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A DICHOTOMY FOR MINIMAL SETS
OF FIBRE-PRESERVING MAPS IN GRAPH BUNDLES

SERGǏI KOLYADA, L’UBOMÍR SNOHA, AND SERGEǏ TROFIMCHUK

Abstract. Minimal sets are studied for a compact dynamical system given by a fibre-preserving continuous
map F in a graph bundle E (i.e., F is a skew product map). Given a closed set M in E we define the set
of so-called star-like interior points of M . A point in M is called an end-point of M if it is not star-like
interior. It is assumed that the base system is minimal (this assumption does not restrict generality when
we are interested in the topological structure of minimal sets).

The main theorem says that if M is a minimal set of F then the following dichotomy holds: The set of
end-points of M is either dense in M (and then M is nowhere dense in E), or it is empty (and then M has
nonempty interior in E). Further, it is proved that in the latter case F |M is monotone on some sub-arcs
of the fibres. Since minimal sets of fibre-preserving maps in tree bundles necessarily have end-points, this
theorem implies that these sets are nowhere dense, which in particular solves a problem of J. Smı́tal on
minimal sets of triangular maps in the square.

1. Introduction

1.1. Problem of the classification of minimal sets. A pair (X, f) where X is a (usually
Hausdorff or even metrizable) topological space and f is a continuous map X → X can be viewed as
a dynamical system in which the orbit of a point x ∈ X is defined to be the set {x, f(x), f2(x), . . . }.
So, by an orbit we mean a forward orbit rather than a full orbit, even if f is a homeomorphism.
A system (X, f) is called minimal if there is no proper subset M ⊆ X which is nonempty, closed and
f -invariant (i.e., f(M) ⊆ M). In such a case we also say that the map f itself is minimal. Clearly,
a system (X, f) is minimal if and only if the orbit of every point x ∈ X is dense in X. Another
equivalent definition is that for every point x ∈ X, its ω-limit set ωf (x) :=

⋂
m≥0

⋃
n≥m{fn(x)}

equals the whole space X.
The classification, i.e. the full topological characterization, of (at least compact metrizable)

spaces admitting minimal maps is a well-known open problem in topological dynamics (see, e.g.,
[9], the entry ‘Minimal set’ written by D. V. Anosov and ‘Expert Comments’ to it). For the state
of the art of the problem see [1], [3], [4] and [19].

The basic and well known fact due to G. D. Birkhoff is that any compact dynamical system
(X, f) has minimal (closed) subsystems (M,f |M ). Such closed sets M are called minimal sets of f
or, more precisely, of (X, f). Thus, though a (noncompact) dynamical system need not have any
minimal sets, these in fact appear very often since if an orbit has compact closure then this closure
contains at least one minimal set of f . The minimal sets, as ‘irreducible’ parts of a system, attract
much attention and the question of their topological structure is central in topological dynamics.

It seems that Y. N. Dowker [7] and M. L. Cartwright [5] were the first who studied the topological
structure of minimal sets (of homeomorphisms). Since then it is a topic of constant interest. It is
folklore that if X is a compact zero-dimensional space, f : X → X is continuous and M ⊆ X is a
minimal set of f then M is either a finite set (a periodic orbit of f) or a Cantor set and this is in

2000 Mathematics Subject Classification. Primary 37B05; Secondary 54H20.
Key words and phrases. Minimal dynamical system, minimal map, minimal set, graph bundle, extension, factor, skew

product, triangular map.
The second author was supported by VEGA grant 1/0855/08. The third author was supported by CONICYT (Chile)

through PBCT program ACT-56 and FONDECYT project 1110309, and also by the University of Talca, program “Reticula-
dos y Ecuaciones”. The first and second authors were also supported by Max-Planck-Institut für Mathematik (Bonn); they
acknowledge the hospitality of the Institute.

1



2 S. KOLYADA, L’. SNOHA, AND S. TROFIMCHUK

fact a characterization because also conversely, whenever M ⊆ X is a finite or a Cantor set then
there is a continuous map f : X → X such that M is a minimal set of f . Among one-dimensional
spaces, the characterization of minimal sets is known for graphs — minimal sets on graphs are
characterized as finite sets, Cantor sets and unions of finitely many pairwise disjoint simple closed
curves, see [2] or [23]. On dendrites and on local dendrites the problem is very difficult and the full
characterization of minimal sets has been found just recently, see [1].

In higher dimensions the topological structure of minimal sets is much more complicated and,
besides some important examples, only few results are known. However, for some classes of maps
which are special from the dynamical or topological point of view the structure of minimal sets
can be partially described regardless of the phase space of the system. One result of this kind is
that if a dynamical system (X, f) is topologically transitive then every minimal set of f is either
nowhere dense or it is the whole space X. Another simple result concerns homeomorphisms. If
(X, h) is a dynamical system and h is a homeomorphism then the boundary of a minimal set M
is h-invariant (and closed), hence is equal to the set M or is empty. Thus, a minimal set of a
homeomorphism either has empty interior (i.e., it is nowhere dense in X) or it is a clopen subset of
X. Consequently, if X is connected, then the homeomorphism h has only nowhere dense minimal
sets, with one possible exception when the whole space X is minimal for h.

Concerning minimal sets of (not necessarily invertible) continuous maps on manifolds we know,
due to [21], that if M2 is a compact connected 2-dimensional manifold, with or without boundary,
f : M2 →M2 is a continuous map and M ⊆M2 is a minimal set of the dynamical system (M2, f)
then either M = M2 or M is a nowhere dense subset of M2. Moreover, by [3], the former case
is possible only if M2 is a torus or a Klein bottle. To find a full topological characterization of
minimal sets on compact, connected 2-manifolds is a very difficult task. Of course, some examples
of ‘strange’ minimal sets of continuous maps on 2-manifolds are scattered in the literature (e.g.,
the Sierpiński curve on the 2-torus, see [4], or the pseudocircle, see [16]). One can also think of
embedding known one-dimensional minimal systems into a 2-manifold. But all this is far from
giving a characterization of minimal sets. In dimensions higher than 2 the tori and we know from
[11] that also the odd-dimensional spheres admit minimal diffeomorphisms. However, it is an open
problem whether, for n > 2, on compact connected n-dimensional manifolds proper minimal sets
with nonempty interior exist.

1.2. Motivation for the study of minimal sets of fibre-preserving maps. Quite often, an
important example of a dynamical system is obtained as an extension of another one. Recall that
a dynamical system (E, F ) is called an extension of a base dynamical system (B, f) if there is
a continuous surjective map π : E → B such that π ◦ F = f ◦ π. We also say that the base
(B, f) is a factor of (E,F ). A special case is when E is a cartesian product, E = B × Y , and
F (x, y) = (f(x), g(x, y)); then the map F is called a skew product map or sometimes a triangular
map.1 A factor of a minimal system is minimal, so one needs to start with a minimal base system
(B, f) if an extension (E, F ) of it should have a chance to be also minimal.

So called Floyd-Auslander minimal systems (see [15]) are homeomorphisms which are extensions
of Cantor minimal homeomorphisms and their phase spaces are subsets of the unit square which are
nonhomogeneous — some fibres are compact intervals while the others are singletons. Modifying
the construction, one can obtain also a noninvertible nonhomogeneous system of this kind, see [27].
Note that, by the extension lemma from [18], all these systems can be embedded into systems
given by triangular selfmaps of the square. So, not only general continuous maps in the square but
even triangular selfmaps of the square admit many nonhomogeneous minimal sets. This is perhaps
one of the possible reasons why the problem of characterizing minimal sets of higher dimensional

1The latter name is usually used if E is a square, see e.g. [17], or at least if Y is a real interval. The former name is
sometimes used even in a more general setting when F is a fibre-preserving map in a fibre space, see below for a definition; in
fact a skew product is in topology an outdated name for a fibre space.
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continuous maps, even skew product maps, is still open. The aim of the present paper is to shed
some light on this problem by studying minimal sets of continuous fibre-preserving maps in graph
bundles. (It does not seem easy to generalize the results to more general bundles.)

1.3. Terminology – star-like interior points and end-points in graph bundles. First recall
some terminology. A fibre space is an object (E, B, p) where E and B are topological spaces and
p : E → B is a continuous surjection. Here E, B and p are called the total space, the base (space)
and the projection (map) of the fibre space, respectively, and p−1(b) is called the fibre over the
point b ∈ B. If Γ is another topological space, the fibre space (E,B, p) is called a fibre bundle
(or a locally trivial fibre space) with fibre Γ, and denoted by (E, B, p,Γ), if the projection map
p : E → B satisfies the following condition of local triviality: For every point b ∈ B there is an open
neighbourhood U of b (which will be called a trivializing neighbourhood) and a homeomorphism
h : p−1(U) → U ×Γ such that on p−1(U) it holds pr1 ◦h = p. Here pr1 : U ×Γ → U is the canonical
projection onto the first factor. Unlike the general fibre spaces, in the fibre bundle (E, B, p,Γ) it
holds that for any b ∈ B the fibre over b, p−1(b), is homeomorphic to the same space Γ. We will
always assume that both E and B are compact metric spaces (not necessarily connected) and
so we will speak on compact fibre spaces (bundles).

