Rational maps, common Julia sets,
functional equations

G. Levin* and F. Przytycki*#*

*

Institute of Mathematics
Hebrew University
91904 Jerusalem

Israel

Aok

Institute of Mathematics
Polish Academy of Sciences
ul. Sniadeckich 8

00950 Warsaw

Poland

MPI / 94-106

Max-Planck-Institut fiir Mathematik
Gottfried-Claren-Stra3e 26
53225 Bonn

Germany






Rational maps, common Julia sets, functional equations

by G. Levin and F. Przytycki

Introduction

We consider the following two problems: to describe all pairs of rational functions f
and g such that:

(A) f and g have common measure of maximal entropy,

or

(B) f and g have common Julia set.

In the present paper we solve the problem (A) for arbitrary pair of non-exceptional
(see the definition below) rational functions, and we solve the problem (B) in the class =
of rational functions with Julia sets not the whole Riemann sphere, a circle (or its arc),
without parabolic periodic points and singular domains of the complement of Julia set
(see also Remark 1 below). By solution of the problems we mean a functional equation
between f and g, which is equivalent to the existence of common measure of maximal
entropy (maximal measure), or the existence of common Julia set. A corollary is that
in the class = the maximal measure is determined by the common Julia set (rigidity of
maximal measure). An application to functional equations is done.

The problems (A) and (B) are closely related to the classical problem of commuting
pairs of rational functions. In order to solve the latter problem, Fatou and Julia inde-
pendently applied what is called now Julia set of a rational function, introduced by them
in {F1], [J1]. (Commuting rational functions have a common Julia set J and a common
maximal measure.) Discovering fundamental properties of .J, Fatou and Julia described
[F2], [J2] all commuting rational functions under the restriction that the common Julia
set J is not the whole Riemann sphere. Ritt [R1],[R2] gave an algebraic solution of the
problem in general: except for explicitly described cases, if f and g commute, then they
have a common iteration. These exceptions are exactly the critically finite rational maps
with parabolic orbifolds, in modern terminology [T]. We call such functions ezceptional.
Recently Eremenko [E] has completed the method by Fatou and Julia studying the com-
mon maximal measure of commuting rational functions in the case J = €. Note that the
problems (A)-(B) are not reduced to the commuting case (see Example below).

The problems (A) and (B) have been studied in [BE], {B1], {B2], {E], [L], [Fe]. In the
class of polynomials the solution is known, see for example [BE].

Let f:@ — @ be a rational map of the Riemann sphere @. Let J(f) denote its Julia
set, and p( f) its unique probability measure of maximal entropy, [FLM], [Lyu], [M1]. Note
that the support of u(f) is J(f), and that both the measure and the set are invariant for
the iterates of f. In what follows we always assume that all rational functions are not
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critically finite with a parabolic orbifold. The critically finite rational maps with parabolic
orbifolds are completely classified in [DH]. For such functions the theorems of the paper
are not true.
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1. Rational functions with common maximal measure

Theorem A. Let f,q be two non-ezceptional rational functions. The following con-
ditions are equivalent:

(A1) u(f) = ulg).

(A2) there exist iterates F of f and G of g, such that, for some natural numbers M
and N the following equality holds:

(G-IOG)OGMI(F_]OF)OFN.

Here by G~ o G (resp. F~! o F) we mean a single-, or multi-valued function obtained by
the analytic continuation of some its branch.

Moreover, (degG)M = (degF)N.

Example. Let degf = 2. Consider a branch of two-valued analytic function h =
f~! o f, which is different from identity. Then h is a Mobius transformation (i.e. single-
valued). Moreover, the function ¢ = h o f is rational and u(f) = u(g). In this example
(g7'og)og=(frof)of, where g ! og =idand f~1o f = h.

The main ingredients of the proof will be given by Lemma 1 and Lemma 2 below.

Lemma 1. Let v be an ergodic f-invariant measure on the Julia set J(f) with positive
Lyapunov ezponent x = [log|f'|dv. Then for every small positive o and for every A close
to and larger than y

(1) there exists a set E of v-measure 1 — o,

(2) there ezist numbersr >0, C > 1, K >1,8 >0, and No € N

as follows: for every point ¢ € E, for every N > Ny, there exists a set Ry n
the interval (log(1/8),log(1/8) + NA), which occupies at least 7/12 of its length, i.e. the
Lebesque measure(Ry) > = NA and such that Ry C Ry, and for every t € Ry and for
some n = n(t) € N the following holds:

(a) the map f* : B(z,exp(—t)) = @ is injective and has a distortion bounded by C':

1/C < |(f")(=)/(f") (y)l < C,

for all y € B(z,exp(—t)),
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(b) B(f"(z),r/K) C f*(B(z,exp(-t))) C B(f"(z),7),

(c) n = o0 as t = oo.

