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Rational Inaps, COlnnlon J ulia sets, functional equations

by G. Levin alld F. Przytycki

Introduction

We consider the following two problems: to describe all pairs of rational functions f
and 9 such that:

(A) 1 and 9 have common Ineasure of maximal entropy,
or
(B) 1 and 9 have common Julia set.
In the present paper we solve the problen1 (A) for arbitrary pair of non-exceptional

(see the definition below) rational functions, and we solve the problem (B) in the class :=:
of rational functions with Julia sets not the whole Rienlann sphere, a circle (01' its arc),
without parabolic periodic points and singular dornains of the complement of Julia set
(see also Remark 1 below). By solution of the problems we mean a functional equation
between 1 and g, which is equivalent to the existence of corumon measure of maximal
entropy (maximal measure), or the existence of corumon Julia set. A corollary is that
in the class :=: the maximal measure is determined by the common Julia set (rigidity of
maximal measure). An application to functional equations is done.

The problems (A) and (B) are closely related to the classical problem of cOffiruuting
pairs of rational functions. In order to solve the latter problem, Fatou and Julia inde­
pendently applied what is called now Julia set of a rational function, introduced by them
in [FI], [JI]. (Corumuting rational functions have a coruruon Julia set J and a common
maximal measure.) Discovering fundaruental properties of J, Fatou and Julia described
[F2], [J2] all commuting rational functions under the restrietion that the common Julia
set J is not the whole R,iemann sphere. Ritt [RI],[R2] gave an algebraic solution of the
problem in general: except for explicitly described cases, if fand 9 commute, then they
have a common iteration. These exceptions are exactly the critically finite rational maps
with parabolic orbifolds, in Inodern terminology [T]. We call such functions exceptional.
Recently Ereulenko [E] has completed the rnethod by Fatou and Julia studying the com­
mon maximal measure of cOlnmuting rational functions in the case J = lt. Note that the
problems (A)-(B) are not reduced to the coruuntting case (see Exaruple below).

The problems (A) and (B) have been studied in [BE], [BI], [B2], [E], [L], [Fe]. In the
dass of polynornials the solution is known, see for example [BE].

Let f :(f: -+ (f: be a rationalruap of the Riemann sphere lt. Let J(/) denote its Julia
set, and f-l(f) its unique probability measure of ll1aximal entropy, [FLM], [Lyu], [Ml]. Note
that the support of f-l(f) is J(f), aud that both the measure and the set are invariant for
the iterates of I. In what follows we always assurne that all rational functions are not
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critically finite with a parabolic orbifold. The cri tically fini te rational maps with parabolic
orbifolds are cOIupletely classifiecl in [DH]. For such functions the theorems of the paper
are not true.

Acknowledgelnents. This work was done during the visits of the first author to the
Institute of Nlathematics, Polish Acadelny of Sciences in vVarsaw (1993 and 1994), anel the
stay at Max-Planck-Institute in Bonn (Spring-Sumnler 1994). He thanks these Institutes
for their hospitality. The second author acknowledges the support of Polish KBN grants
210469101 anel 2P301 013 07.

1. Rational functions with C01111110n l11axilllal l11easure

Theorem A. Let I, 9 be two non-exceptional rational functions. The Jollowing con­
ditions are equivalent:

(Al) J-l(/) = J-l(g).
(A 2) there exist it erat es P 0f land Go/ g, such that, Jor some natural numbers M

and N the Jollowing equality holds:

(G-1 0 G) 0 GM = (p-l 0 P) 0 p N .

Here by G- 1 0 G (resp. p-l 0 F) we mean a single-, or multi-valued Junction obtained by
the analytic contin'll,ation 01 some its branch.

Moreover, (degG)M = (degF)N.

Example. Let degf = 2. Consider a branch of two-valued analytic function h =
1-1 01, which is different froIn identity. Then h is a Mobius transformation (i.e. single­
valued). Moreover, the function 9 = hol is rational anel /1(f) = /1(g). In this exaInple
(g-1 0 g) 0 9 = (/- 1

0 I) 0 I, where g-1 0 9 =id and 1-1 0 f = h.

The main ingreclients of the proof will be given by Lemma 1 anel LeIIl1na 2 below.