Of course, a special case of the described fibre bundle is the cartesian product E = B × Γ. Note
that besides “product” graph bundles there are “twisted” graph bundles such as the Möbius band
(interval bundle over a circle), the Klein bottle (circle bundle over a circle) or the 3-dimensional
sphere S3 (an S1-bundle over S2; so-called Hopf fibration).

Given a fibre space (E,B, p), consider two dynamical systems (E, F ) and (B, f) such that p◦F =
f ◦ p. Thus, (E, F ) is an extension of (B, f) and (B, f) is a factor of (E, F ), the projection map p
being the factor map. For every b ∈ B we have F (p−1(b)) ⊆ p−1(f(b)), i.e., F sends the fibre over
b into the fibre over f(b). Therefore F is said to be fibre-preserving.

From now on, a graph is a (nonempty) compact metric space which can be written as the union
of finitely many arcs any two of which are either disjoint or intersect only in one or both of their
end-points. Note that a graph need not be connected and that a singleton is not a graph. By
a circle we will mean a simple closed curve, i.e., a space homeomorphic to the unit circle S1. A
graph contains only finitely many circles. A tree is a graph containing no circle. The number of
arcs which emanate from a point x of a graph G is called the order of the point and is denoted
by ord(x,G). Points of order 1 are called end-points of G and points of order at least 3 are called
ramification points of G.

For n ≥ 1 we will consider the notion of the n-star Sn, which can be described as the set of all
complex numbers z such that zn is in the real unit interval [0, 1], i.e., a central point (the origin)
with n copies of the interval [0, 1] attached to it. We will view the n-star as a tree with n + 1
vertices, one of them (the central point) having order n and the other n vertices (the end-points
of Sn) having order 1. Since we will often be in a situation when we can identify homeomorphic
graphs, any set homeomorphic to Sn will also be called an n-star and also denoted by Sn. So, S1

and S2 are homeomorphic to a closed interval, S3 and S4 are homeomorphic to the letter Y and to
the letter X, respectively. By the/an open n-star Σn we will mean Sn without its n end-points. In
particular, Σ2 is homeomorphic to an open interval (while Σ1 to a half-closed interval).

Let Γ be a graph and Z ⊆ Γ be closed. A point x ∈ Z is said to be a star-like interior point of Z
if there exists a Z-open neighbourhood of x (i.e., the intersection of Z and a Γ-open neighbourhood
of x) which is homeomorphic to Σk for k ≥ 2. Figure 1 shows that a star-like interior point of Z
need not be an interior point of Z in the topology of Γ and an interior point of Z need not be a
star-like interior point of Z.

If x ∈ Z is not a star-like interior point of Z we say that it is an end-point of Z. Let Sint(Z)
and End(Z) denote the set of all star-like interior points of Z and the set of all end points of Z,
respectively. The set Sint(Z) is open in Z (but not necessarily in Γ) and so the set End(Z) is closed
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Γ

Z

interior point of Z? . . .

star-like interior point of Z? . . .

yes yes no yes no no

no yes yes yes no no

Figure 1. There is no connection between interior and star-like interior points.

in Z (hence closed in Γ). If Z is a subgraph of Γ, the set End(Z) coincides with the usual set of
end-points of the graph Z and so no confusion with the graph terminology should arise.

A graph bundle is a fibre bundle whose fibre Γ is a graph. Given a graph bundle (E, B, p, Γ),
for M ⊆ E and b ∈ B we denote Mb = M ∩ p−1(b); this set is said to be the fibre of M over b. If
M ⊆ E and U ⊆ B, we denote MU = M ∩ p−1(U).

Given a closed set M in a compact graph bundle (E, B, p,Γ) we define the set of star-like interior
points of M and the set of end-points of M by

Sint(M) =
⋃

b∈B

Sint(Mb) and End(M) =
⋃

b∈B

End(Mb) ,

respectively. Of course, End(M) = M \ Sint(M).
This terminology is sufficient for the statement of our main result (though not yet for our proof

of it).

1.4. Main results. Our main result is the following theorem.

Theorem A. Let (E, B, p,Γ) be a compact graph bundle, (E,F ) and (B, f) dynamical systems
with p ◦ F = f ◦ p. Suppose that the base system (B, f) is minimal. Let M ⊆ E be a minimal set
of the system (E, F ). Then p(M) = B and one of the following holds:

(i) either End(M) = M (and then M is nowhere dense in E), or
(ii) End(M) = ∅ (and then M has nonempty interior in E).

In particular, the fibre preserving maps in tree bundles have only nowhere dense minimal sets.

The last claim is obvious — if Γ is a tree then, since p(M) = B, each of the sets End(Mb) is
nonempty and so we are in the case (i).

The assumption that the base system (B, f) is minimal is not restrictive. In fact, if M is a
minimal set of (E, F ) then its projection p(M) is obviously a minimal set of (B, f) and so one
can pass to the sub-bundle over p(M) and to consider, instead of (E,F ), the system (E∗, F |E∗)
where E∗ = p−1(p(M)). As a simple application of this fact we get that though a minimal set of a
triangular, i.e. skew product, map in the square can contain a vertical interval (so that in general
End(M) 6= M in the case (i), see an example in Subsection 1.2), the following corollary holds (I
denotes a real compact interval and pr1 is the projection onto the first coordinate).

Corollary B. Let F (x, y) = (f(x), g(x, y)) be a continuous triangular map in the square I2 and
let M be a minimal set of F . Then M is nowhere dense in the space pr1(M)× I.
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It follows from the characterization of minimal sets on the interval that here pr1(M) is either a
finite set or a Cantor set. In the latter case the result in the corollary is nontrivial, it strengthens
Theorem 1 from [13] (where the same result is obtained for a very particular and small subclass
of the class of triangular selfmaps of the square) and answers in negative the question posed by
J. Smı́tal whether a minimal set M of a triangular map in the square can have nonempty interior
in the space pr1(M)× I.

The problem of characterization of minimal sets of fibre-preserving maps in graph bundles (even
the particular problem of characterization of minimal sets of triangular maps in the square) is
difficult. Our Theorem A is a key result which enables to address it.

The paper is organized as follows. In Section 2 we continue the discussion of Theorem A. Then,
in Section 3 we introduce the key notion of our paper, namely that of a strongly star-like interior
point of a subset of a graph bundle, and we study the structure of open neighbourhoods of those
compact subsets of a fibre which entirely consist of strongly star-like interior points of a given subset
of the bundle. The description of such neighbourhoods plays a key role in our proof of Theorem A.
The proof itself is given in Section 4, together with Proposition 16 which provides an additional
information on the behaviour of a fibre-preserving map in a graph bundle on a minimal set.

2. Remarks, examples and open problems related to Theorem A

2.1. Remarks, examples and open problems to the case (i) in Theorem A. The case (i)
occurs for instance if Γ is a tree. An example of a minimal set M satisfying (i) can for instance be
obtained if we continuously extend a Floyd-Auslander minimal system (M, H) onto the product
of the Cantor set (the projection of M) and a compact interval. (Though in this example H is a
homeomorphism on M , it is not true in general that if f is a homeomorphism then F |M is monotone
— to see it, replace (M,H) in this construction by a noninvertible modification of it from [27].)
Other examples can be obtained in a similar way, by replacing a Floyd-Auslander minimal system
by some other cantoroids (for the definition of a cantoroid see [1]). However, even the problem of
finding a full topological characterization of minimal sets of triangular maps in the square is still
open.

2.2. Remarks, examples and open problems to the case (ii) in Theorem A. Note that in
the case (ii) the graph Γ contains a circle. To give an example when (ii) in Theorem A holds true,
it is sufficient to consider an irrational rotation of the torus (M is the whole torus).

One can easily construct also systems in which M = B ×K where K is a union of any number
of pairwise disjoint circles (not greater than the maximal number of such circles in Γ). This is
trivial if the base B is a singleton, i.e. the system is just a graph map, see [2]. If B is a circle and
E = B × Γ, still it is trivial to construct such an example. In fact, let f : B → B be minimal.
Then f is conjugate to an irrational rotation by angle α. Let K ⊆ Γ be a disjoint union of m
circles. Then one can define a minimal map g : K → K which cyclically permutes the m circles in
K and the restriction of gm to each of these circles is conjugate to an irrational rotation by angle
β such that α/β is irrational. Put G(x, y) = (f(x), g(y)). Then G is minimal on B×K and can be
continuously extended to a direct product map on E (since g can be continuously extended to Γ).

