. .g' (C k ('S }ilA)

1
* * 'I--~~Ck(f g ~)rlf'&'A

1 (8)

-------------+ICk ( (gf) *-S) n.1.Kf.l ! A

commutes for every vector bundle ~ on Z.

2.4.3. Compatibility with specialization: Let (f,X,Y,D,A) be an

object of K
1

. (cf. [F2,§4.7.]). It is given by a Gartesian
Cl,SP

diagram



f -1 (D )eX

f ni If

D c Y

and a function A in
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a neighbourhood of D defining D. If -S is a
"'1

vector bundle on Y and AEOb(~~ (Y», then the diagrBm

1

sp * f . (C k (~ )nA )
f (A)

1
8P * (ß f 'S)

f (A '

Sp * (C k ( f *-S )ni. ! AJ
f (A) L

101. *
f ~,f (A)

* ,
C k ( f DOS ID )ng p * f . A

f (\)

commutes.

2.4.4.: If in

I

f~ (SPA (C k ('S )n A )

1:f! (CitOS ,A l

:f~ [c k (OS In)nsPA A)

1ßfn,'S In·

* I
Ck(fD~ID)nf~SPAA _

( 9 )

p and q are fiat Bnd f is sici, then the diagrBm

1
* *--------------'''''''*'~ C k (q ~ )ng A

commutes for every vector bundle ~ on z.

( 10 )

2.5. Proof of 2.4.: We proceed in four steps. In 2.5.1.-3. we prove

that ß. ~ exists and is unique for regular immersions i. In 2.5.4.,
1,<0

we extend this to the general case.
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2.5.1.: Let i:X
0
-4X

1
be a regular closed immersion. We denote by

m:MO~M1 its deformation to the normal bundle (cf. [Fu,§5] or

[F2,§4.2.]. This is a regular closed immersion

MO
m

• M1

rr 01
. [p 1 t 1

X ><iP 1
lX

X )<jP1
~

1 1 ·

The following properties are satisfied:

(i) IT
O

is an isomorphism. Let the superscript (a) denote the res­

triction of morphisms with source M. to M~a)=1'l~1(XX[p1).. Then
111

(a) M(a) X I\1
Tl

1
: 1 ~ 1x~ is an isomorphism.

i 1
(ii) Let p. denote the composition M. ~ X.xrP ~ X..

1 1 1 1

(iii) Let the superscript (00) denote the restrietion of morphisms
. (00) -1 (00)

wlth source M. to M. =IT. (oo)eM .• Then Pl faetors over a map
( ) 1 1 1 1

P :M
1

OO
~xo' and p is the projeetion of a vector bundle with zero

00. (00) (00)00 (00) * "'. "'. (00)
seetl0n m : Mo -4M 1 · Hence Qoo:~~ (X

O
) ~ ~~ (M

1
) is an

equivalence of categories.

(iv) The formation of M is compatible with any base change Y
l

-4 Xl

after which i remains regular of the same codimension.
1

Let AEr([p -{O},~ 1) be the inverse of the coordinate function. For
[p

the sake of simplicity it is denoted by the same letter A for all

projective lines over an arbitrary scheme. There is a canonical

isomorphism
, (a)*.! (a)! (8)* (OO)sp (a)*A

.1' A --+ SPAQO .1. A -+ SPAID Q1 A -+ .m AQ1 ~

* -1 (a)*
~ (Qoo) SPA

Q1 A.

(cf. [F2,§4.4]) for AEOb(~~·(Xl». For a vector bundle ~ on Xl' we

define ß. ~ by the composition
1,'0



q I *-1
----~. X. Then f'~(g) ,
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.i! (Ck('g)nA) -+ (.I!:)-1(SPx.(.I!~a)*(Ck('g)nA)))-+

0- •
( )

A.,p~* -1 * (a) * 1
~ (~OO) SPA(Ck(P1~)~~1 A •

* -1[ * (a)* )-+ ( .l!oo ) Ck ( P00~ Ix0 InsPx. (.I!1 A I -+

* -1[ (a)* ) ,-+ Ck('glxo)n(.I!oo) SPX..I!1 A -+ Ck('glxo)n.i'A. (12)

By applying 2.4.1., (9), and (10) to the isomorphisms in (11), we

see that a system of isomorphisms ß. ~ satisfying 2.4.1., 2.4.3,
1,el

and 2.4.4. for regular closed immersions roust be given by (12).

Conversely, since (12) contains only transformations compatible

with flat and proper base change and with specialization, 2.4.1.

and 2.4.3. are consequences of (iv). 2.4.4. follows from 2.3.5. by

an easy computation.

2.5.2.: It remains to prove that ß. ~ satisfies2.4.2. in the ease
1,0

of regular closed immersions. First we prove (8) in the following

case: A and Bare the bundle spaces of vector bundles A and ~ on X,

f:X ~ A is the zero section, g: A ~ B is an injective homomor­

*phism of vector bundles, and ~=r $, where r:B ~ X is the bundle

projection and ~ is a vector bundle on X.

Without loosing generality we may assume that there is a projection

p: B ~ A of vector bundles. Otherwise we consider the X-scheme

rr: Z={projections from ~ to ~) ~ X,

which is a principal homogeneaus space far the vector bundle
*.... ....

r1et3'ffi-q) (:B /:4,A). Since ~ : et~' (X) ~ ct~' (Z) is an equivalence of
X

categories, it suffices to verify (8) after base-change to Z, where

the desired projection p exists.

Now we consider the projections B p. A
t * -1 I * -1

g'~(~) ,1Kfl'~(~) ,and the diagrams
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commute (for the right one,

, I
f' ,_K * -1 *-1

(g) (~)

1
* -1 * * -1(g) (Ck(q 0 )rI.) ---. Ck(Jlt')"(g )

this is 2.4.4.). Since the analogues of

the right diagram for g and gf are also commutative, our claim

follows from the properties of the isomorphisms 1.(38).

2.5.3.: Ta prove (8) in the ease of arbitrary regular immersions

Xo f. Xl g. X
2

, we consider the deformation to the normal

bundle
m m

MO
0 1

• M2• M1

ITol IT1l IT2l
1 1 1

XOx[F ...... X
1

x[P ...... x
2

x{P

with the following properties (cf [F2,§4.2.]):

(i) IT
O

is an isomorphism, and if the superscript (a) denotes res­

triction of morphisms to M(~)=rr~l(x.x~l), then IT~a):M(~)""" X,x~l is
111 111

1
X,x[P ...... X,.

1 ·1

Tl,
t

an isomorphism.

(ii) We denote by p, the projections M,
1 1

(iii) 2.5.2. is applicable to the composition

(00) (00)

M(OO) mO M(OO) fi1 M(OO)
o 1 • 2 ·

Let A be the same as in 2.5.1. By the construction of the isomor-
t f ,

phism f'g' ~ 1&fl' in [F2,§4.8.], the diagram

1
I

igil'A

1 1
, _ (00 ) ( 00 )1 ! S P (a )*A

• -LID 0 !!! 1 AB 2
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commutes. Using this, we ean deduee (8) from 2.5.2., 2.4.1., and

2.4.3 •.