Proof of Lemma 1.

(A) Consider the inverse limit (natural extension in Rohlin terminology [Ro]) (J, f, ¥)
of (J, f,v).

Denote by 7 : J — J the projection on the 0 coordinate and by 7, the projection
on n-th coordinate. Then for 7-almost every & € J there exists r = = (&) > 0 such that
univalent branches F,, of f~" on B(#(&),r) for n = 1,2, ... for which F,(n(%)) = 7-.(2),
exist. Moreover for a constant C' = C(&) > 0

1 IRGE@E)
¢ < F ©

for every z € B(n(&),r), n > 0, (distances and derivatives in the Riemann metric on €').
Moreover r and C are measurable functions of Z.

((A) follows easily from Pesin’s theory [Pe]. It is stated explicitely in [PZ, Lemma 1]
and a proof of its variant can be found in [Ledl] or [P2, Sec.2]. See also [ELyu|, [Led2],
[M2], [P1, Sec.3].)

(B) Let us fix o between 0 and 1/4 and find a set E C J as follows:
(B1) #(E) > 1 -0,
(B2) v(E) > 1 — o, where E = n(E),
(B3) there exist 7 > 0 and C' > 0 not depending on & € E such that univalent branches
F, of f7" on B(n(&),r) for n = 1,2, ... for which F,(7(Z)) = 7m_,(&), exist, and

1 |F@)
¢ < me <¢

for every z € B(nw ( NOR
(B4) 7 log|(f" V(=)
(B5) if M(2) = §{
oo uniformlyon & € E

Egoroff’s Theorem).

n >0,
| = x as n = co uniformly on © € E (Egoroff’s Theorem),

f{n:1<n< M, fYz) e E}, then M(Z)/M — 5(E) as M —
(Poincaré Recurrence Theorem, Birkhoff Ergodic Theorem, and

(C) Let us fix A > y so close to x, that there exists € > 0 such that x 4+ 2e < A, but

A
— 20

2
X—€> g
With this €, by (B4)-(B5), one can choose n, and M, such that

l n
x—e < =log|(f"Y ()] < x+¢



foralln > n, and all z € E,

and,
M(z)
1-2
M > o
forall M > M, and all 7 € E.

Then we choose K in such a way that

2 A K

3T 5, < log(ﬁ) <ne(x—e¢)

Finally, we set

- C exp(n.(x —¢))

and No = n.< 4+ M, + 16on,.
Thus we have chosen the set E and the constants r,C, I{,§, and Np.

(D) Denote by C(z;r1,72) = B(z, r )\ B(z,r2) = {z:m < |z—z| <y} the annulus.
Let & € E and f*(z) € E, and F, is a branch of =" on B(f"(z),7) so that F,(f*(z)) = .
Then, by (A),

T C T

Fal(C(f(2); e ) (1)

1) 2 Cla;

where

an = |(f") (z)-

(E) Given z € E and N > Ny, let us construct the set Ry. Consider a set Ay =
{n:n.<n<<N+ ne,f"( )€ E} and mark all those n; € Ay, for which n;41 —n; 2 n,.
Denote By = {n;}. If l = {By, then

2n, + (I = U)ng +n, > M(z) > M(1 — 20),

where M =n, + N, i.e.

M(1-2
> MI=29) (2)
Tie
For every n; € By, let c
oy Ka,.
1 ‘), 1 “)).
= (log(Z22%), log(=22+))

This is an interval since ¥ > C?. Now we can define
!
Ry = U I;.
i+1

Let us check the following properties of the intervals I;.
(E1) I; C (log(1/6,log(1/8) + N A).