To produce examples falling within the case (ii) with B being a general compact metric space
admitting a minimal map (not just a point or a circle), one can use Proposition 1 and Corollary 3
below. To prove Proposition 1, let us start by recalling a theorem due to H. Weyl (see e.g. [22,
Theorem 4.1]) saying that if (an)∞n=1 is a sequence of mutually distinct real numbers then for almost
all (with respect to the Lebesgue measure) real numbers x the sequence (anx)∞n=1 is uniformly
distributed modulo 1. As an obvious consequence of this theorem we get that for any sequence of
positive integers n1 < n2 < . . . there is an angle α such that the rotation g of S1 by the angle
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α is minimal with respect to the sequence (nk)∞k=1. This means that for every s ∈ S1 the set
{gnk(s) : k = 1, 2, . . . } is dense in S1. Of course, any such rotation g is necessarily irrational.

The following simple proposition dealing with direct product maps (rather than with skew prod-
uct minimal systems as for instance in [14] or [6]) is, though not most general possible, pretty
sufficient for our purposes – besides giving examples of minimal systems falling within the case
(ii) in the form of a direct product, it will be also used in the construction of a minimal set M in
Theorem A, case (ii), which is not a sub-bundle of E, see Example 4 below. We present here a
short proof, based on the Weyl’s theorem mentioned above.

Proposition 1. Let (B, f) be a minimal dynamical system, B being a metric space. Then there
exists an irrational rotation g of the circle S1 such that the direct product system (B× S1, f × g) is
minimal.

By the way, Proposition 1 can be reformulated by saying that for any minimal system there
exists an irrational rotation of the circle disjoint with it. The notion of disjointness was introduced
in [12].

Proof. Fix x0 ∈ B and positive integers n1 < n2 < . . . such that fnk(x0) → x0 when k → ∞.
By the Weyl’s theorem, there is an irrational rotation g of S1 such that for every s ∈ S1 the set
{gnk(s) : k = 1, 2, . . . } is dense in S1. We claim that F = f × g is minimal. It is sufficient to prove
that the ω-limit set ωF (x, s) = B × S1 for every (x, s) ∈ B × S1.

From the choice of x0 and g it follows that for every y ∈ S1, ωF (x0, y) ⊇ {x0} × S1. Since the
f -orbit of x0 is dense in B and F (ωF (x0, y)) ⊆ ωF (x0, y) and g is surjective, the closed set ωF (x0, y)
contains the union of a dense family of fibres. We have thus proved that ωF (x0, y) = B × S1 for
every y ∈ S1.

Now fix any point (x, s) ∈ B×S1. Since ωf (x) = B and S1 is compact, the set ωF (x, s) contains
at least one point (x0, y) ∈ {x0} × S1. Then ωF (x, s) ⊇ ωF (x0, y) = B × S1. ¤
Corollary 2. Let E = B × Γ be a graph bundle such that B is a compact metric space admitting
a minimal map and Γ be a graph containing a circle C. Then there exists a fibre-preserving map
F : E → E such that B ×C is a minimal set of F . (Note that B ×C has nonempty interior in E,
so we are in case (ii).)

Proof. Using Proposition 1 extend a minimal map f : B → B to a minimal map f × g : B × C →
B × C. Then use the fact that there is a retraction r : Γ → C and put F = f × (g ◦ r). ¤

However, for a general graph bundle (E, B, p,Γ), where B is a compact metric space admitting
a minimal map and Γ contains a circle, the existence of examples falling within the case (ii) in
Theorem A is not clear at all. For instance, the construction of a fibre-preserving minimal map
is not easy already on the Klein bottle (see the construction of such a minimal homeomorphism
on the Klein bottle in [8] or in [26]). We do not know whether in any graph bundle which is not
a tree bundle and whose base admits a minimal map there exists a fibre-preserving map having a
minimal set with nonempty interior.

Corollary 3. Let (B, f) be a totally minimal dynamical system, B being a metric space. Let Γ be
a graph which (possibly properly) contains m disjoint circles. Denote the union of these circles by
S. Then there exists a continuous map h : Γ → Γ such that B × S is a minimal set in the direct
product system (B × Γ, f × h).

Proof. Let g be the irrational rotation by angle α, which can be assigned to the minimal system
(B, fm) by Proposition 1. Fix a circle C in S. Let g̃ be the map S → S whose restriction to C is
(conjugate to) g and which is identity on S \ C. Then compose g̃ with a homeomorphism on S,
which cyclically permutes the m circles in S. Finally, extend the continuous selfmap of S obtained
in such a way to a continuous selfmap h of Γ (this is always possible, see e.g. [2]). By Proposition 1,
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the set B×C is minimal for (f ×h)m = fm×hm because hm|C is (conjugate to) g. It follows that
B × S is minimal for f × h. ¤

Finally, we are going to construct an example when M in Theorem A, case (ii), is not a sub-
bundle of E. In it, given a set A ⊆ Rk and a vector v ∈ Rk, by A+v we mean the set {a+v : a ∈ A}.
Similarly we define A− v.

Example 4. Let (C, f), with C being a subset of the real line, be a Cantor minimal system such
that one point has two pre-images and all the other points have only one pre-image each. Besides
examples in symbolic dynamics, such systems appear for instance in interval dynamics when a
suitable unimodal map is restricted to the ω-limit set of the critical point (see [24], or [20, p. 142]
for other references and related examples).

Another way how to see that such a system exists, is as follows. Start with the dyadic adding
machine on the Cantor ternary set. Recall that it is often viewed as a restriction of an interval
map to the invariant Cantor set, usually a restriction of the map shown for instance in [27, Fig. 1];
notice that then the adding machine is increasing at each point except of the rightmost one where
it is decreasing. Choose a point a in this Cantor set which does not belong to the countable set
consisting of the endpoints of the contiguous intervals (including the leftmost and the rightmost
points of the Cantor set). Hence the points a−j := f−j(a), j = 1, 2, . . . do not belong to this
countable set, too. Now blow up the backward orbit of a, i.e., for j = 1, 2, . . . , replace the point
a−j by a compact interval with length L−j with convergent sum

∑∞
j=1 L−j and remove the interior

of this interval. This means that the points a−j , j = 1, 2, . . . are “doubled”, i.e. replaced by pairs
of points a−−j < a+

−j . If we wish, we can do this in such a way that the point a does not change its
position on the real line. What we get is again a Cantor set. Consider the dynamics on it which
is inherited from the adding machine, except for the “new” points a−−j , a

+
−j , j = 1, 2, . . . where we

still need to define the dynamics. To this end, send both a−−1 and a+
−1 to a and, since the adding

machine is increasing at each a−j and we want a continuous dynamics, for j = 2, 3, . . . send a−−j to
a−−j+1 and a+

−j to a+
−j+1. The map defined in such a way is continuous and the system is minimal

(every orbit is dense).
Recall that, up to a homeomorphism, there is only one Cantor set and it is homogeneous.

Therefore, no matter which of the Cantor minimal systems (C, f) (such that one point has two
pre-images and all the other points have only one pre-image) we choose, we may think of C as a
Cantor set on the real line, with the point having two pre-images being for instance the rightmost
point of C (though this is not important for us). For the same reason we can also assume that the
two-preimages, denote them c1 < c2, are the endpoints of a contiguous interval (this is important
for geometry of our construction below).

Applying Proposition 1 we extend (C, f) to a minimal system (C × S1, f × g) where g is an
irrational rotation of the circle S1 = {(y, z) ∈ R2 : y2 + z2 = 1}. Denote by a1 and b1 the g-images
of the points (0, 1) and (0,−1), respectively. Let J1 be one of the half-circles determined by a1, b1.

The set C is the union of CL = {x ∈ C : x ≤ c1} and CR = {x ∈ C : x ≥ c2}. Put C1 = CL and
C2 = CR−(c2−c1). Then C1∪C2 is a Cantor set with C1∩C2 = {c1}. Further put S2 = S1+(0, 3),
a2 = a1 + (0, 3), b2 = b1 + (0, 3) and J2 = J1 + (0, 3). Finally, denote M = (C1 × S1) ∪ (C2 × S2).
The dynamical system (C × S1, f × g) induces in a natural way a (minimal) dynamical system
(M,F ) which is topologically conjugate to (C × S1, f × g) and is obtained from (C × S1, f × g)
by just replacing (CR × S1) by its translate (C2 × S2), ‘without changing dynamics’. In the new
system (M,F ) the map F preserves ‘vertical’ fibres; the fibre over c1 consists of two circles, each
of the other fibres is just a circle. Denote by ϕ the base map of F . It is clear that (M, F ) can
be considered as a minimal extension of the dynamical system (C1 ∪ C2, ϕ) obtained from (C, f)
by identifying points c1 and c2. Let Γ = S1 ∪ I ∪ S2 where I ⊆ R2 is the ‘vertical’ interval with
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end-points (0, 1) and (0, 2). Put E = (C1 ∪C2)×Γ. Then Γ is a connected graph and E is a graph
bundle with fibre Γ.