2.5.4.: We have proven that ß. ~ exists and is unique for regular
1,e

immersions i. Let f: X -4 Y be an slei-morphism, and let ~ be a

veetor bundle on Y. We ehoose a faetorization of f

CI: X
i

--.... S
P---+. Y,

, I f *
where p is smooth. Then f'~L'=~'~ (cf. [F2, ~4.10]). We define- CI "'$

* ,*Ck(f ~)n~'~ A. (13)

the uniqueness of ß, .~, a
1, P e

ß ~ satisfying 2.4.1.-4. must be given by
f,e

, * ,* *
.i.'~ Ck('S )nA --+ 1:.' (Ck(p ~ )rll! A)

By 2.4.4., 2.4.2., and our result about

system of isomorphisms

(13) if it exists.

Dur first task i8 to prove that (13) is indepenent of o. This

follows from 2.4.4. (applied in the ease of regular immersions) and

the eonstruetion of the change of faetoriazation isomorphism, ,
f' -4f' in [F2,~4.9-10]. Now 2.4.1., 2.4.3, and 2.4.4. ean immedi-
-0 -0 '"$

t 2

ately be redueed to the ease of regular immersions.

The proof of (8) ean be split up into the following four eases:

(a) fand g are regular elosed immersions. This ease has alreay

been dealt with.

(ß) f is a regular elosed immersion, and g is smooth. This ease

follows from definition (13) and [F2,§4.12. ,Sublemma 1]. We note

that this is the only ease cf 2.4.2. whieh does not follow from the

other points of 2.4 ..

(r) fand gare smooth. This ease follows immediately from (13).

(6) f is smooth, and g=i is a regular immersion. By Dur assumption,

if faetors over a smooth z-seheme S. Consider the diagram

-1
i'

q (Y) S

Ylq lq
X f · y i

• Z
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The square is Cartesian; i, i', and j are regular immersions, p, q,

,
----.... lifl' A

and f are smooth. By the definition of the isomorphism (?):
, I I

f'g'~1Kfl' in [F2, § 4.11.], the following diagram commutes:

( ? )

l(a l

, * fi'I? i.'A

(d l
l

I *Lji')",g A

I ,*..i"i.",g A

The compatibility of the isomorphisms ß • with the arrows (a),
• I" !

(b), (c), (cl) follows from case (ß), 2.4.1., case (a), and case

(ß). It follows that these isomorphisms are compatible with (?),

which is (11). The proof of 2.4. is complete.

2.6. For our axiomatic characterization of Chern functors we need

some further properties of the isomorphisms ßf,~.

2.6.1. Let i: X~ Y be a regular closed immersion, 2 a line
~k

bundle on X, and AE~~ (X). We assume that a and l are rational

sections of A and ~ on X such that C(a), div(l) and Y meet
f ,

properly. Then .[nae(C
1
(~)rJA)r(X), i' (.[na)e(i." (Cl (~)r"'lA)r(Y)' and

*' *'i (l)rJi"(a)E(C1(i 2)rJ i"A) (Y). We claim that the isomorphism ß. ~
-r 1,~

I *, I *,
i.' (Cl (et )rJA) --+ Cl (i .:e )rJi." A maps i' (.[na) to i (l)f'li" (a).

Proof: Step 1: First we aS8ume that we are in the following situ-

ation:

- X i8 a vector bundle over Y, with bundle projection p.

* * * *- 2=p 2 1 , l=p (lI)' A=Q Al' a=p (al) for same ~l and Al on Y.

Then the assumption follows from 2.4.4.

Step 2: In the general ease we consider the deformation to the

normal bundle
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(00) -1 (a) -1 1 .
,M =1'l (00), M =Tl (~), superscr1ptS

( 14 )

---+ Y, i s the

(OO)=restriction to H(a) or MCoo )or
( a )

... M

Y· 1
Y><lPl~ ~1 p

ql 1 1
Y • X

i
and denote by A a coordinate function on w1

as in 2.5.1 .. We consi-
(a)* (a)*

der the rational section sP
A

(p' (a» of SPA~ A. In the fol-

lowing computatuion we will use the canonical isomorphism

SPAg(a)*~A without warning. By the axioms of 2.4., we have

r. ~ (i ! (tna» = sP, P ( a )*(r. :e ( i ! ( l"a ) ) )
1 ,.c.. A. 1 ,

~! (a)* (a)*
= SPAr ... * (1 (p - l)"p - (a»)

i,p :e
n ( 7(oo)! P (00 ) *(l )n s P, p (00 ) *<' a ) ) ) •= r-'7(00) (00)* 1 A.

1 ,p ~

We have used 2.4.1. in line 2 and 2.4.3. and 2.3.5. in line 3. Now
(a)* (0:1)*.! (00)

we note that sPAP (a)=p 1 (a), where p :M

restrietion of p. This allows us to apply step 1, hence (14) is

eaqual to

,*p:n~(oo)!( (a)*(» .*(,)_.!( )
1 .....' 1 s PA p a =1 ..... I 11 a,

where the last equality holds for similar reasons as in (14). This

proves 2.6.1 ..

2.6.2. Let

be a commutative diagram with p and q smooth,

i a regular immersion of codimension one, end
-1

s (D) i8s a section of p. We assume that

regular of codimen8 ion one in Y and denote by i y : 8 -1 (D) ----+ Y·,
-1

sn: s (D) ---+ n the restrietions of i and s. Furthermore we

assume that there i8 a flat map r: y---+Z whose restrietion r
n

to D

remains flat:
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i
-1 ys (D~~Ir

Z .

* *--...... ..!.*.9. 1: A

*• i y *1:D
A

( 16)

1 . ( 39 )

1**
.l! . .i*9

1
!: A

1**
.iy*.l!~gl!: A

*---------+. i.y *1:D A

Note that there are isomorphisms

* *C 1 (0 ( D ) )1'1.12 1: A

-1 *c 1 (<0 ( s ( D )1'1!: A

We assert that the diagram

1**,§. . (c 1 (<0 ( D) )1'1]2 .r. A)

1
-1 ' * *C 1 (0 ( s ( D) )fi~ . .12 1: A

1
-1 *c 1 (0 ( s D) )'-'1: A

commutes. The lower vertical arrows are of type [F1, 4.7.1.], and

the right upper vertical isomorphism is the base-change isomorphism
!

for,§. provided by [F1, 4.7.].

* *r (a)

J
( a)"1"1'1

,
"1"I'1s'

Proof: Let a be a rational section of A, and let 111" be the
-1

eononieal seetion of O(D) (resp. of O(s (D») which has a zero
-1

along D (resp. s (D». Then by 2.6.1., the construction of 1.(39),

in [F1], the diagramand the construction of the remaining arrows

, * *(16) aets on s'("l"I'1p r (a» as follows:

1**
S . ( " 1 "I'1p r (a»

1

which proves Dur claim.
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2.6.3.: We eonsider again (15) under the assumption that p and q

are smooth, i i8 a regular immersion of eodimension one, and s i8 a

seetion of p. Now we a8sume that the images of i and s are dis-,
J'oint. Then s'i has a canonieal trivialization. On the other aide,- -*
* *s ({J(D) i8 trivialized by s ("1"), and we obtain another trivial-

ization

t * , * *, *8· ..!.*.9. A~ §. (Cl (0 (D )1l.H A) ~ Cl (8 0 (D) )f"l§' . .H A

We elaim that these trivializations coineide.