Indeed,

Can, 1 _ n, 51
r 8 exp(ne(x—¢)) "
and
Ka, exp(NA) Kay,
rC §  C?exp(ne(x —e))exp(N))
Kexpne(x +¢)) _ K exp(N +ne)x +e(N +ne))

~exp(ne(x —e)+ NA) = Clexp((N 4+ nelx + (A= x)N —en.)
K

.
= Zzep(e(V +ne) +ene = N(A = x)) < C—‘,Z exp(e(N + n.) + ene — 2Ne) =

o~
’

Yoz exp(—e(N —n,)) < exp(n.(xy —¢€) —e(N —n,) < exp(—e(m% —n.) —n.(x—¢)) =1
(E2) (N 1; = 0,1 # 5. Remind that a, = |[(f*)'(z)|, f*(z) € E, and ni31 —n; > ne.
Then
I((In'- . Can; 1 £ I(fn‘),(m)| _ I_\. i1 —niN\f g ~1
o T = ey~ G T )

o

< @exp(—ne(,\' —¢€)) <exp(n.x —¢€) —ne(x —¢)) = 1.
(E3) The measure of Ry equals to
!

K (N 4+ n.)(1 —20) 2 nA 27 7
1> ekl _ el 20 = )
E |I,|_llog02>[ . 1]><31_2a>38N,\ 12NA

=1

(F) Let t € I;. Set n(t) = n;. Then the conclusions (a)-(b) hold because of (D), eq.
(1). Clearly, (c) is also true.

Lemma 2. Let J be the Julia set of a non-exceptional rational function f. Fiz a ball
B = B(z,r) centered at x € J. Let H, be a sequence of holomorphic functions in B such
that:

1. The sequence H, tends to a holomorphic function H in B.

2. For every n and z,

z€ BNJ < H,(z) € H,(B)NJ.

8. If J 1s the whole Riemann sphere, a circle, or an interval (in some holomorphic
coordinates), then additionally, for every n, there is a constant o > 0 so that p(Hn(A)) =
ap(A), where = pu(f) and A is any set such that H, : A = C 1is injective.

Then either the limit function H s constant, or H, = H for all big n.

Remark. A map with the properties 2. and 3. is called in [L] a local symmetry on J.

Proof of Lemma 2 : see [L]. For the sake of completness we reproduce the main
steps of the proof here. An idea is to construct many shifts which leave the Julia set
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invariant. For this we consider a semi-group generated by the local symmetries H, and
f~" in neighborhoods of repelling periodic points of f.

I. Let (®,) be any sequence of holomorphic functions univalent on a ball B(0,¢) such
that go = ®,(0) #0, n =1,2,..., and &, — id as n — co. Given |\| > 1, there are a # 0,
§ > 0 and positive integers sequences lj,n; such that for every m € N and all big ¢ the
mappings -

—m d-1(z
Bi() = X, ()
are defined in B(0,é) and
a
Ui(z) =z + T

as 1 — oo.
Indeed, choose /; and n; such that Ag,, = a # 0. Then we use the expansions
®.1(2) S
{ n —\! (n) —1 (n) k
My (—2g=) = Nagn + V07N (2) + )y \,U W),
k=2

where ai") are the coefficients of the power series expansion of &, at 0. We have Cauchy’s

inequalities: |a§c")| < C/(e/2)*, for some C > 0 and all k. With the chosen /; — oo and
n;i, it gives us the statement.

II. Let z belong to a half plane {Rz > Mo} and ¢(z) = z + 1 + o(|z|77), v > 0, as
z = oo. Given |A| > 1 and ¢ > 0, there are sequences l;,n; and M > My such that

ATl (AM2) = 2 + e,

i 00, if z €Il ={Rz > M}.

To prove it, we choose a sequence n; so that argA™ — 0 and then set I; = [¢|A|™].

Now the asymptotic ¢!(z) = z + 1 + o(l) if z = o0 and | = oo leads to the conclusion.
ITI. There is no open domain U such that U [} J is diffeomorphic to the product of
an interval and a Cantor set. A proof (due to A. Eremenko) can be found in [L].

IV. Assume that a limit function H of H, is not a constant. We can set H =id. We
can assume also that H, are defined and univalent in a ball B centered at a repelling fixed
point b of f (passing to an iterate) with multiplier A = f/(b). Let F be a branch of f~!
on B contracting to b. We let

Fn =H;10F0Hn. .

Denote b, = H7!(b). Then F,(b,) = b, and F).(b,) = 1/A\.