We claim that the map F can be extended to a continuous fibre-preserving map G : E → E.
We are going to define G. Of course, G|M = F . Further, for x ∈ C1 \ {c1} and (y, z) ∈ S2 put
G(x, y, z) = F (x, y, z−3) and for x ∈ C2 \{c1} and (y, z) ∈ S1 put G(x, y, z) = F (x, y, z+3). So, G
is already defined on C× (S1∪S2). It remains to define G on C× (I \{(0, 1), (0, 2)}). So, fix x ∈ C.
Then G({x}× (S1∪S2)) = {ϕ(x)}×Si for some i ∈ {1, 2}. Further, G(x, 0, 1) = {ϕ(x)}×{ai} and
G(x, 0, 2) = {ϕ(x)} × {bi}. For 1 < z < 2 let G(x, 0, z) be the point of {ϕ(x)} × Ji such that the
length of the sub-arc of {ϕ(x)}× Ji with end-points {ϕ(x)}× {ai} and G(x, 0, z) equals π · (z− 1).

The map G maps E continuously onto M and M is a minimal set for G. Here Mc1 is the union
of two circles and Mb for b 6= c1 is a circle. So, M is not a sub-bundle of E.

By a slight modification of Example 4 one can obtain for instance an example where Mc1 is the
‘figure eight’ (i.e. the union of two circles which intersect just in one point) or the figure Θ (i.e.
the union of two circles whose intersection is an arc) or the figure consisting of two circles having
two points in common, and Mb for b 6= c1 is a circle. We will not go into details; in a forthcoming
paper we will try to characterize or at least partially describe the topological structure of minimal
sets in case (ii).

In Example 4 the base map is noninvertible and F |M is not monotone. The case (ii) of Theorem A
cannot be strengthened by adding that if the base map f is a homeomorphism then F |M is also a
homeomorphism (consider the noninvertible skew product minimal map on the 2-torus from [20],
an extension of an irrational rotation of the circle).

2.3. Theorem A does not give a characterization of minimal sets. Our Theorem A gives
only a necessary condition for a set to be minimal for a fibre-preserving map in a graph bundle.
Even if the base B is a singleton (and so E is just Γ), Theorem A does not give a characterization
of minimal sets in the graph Γ. We only get that either End(M) = M or End(M) = ∅. However,
neither of these two conditions is sufficient for a subset M of a graph Γ to be a minimal set
of a continuous selfmap of Γ (the characterization of minimal sets on graphs was mentioned in
Introduction).

2.4. On possible generalizations of Theorem A. The core part of Theorem A is the dichotomy
End(M) = M or End(M) = ∅. Since the notion of End(M) can be carried over from the graph
bundles to some more general fibre spaces, it is worth of trying to check whether such a dichotomy
for minimal sets of fibre-preserving maps can be carried over to such spaces. For instance, one can
consider bundles with the fibre Γ being a local dendrite, or at least a local dendrite with a nowhere
dense set of ramification points. Or, one can consider fibre spaces whose fibres are graphs but not
necessarily homeomorphic ones.

When trying to generalize Theorem A, singleton fibres cause problems and so it is reasonable
to consider only fibre spaces with non-degenerate fibres. This is indicated by the fact that, in the
‘non-core’ part of Theorem A, the implication “End(M) = M ⇒ M is nowhere dense in E” does
not work for Floyd-Auslander minimal systems mentioned above. Such a system is a fibre space
(but not a bundle) with the base being a Cantor set and with all the fibres being arcs or singletons,
and the whole space E = M is minimal. So, M is not nowhere dense in E, though End(M) = M .

The fibre-preserving maps in tree bundles have only nowhere dense minimal sets. The assumption
that the map is fibre-preserving plays a crucial role in the proof. In spite of this fact, one can ask
whether this assumption cannot be removed. The answer is negative. In fact, if S1 is a circle and
H is the Hilbert cube then the space P = S1 ×H admits a continuous minimal map (in the form
of a skew product map with an irrational rotation in the base S1 and homeomorphisms H → H
as fibre maps, see [14] and [6]). However, P can be written in the form P = (S1 ×H) × I where
I = [0, 1]. Thus we have an interval bundle admitting a minimal (of course not fibre-preserving)
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map. Still one can ask whether it is true that all minimal (not necessarily fibre-preserving) maps
in interval bundles X × I have only nowhere dense minimal sets if we additionally assume that X
has finite dimension. (Recall that, by the result from [21] mentioned in Introduction, this is true if
X is a one-dimensional manifold and so X × I is a 2-manifold with boundary.)

3. Strongly star-like interior points

We introduce the notion of a strongly star-like interior point which is more restrictive than that
of a star-like interior point of M and, though not appearing in the statement of Theorem A, will
play a key role in the proof of it.

First of all recall that, when speaking on a graph bundle, we always assume that it is a (compact)
metric space, as it was already said in Introduction.

To avoid cumbersome formulations, we will often make no distinction between homeomorphic
spaces. If (E, B, p, Γ) is a graph bundle and Q ⊆ E and Z ⊆ Γ, then we say that Q is canonically
homeomorphic to U × Z, if p(Q) = U and there is a homeomorphism h : Q → U × Z such that
on Q we have pr1 ◦h = p (here h is said to be a canonical homeomorphism). Notice that, in this
terminology, in the above definition of the fibre bundle it is required that p−1(U) be canonically
homeomorphic to U × Γ.

Recall that if (E, B, p,Γ) is a graph bundle and M ⊆ E and b ∈ B, then the the fibre of M over
b is Mb = M ∩p−1(b). Further, by Γb we will denote the set p−1(b), the fibre over b (now we slightly
abuse the already adopted notation Mb, since Γ is not a subset of E). Note that Γb = Eb ⊆ E
is a graph homeomorphic to Γ and if E = B × Γ then Γb = {b} × Γ. Also subsets of Γb will be
sometimes denoted by, say, Ib, Tb, etc. We believe that this will not cause any misunderstanding
because always when using notation like Xb it will be clear what kind of a set it is. Recall also that
if M ⊆ E and U ⊆ B, we denote MU = M ∩ p−1(U).

By an arc we mean a homeomorphic image of a compact real interval. Sometimes we call it a
closed arc, since in an obvious way we also use the notions of an open or a half-closed arc. We often
make no distinction between a point x and the singleton {x}. For N ≥ n ≥ 2 let Σn ⊆ ΣN be two
open stars with the same central point. Suppose that Σn is the union of some of the half-closed
branches of ΣN (i.e., Σn is obtained from ΣN by removing N −n ≥ 0 open branches of ΣN ). Then
we will say that Σn is a full sub-star of ΣN . Here ‘full’ does not mean that n = N ; it just refers to
the fact that Σn consists of ‘whole’ branches of ΣN (rather than of just subsets of them) and so it
can be n < N . Note also that we consider only the case when N ≥ n ≥ 2 (though, formally, such
a definition would have a good sense for N ≥ n ≥ 1).

We are now ready to introduce the notion of a strongly star-like interior point of M . For
simplicity, first suppose that M is a closed subset of a product graph bundle E = B × Γ. We are
going to define Sints(M), the set of strongly star-like interior points of M . A point x = (x1, x2) ∈ M
is said to be a strongly star-like interior point of M , if

• x has order N ≥ 2 in the graph Γx1 = {x1} × Γ (so, ord(x2, Γ) = N ≥ 2), and
• there exists an E-open neighbourhood O×ΣN of x such that x2 is the central point of ΣN

and the corresponding M -open neighbourhood G = M ∩ (O × ΣN ) of x has the following
structure:

Gx1 = {x1} × Σk where k ≥ 2 and Σk is a full sub-star of ΣN , and for every
z ∈ p(G) ⊆ O we have Gz = {z}×Σk(z),z ⊆ {z}×Σk, where k(z) ∈ {2, . . . , k}
and Σk(z),z is a full sub-star of Σk. (Notice that Σk(x1),x1

= Σk.) We will say
that G is a canonical Sints(M)-neighbourhood of x (note that, among others,
G ⊆ Sints(M)).

The following example illustrates the notion.
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Example 5. Let E = B × Γ where B = [0, 1] and Γ = ([−1, 1] × {0}) ∪ ({0} × [0, 1]). Put
A = [0, 1]× [−1, 1]× {0} and

M1 = A ∪ {(x, 0, x) : x ∈ [0, 1]},
M2 = M1 ∪ {(0, 0, z) : z ∈ [0, 1]},
M3 = A ∪ {(0, 0, z) : z ∈ [0, 1]},
M4 = A ∪ {(x, 0, 1− x) : x ∈ [0, 1]} .

Then (0, 0, 0) /∈ Sints(M i) for i = 1, 2 and (0, 0, 0) ∈ Sints(M i) for i = 3, 4.