*S ("1")
-----+. 0 .

1O'~ ,3'

* * ICI(f [f/)nck(f ~)f"lf·A

Then the diagram

* , * * I
~ Ck(f ~ )IlI· (Cl (31)IIA) ~ Ck(f ~ )rte

1
(f 31)11.1.· A

Proof: This is similar to 2.6.2 .• The first trivialization maps

t *s'i*q (a) to zero, while the seeond one maps it to

t * '* * , *s . i q (a) ~ s· ( " 1 "f"lp (a» ~ s (" 1 " )IlS . P (a) ~ 0'.
*

2.6.4. Let f: X~ Y be slei, ~ and ~ be veertor bundles on Y,
""k

and AE0 b (<t~ (y».,
.f' (c k (~ )r-; I (~)IIA)

10''S'3'
, * ,

f ' (C 1 ([f/ )r'1C k ( ~ )nA) ~ Cl (f S:) !. (C k (~ )IIA) ~

commutes.

Proof: By deformation to the normal bundle, we ean reduee this to

the ease of the zero seetion of a veetor bundle, whieh is elear

from 2.4.4. beeause o~,s: is eompatible with flat pull-baek.

2.6.5. Compatibility with the Whitney isomorphism: Let f:X~Y be

selei, and let O~$~~~~~O be an exaet sequence of veetor
""k

bundles on Y. Then for AEOb(~~ (Y» the diagram

,
I . (C • ('S )IIA )

I 1
i' (c • (~ )1IC • ($' )nA )

commutes.

* ,
~ C.(f ~)nf·(c.(.7)IlA)~

* ,
C • (f ~ )IIX ' A

* L' I
C • (f ~)I1C. (f [f/)II.f· A

~rQof: If f is smooth, this is elear. This reduees us to the ease

of a regular closed immersion f. In this ease the diagram eommutes

because (12) contains only transformations which are compatible

with the Whitney isomorphism (cf. for instance 2.3.3.).
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2.7: Relation between Cl and the determinant: For a vector bundle ~

e
of dimension e, we denote by det(~)=A~ its determinant line bundle.

If L: ~~~~~~~O is an exact sequence of vector bundles, then

there is a canonical isomorphism

~: det(}')@det(~) ----tl det (~ ) .

Proposition: There is a unique system of isomorphisms

LOS: Cl(det(~»nA ~ Cl(~)nA (17)
-k

for AEOb(~~ (X» and a vector bundle ~ on X such that the following

properties are satisfied:

2.7.1: Compatibility with pull-back and push-forward: If X-schemes
....

are denoted p:Y~X, then ~~·(Y) is a bifibred Picard category over

the bicategory (X-schemes, proper morphisms of c.r.d, flat mor-

* * - -phisms ), and Cl (det (p 'S) )("1. and Cl (p 'S )("1. :cr~ · (y )--+(tf> • (Y) are biad-

missible functors. The condition i8 that

* *Lp.~: Cl (det(p ~) )("1. ~ Cl (p '8)("1.

is a biadmis5ible functor-isomorphism.

2.7.2. Compatibility with the Whitney isomorphism: If

i5 an exact sequence oE vector bundles on X, then the diagram

PL
CI(~)("1~l(~)("1A~~~'~~~~~~~~~~~--~~~.C1(l)("1A

"§Ut J"1 1t~
Cl (det (~) )()AfPC 1 (det (.J') )('lA

commutes.
2.7.3. Normalization: If 2 i5 a line bundle, L

2
is the identity.

These conditions characterize t'S uniquely. In addition, the follo­

wing properties are satisfied:

2.7.4.: If 'S and ~ are vector bundles on X, then the diBgram



0'S,:Jt
-----_._----~

C1 (det ( ~) )ftC 1 (det ($' ) )(JA

L'$()L 3"1
C 1 (~)"C 1 ($' lilA
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odet( l) ,det(3")
--_..._-----+ c 1 ( d e t ($' ) ) llC 1 ( det ('S ) lilA

1L3"()L '$

C 1 (3" )UC 1 ('S lilA

commutes.
2.7.5.: The isomorphisms L

l
and ßf,E (for a lci-morphism f) are

compatible.

Proof: By the splitting principle it is clear that 2.7.1-3.

eharacterize L~uniquelY and that 2.7.4. and 2.7.5. can be reduced

to the ease of line bundles in which they are elear.

It remains to construct an isomorphism L~ with 2.7.1-3 .. Let

~.:O=~OC'SlC... C~ ='S be a full flag of 'g with quotients :e.='S.rs ..
e 1 1 1-1

We have an isomorphisID
e

Cl (det('S) )(JA ~ $ Cl (:e)I'IA --+ Cl (l)I'IA, (18)
i=l

where the first isomorphism is derived from LL and the seeond

isomorphism is derived from the isomorphisms P
L

. It suffices to

prove that (18) is independent of the filtration 'S., for then we

can use 1.13.2.(b) to descent (18) from the flag manifold of ~ to X

(cf. the construetion of 1.(60». Because A i8 isomorphie to an ob­
.... 0

ject i*B for BEOb(~~ (Z)) and i: Z-+X a closed subscheme of eodi-

mension k and since (18) eonatains only biadmissible transforma-
.... 0

tions, we may assurne AEOb(~~ (X»). Then the restrietion functor

x .... 1
<t~ (Spec k(n»

nexo
is faithful, so we may assurne X is the spectrum of a field. Let

p:F~X be the fuII flag manifold of 'S. Beeause (18) contains only,
transformations which are compatible with the functor~' for s:X~F

a seetion of p, it suffices to prove that the isomorphism between

line bundles

* *Cl (p (det (l ) ) )1'11 -+ Cl (p l )fll

is constant on F. This i8 clear because F is a proper variety.
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2.8. Transition to the virtual category: For an exact category ~,

we denote by ~(~) its virtual category in the sense of [D, §4]. For

a scheme X, we denote by ~(X)=K(~(X)) the category of virtual

vector bundles on X. By the universal properties of the virtual

category ([D,§4.3.]), there exist unique (up to unique functor-iso­

morphism) additive functors

Co ('S )IlA=A

together with additive (in A) functor-isomorphisms

c . (0 )nA
1

C • (, ~~3'" )(')A

--...~ 0 if i>O

---+~ C. ('S )rIC • (3'" )IlA

such that

(i) C.(~)r1A=C.([~])IlA if 'S is a vector bundle and ['S] the corres-
1 1

ponding virtual bundle.