LelTIl11a 1. Let v be an ergodie I-invariant measure on the Julia set J(/) with positive
Lyapunov exponent X = J log If'ldv. Then for every small positive a and for every A elose
to and larger than X

(l) there exists a set E o/IJ-m,easure 1 - (J,

(2) there exist nU7nbers r > 0, C > 1, ]( > 1, J > 0, and 1\/0 E N
as lollows: lor every point x E E, for every N > No, there exists a set RN in

the interval (log(l/J),log(l/J) + lVA), which occupies at least 7/12 01 its le71gth, i.e. the
Lebesque measure(RN) > 1

7
2 lVA a71d such that RN eRN+1, and for every t E RN and lor

some n = n(t) E N the /ollowing holds:
(a) the map fn : B(x, exp (-t)) ---+ (t is injective and has a distortion b01Lnded by C:

lor all y E B(x,exp(-t)),
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(b) B(fn(x),r/I() C fn(B(x,exp(-t))) C B(fn(x),r),
(c) n --+ 00 as t --+ 00.

Prool 01 Lemma 1.
(A) Consider the inverse limit (natural extension in RohEn terminology [RoD (J,!, i/)

of (J, /, v).
Denote by 7r : J --+ J the projection on the 0 coordinate and by 1Tn the projection

on n-th coordinate. Then for v-almost every x E j there exists r = 1'(x) > 0 such that
univalent branches Fn of f-n on B(7r(x), r) for n = 1,2, ... for which Fn (7r( x)) = 1r-n (x),
exist. Moreover for a constant GI = C(x) > 0

for every z E B(7r(x), 1'), n > 0, (clistances and derivatives in the Rielnann metric on ?t).
Moreover l' and C are llleasurable functions of x.

((A) follows easily from Pesin's theory [Pe]. It is statecl explicitely in [PZ, Lemma 1]
and a proof of its variant cau be found in [Ledl] 01' [P2, Sec.2]. See also [ELyu], [Led2],
[M2], [PI, Sec.3].)

(B) Let us fix (7 between 0 and 1/4 and find a set 13 C j as follows:
(BI) v(E) > 1 - (7,
(B2) v(E) > 1 - (7, where E = 1r(E),
(B3) there exist r > 0 and C > 0 not depending on x E E such that univalent branches

Fn of f-n on B(7r(x),1') for n = 1,2, ... for which Fn (1r(x)) = 7r- n (x), exist, and

for every z E B (7r ( X), l' ) , n > 0,
(B4) ~ log I(fn )' (x) I --+ X as n --+ 00 uniformlyon x E E (Egoroff's Theorelll),

(B5) if lvI(x) = ~{n : 1 :::; n :::; !vI, jn(x) E E}, then M(x)/lvI --+ v(E) as M --+
00 'lLniformly on x E E (Poincare Recurrence Theorem, Birkhoff Ergodic Theorem, and
Egoroff's Theorem).

(C) Let us fix 1'\ > X so elose to X, that there cxists e > 0 such that X + 2e < A, but

2 1'\
X-t:>---; 3 1 - 2(7'

With this t:, by (B4)-(B5), one can choose n~ and lvJ~ such that

x - t: < ~ log I(fn), (x) I < X + t:
n
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for an n 2:: n~ and an x E E,
and,

lvI(x) n-- > 1-"'..-rlvI ... v

for aU A1 > A1~ and an x E E.
Then we choose /{ in such a way that

2 A ](
3n~ 1 _ 20' < log( C2 ) < n~(x - c).

Finally, we set
l'

0=-----­
C exp(n~(x - c:))

and No = n~; + A1~ + 160'n~.

Thus we have chosen the set E and the constants 1', C, /(, 0, and IVo.

(D) Denote by C(x; 1"1, rz) = B(x, 1'.1) \ B(x, 1'2) = {z : rl < Iz - xl < T2} the annulus.
Let x E E and jn(i) E E, and Fn is a branch of f-n on B(fn (x), r) so that Fn(fn(x)) = x.
Then, by (A),

where

n T r C r
Fn(C(f (x); J:~' r)) :J C(x; },,, -, -0),

1\ \. (Ln an
(1)

(E) Given x E E anel J'.l > J'.lo, let us construct the set RN. Consider a set AN =
{n : n~ :S n :S N + n~, jn (x) E E} and lllark all those n 1 E AN, for which ni+l - n 1 2:: n~.

Denote BN = {ni}. If I = ~BN, then

2n~ + (1- l)n.!: + n.!: 2:: lvI(x) > A1(1 - 20'),

where A1 = n.!: + lV, i.e.

I
1\1(1 - 20')

> -1.
- n~

For every ni E BN, let

/i = (log( Canj
), log(](aC7li )).

r l'

This is an interval since /( > C 2
. Now we can define

Let us check the following properties of the intervals 1i .

(EI) 11 C (log(l/o,log(I/J) + NA).