In the definition we write Σk(z),z rather than Σk(z) because it may happen that Σk(z1),z1
and

Σk(z2),z2
, considered as subgraphs of Γ, are different even when k(z1) = k(z2). The following

instructive example illustrates this fact.

Example 6. Let E = B × S4 where B = [0, 1]. Let (Cn)∞n=1 be a sequence of pairwise disjoint
Cantor sets in (0, 1] converging, in the Hausdorff metric, to the singleton {0}. Denote three of the
four closed branches of S4 by J1, J2, J3 and the central point of S4 by c. Let M be the set with

Mx =





{x} × (J1 ∪ J2 ∪ J3) if x = 0
{x} × (J1 ∪ J2) if x ∈ Cn for n ≡ 1 mod 3,

{x} × (J2 ∪ J3) if x ∈ Cn for n ≡ 2 mod 3,

{x} × (J3 ∪ J1) if x ∈ Cn for n ≡ 0 mod 3,

∅ otherwise ,

see Fig.2. Then M is compact and {0}× {c} ∈ Sints(M). In fact all the points of M except of the
end-points of the stars Mx, x ∈ p(M), belong to Sints(M).

M

C1C2C3C4
. . .(0, c)

Figure 2. (0; c) is a strongly star-like interior point of M.

Above, Sints(M) was defined for a closed subset M of E = B × Γ. However, since each graph
bundle is locally trivial and the above definition has a local character, the concept of Sints(M) has
an obvious extension to the case when the graph bundle E is not a direct product space. For a
closed set M in an arbitrary graph bundle we set Ends(M) = M \ Sints(M). Again, it is easy to
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check that Sints(M) is open in M (but not necessarily in E) and Ends(M) is closed in M (hence
closed in E). Observe that

(3.1) Sints(M) ⊆ Sint(M) =
⋃

b∈B

Sint(Mb) and Ends(M) ⊇ End(M) =
⋃

b∈B

End(Mb).

In general neither of these two inclusions is an equality. For M ⊆ E and b ∈ B we will further use
the notation

MSs
b = Mb ∩ Sints(M) = (Sints(M))b .

Example 7. Let E = B × Γ with B = [−1, 1] and Γ = [0, 3]. Let C be a Cantor set with
minC = 0, maxC = 1 and let M = ([−1, 0]× [0, 1])∪ (C × [1, 2])∪ ({0}× [2, 3]). Then Sints(M) =
([−1, 0] × (0, 1)) ∪ (C × (1, 2)) ∪ ({0} × (2, 3)). So, MSs

0 = {0} × ((0, 1) ∪ (1, 2) ∪ (2, 3)) while
Sint(M0) = {0} × (0, 3).

Lemma 8. Let (E, B, p,Γ) be a compact graph bundle and M ⊆ E a compact set. Then

EndsM = EndM.

Proof. Without loss of generality we may assume that E = B×Γ. One inclusion is trivial by (3.1).
To prove the other one, suppose that there is a point x ∈ Ends(M) \ EndM . Then, if the second
coordinate of x has order m in Γ, we have m ≥ 2 (otherwise x would be in End(M)) and some
E-open neighbourhood O × Σm of x is disjoint with End(M). Hence, if z ∈ O then the set
({z} × Σm) ∩M is empty or is of the form {z} × Σk(z),z where k(z) ∈ {2, . . . ,m} and Σk(z),z is a
full sub-star of Σm (otherwise it would necessarily contain a point from End(Mz)). It follows that
x ∈ Sints(M), a contradiction. ¤

Lemma 9. Let (E, B, p,Γ) be a compact graph bundle and M ⊆ E a compact set. If Ends(M) = M
then M is nowhere dense in E.

Proof. If M is somewhere dense in E then, being closed, has nonempty interior in E. It is clear
that this interior contains a point which belongs to Sints(M). ¤

Lemma 10. Let (E,B, p,Γ) be a compact graph bundle and M ⊆ E a compact set with p(M) = B.
If End(M) = ∅ then M has nonempty interior in E.

Proof. Without loss of generality we may assume that E = B×Γ (in fact, in what follows it would
be sufficient to replace B by the closure of one trivializing neighbourhood). Let K1,K2, . . . , Kk be
the (finite) list of circles in Γ. For i = 1, 2, . . . , k, let B(i) be the set of points b ∈ B such that
Mb contains {b} × Ki. The set M is closed and so all the sets B(i) are closed. Since p(M) = B

and End(M) = ∅ we have B =
⋃k

i=1 B(i) and since the metric space B is compact (hence second
category), there is j ∈ {1, 2, . . . , k} such that the (closed) set B(j) has nonempty interior. Since Γ
is a graph, it follows that M has nonempty interior in E. ¤

Trivial examples show that the converse statements to the previous two lemmas are not true.

Lemma 11. Let E = B×Γ be a compact graph bundle, M ⊆ E a compact set and a ∈ B. Suppose
that ∆ = {a} ×∆Γ is a compact subset of MSs

a . If W is a sufficiently small open neighbourhood of
a and U is a sufficiently small open neighbourhood of ∆Γ then the E-open neighbourhood W × U
of ∆ has the following properties:

• The corresponding M -open neighbourhood D = M ∩ (W × U) of ∆ is a subset of Sints(M).
• If we write Dz = {z} × DΓ

z , then DΓ
z ⊆ DΓ

a and DΓ
z \ DΓ

z ⊆ DΓ
a \ DΓ

a whenever z ∈ p(D).
• The set p(D) is closed in W (not necessarily closed in B), hence it is a Baire space.
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Proof. Since ∆ is compact, it can be covered by a finite family of M -open sets Gj = M ∩
(Oj × ΣN(j)), j = 1, . . . , r, where Gj are some canonical Sints(M)-neighbourhoods of points in
∆. Put W =

⋂r
j=1 Oj and U =

⋃r
j=1 ΣN(j). We prove that D = M ∩ (W × U) satisfies all the

requirements. First, it is obvious that D is an M -open neighbourhood of ∆ and D ⊆ Sints(M).
Further notice that if we denote, for j = 1, . . . , r,

M j = M ∩ (W × ΣN(j))

then a ∈ p(M j), (M j)a = {a} × Σj where Σj is a full sub-star of ΣN(j) and, for z ∈ p(M j),
(M j)z = {z} × Σj(z),z where Σj(z),z is a full sub-star of Σj = Σj(a),a. Thus

D = M ∩ (W × U) =
r⋃

j=1

M j =
r⋃

j=1

⋃

z∈p(Mj)

({z} × Σj(z),z) .

Fix z ∈ p(D) =
⋃r

j=1 p(M j). Since

DΓ
z =

r⋃

j=1

Σj(z),z, in particular DΓ
a =

r⋃

j=1

Σj ,

we get DΓ
z ⊆ DΓ

a . Hence DΓ
z ⊆ DΓ

a and so, to prove that DΓ
z \ DΓ

z ⊆ DΓ
a \ DΓ

a , it is sufficient to
show that the assumption that some point q ∈ DΓ

z \ DΓ
z belongs to DΓ

a , leads to a contradiction.
To this end consider such a point q. Since q ∈ DΓ

a , there is j ∈ {1, . . . , r} such that q ∈ Σj and
so q ∈ U . On the other hand, q ∈ DΓ

z and so (z, q) ∈ Dz ⊆ M = M . Also, (z, q) ∈ W × U
because z ∈ p(D) ⊆ W and q ∈ U . Thus, (z, q) ∈ M ∩ (W × U) = D which implies that q ∈ DΓ

z ,
a contradiction.

Now we prove that p(D) is closed in W . It can immediately be seen from the definition that if
G is a canonical Sints(M)-neighbourhood of a point x ∈ M ⊆ B × Γ and for each z ∈ p(G) we put
Gz = {z} × GΓ

z , then the family {GΓ
z : z ∈ p(G)} is finite. Since D was defined using only finitely

many such canonical Sints(M)-neighbourhoods, we get that also the family {DΓ
z : z ∈ p(D)} is

finite. Therefore, if p(D) 3 zn → z ∈ W , we may (passing to a subsequence if necessary) assume
that all sets DΓ

zn
are the same. But then, since M is closed, obviously Dz is nonempty and so

z ∈ p(D).
So, the set p(D) is closed (hence is of type Gδ) in the metric space W . Since W is open in B,

this implies that p(D) is Gδ in the complete (even compact) space B. Thus p(D) is a topologically
complete (i.e. completely metrizable) space, hence a Baire space (see, e.g., [25, Theorems 12.1 and
9.1]). ¤

In the situation from Lemma 11, let ∆ ⊆ MSs
a be connected. Then it is a (closed) graph and

obviously there exist m,n ≥ 0 such that every sufficiently small connected open Γa-neighbourhood
V of ∆ has the following properties:

• V is connected and (see Lemma 11) M ∩ V ⊆ MSs
a ,

• V \∆ consists of pairwise disjoint open arcs {a}× IΓ
1 , . . . , {a}× IΓ

m, {a}× JΓ
1 , . . . , {a}× JΓ

n

where the arcs {a} × IΓ
i are subsets of MSs

a and the arcs {a} × JΓ
i are disjoint from Ma.