(ii) If ~: O~3'"~~~~~O is a short exact sequence of vector

bundles, then the following diagram involving the Whithney surn

isomorphism and the isomorphism [~]~(~]~(3'"] induced by L

commutes:

----..,~ C. (:g)rIC • (3'" )nA

1
c. ([:g])rIC. ([3"'] )IlA.

we will for the sake of simplicity not

c . (~ )IlA

1
c. ([~ ]$[3"'] )nA

In the rest of this paper,

distinguish between vector bundles themselfes and the virtual vec­

tor bundles defined by them. Using the universal property of the

virtual category, we get isomorphisms

c. (l)/lC . ($ )nA
1 J

* *C . (f OS )r1f A
1

----t~ C. ($ )rlC . eS )nA
J 1

*---t~ f (c.('S)nA)
- 1

* IC,(f 'S)n.!.'A
1

I

f' (C . ('S )nA)
- 1

SP,,- (C i ('S )ciA)

Cl ('$ )r1A

*----t. &* (c i (g ~ )nA)

• C i ('S ID )(")ßp,,-A

---+~ Cl (det(~) )nA
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because the corresponding isomorphisms for 11 real 11 bundles are corn-

patible with the Whitney surn isornorphism. These isomorphisms for

virtual vector bundles satisfy the same compatibilities as the

corresponding isomorphisms between "real" vector bundles.

2.9. Polynomials in the Chern functors: Let P(c.(~.) be a poly­
1 J

nomial with integral coeffitients in the Chern classes of vector

bundles ~j,jEJ on X. For a total ordering j1<j2< ... <jN of J end

virtual vector bundles ~. we put
J

[P(c.('~.)]<nA =
1 J

( 19)

where
0. ..

p=) n
a
~ ci(~j) l

J
•

h. 1,J
This means, all monomials of the polynomial P are ordered lexico-

graphically according to the indices j (coming first) and i. If 0.

and ß are multi-indices, then there exists a unique isomorphism

(20)



2-19

defined by applying the transformations 0 ., . to the permutation

which brings all factors into the right order with the minimal

number of transpositions, i.e., without interchanging identical

factors C. (~ . )~ . ('S . ). From the i somorphism (20) we derive a
1. J 1 J

canonical isomorphism

[ P (C . (~ . ) ] <n [ Q(C . ('S . ) ] <J"'lA
1. J 1. J

The diagram

---+) [( PQ ) (C . (~ . ) ] <nA •.
1 J

(21 )

( 22 )
[(PQR) (c. es .) ]<rlA ) [P(C. (~ .) ]<rl[ (QR) (C. ('S .) ]<rlA11

J 1 J 1 1 J

[ ( PQ ) (, C . (, 'S . ) ]<J"'l [ R (C . es .)]<(1A---+ [ R (C . (OS .) ]<() [ R (C . (~ . ) ] <CI [ R (C . es .)]<(1A
1. J 1. J 1. J 1. J 1. J

commutes.

Let « be another ordering of J and rr:J---+J be the prmutation with

n(i)<m(j) iff i<j. For each monomial there exists a unique permu-

tation

defined by the permutation which brings all faetors to the right

order with the minimal number of transpositions. We get a canonical

isomorphism

[P(Ci('Sj)]<ClA ) [P(C
i

{'Sj)]«(1A. (23)

These isomorphisms satisfy the necessary compatibility to glue the

objects [P (C . ('S . ) ]<f"1A to one obj ect P (C . ('S . )f"1A. I f confusions are
1. J 1. J

impossible, we will al so wri te ~ ('$ . )ClA for P (C . eS . )(lA. The
J 1. J

isomorphisms (21) and (23) commute, giving a canonical isomorphism

.K: P (e . es . )f"1Q (C . es . )ClA
1. J 1. J

satisfying the analogue of (22).

-~) ( PQ ) (C . (~ . )(lA
1. J

(24)
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Let us stress that ~(~ .)nA behaves bad if we identify same of the
J

vector bundles ~.. For instance, i f P ( c .~ ) , c . (,J:» isa polynomial
1 1 J

in two vector bundles and if Q(c.(l»:=P(c.~),c.(~», then there 1s
1 1 J

now canonical isomorphism

unless we fix an order of the two variables in P.

There is, however, the following substitution principle: Let F'(~l)'

be a functor in virtual bundles ~l' and let a functor-isomorphism

ce Ck(31(~l) )nA • Qk(em(~l) )nA

be given. If P(c.($),c.(1.» is a po1ynomia1 in ehern classes, then
1 1 J

a induces a canonical isomorphism

where

P (c . (3'" (~l ) ) ,e . ('S . ) )nA
1 1 J

---t. R(e.(~.),e (~l)}nA,
1 J m

(25)

size P(dim('8.),c.(~.)},
J 1 J

R(c.('$.),c (~l)=P(Qk(c (~l»'C.(~.».
1 J m m 1 J

The isomorphism (25) is independent of the choice of order of the

varibles ~k' '8
1

•

If our polynomials have the more general

then these methods apply also. We get a functor

P(dim(1.) ,e. ('S.) )nA = !pes. )nA
J 1 J J -k

in virtual vector bund1es '8. and AEOb(~~ (Xl) satisfying simi1ar
J

properties as sbove.

2.10. Twist by a line bund1e: Let

. j (d im ('S ) +1- j) j - 1P.(dlffi(l),c
k

('8),c
1
(2»=C 1 c

1
(2) l'tC

1
('8)

J 1=0
be the polynomial with the property

We have the obvious identities

(26)

P j ( d im ('8 ) , c k ('8 ) , cl (:e ) +cl (..M) ) = (27 )

=p j ( d im (~ ) , P j ( ci im ('8 ) lek ('8) , cl (.At.») , cl (2 ) ) ·

p . ( d im ('8) +d im (l ' ) , cl <:e ) ,) :c k ('8 ' , )cl ('S I ) ) = (28 )
1 k+l=i

-) : Pk(dim('S'),c ('8'),c
1

(:e»Pl(dim('S"),c ('8"),c
1
(X».

k 1
. m n

+ =J
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Theorem: There exists a unique functor isomorphism

c . (~~:e )flA
J

with the fol10wing properties:

2.10.1. Compatibility with direct and inverse images: If2 and ~

are a line bundle and a virtual bundle on Sand if S-schemes are

and

denoted p: X~S, then

* *C . (p ~~p 2) rl .
J

<t~ · (X) (t~ • (X)

<tf, · (X)

are

~ . (2 ,~)fl • : <tt>' (X )
J

biadmissible functors between bifibred Picard categories ove.I'

S-schemes. Then (29) i8 supposed to be biadmissible.

2.10.2. Normalization: If ~ is a line bundle, then (29) in dimen-

sion zero i8 the identity of A, (29) in dimension one is the ca-

nonical isomorphism Cl(2~~)rlA~C1(2)rlA$C1(~)nA, and (29) in di­

mension larger than one is the identity of the zero object.

2.10.3. Compatibility with the Whitney sum isomorphism: If ~ and ~

are virtual vector bundles, then the diagram

c «'S$~ ,~:e )fiA ----+~ EB C i (~~2)r'lC k ($02 'f""lA

k 1 i+j=k 1
~k(~$~,2)f""lA ----+~ EB !Pi(~,2)~k~,:e)flA

i+j=k

commutes up to a correcting sign

( 30 )

( 31 )fl k (~ ,~ ,2 , A ) =c 1 (2 )f""lT k-1 (~02 ,$'0:t' , A )

=c 1 (2 )fl) : (d im (~ ) - n ) ( d im ($' ) - m) c ('8) fi c ($')n [ A ] n [ - 1 ] •
n m

n+m=k-2
The lower horizontal arrow i5 defined by (28), (25), (24) and the

Whitney sum isomorphism.