4

(2)



Indeed,

and
!(an, . exp(N A) _ !(an/

rC' 0 - C2 exp(n~(x - c)) exp(lV.-\)

< !( exp(n~(x+ c)) < I( exp((IV + n~)x + €(1V + n~))

- exp(n~(x - c) + !'l.-\) - C2 exp((N + n~)x + (.-\ - X)N - cn~)

]( I(
= C2 exp(c(N + n~) + cn~ - N(.-\ - X)) < C2 exp(c(N + n~) +cn~ - 2Nc) =

K X
C2 exp( -c(N - n~)) < exp(n~(x - c) - c(l\T - n~) < exp(-c(n~ /c - n~) - n~(x - c)) = l.

(E2) Ii nI j = 0, i i- j. Reluind that an = I(fn )'(x)1, fn; (x) E E, and ni+l - ni ~ n~.

Then
!(an • : Can'+ 1 = !( l(fni)'(x)1 = !( l(fni+l-ni)'(fni)(x)l-l
rC r C2 l(fn i+1 )'(x)1 C2

K
< C2 exp(-n~(x - c)) < exp(n~(x - c) - n~(x - c)) = 1.

(E3) The measure of RN equals to

~ 11·1 > Llo I( [(lV +n~)(1 - 20-) _ 1] X ~ n~.-\ ~ ~N.-\ = !.-N .-\
L I - g C2 > n 3 1 - 20' > 3 8 12'
':=1 ~

(F) Let t E Ii. Set n(t) = n,:. Then the conclusions (a)-(b) hold because of (D), eq.
(1). Clearly, (c) is also true.

Lelllma 2. Let J be the Julia set 0/ a non-exeeptional rational /unction f. Fix a ball
B = B( x, r) eentered at x E J. Let H n be a sequence 0/ holomorphie /'nnctions in B such
that:

1. The sequenee H n tends to a holomorphic /unction H in B.
2. For every n and z,

S. 1/ J is the whole Riemann spherc, a circle, or an interval (in some holomorphie
coordinates), then additionally, /or every n, there is a eo·nstant. a > 0 so that J-l( H n (A)) =
aJ-l(A)J where J.L = p,(f) and A is any set such that H n : A -+ C is injcetive.

Then either the limit /,u:llction H is eonstant, or H n = H /or all big n.
Remark. A map with the properties 2. and 3. is called in [L] a loeal symmetry on J.
Proo/ 0/ Lemma 2: see [L]. For the sake of c0111pletness we reproduce the main

steps of the proof here. An idea is to construct nlany shifts which leave the Julia set
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invariant. For this we consider a semi-group generated by the loeal symmetries H n and
f-n in neighborhoods of repelling periodic points of f.

I. Let (ep n) be any sequence of holomorphic functions univalent on a ball B (0, e) such
that qn = epn(O) "# 0, n = 1,2, ... , and q>n -t id as n -t 00. Given )/\1 > 1, there are a "# 0,
o> 0 and positive integers sequences li, ni such that for every m E N and all big i the
mapplngs

are defined in B(O, 0) and

as i -t 00.

Indeed, choose lj and ni such that AJi qnj -t a :j:. O. Then we use the expansions

drF. (<p;l(z)) \1 (n);r.,.-l() ~ (n)( cI>~l(z) )k
A ~n Al = / qn + 0"1 ~n Z + 6Ctk /\'(l-l/k) ,

k=2

where Q'~n) are the coefficients of the power series expansion of «I>n at O. We have Cauchy's

inequalities: 1Q'~n) I < C /(e/2)k, for some C > 0 and all k. With the chosen li -t 00 and
ni, it gives us the statement.

11. Let z belong to a half plane {~z > iVIa} and 4>(z) = z + 1 + o(lzl-;), I > 0, as
z ~ 00. Given lAI> 1 and c > 0, there are sequences li, 71i and lvI> iVlo such that

i ~ 00, if zEll = {~z > .lv.f}.
To prove it, we choose a sequence ni so that argA ni ~ 0 and then set li = [cl/\In i ).

Now the asymptotic q/(z) = z + l +0(/) if Z -t 00 and 1~ 00 leads to the conclusion.
111. There is no open domain U such that U nJ is diffeomorphic to the product of

an interval and a Cantor set. A proof (due to A. Eremenko) can be found in [L].
IV. Assume that a limit function H of H n is not a constaut. vVe can set H =id. vVe

can assurne also that H n are den.ned and univalent in a ball B centered at a repelling n.xed
point b of / (passing to an iterate) with multiplier /\ :.- J'(b). Let F be a branch of /-1
on B contracting to b. We let

Denote bn = H;;l (b). Then Fn(bn) = bn and F~(bn) = 1//\.
Consider the case bn = b for sqme n. Let R = J 0 Fn . Then R(b) = band R'(b) = 1.