Consider the case b, = b for some n. Let R = f o F,,. Then R(b) =b and R'(b) = 1.
If J coincides with C, a circle S, or an interval I, then R preserves the measure p by the
assumption 3. Looking at the corresponding Leau flower for R, we see that R =id. Now
let J is not C, S, and I. Assume R #id. We make two changes of variable. First, we may
assume that locally f(z) = Az. Second, after a change w = Az~P, with some 4 > 0 and
p € N, the map R turns to a map of the form of p.II, and f turns to w — A7Pw. Then
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applying p.II and returning to the original coordinate z, we see that for each point z € J
close to b, J contains also an analytic arc joining z to b, which corresponds to a horizontal
ray in the coordinate w. Then by III Jis C, S, or I. A contradiction. (Another argument
1s that in the case of a Cantor set of rays in J to b, for a periodic point & # b close to b
one has again a Cantor set of arcs to  which implies J =(.

Thus the remaining case is b, # b for all n. We can linearize each F,, by a holomorphic
Schroeder map Ay, hn(0) = b,, and F by h, h(0) = b (so that h, = H;! o h). Then for
passage maps @, = h™! o h, we apply p.I. If )\ is not real we can walk in J in arbitrarily
small steps in two different directions which gives J = @. If A is real we walk at least in
the direction a. We conclude that .J is either C or an interval, or J is locally diffeomorphic
to the product of a Cantor set and an interval. The latter case is ruled out by p.IIL. In the
first two cases the measure g is invariant under the shifts (by p.I). It is possible only if f
is critically finite with parabolic orbifold (see [E]).

V. Thus F = F,, i.e. F (a branch of f~! in a neighborhood of the repelling periodic
point of f) and all H, commute. So each H, is linear in some coordinates linearizing F'
in which b becomes 0. If we apply the result F' = F;, to another repelling periodic point
of f close to b, we obtain H, =id. (In [L] the reader can find a different argument.)

Proof of Theorem A.

Al. Let p = p(f) = ulg), J = J(f) = J(g). Since there Lyapunov exponents yy and
X are positive, we can apply Lemma 1. Take o0 = 1/4, X, close to and bigger than y s, and
Az close to and bigger than y,, and find the set E;, and numbers r; >0, C; > 1, Ky > 1,
61 > 0,and Ny € Nfor fandry >0,C2 > 1, Kz > 1, &, > 0, and N2 € N for g. There
is a point z € E (| B2. For this point find the sets R}, for f and R% for g, for all N big
enough. Since these sets occupy more that a half of the intervals (log(1/é;,log(1/81)+NAy)
and (log(1/62),log(1/82) + NA;) respectively, one can find a sequence of points ¢; = oo,
and two sequences of indexes n} — co, n? - oo such that the maps

™ ¢ B(e,exp(—t)) = C,

P B(z,exp(—t)) = C

are injective and
B(f™ (z),m1/Ky) C f* (B(z,exp(~t))) C B(f™ (w),71),

B(g™ (2),72/ 1) € " (B(a,exp(~1))) C B(g™ (2), 7).

It is clear now that there exists a ball B = B(a,r), with @ € J, and an infinite sequence
of maps H;, which are of the form g% o =% univalent on B and such that each H;(B)
contains a ball of a fixed positive radius and is contained in other such ball (of a fixed
radius). It means, that {H;} is normal in B and the limit functions are not constants.
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Now we use Lemma 2. Its assumption 3 holds because Jacobians Jac,( sy f and Jac, g
are constant. As we assumed pu(f) = p(g) = p, Jac,H, is constant. (So in Lemma 2 we

could state the assumption 3 for every case, not only J = interval or a circle. This would
simplify the proof. However in Section 2, Prop. 1, this is not so.)

Therefore, by Lemma 2, for some natural numbers m,n,k, and /, and for some
branches f~" and f~("t) defined in B,

gm o f—n — gm+k o f—(n+l)
identically in B. Rewrite it in the form
f—n o fn-!—l — g—m Ogm+k

on f~("*)(B) and compose nm times.
Then we can set: G = g™, F = f*, M = nk, and N = ml.
(A2). Let, conversely,

(G oG)oGM = (F'oF)o FVN.
Observe that this implies
(G oG)oGM = (F o F)o FV

with the same functions G™' oG and F~1 o F for all1 = 1,2, .... Because of the uniqness
of the measure of maximal entropy, it is enough to show that the measure p = p(F) is
the balanced measure for GM too. Denote dp and dg degrees of F' and G. Let us fix any
small open domain A. Let B = GM(A4) and A is a component of G™*(A). Then

p(A) = dg M u((F~H o F) o FPV(4"))