These properties suffice to characterize (29). The fol10wing pro-

perties are also satisfied:
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2.10.4. IfA is another line bundle, then the diagram

Pi (dim('SIß>.:e) ,c 1 (.At) ,C k (~Iß>:e »nA

/
p . (d i m( e ) ,C 1 (.'e )EBC 1 (.At) I C . (~ ) )f"'1 A

1 J ~

P i ( d im (~ ) ,C 1 (A ) , P k ( d im (~ ) ,C 1 (.'e ) ,C 1 (~ ) ) )f"'1A

( 32)

commutes.
I

2.10.5. CompBtibility with f': The diagram
* ,

C k (f (~~~ ) ) f"'1f . A

* 1* I
~k{f 'S,f 2)l'If'A

commutes.

Proof: Step 1: 1t follows from the splitting principle that

2.10.1.-2.10.3. characterize (29) uniquely. 2.10.5. for a line

bundle'S follows from 2.10.2., and the general case of 2.10.5.

follows from this case and 2.10.3. by the splitting principle. 1t

remains to construct an isomorphism with the properties 2.10.1-4 ..

1t suffices to consider "real" vector bundles 'S and to consider

short exact sequences O~$~~~'S~O in 2.10.3 ..

Step 2: Ta canstruct (29) for a vector bundle 'S we use the identi­
-1

fications ~('S~2)=~(~) and O(1)'S02=O(1)~@2 . Let p: ~(~)~X be the

projection. We have canonical isomorphisms
e j

EB Cl (0 ( 1 )~0:t' ) e-j"Il.* (EB (e+:-
j

) Cl (:t') k"c j-k (~ )"A)
j=O . I k=O

e J

EB EB (e+:- j)c 1 (0 (1 )~0:t')e- jr'(; 1 (Il.*2) knIl.*(c j-k (~ )nA)

j:O k=O 1
EB Cl «(!) ( 1 )-g ) e -11'1]2*(c 1 (-g )f"'1A) 1 • ( 3 7 ). 0

1=0
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defining (29). The proofs of 2.10.1., 2.10.2., and 2.10.4. are

straightforward. It remains to prove 2.10.3 ..

Step 3: First we prove (30) in the case of an exact sequence

o --.... $' --.... ge --.... ~ ---+. 0 (33)

of vector bundles with dim(~)=1. We have the diagram
i

[?($) • (p(ge)

q L---+ X .-J p

( 34 )

f

i * (E9 c 1 (e) ( 1 )3'" ) f - j ng*( C j (3'" )nA ) )

j=O

CA)

f

of projective fibrations. We consider the diagram
f

(
f- . * ]i* E9 c 1 (<0 ( 1 ).r0:e) Jrlg (~j (.r ,2 )nA )

j=O

E9 C 1 (e) (l ) ge02 ) f - j nc 1 (1 02 ( 1 ) )n J/ (!P j (3'" •2 )n A )

j=O 6 f ~
(B) EB C 1 (e) (l )SIe) f - jnc 1 (~0.:e ( 1 ) )nE*(C} 3" )nA)

j=O
e

. *E9 c 1 (<0 ( 1 )9(02 ) e - Jn:Q (~j (ge ,2 )()A )

j =0 l________ e . *---------. E9 c 1 (0 ( 1 )ge) e- J("):Q (C j ('S )()A )

j=O
The isomorphisrns a and ~ interchange i* and C

1
({)(1» and apply

1.(39). The two lower vertical arrows are built of (24), (25), and

the Whitney surn isomorphism. The isornorphism r interchanges
-1 k

C
1

(2 ) with Cl(~~2(1») and applies (24). The two other arrows are

of type (24).
-1 1

The commutativity of CA) follows from 1.(40). If C
1

(2 ) occurs

(with multipli~ity (f~j]) in the binomial resolution of the power
f-J

(c 1 (~ ( 1 )~2 ) ) ,then r involves interchanging Cl L~) 1 times wi th

C
1

(2-
1

). Since the other arrows in (8) use only minimal permuta­

tions, (8) commutes up to the sign
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f f-j
r:: r:: 1(f~jJCl(@(11~lf-j-lnCl(2-111np*(Pj(dim(~),Ci(~I'Cl(21n[-l]n[A]I=
j=O 1=0

f-1
= r:: (f-j)(C1(O(1)~0~)f-j-1~C12)~p*(Cj(~@2)~[-1]~[A]).

j=O
By 1.6., the definition of (29) in step 2, and the definition of

the Whitney isomorphism in 1.10. we conclude that (30) commutes up

to the sign

(f+2-k)C1(2)~ck_2(~@2)~[-1]n[A]=~k(!t~,Z,A),

proving (30) in the special case of an exact sequence (33) with a

line bundle ~. For an arbitrary exact sequence (33), (30) follows

by induction on the dimension of ~, using the splitting principle.

For arbitrary virtual bundles ~,~ (30) follows by the universal

property of Deligne's virtual category. The proof of 2.10. is

complete.
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3. Axiomatic Characterization of the Chern Functors

3.1. The trivialization T~ : Let ~ be a vector bundle of dimension
~,s-

e on X. A non-vanishing global section s of ~ defines a short exact

sequence

o ---+ I{) X ----+ ~ ----+ ~ ----+ 0

and hence a trivialization

( 1 )

Proposition: (i) Let 0: X--+lP(~) be the section oflP(S) ·defined by

* I *s; Because ~ O(1)~x canonical1y, :;:'(C
1

(O(1)fi]2 A)~1(OX)()A has a,
canonical trivialization if k>O. Hence byapplying o' to the mor-

phism
e

EB Cl (0(1 )e-jnl!*(Cj('S)nAl----..O

j=O

defining C.(~)()A, we obtain a trivia1ization

e

1.(37)

( 2 )

0----+ e-j * ] , *C
1

(tD(1) (J]2 (C,(~)()A) ----+ 0']2 (C (~)riA) --+ C ('S)rlA
J e e

of C ('$)riA. We claim that this trivialization coincides with T~ .
e ~tS

(li) Let O~~--+~~~--+O be an exact sequence of vector bund1es

on X, with dim('$)=l. We assume that ~ has B non-zero section s such

that i:~X is a regular immersion of codimension one, where D is

the subscheme defined by the vanishing of rr(s). Then n(s) defines

an isomorphism 2~X(D). We assume also that r:X--+Z is a f1st

morphism whose restrietion r
D

to D is also f1at.