If J coincides with C, a circle 5, or an interval I, then R preserves the measure J.l by the
assumption 3. Looking at the corresponding Leau flower for R, we see that R =id. Now
let J is not C, S, and I. Assume R :j:.id. vVe make two changes of variable. First, we may
asstune that locally J(z) = Az. Second, after a change 10 = Az-P, with sorne A > 0 and
p E N, the map R turns to a map of the form of p.lI, and / turns to W M A-pw . Then
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applying p.II and returning to the original coordinate z, we see that for each point x E J
elose to b, J contains also an analytic arc joining x to b, which corresponds to a horizontal
ray in the coordinate w. Then by III J is C, S, or ]. A contraeliction. (Another argulllent
is that in the case of a Cantor set of rays in J to b, for a periodic point b' =I=- b elose to b
one has again a Cantor set of arcs to b' which irnplics J = iT.

Thus the remaining case is bn =I=- b for a11 n. \-\Te can linearize each Fn by a holomorphic
Schroeder map hn , hn(O) = bn, and F by h, h(O) = b (so that hn = H;;l 0 h). Then for
passage maps <Pn = h- l

0 hn we apply p.I. If A is not real we can walk in J in arbitrarily
snlall steps in two different directions which gives J = ?i:. lf A is real we walk at least in
the direction a. vVe concludc that J is cither C or an interval, or J is locally eliffeomorphic
to the product of a Cantor set anel an interval. The latter case is ruled out by p.III. In the
first two cases the Ineasure p is invariant under the shifts (by p.I). It is possible only if f
is critically finite with parabolic orbifolel (see [E]).

V. Thus F = Fu , i.e. F (a brunch of 1-1 in a neighborhood of the repelling periodic
point of f) and all H n comn1ute. So each H n is linear in sorne coordinates linearizing F
in which b becomes 0. If we apply the result F = Fn to another repe11ing periodic point
of f elose to b, we obtain Hn =id. (In [L] the reader can find a different argument.)

Prool 01 Theorem A.
Al. Let fl = p(f) = fl(9), J = J(f) = J(g). Since there Lyapunov exponents XI and

Xg are positive, we can apply Lemma 1. Take a = 1/4, Al elose to and bigger than XI, and
A2 elose to anel biggcr than Xg, anel find thc set EI, anel numbers rl > 0, Cl > 1, ]{l > 1,
01 > 0, and lVJ E N for land T2 > 0, C2 > 1, ](2 > 1, 02 > 0, and lVg E N for g. There
is a point x E EI nE2 . For this point find the sets Rkr for fand R'7v for g, for a11 N big
enough. Since these sets occupy more that ahalfofthe intcrvals (10g(1/01,10g(1/0J)+NA1)
and (log( 1/02), log( 1/02) + N /\2) respectively, one can find a sequence of points ti -t 00,
and two sequences of indexes n~ --+ 00, 11,; --+ 00 such that the maps

1 -ftl j
: B(x, exp( -t)) --+ C,

2 -
9 u i : B (x, exp (- t )) --+ C

are injective anel

It is elear now that there exists a ball B = B (a, r), wi th a E J, and an infinite sequence
of Inaps Hi, which are of the fonn glj 0 I-ki, univalent on B anel such that each Hi(B)
contains a ball of a fixed positive radius and is containecl in other such ball (of a fixed
radius). It Ineans, that {Hi} is normal in Band the limit functions are not constants.
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Now we use Lenlma 2. Its assumption 3 holels because Jacobians .JacJJ(f)f anel Jac1l(g)g

are constant. As we assumed fl(f) = f-l(g) = /-l, JacJJHn is constant. (So in Lernrna 2 we
could state the assumption 3 for every case, not only J = ii interval 01' a circle. This would
SiUlplify the proof. However in Section 2, Prop. 1, this is not so.)

Therefore, by Lemma 2, for sorne natural numbers 1n, n, k, and I, anel for sorne
branches f-n and f-(n+l) defined in B,

identically in B. Rewrite it in the form

on f-(n+I)(B) and compose n1H times.
Then we can set: G = gm, F = fn, NI = nk, and J.l = 171.1.
(A2). Let, conversely,

Observe that this inlplies

(G-1 0 G) 0 GiM = (p-l 0 P) 0 piN

with the same /unctions C- 1 0 G and F- 1
0 F /or all i = 11 2, .... Because of the uniqness

of the measure of 111axinlal entropy, it is enough to show that the rueasure J-l = J-L(P) is
the balanceelrneasure for (;M too. Denote dF anel da clegrees of F anel G. Let us fix any
small open dOll1ain A. Let B = GM (A) and A' is a component of G-1H (A). Then

Siruilarly,

Hence,

J-L(A') = dp2N f-l((P- r
0 P) 0 p 2N (A'))

= dp2Np((G- 1
0 G) 0 C2M (A')) = dp2Np((C- 1

0 G)(B)). (3)

(4)

p(A' ) = dpN p(A),

where CAt : A' --+ A is oue-to-one (by the choice of A). It follows, clegGA1 = dlf. The
proof is completed.