Each of these arcs is attached to ∆ at an end-point of ∆ or at a ramification point of Γa

(an end-point of ∆ can simultaneously be a ramification point of Γa).
We extend the notion of a ramification point as follows. If G is a (not necessarily closed and not

necessarily connected) subset of a graph Γ and g ∈ G, we say that g is a ramification point of G if
there is a G-open neighbourhood of g which has the form of an open r-star with r ≥ 3 and with
central point g.

By an open graph we mean a graph without its end-points if it has any. So, since a graph is a
union of finitely many connected graphs, an open graph is a union of finitely many connected open
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graphs, whose closures are pairwise disjoint. Notice that, by this definition, a graph having no
end-points (in particular, a circle) is also an open graph and that a circle with one point removed is
not an open graph. If an open graph G is a subset of a graph Γ then G need not be an open set in
Γ. Each ramification point of G is a ramification point of Γ but the converse is not true in general.
If Γ is a graph and G ⊆ Γ is an open graph, by the end-points of G we mean the end-points of
the (closed) graph G. It follows from the definition of strongly star-like interior points that the
set MSs

a is open in the topology of Ma (though not necessarily open in the topology of Γa). Its
connected components are not necessarily open graphs. For instance, MSs

a can be a circle with one
point removed. In any case, MSs

a is a subset of Γa and so the notion of a ramification point can be
applied to it.

In the following lemma we keep the notation from Lemma 11.

Lemma 12. Let E = B × Γ be a compact graph bundle, M ⊆ E a compact set and a ∈ B.
Suppose that ∆ = {a}×∆Γ is a compact connected subset of MSs

a . Then for any sufficiently small
open neighbourhood W of a and any sufficiently small connected open neighbourhood U of ∆Γ in
Lemma 11, the following holds.

(a) If ∆ is an arc or a circle and does not contain any ramification point of MSs
a , then D =

W ∗ × U∗, i.e. D has the structure of a direct product. Here a ∈ W ∗ ⊆ W is some not
necessarily B-open set. If ∆ is a circle then {a} × U∗ coincides with ∆ and if ∆ is an arc
then {a} × U∗ is an open arc containing ∆ (and still containing no ramification point of
MSs

a ).
(b) If ∆ is a graph possibly degenerate to a singleton (and possibly containing ramification points

of MSs
a , which may or may not be ramification points of ∆), then:

• ({a} × (U \∆Γ)
)∩M ⊆ MSs

a is empty or consists of pairwise disjoint open arcs {a}×
IΓ
1 , . . . , {a} × IΓ

m (m ≥ 0 being finite and independent on U , since U is small enough;
m = 0 means that the described set is empty).

• For each i = 1, . . . , m the open arc {a} × IΓ
i is attached to ∆ at a point pi = (a, pΓ

i )
which is an end-point of ∆ or a ramification point of MSs

a (an end-point of ∆ can
simultaneously be a ramification point of MSs

a and it can be pi = pj even if i 6= j),
and at each of the end-points of ∆ there is at least one such open arc attached to it.
Here for every i, the closure of {a}× IΓ

i is an arc and any two of the sets ∆, {a} × IΓ
i ,

i = 1, . . . , m are either disjoint or intersect only at one of the ‘attaching’ points pi.
• Da = ∆ or Da = ∆ ∪⋃m

i=1({a} × IΓ
i ), depending on whether m = 0 or m ≥ 1. So, Da

is an open graph.
• The structure of the corresponding M -open neighbourhood D = M∩(W × U) ⊆ Sints(M)

of ∆ is such that for any z ∈ p(D), DΓ
z is a union of finitely many open graphs whose

closures are pairwise disjoint, DΓ
z ⊆ DΓ

a and End(DΓ
z ) ⊆ End(DΓ

a ).
• For any z ∈ p(D), each of the connected components of Dz is the union of a (nonempty,

closed) possibly degenerate subgraph of {z} ×∆Γ and some (possibly zero) of the open
arcs {z} × IΓ

i with the ‘attaching’ points (z, pΓ
i ) belonging to Dz. If this subgraph is

nondegenerate and does have one or more end-points, then at each of these end-points
there is at least one of these open arcs attached to it. If the subgraph is a singleton
(which may happen even if ∆ is nondegenerate) then at least two of these open arcs are
attached to it.

In particular, if ∆ is a tree, possibly degenerate to a singleton, then:
• For each z ∈ p(D), the set Dz contains (a nonempty closed subgraph of {z} × ∆Γ,

possibly disconnected, possibly degenerate to a finite set, and) at least two of the open
arcs {z} × IΓ

i , with the ‘attaching’ points (z, pΓ
i ) belonging to Dz.
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Of course, if ∆ is a singleton, then the last statement of the lemma does not say anything more
than the definition of a strongly star-like interior point of M .

Proof. (a) In this case, every point from ∆ has an Ma-neighbourhood in the form of an open
arc and so, since ∆ is a subset of Sints(M), ∆ can be covered by a finite family of canonical
Sints(M)-neighbourhoods of points from ∆ which have the form (see the proof of Lemma 11)

Gj = M ∩ (Oj × ΣN(j)) = V j × Σj
2 .

Here V j is a (not necessarily B-open) set containing a and Σj
2 is an open arc in Γ such that

{a} × Σj
2 ⊆ Sints(M) contains no ramification point of MSs

a .
If two open arcs Σj

2 and Σi
2 intersect and z ∈ ⋂

Oj then z ∈ V j if and only if z ∈ V i. This
together with the fact that ∆ is connected gives that if z ∈ ⋂

Oj then z belongs to all of the
sets V j whenever it belongs to one of them. Now let U be any sufficiently small connected open
neighbourhood of ∆Γ so that ({a} × U) ∩Ma ⊆ {a} ×⋃

Σj
2. Further, let W ⊆ ⋂

Oj be any open
neighbourhood of a. Then the claim holds with U∗ = U ∩⋃

Σj
2 and

W ∗ = {z ∈ W : z ∈ V j for some (hence for all) j} .

(b) The first three parts are just consequences of our definitions of MSs
a , ramification points,

endpoints and open graphs. The rest follows from Lemma 11 and the remarks above Lemma 12,
and also the already proved part (a) is helpful. Note that a key role is played by the fact that
D ⊆ Sints(M). For instance when describing the structure of a connected component of Dz, if the
intersection of Dz with {z} ×∆Γ is a singleton, then at least two open arcs have to be attached to
this singleton, otherwise Dz could not be a subset of Sints(M). ¤

Example 13. Consider the same situation as in Example 6. Denoting by ∆ an arc in M0 containing
the ramification point c, we see that without assuming that ∆ contains no ramification point of
MSs

a , in Lemma 12(a) one cannot ensure the existence of D in the form of a direct product. Further,
if ∆ does not contain the ramification point c and is a sub-arc of, say, J1 we can see that one cannot
claim that W ∗ exists in the class of B-open sets.

Example 14. Consider the same situation as in Example 7 and put ∆ = {0} × {1/2, 3/2, 5/2}.
Then ∆ ⊆ MSs

0 and it does not contain any ramification point of MSs
0 (even any ramification point

of Γ0). However, ∆ is disconnected and there is no M -open neighbourhood of ∆ of the product
form W ∗ × U∗.

4. Proof of Theorem A

A set G ⊆ X is said to be a redundant open set for a map f : X → X if G is nonempty, open
and f(G) ⊆ f(X \G) (i.e., its removal from the domain of f does not change the image of f). For
a minimal map f there is no such set. We state this simple fact as a lemma, because we will use
it repeatedly.

Lemma 15 ([20]). Let X be a compact Hausdorff space and f : X → X continuous. Suppose that
there is a redundant open set for f . Then the system (X, f) is not minimal.

Recall also that (X, f) is minimal if and only if no proper, closed nonempty subset A of X is
such that f(A) ⊇ A (see for instance [3, Lemma 3.10]).

We will use the notation Fz = F |Γz . So, Fz is a map from Γz into Γf(z).

The following result partially describes F on its minimal sets (in case (ii) in our Theorem A,
since in case (i) no fibre contains an arc lying in Sints(M)). Another reason why we prove it, is
that its use slightly simplifies arguments in the proof of Theorem A.
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Proposition 16. Let the assumptions of Theorem A be satisfied. Let Ia be a closed arc and Tb be
a tree such that Ia ⊆ MSs

a , Tb ⊆ Mb and F (Ia) ⊆ Tb. If the interior of Ia does not contain any
ramification point of MSs

a then F |Ia is monotone (hence F (Ia) is an arc or a point).