*C ('8 )111: A --~
e

0:e J:'
--'-~
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Then

*c 1 (:e )f"lC f (3'" )f"l1: A

*Cf ($' )f"lC 1 (:e )f"l1: A

rr(s) *---+ C
f

($)i'lC
1

(<OX(D) )n,!: A(f=g-1)

1.(39J c (~)n~ ~*A
f * D

T --~ .i*(C r(3'ID )n!:~A]
$1

0
, slo

------+ ~*( 0 )=0

( 3 )

*defines a trivialization of C (~)n.!: A. We claim that this trivia-
e

lization coincides with T~ .
o,8

Proof of (i):Without loosing genrality we may assume that (1)

splits, because this can be achieved by passing to a certain p.h.s.

for the dual of~. By 1.(63), the diagram

commutes up to the sign

(dim(~)-(e-l)]nce_l(~)n[-l]n[A]=O

Hence, T~ coincides with the trivialization defined by the
o,5

complementary sequence

o ---+) ~ --.... 2 ='D --...~ 0
X

( 4 )
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Now we consider the diagram

By our construction of the Whitney isomorphism associated to (4)

(cf. 1.10.), the diagram
e

e-1

,
0"(1.(37»

o

e-1

~E9

j=O

C 1 (\0 ( 1 ) ) e - 1 - j nl!* ( C 1 (~)nc j (~ )nA )]

11.(39)

0"( E9 Cl(\O(l»e-l-jni.*~*(Cj(3")nA»)

j=O 1 1.(38)
e-1

~' .1* (E9 Cl (\0 ( 1 ) ) e-l-jn~* (C j (3" )nA »)

j=O

,
~·i*(1.(37»

commutes. By the additivity of the canonical functor-isomorphism, ,
~'i*~O, the right vertical isomorphism ~·i*(1.(37» coincides with

t

the canonical trivialization of O"i . Using this and 2.6.3.,we
- -*

conclude that the composition



3-4

e-1

j=O

e-1

Cl (~*Q (l ) ) e-l- jf"lC 1 (0'*2 ( 1 ) )i"la! ~* (C j ($" )f'lA )

1

j=O

Cl (0 (1)) e-l-jf'l~* (C 1 (2)f"lC j (~)"A))

1~! i* ( 1. ( 3 7 ) ) 0 1. ( 38 ) 0 1. ( 3 9 )

o
coincides with the trivialization defined by the canonical

*isomorphism G 2(1)~X. We get the commutative diagram

e ,
G'(1.(37»

( 5 )

canonical 0

• X

j=O
(we have not yet used the fact that 2~ in (4». Now, by the ca-

* X
nonical isomorphisms 2~X and 0 O(l)~X' the vertical arrow in the

last diagram is (2), and the composition of the two other ones is

T'f' •0,S

Proof of (ii): We consider the fibre square
i

D • X

~D 1 j l~
(P(-,,) ---+ [?('c$).

The projections from [P(~) and ~($) to X are denoted by p and q. The

assertion is proved by applying 2.6.2. to this situation. In fact,

let us consider diagram (6) on page 3-5. In the definition cf the

arrows (d), (f), and (n) we have used the canonical isomorphism

*G O(l)~X defined by the section s. The commutativity of (A) is

essentially 2.4.1., CS) follows from 1.16., Ce) is 2.6.2., CD) is

essentially 2.6.4. and CE) is a consequence of 2.6.5 .. The commu-

tativity of the other squares is more er less obvious.
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Diagram(6):(cf.p.3-4)

( f)

CA)
( k )

'* * , * *
::.' (j*.9. (c f(,J: )r"'l~ A» +--C f (3")~' j*.9. .r. A

(e II (8) l~ cf (3" ln.i*~~g \:.*A +- Cf (3" ln .i*.!:~A

, * * , * *
~ 0 c 1 (:t' (l ) )n.2 (C f ( 3") n.!: Al ..- C f (3" ln~ 0 (C 1 (:t' ( 1 lf~::) (C) : j l

(d) (0) rCf(,J:)r"'lC 1 (.t)~'~ K A+-C f (3")fl
C

1 (.tll~:lA

, * * * ,** *
~,C: (p(::r :C f (3")n;E:) ..-- Cl (:t'lr

f :3":n:
o

.2 .!: A • Cl (:t'lr:~:)n.!: A

a .~ (C e (~ )fl~ A).. ( b) C e (~ )fla .~ K A ( a) C e ( ~ ) rIK A



3-6

By part (i) of the proposition, the composition (o)o(n)o(m)o(l)

coincides with T$I I· Consequently, the composition (o)o ... o(h)
D's D

is (3). On the other side, it follows from the explicit description

of the Whitney isomorphism in 1.10. and part (i) of the proposition

that the composition (g)o ... o(a) is T~ . It follows that (3) and
e,S

T coincide. The proof of the proposition is complete.
'S,s

3.2.The axioms: We assume that for a vector bundle ~ on X

c . ('S )n . : {t~ k ( X ) • (t~ k+j ( X ) ( 7 )
J

is an additive functor, and that the following natural

transformations are given:

3.2.1.: A syrnmety isomorphism

( 8 )

3.2.2.: For a flat morphism f, an isomorphism

* *c . (f 'S )nf A
J -

( 9 )

3.2.3.: For a proper morphism g of constant relative dimension, an

isomorphism

( 10)

3.2.4.: A Whitney surn isomorphism

for every short exaet sequence

( 11)

o --.... 'S o ( 12 )

of vector bundles (the ease ~=O or ~=O is not excluded).

The following axioms roust be satisfied:

AX 0 (Vanishing): c.('S)n. i8 the zero functor if j<O or j>dim('S),
J

and cO('S)nA=A. For ~=O, this implies C.(~)nA=A.

AX 1 (Normalization): c1(2)nA=C1(~)nA for a line bundle ~, where

C (~)n. is the additive functor introduced in 1.2 .. If $ and ~ are
1

line bundles, then (8) coincides with the symmetry introduced in

1.5 .. Also, int the ease of line bundles (9) and (10) coincide with

the isomorphisms introduced in 1.4 ..
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AX 2 (Compatibilities for (9) and (10»: If ~ is a vector bundle on

X snd if X-schemes are denoted by p:Y~X, then (9) and (10) define

for the additive functors
* .....

C , (p ~)n.: (t~' (Y) (t~ • ( y )
J

the structur of a biadmissible functor between bifibred Picard

categories over (X-schemes). If ~ and ~ are vector bundles on X,

then the isomorphism (8)

* * * *C j (p ~ )rIc
k

(p ~)('). c
k

(p ~)ficj (p ~)i1

is a biadmissible functormorphism. Similar, if (12) is an exact

sequence of vector bundles on X, then the isomorphism (11)

* * *c.(p ~)('). • c. (p ~)rIc.(p .1')(').

is biadmissible.

AX 3: The analogues of 1.(45) (for vector bundles of arbitrary di­

mension) and of 1.(62) for the isomorphisms (8) and (11) commute.

Note that this would allow us to apply 2.8. to the functors

c.(~)(')., but it will not be necessary to da so.
J

Corollary: o~,$a$,~=Id, and the analogue of 1.(34) for the isomor-

phisms (8) commutes. Note that this will enable us to apply 2.9. to

the functors C .• Hence for a polynomial P in ehern classes the
J

polynomial P(dim(~ ,),c,(~ ,»i1A=~(~ ,)nA in ehern functors is well-
J 1 J J

defined. This will be important for the formulation ofAX 4.

ErQox: This i8 elear from AX 1 if all the veetor bundles involved

are line bundles. The general ease follows by induction on the di­

mension of the vector bundles , using AX 3 and the splitting prin-

ciple.