2. Rational functions with COllllllon Julia set

Theorenl B. (On rigidity 0/ maximal 1neaS'll,re.) Let /,9 be two rational /unctions
without parabolic periodic points and singular domains (Siegel dises, Herman rings), Julia
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sets not (1;, a circle or an interval (in same holomorphic coordinates). Then the /ollowing
conditions are equivalent:

(B1) J(/) = J(g).
(B2) J-l(/) = J-l(g).
(ES) there exist iterates F 0/ / and Ci 0/ g, such that, for same natural numbers M

and N the following equality holds:

H ere by C- 1
0 G (resp. p-l 0 F) we mean a single-, or m1llti-valued function obtained by

the analytic continuation of same its branch.
Moreover, (degG)lvf = (degF)N.
In fact, we prove a more general staternent:
Proposition 1. Let /, 9 be two arbitrary rational f1lnctions with the common Julia

set J = J(/) = J(g) not being a circle or interval. Suppose there exist periodic sinks p, q
for /, 9 and components U, V of their basins S1lCh that gm (U) = V, for some m ~ O. Then
the condition (BS) of the Theorem B holds.

Proof of Proposition 1. Denote by U', V' some periodic eomponents of the basins of
p, q and j8(U) = U', gt(V) = F' Let v with index U, U', 11, 11 ' be harmonie lneasure on the
appropriate boundary, viewed from p, q in the ease of Ti', V'.

Then VU', VV' are ergodie invariant 11leasures with positive Lyapunov exponents for f
and 9 respeetively. (By passing to iterations one can aSSU111e p, q are fixed points.)

Invarianee (see for example {P2]): For every continuous rp : U' -+ IR we have Jrpdv =
~(p) == ~(f(p)) == cp 0 f(p) == Jcp 0 fdv, where tilde denotes the harulolüc extension to U'
(solution of Dirichlet's problem) and v = I/VI.

Ergodicity: If rp 0 f = rp (lllOdv) on au' then rp 0 fn = rp for every n 2:: O. Henee

cp 0 fn = rp 0 fn = cp on U'. Applying this for n --+ 00 we obtain cp(p) = <7'(z) for every
z E U'. So rp is constant.

Lyapunovexponent: It is not less than half of the entropy h ll (by [Ru], cf [11], [P2]).
Next recall that h/l(/) > 0 iff j is not an automorphism (in v), [Pa, Corollary 5.16].

Finally we prove that f is not an automorphism: v-a.e. z E au' is accessible along
a continuous curve ,eU' (a Bro\vnian motion path). Vve can suppose z is not a critieal
value and for a sma1l1' > 0 denote by W thc component of U' n B(z, 1') intersecting /. Let
vw be a harmonie measure on oHr (from a point in l-V). Then Vl-v(aU') > 0, this follows
for example froln Dirichlet's regularity of Julia set). There exist at least two branches /-1
on l-V to U', for each we have Jac/lI-1 = dV~f-l > 0 as 1 is hololnorphic.

In general sincc /, gare hololllorphic, their COlllpositions anel inverse branches lnap
sets of positive respective harlllonic lnesures to the sets of positive hannonic llleasures. So
we can use Lelnma 1 to eonstruct an infinite sequence of loeal symmetries H i of J in a
neighborhood of a point a E au' of the fonn Hi = gli+ t+m

0 l- ki- 8 (see Proof of Theorem
A).

Relnark 1. The Theorem B ean be extended to rational functions with parabolic
periodic points having SiUlply connected immediate basins.

9



3. Functional equations

The classical result on conul1uting rational functions fand 9 states:

for some nt > 0, n > O.
Consider another funetional equation:

f2 0 9 = fog 0 /,

l.e. f COmll1utes with fog. It yields

So the funetions are not separateel here.
On the other hand, Theorel11 A gives a way to separate the functions. Incleecl, if f

eommutes with /0 g, then 1--'-(/) = J-l(f 0g) = J-l(g), anel the conclusion (A2) of Theorem A
holds.

One ean apply this for any funetional equation between / and 9 whenever one can
derive frol11 it the eoincidence of the maxhnal measures of f anel g.
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