The statement in the parentheses is obvious since a monotone image of an arc cannot be a non-
degenerate tree. Both cases (i.e., F (Ia) is an arc or a point) occur in the example of a noninvertible
fibre preserving minimal map on the torus in [20] (the base is a ‘horizontal’ circle, the fibres are
‘vertical’ circles). Since in this example there is a vertical arc mapped by F into a point while
the vertical circle containing this arc is mapped onto a circle, the example also shows that the
proposition would not be true if Tb were allowed to contain a circle.

Proof. It is sufficient to prove a weaker version of the proposition which is obtained by adding the
assumption that neither the end-points of Ia are ramification points of MSs

a . For if one or both
end points of Ia are ramification points of MSs

a then, by applying such a weaker proposition to all
sub-arcs Ja of Ia which do not contain end-points of Ia, we get the monotonicity of F on the whole
interior of Ia. Since the F -image of this interior is a point or a (not necessarily closed) arc and Tb

does not contain a circle, F is obviously monotone on Ia.
So, let Ia contain no ramification point of MSs

a and suppose, on the contrary, that F |Ia is not
monotone. Then there exists q ∈ Tb such that (F |Ia)

−1(q) ⊆ Ia is not connected. Take two points
u, v in two different connected components of (F |Ia)−1(q) and consider the (unique) arc Ja ⊆ Ia

with the end-points u, v. From the choice of u, v it follows that there is a point w ∈ Ja with
F (w) 6= q. This point w partitions Ja into two nondegenerate closed sub-arcs J1

a and J2
a . The

set F (Ja) = Fa(Ja) ⊆ Tb is a nontrivial continuum (hence a tree) and each of the sets F (J1
a ) and

F (J2
a ) contains the (unique) arc in Tb having the end-points F (w) and q. It follows that the arc Ja

contains two disjoint closed nondegenerate sub-arcs T 1
a , T 2

a such that F (T 1
a ) and F (T 2

a ) are closed
arcs with F (T 1

a ) ⊆ IntF (T 2
a ) (where by IntF (T 2

a ) we mean the arc F (T 2
a ) without its end-points).

Now, since we will work only with some neighbourhood of a, without loss of generality we may
assume that E has the structure of a product space, i.e. E = B×Γ. So Ia has the form {a}×I and
similarly T 1

a = {a}×T 1 and T 2
a = {a}×T 2. By Lemma 12 (a), there is an M -open neighbourhood

D of Ia which has the product form D = W ∗ × U∗ for some (not necessarily B-open) set W ∗ 3 a
and some open arc U∗ containing I.

Since Fa({a} × T 1) ⊆ IntFa({a} × T 2) and since (by replacing T 1 by a smaller arc if necessary)
we may assume that the arc Fa({a} × T 1) does not contain any ramification point of Γb, we have
Fx({x} × T 1) ⊆ IntFx({x} × T 2) also for all x sufficiently close to a. By replacing W ∗ by its
intersection with a small open neighbourhood of a if necessary, we may assume that this is the case
for all x ∈ W ∗. Then

F |M (W ∗ × IntT 1) ⊆ F |M (W ∗ × T 2) ⊆ F |M (M \ (W ∗ × IntT 1)) .

Hence the nonempty M -open set W ∗×IntT 1 is redundant for F |M which contradicts the minimality
of F |M . ¤

When M ⊆ E and β ∈ End(M), i.e. β ∈ End(Mb) where b = p(β), then still it can happen that
there is an open arc J ⊆ Mb such that β ∈ J (e.g., let Γb be a 3-star S3 with central point β, Mb

be the union of a 2-star S2 with the same central point β and a sequence of points lying in S3 \ S2

and converging to β). However, it holds the following lemma.

Lemma 17. Let the assumptions of Theorem A be satisfied. Suppose that there exists a point in
End(M)\F (Ends(M)). Then in the same fibre there exists also a point β ∈ End(M)\F (Ends(M))
such that no open arc containing β exists in Mb, b = p(β).

Proof. Choose any β′ ∈ End(M)\F (Ends(M)) and denote p(β′) = b. Suppose that β′ is contained
in an open arc J ⊆ Mb. Then, since β′ /∈ Sint(Mb), the point β′ is necessarily a ramification point
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of Γb and in one of the small open branches emanating from β′ there are both a sequence of points
in Mb converging to β′ and a sequence of points in Γb \ Mb converging to β′. Then this branch
obviously contains also a sequence of points βn → β′ such that, for every n, βn ∈ End(Mb) and no
open arc in Mb contains βn. Now it is sufficient to put β = βn for a sufficiently large n, because
F (Ends(M)) is a closed set which does not contain β′. ¤

We are finally ready to prove our Theorem A.

Theorem A. Let (E, B, p,Γ) be a compact graph bundle, (E,F ) and (B, f) dynamical systems
with p ◦ F = f ◦ p. Suppose that the base system (B, f) is minimal. Let M ⊆ E be a minimal set
of the system (E, F ). Then p(M) = B and one of the following holds:

(i) either End(M) = M (and then M is nowhere dense in E), or
(ii) End(M) = ∅ (and then M has nonempty interior in E).

In particular, the fibre preserving maps in tree bundles have only nowhere dense minimal sets.

Proof. It is clear that p(M) = B. Also the last claim is obvious, since if Γ is a tree then End(M) 6= ∅
and we are therefore in the case (i). Thus, taking into account Lemmas 8, 9 and 10, it remains to
prove the dichotomy: either End(M) = M or End(M) = ∅. To this end suppose that EndM 6= ∅.
To prove that then End(M) = M , it is sufficient to show that every point from End(M) has
an F -pre-image in Ends(M). In fact, suppose for a moment that we have proved the inclusion
F (Ends(M)) ⊇ End(M). Then F (Ends(M)) ⊇ End(M) = Ends(M) (see Lemma 8). It follows
that the nonempty and closed set Ends(M) is not a proper subset of M (otherwise (M, F |M ) would
not be minimal, see the remark after Lemma 15). So, Ends(M) = M whence by Lemma 8 we get
End(M) = M .

Thus, to finish the proof, we suppose that there exists a point β ∈ End(M) \ F (Ends(M)) and
we want to get a contradiction. If we denote p(β) = b, by Lemma 17 we can assume that

(4.1) there is no open arc in Mb containing β.

Since F (M) = M and β /∈ F (Ends(M)), there is a point α ∈ Sints(M) with F (α) = β. Denote
p(α) = a. From now on we will work only with neighbourhoods of Γa and Γb and so, due to the
local triviality of the graph bundle, we may assume that E = B × Γ. Let ord(β, Γb) = r ≥ 1, i.e.
β = (b, βΓ) where βΓ is the central point of an open r-star in Γ. Since the set F (Ends(M)) is
closed in E and does not contain β, for some B-open neighbourhood O of b and some open r-star
Σr with the central point βΓ the open E-neighbourhood O∗ = O ×Σr and hence also the M -open
neighbourhood O = O∗ ∩M of β are disjoint from F (Ends(M)). In view of (4.1),

the connected component of Mb ∩ O containing β is either the singleton β

or a (half-closed or closed) arc whose one end-point is β.
(4.2)

For z ∈ B put Fz = F |Γz . Consider the map Fa : Γa → Γb and choose that connected component
∆ of the set F−1

a (β)∩M which contains the point α. Since β /∈ F (Ends(M)), we have ∆ ⊆ Sints(M).
The set ∆ is closed, so it is the singleton α or a (nondegenerate closed) connected subgraph of Γa

containing α. Let ∆Γ be the counterpart of ∆ in Γ, i.e., ∆ = {a} ×∆Γ.
Let W be a B-open neighbourhood of a and U be a connected Γ-open neighbourhood of ∆Γ,

both as small as Lemma 12(b) requires. In what follows, D = M ∩ (W × U) ⊆ Sints(M), IΓ
i and

pi = (a, pΓ
i ) will have the meaning from this lemma. We will also consider the half-closed arcs

AΓ
i = {pΓ

i } ∪ IΓ
i , i = 1, . . . , m. Since F (∆) is just the singleton β, we may also assume that W and

U are small enough to give

(4.3) F (D) ⊆ O, hence none of the sets F (Dz), z ∈ W , contains a circle.
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Claim. There is d ∈ p(D) such that DΓ
d contains no circle (and each component of DΓ

d is
nondegenerate since D ⊆ Sints(M) and D is M -open). Moreover, m ≥ 2 and Dd contains at least
two different half-closed arcs from the list {d} ×AΓ

i , i = 1, . . . , m.

Prof of Claim. Let CΓ
1 , . . . , CΓ

r , r ≥ 0, be the list of all (not necessarily pairwise disjoint) circles
in ∆Γ. If z ∈ p(D) then, by Lemma 12(b), DΓ

z ⊆ DΓ
a = ∆Γ ∪⋃m

i=1 IΓ
i and DΓ

a contains only those
circles which are contained in ∆Γ. So, if DΓ

z contains a circle, it is necessarily a circle from the list
CΓ

1 , . . . , CΓ
r . Denote

Ki = {z ∈ p(D) : DΓ
z ⊇ CΓ

i }, i = 1, . . . , r .