AX 4 (Twist by a line bundle): The analogue of 2.10.1.-4. for the

functors c, and the isomorphisms (8)-(11) i8 true, i.e., there
1

exists an isomorphism

c . (~0et' )1'1A ~ ~. (~ ,2 )1'1A ( 1 3 )
J J

satisfying 2.10.1.-2.10.4. (The uniqueness of such an isomorphism

i8 elear).
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AX 5: By the previous axioms, the definition of the trivialization

T~ of c (~)il. defined 'by a global non-vanishing section S of 'S.
" , s e

works for the functors C .. We assurne that Proposition 3.1.(ii)
J

remains true for the functors C .•
J

Remark: It seems very likely that AX 5 is a consequence of the

other axioms. I hope I will be able to return to that subject in

the forthcoming paper on functorial Riemann-Roch.

3.3. Theorem: If c. (~)il. satisfies the properties listed in 3.2.,
J

then there is a unique additive functor-isomorphism

C.(~)()A ~ C.(~)nA (14)
J J

which commutes with the transformations 3.2.1.-4. and is the iden-

ti ty i f j~O, j>dim ('S), or i f 'S is a line bundle.

Proof: The uniqueness of (14) is clear. To prove the existence , we

first consider some consequences of the axioms:

Step 1: Let ~ and ~ be line bundles and ~ an arbitrary vector bun-

dIe. We want to check that the diagram

°OS,9t
- GI (.Al)lG j (~~J:' )nA

~ C1(~)~j(os,~)nA

commutes (cf. AX 4. The lower horizontal arrow i8 2.(24)). By

2.10.2. , this is clear if OS is a line bundle. The general ease

follows by induetion on the dimension of 'S, using 2.10.3. and the

splitting principle. Here 1.(45) i9 used again, because the induc-

tion argument involves using the Whitney isomorphism.

Step 2: Let

i
--oot) X

S ~Pbe a commutative diagramwith p and q flat and ia

regular closed immersionof codimension one. Fora

vector bundle 'S on S, we want to check that the diagram
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* *~*(Cj(q ~)n g A) * *C . (~ ~ )r"'lJ! A

J 11 .«39)

* *c .(p 'S)nc1(<Ox(D)n~ A

J J

If ~ is a line bundle, this is 1.(40). The general ease follows by

the splitting prineiple from 1.(45) (cf. AX 3) and AX 2. The de-

tails have been presented in 1.16 ..

Step 3: Now we are ready to construet (14). For a vector bundle ~

,
of dimension e on X, we denote by p: ~(~)~X the projective fib-

ration. Then

*~ ( 1 ) : =p ~OO ( 1 )

has a canonical non-vanishing global seetion s, defining a trivial-

ization
e

. *69 C1(O(1»e-Jn~ (Cj(~)nA)

j=O

AX 1, AX 4 • C (~(l»~A)

e 1Ti« (1) ,s

o

( 15 )

Because the isomorphism 1.(37) eharaeterizes C.(~)nA up to unique
J

isomorphism, (15) defines an isomorphism (14). The compatibility of

(14) with the isomorphisms 3.2.2. and 3.2.3. is elear because (14)

eontains only biadmissible transformations. It remains to prove

that (14) commutes with 3.2.1. and 3.2.4 ..

Step 4: The hard part is the compatibility with (11). By the split-

ting prineiple and beeause 1.(62) was supposed to be eommutativ, it

suffices to eonsider ahort exact sequences (12) with dim(~)=1. We

consider the following diagram.
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e

Cl «o(I))f-jn~*(Cj(3")nA)) Ell' CI«(O(I) )e-jn~*(CI(~)nAI

j =0
a f r

f' * *
j=O

j=O

CA)
(8)

f

f - . * *
cl (~( 1) )nc I «0 ( I )1

6
J
nc

j (: 3")n~ A *

---... c 1 (~( 1 ) )r1C f (9" ( 1 )r112 A ~ Ce (~ ( 1 ) )r1Q A

ce)
( e

------+. 0 +- --*-------'
Here a is given by first interchanging c.(~)r1. and g , then inter­

J

changing both Cj(~)r1. and C1(O(1»~. with ~*' and finally applying

1.(37). By step 3, the result of first interchanging C (~(1» with

* * 1
~*' applying 1..*g (c j ($' )r1A) • Cl (~( 1 ) )("II? (C j ($' )("IA) , and then

bringing c.(~) to the left side would be the same. Consequent1y, ßa
J

is 1.(41). The pentagon CA) commutes by a combination of 2.10.2.

(cf. AX 4) and step 2. The pentagon CS) wou1d by 2.10.3. (i.e., ~X

4) commute up to the sign

*cl (0(1) )()c
f

_
1

(9'"(1»()[-1]()[Q A]= (16)

f-1 1+1 * *=L:: (1+1)c
1

«(!)(1» n c r_
1

_
1

(P $)~[-1]()[12 A]
1=0

if 6y was the bottom horizontal arrow in 2.(30). However, 6

involves (f-j) times interchanging c
1

(O(1» with itsself, whereas

the arrow in 2.(30) uses only minimal permutations. Hence 6 pro-

duces the additional sign

r f-j * *L:: (f-j)c (0(1» ~c.(p $')f1[-1]()[Q A]
. 0 1 J
J=

cancelling (16). Hence CS) commutes.
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By AX 5, ce) also commutes. Now"(s is (15) for $ and an is (15) for

~, whereas ßo is 1.(41). This proves compatibility between (14) and

the Whitney isomorphism.

Step 5: The compatibility between (14) and G~,~ follows now by

duction on dim(~) and dim($), using AX 1 for the start and the

result of step 4, 1.(45) (cf. AX 3), and the splitting principle

for the induction argument. The proof of 3.3. is eomplete.

3.4. Comparison with Deligneis IC~: Let p: X~S be a proper smooth------------------2-
morphism of relative dimension one, where S is normal and locally

factorial. For line bundles 2, ~ on X, put

<2 ,Ai>=:Q*(C
1

(2 )rlC
1

(Ai») . (17)

Note that by 1.3. this is the line bundle on S constructed in [D].

If land m are rational sections of 2 and A whose divisors do not

intersect, then

( 18 )

i8 a seetion of <~,A> on S satisfying the transformation rules of

[D]. For a virtual vector bu~dle ~ on X, put

IC2(~)=Q*(C2(~»·

This functor has the following two struetures:

( 19 )

3.4.1.: For a line bundle 2 on X, a canonical isomorphism IC2(2)~x

-2
defined by the canonical trivialization C2(~)~0 in ~~ (X).

3.4.2.: A Whitney isomorphism

I C 2 (~e$ ) • I C 2 (~ )~ I C2 ( ,7")~<d e t (~ ) I d e t (,7" ) >

defined by the following arrows:

(20)

12* (C
2

('Se$) ) • Q* (C 2 (~) )012* (C 2 (.7" »0.2* (c 1 (~ )riC 1 (3"') ) (21 )

IC
2

('S )@IC
2

(3" )@.:Q* (c 1 (det ('S ) )rIC 1 (det (3") »)
IC

2
(~)0IC2 ($ )0<det (~) ,det (.7') >,

where the first arrow is the Whitney isomorphism for the functors

C
k

, the second arrow is 2.7. plus definition (19), and the third

one differs by the sign

(-1 )deg (det (~) )dim(3")

from the tautological arrow given by (17).
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Proposition: IC
2

, together with the isomorphisms 3.4.1. and 3.4.2.,

satisfies the axioms of (D, Proposition 9.4.J. Coneequently, it is

canonically isomorphie to the functor which Deligne named IC
2

.