= &5V u((G™ 0 G) o GPM(A) = d5*Vu((G™" 0 G)(B)). (3)

Similarly,

p(A) = dgNp((G™" 0 G)(B)). (4)

Hence,
p(A') = dg" u(4),

where GM : A’ 5 A is one-to-one (by the choice of A). It follows, degG? = d¥. The
proof is completed.
2. Rational functions with common Julia set

Theorem B. (On rigidity of mazimal measure.) Let f,g be two rational functions
without parabolic periodic points and singular domains (Siegel discs, Herman rings), Julia
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sets not @, a circle or an interval (in some holomorphic coordinates). Then the following
conditions are equivalent:

(B1) J(f) = J(q).

(B2) u(f) = o).

(BS3) there exist iterates F of f and G of g, such that, for some natural numbers M
and N the follounng equality holds:

(Gl oG)oGM = (FroF)oFV.

Here by G™1 o G (resp. F~! o F) we mean a single-, or multi-valued function obtained by
the analytic continuation of some its branch.

Moreover, (degG)M = (degF)N.

In fact, we prove a more general statement:

Proposition 1. Let f,g be two arbitrary rational functions with the common Julia
set J = J(f) = J(g) not being a circle or interval. Suppose there ezist periodic sinks p,q
for f,g and components U,V of their basins such that g™ (U) =V, for some m > 0. Then
the condition (B8) of the Theorem B holds.

Proof of Proposition 1. Denote by U’, V' some periodic components of the basins of
p,qand f*(U) =U',g'(V) = V' Let v with index U,U’, V, V' be harmonic measure on the
appropriate boundary, viewed from p, g in the case of U, V',

Then vy, vy are ergodic invariant measures with positive Lyapunov exponents for f
and g respectively. (By passing to iterations one can assume p, ¢ are fixed points.)

Invariance (see for example {P2}): For every continuous ¢ : U’ — IR we have [ odv =

&(p) = @(f(p)) = po f(p) = [ ¢ o fdv, where tilde denotes the harmonic extension to U’
(solution of Dirichlet’s problem) and v = vy..

Ergodicity: If p o f = ¢ (modv) on U’ then p o f* = ¢ for every n > 0. Hence
pofr = (,o;-_’f“ = ¢ on U'. Applying this for n — oo we obtain @(p) = @(z) for every
z € U'. So ¢ is constant.

Lyapunov exponent: It is not less than half of the entropy h, (by [Ru], cf [M], [P2]).
Next recall that h,(f) > 0 iff f is not an automorphism (in v), [Pa, Corollary 5.16].

Finally we prove that f is not an automorphism: v-a.e. z € U’ is accessible along
a continuous curve ¥ C U’ (a Brownian motion path). We can suppose z is not a critical
value and for a small r > 0 denote by W the component of U’ N B(z,r) intersecting . Let
vw be a harmonic measure on 0W (from a point in W). Then vy (0U’) > 0, this follows
for example from Dirichlet’s regularity of Julia set). There exist at least two branches f~?

on W to U’, for each we have Jac, f~! = dLZ-yLl > 0 as f is holomorphic.

In general since f, g are holomorphic, their compositions and inverse branches map
sets of positive respective harmonic mesures to the sets of positive harmonic measures. So
we can use Lemma 1 to construct an infinite sequence of local symmetries H; of J in a
neighborhood of a point a € U’ of the form H; = g'i+!*™ o f=%~* (see Proof of Theorem
A).

Remark 1. The Theorem B can be extended to rational functions with parabolic
periodic points having simply connected immediate basins.



3. Functional equations

The classical result on commuting rational functions f and g states:

fog=gof= f"=g",

for some m > 0,n > 0.
Consider another functional equation:

fzongogof,

i.e. f commutes with f o g. It yields

"= (fog)"

So the functions are not separated here.

On the other hand, Theorem A gives a way to separate the functions. Indeed, if f
commutes with f o g, then p(f) = p(f og) = p(g), and the conclusion (A2) of Theorem A
holds.

One can apply this for any functional equation between f and g whenever one can
derive from it the coincidence of the maximal measures of f and g¢.
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