To prove the claim suppose, on the contrary, that for every z ∈ p(D), DΓ
z contains a circle. Then

r ≥ 1 and

p(D) =
r⋃

i=1

Ki .

Each of the sets Ki, i = 1, . . . , r, is obviously closed in the set p(D) which is, by Lemma 11, a Baire
space. Hence there is s ∈ {1, . . . , r} with

(4.4) Int p(D)Ks 6= ∅.
Now fix an arbitrary j ∈ {1, . . . , r} and an open arc LΓ

j in CΓ
j such that the closure of LΓ

j contains
only points of order 2 in Γ (in particular, LΓ

j has positive distance from the set {pΓ
i : i = 1, . . . , m}).

Observe that then for every z ∈ Kj the map Fz is, by Proposition 16 (see also (4.3)), monotone
on {z} × LΓ

j and so Fz({z} × LΓ
j ) is an open, closed or half-closed arc, possibly degenerate to a

point. Since Fz(Dz) is by (4.3) a tree (which is a uniquely arcwise connected space), we have that
Fz({z} × (CΓ

j \ LΓ
j )) ⊇ Fz({z} × LΓ

j ). Hence

(4.5) F (S × LΓ
j ) ⊆ F (M \ (S × LΓ

j )) for any set S ⊆ Kj , j ∈ {1, . . . , r} .

Note also that here S × LΓ
j ⊆ M .

Then by (4.5), for j = s and S = Intp(D) Ks we obtain F (Intp(D) Ks×LΓ
s ) ⊆ F (M \ (Intp(D) Ks×

LΓ
s )). Therefore, since the set ∅ 6= Intp(D) Ks × LΓ

s ⊆ M is obviously open in the topology of M ,
the set Intp(D) Ks×LΓ

s is a redundant open set for F |M , which contradicts the minimality of F |M .
We have thus proved that there exists d ∈ p(D) such that DΓ

d contains no circle.
Applying now the last assertion of Lemma 12, we find that Dd contains at least two different

half-closed arcs from the list {d} × AΓ
i , i = 1, . . . , m. Thus m ≥ 2 which finishes the proof of

Claim. X
Next, we will replace W by a smaller open neighbourhood of a and U by a smaller connected

open neighbourhood of ∆Γ so that D have an additional nice property. We are going to show how
to do that. (Note also that Claim will still work.)

Recall that, by Claim, m ≥ 2. The attaching points pi = (a, pΓ
i ), i = 1, 2 . . . ,m belong to ∆

and so are mapped to the point β. On the other hand, ∆ is disjoint with the open arcs {a} × IΓ
i .

Therefore each of the sets F ({a}×AΓ
i ) is a nondegenerate connected set in Mb containing β. Taking

into account (4.2), we see that each of these sets is in fact a closed or half-closed arc containing β
as one of its end-points 2 and F ({a}×AΓ

i ) ⊆ F ({a}×AΓ
j ) or F ({a}×AΓ

j ) ⊆ F ({a}×AΓ
i ) whenever

i, j ∈ {1, . . . , m}. By replacing the half-closed arcs AΓ
i by shorter ones (i.e., by replacing U by a

smaller connected open neighbourhood of ∆Γ) if necessary, we may assume that each of the half-
closed arcs {a} × AΓ

i is monotonically (see (4.3) and Proposition 16) mapped by F onto the same
half closed arc H with the end-point β ∈ F ({a} ×AΓ

i ) and another end-point β∗ /∈ F ({a} ×AΓ
i ).

2thus, since m ≥ 2, the connected component of Mb ∩ O containing β cannot be just the singleton β; see (4.2).
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Now fix k ∈ {1, . . . , m} and choose a small open arc Jk = {a} × JΓ
k such that the closure of Jk

lies in the interior of {a} ×AΓ
k and the closure of F (Jk) lies in the interior of H. Then

(4.6) the closure of F ({a} × JΓ
k ) lies in the interior of F ({a} ×AΓ

i ) for every i = 1, 2 . . . ,m.

By continuity, and replacing W by a smaller neighbourhood of a if necessary, we may assume that

(4.7) F ({z} × JΓ
k ) ⊆ F ({z} ×AΓ

i ) for every z ∈ W and i = 1, 2 . . . , m.3

Note that this holds (i.e., such a JΓ
k exists) for any k ∈ {1, . . . ,m}.

Now we are in the position to finish the proof. By Claim, there exists d ∈ p(D) such that Dd

does not contain any circle and contains at least two different half-closed arcs, say {d} × AΓ
1 and

{d}×AΓ
2 . Both these properties are shared by all the points z ∈ p(D) sufficiently close to the point

d. In fact, M is closed and Γ contains only finitely many circles and so, if z ∈ p(D) is close to
d, neither the set Dz can contain a circle. But then, using the same argument as for the point d
(see the very end of the proof of Claim), the set Dz also contains at least two of the half-closed
arcs {z} × AΓ

i . It follows that for any z ∈ p(D) close to d there is at least one i 6= 1 such that
{z}×AΓ

i ⊆ M and so, regardless of whether {z}×JΓ
1 ⊆ {z}×AΓ

1 is a subset of M or is disjoint from
M , the condition (4.7) applied to k = 1 gives F (Mz \ ({z}×JΓ

1 )) ⊇ F (Mz ∩ ({z}×JΓ
1 )). Hence, for

sufficiently small neighbourhood W1 ⊂ W of d we have F (M \ (W1×JΓ
1 )) ⊇ F (M ∩ (W1×JΓ

1 )) and
so the nonempty M -open set M ∩ (W1×JΓ

1 ) is redundant for F |M , a contradiction with minimality
of F |M . ¤
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[12] H. Furstenberg, Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation, Math. Systems

Theory 1 (1967), 1–49.
[13] G. L. Forti, L. Paganoni, J. Smı́tal, Dynamics of homeomorphisms on minimal sets generated by triangular mappings,

Bull. Austral. Math. Soc. 59 (1999), no. 1, 1–20.
[14] S. Glasner, B. Weiss, On the construction of minimal skew products, Israel J. Math. 34 (1979), no. 4, 321–336.
[15] K. N. Haddad, A. S. A. Johnson, Auslander systems, Proc. Amer. Math. Soc. 125 (1997), no. 7, 2161–2170
[16] M. Handel, A pathological area preserving C∞ diffeomorphism of the plane, Proc. Amer. Math. Soc. 86 (1982), no. 1,

163–168.
[17] S. F. Kolyada, On dynamics of triangular maps of the square, Ergodic Theory Dynam. Systems 12 (1992), no. 4, 749–768.
[18] S. F. Kolyada, L’. Snoha, On ω-limit sets of triangular maps, Real Anal. Exchange 18 (1992/93), no. 1, 115–130.
[19] S. Kolyada, L’. Snoha, Minimal dynamical systems, Scholarpedia 4(11):5803 (2009), http://www.scholarpedia.org/

article/Minimal_dynamical_systems

[20] S. Kolyada, L’. Snoha, S. Trofimchuk, Noninvertible minimal maps, Fund. Math. 168 (2001), no. 2, 141–163.
[21] S. Kolyada, L’. Snoha, S. Trofimchuk, Proper minimal sets on compact connected 2-manifolds are nowhere dense, Ergodic

Theory Dynam. Systems 28 (2008), no. 3, 863–876.

3In other words, (4.6) holds for all z ∈ W and not only for z = a. However, there is a difference here. While we know that
{a} ×AΓ

i , i = 1, . . . , m, are subsets of M , even subsets of Sints(M), we do not know whether also for z 6= a the sets {z} ×AΓ
i ,

i = 1, . . . , m are subsets of M or not.



MINIMAL SETS IN GRAPH BUNDLES 19

[22] L. Kuipers, H. Niederreiter, Uniform distribution of sequences, Pure and Applied Mathematics, Wiley-Interscience [John
Wiley & Sons], New York-London-Sydney, 1974.

[23] J.- H. Mai, Pointwise-recurrent graph maps, Ergodic Theory Dynam. Systems 25 (2005), no. 2, 629–637.
[24] Z. Nitecki, Topological dynamics on the interval. Ergodic theory and dynamical systems, II (College Park, Md., 1979/1980),

pp. 173, Progr. Math., 21, Birkhuser, Boston, Mass., 1982.
[25] J. C. Oxtoby, Measure and category. A survey of the analogies between topological and measure spaces. Second edition.

Graduate Texts in Mathematics, 2. Springer-Verlag, New York-Berlin, 1980.
[26] W. Parry, A note on cocycles in ergodic theory, Contemp. Math. 28 (1974), 343–350.
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