ErQoX: Step 1: It is immediately verified that if T(~) is defined

as in [D, 9.5.], then T becomes an addit~ve functor between Picard

categories. In particular the compatibility of T(~l with the sym­

metries of its source and target categories follows from 1.(63) in

view of the sign convention we made in (21). It remains to verify

assumption (iii) of [D,9.S.]. We start with apreparation for this.

Step 2: By 2.10., we have an isomorphism

e-1 e(e-1)/2
IC

2
('S0.:t') ~ IC

2
(~)0<det(~) ,:t> 0<:t ,~> ., e=dim(~). (22)

Let us consider the square

Je2('S6I3" )@,l'J

1
e+f-l

IC 2 (~~$' ) 0< det ('S )0det (,Jt ) ,2 > ~

~ '~ (e+fl (e+f-1 )/2
t8' <..r:.. I (I(., > '

( 23 )

I C 2 (~02 )0 I C 2 ( $'02 ) 0 <d e t (~02 ) , d e t ($'02 ) >

1
I C2 ('S ) @ I C 2 ($' ) @ <d e t (~ ,) , d e t ( :}"/ ) >@

e-1 f-1
@ <d e t ( 'S ) ,2 > @ <d e t ($'.) ,:e > €I

f e
@<det(~) ,2> 0<det(~),:e> 0

~ ~ ef+e(f-1)/2+f(e-l·)/2
0<-... ,J.:. > •

By 2.10.3., the correct sign for (23) would be

(_1ldeg(.:e lef ( 24 )

if there was no sign convention in (24). However, the sign conven-

tion modifies the top arrow by

(_1)f(deg(det(~)+deg(.:e)e)

and the battorn arrow by

( -1 ) fdeg ( det (~ ) ) ,

cancelling (24). Consequently, (23) commutes on the nose.

lf S is a line bundle, (22) reduces to a canonical isomorphism

IC2(~0.:el~IC2(~)' and this isomorphisrn respects the canonical tri­

vializations of both sides.
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Step 3: Now we are ready to verify assumption (iii) in [D,9.5.]. We

recall that this signifies the following:

Let Q' be a line bundle on S, s a section of p, Q=s*Q' in R(X), 2 a

*line bundle on X together with an isomorphism Q'~s ~. Then the iso-

morphisms

Os I IC
2

1;el I IC2(;e(-s~s) ))~HC2(Q)@<det(Q),;e(-s(s))> --+

--~J IC
2

(Q)0S ~(-s(S»,

where the second arrow is given by (20) and the exact sequence

0---+2 (-s (S) )~.:e---+Q~O, define

-1 *
12 : I C2 (Q) J Q' 0 s 0 X ( - s ( S) ) •

The condition is that 1.:e is independant of 2.

Because S is integral, we may assume S=Spec(k) for a field k. Then

Q=V , and Z has a trivialization at s. If ~ is another line bundle
S

on S, we have to check I~=1~. We claim that this condition depends
-1

only on ~=~~~ . 1ndeed, by step 2 we have the commutative square

L­
o

I C2 (;ern

t__ IC
2

(2 )

-~. I C 2 (20.K ( - s ) )0 <2~.K ( - s ) ,0X ( s ) )~ I C2 ( Q0.K .>

1
IC

2
(2(-s) )0<:e( -s) ,OX(s)0IC

2
(Q)0

-1
0<.K,O (s) ~<JV,O (s»

X X
reducing the proof of 1.:e=I~ to the commutativity of

where the horizontal arrow is given by the trivialization of .K at

the point s, the vertical arrow is (22), and the slanted arrow is

given by the trivialization of <.K,OX(s» which sends <n..,"1"> to

n(s), where "1" is the canonical section of VX(s) with a zero at s,

and n.. is aoy rational section of k whose order at s is zero. It is

clear that the last diagram depends only on .AI, which proves our

claim.
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Because the condition we have to verify depends only on 2~~ , we

may assume that 2 and ~ have global section land m with

l(s)=m(s)=l and whose divisors do not intersect. Then a=(l,-m) is a

global non-vanishing section of ~=2$~, and ~ is contained in

J:'=ker (OS =2$~ ---+. Q) ( 25 )

<A ,11 > ----+ A( s) +11 ( s ) •

We have a commutative diagram in ~(X)

----t. J:'~Q

1
2 ( - s )e.M.eQ

:e (- s )lIlQlIl.Al _J .

( 26 )

The right vertical arrow is given by o--+:e(-s)--+J:'--+JH.--+O, andthe

horizontal arrow by O--+~~~~Q--40, with OS--+Q defined in l25}.

The non-vanishing global section 0 defines trivializations T of
o

1C2(~) and IC2(~). Now the top row of (26) defines isomorphisms

o

where the second arrow uses the canonical isomorphism det(Q)~x(s).

In view of the canonical isomorphism <~0~,OX(S»~Os, this defines

We want to compare I~ and 1
2

. (26) gives us a commutative diagram

1C
2

('S)

1
I C2 (.t' )@ I C 2 (At )0

@<:e,..M>
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By applying 3.1.(ii) to the exact sequence ~~~~~~~O and

the global section 0 of ~, we find that by the left vertical arrow

the trivialization Ta of IC2(~) corresponds to the trivialization

of <2,~> which maps

<l t -.ffi, > t 0 (_ 1 ) d e g ( .At. ) ( 27 )

(of course, multiply by the canonical trivializations of IC
2

(2) end

IC
2

(..M.). The sign in (27) comes in because of the sign convention in

( 21 ) ) .

In a similar manner, applying 3.1. to the short exact sequence

0--42(-s)~~~~O and the global section 0 of Y, we conclude

that the trivialization Ta of IC
2

(Y) corresponds by the right hori­

zontal arrow to the trivialization of <2(-s),~> which maps

<l ,-m> to (-1) deg (.Ai) , ( 28)

where l is viewed as a rational section of ~(-s) which is singular

at s but regualar at the divisor of m.

* -1If we identify both <det($),OX(s» and <2(-s),OX(s» to s lOX(s) ,

then under the right vertical arrow these identifications differ by

the trivialization of <A,O (s» which maps
X

<-.ffi" " 1 "> t 0 - 1 .

By (27), (28), and (29), we conclude that I~=-I2' In a similar

manner, using the commutative diagram

( 29)

o

o

--.... .AU -8)

1
---~-+ .At.

1

Y

1
os

1

--.... J:

11

--.... 0

--.... 0

Q Q.
of exact sequences, one proves I.M=-I~. Consequently, 12=I~,

completing the verification of [D,9.5.(iii)] and the proof of the

proposition.
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In a similar manner one can eompare the integrals of our Chern

funetors over the fibres of a higher-dimensional morphism with

Elkiks line bundles (in ease both funetors are defined). The

starting point is the eomparition for an integral of a produet of

first Chern elasses of line bundles, where one has to verify that

the integral of the product of C1's satisfies the descent condition

used by Elkik. The extension of this isomorphism for Cl to the

general ease is esier than the comparision with Deligne's IC
2

earried out in the above proposition, beeause the eonstruetion we

used in 1.10. is also used by Elkik.
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