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VARIETIES WHICH CONTAIN MANY LINES

by
Eiichi Sato

In the present paper, the author will study varieties
containing many lines and determine the structure of such
varieties. As easy and simple examples, well-known are
hypersurfaces of low degree in the projective space and
P'-bundle embedded by very ample tautological line bundle.
Our aim is to ask the reverse, namely, what is the structure
of variety containing many lines? First Jet X be a

projective variety and A a linear system which induces a

" closed embedding 0,1 X > PP I pen one defines as
follows.
Definition A (X,A) 1is said to contain many lines, if for
every point x in wA(X) , there is a line Rx in Pdlm IAl

contained in wA(X).

Now we pose the following

Problem. Under the above definition and the assumption

describe the prqﬁérﬁieé of (X,A) and classify (X,A).

But without the assumption of suitable conditions, I think
it is meaningless and loose to consider the classification

of (X,A) simply. Therefore, for (X,A) we introduce



a numerical quantity 2(X,A) which indicates the extent

of the existence of. lines on X. (See 1.3).

(B) In this paper let us assume that A 1is a complete
linear .system |L| of a very ample line bundle L on X

and (X,L) is written in place of (X,IL]).

(C) Throughout this paper, (X,L) denotes a variety which

contains many lines in the sense of A and B.
Then our Main Theorem is as follows.

Main Theorem., Let (X,L) be a smooth variety which contains

many lines. Assume that £(X,L) £ 2. In positive characteristic

case moreover, assume that p 1is separable (see 1.3). Then

we have
2(X,L) (X,L)
0 (", 0 (1)
n L n
1 N Q" 0 n(D), Q° being.a guadric
Q
hypersurface in,IPn+1
CP(E),OEWE)(1)),-where E is a very
ample vector bundle of rank n over a
non-singular cuxrve.
2 . (Cubic hypersurface X, OX(1))
n+1 n+i,_
(Q1 nQ, (= X)., OX(1))
(Gr(4,1) n L¥(= X), 0,(1)) (i=6,7,8),

where Li is an i-dimensional linear

subspace in % and Gr(4,1) is




embedded in IP by the Pliicker

embedding.

(IP(E) ; OIP(E) (1) where E 1is a

very ample vector bundle of rank

rank n - 1 over a non-singular

surface.

(Quadric hypersurface fiber space

X,L) (See 2.1).

In the next place, let us talk about the method to get

Main Theorem briefly, It is trivial to determine (X,L) with

L(X,L) = 0 (Sublemma 1.7). Moreover we determine the sur-
face with &(X,L) = 1 (Proposition 1.9) and 3-fold with
L{X,L) = 2 (§ 5). For higher dimensicnal case, taking

several hyperplane sections we observe the structure of (X,L).

In order to give more detailed explation, let us state the

titles of each section.

1. Definition of 2(X,L) and its properties.

wn

§ 2. Varieties where hyperplane section is a quadric
hypersurface fiber space over a curve.

§ 3. Varieties whose hyperplane section is P’ - bundle
and (X,L) with 2&(X,L} = 1.

§ 4. 3-folds with many gquadric surfaces.

§ 5. Classification of (X,L) with £(X,L}) = 2.



§ 6 3-folds with two fiber space structures. Section

2 and 3 show that a variety inherits a fiber structure
from the ample divisor. In the characteristic zero case,
there are many results by A. Sommese and T. Fujita
(Proposition III in [13], Corollary 2.10 in [4] and [14]),
whichutilize Kodaira's vanishing Theorem and Lefschetz's

Theorem.

On the other hand, in the characteristic p caée,
lacking the above two powerful theorems, we shall show
the restricted results in § 3 and 4 by using Serre's
Vanishing Theorem and the Lifting method.
In § 5, a big problem is to determine the structure
of Fano 3-folds with special properties. Theorem 5.12
is important in order to obtain the classification
of 3-folds with Q(X,L) = 2 with more ease. Moreover,
to get the final results, we make use of some results by
T. Fujita [5] and Iskovskih [7]. In § 6 , we classify
3-folds (X,L) with two fiber structures whose fiber is
a line. Unlike the characteristic zero case; we cannot
obtain a compleﬁe solution of this problem in the positive
characteristic case. We give a pathological example (6.11)
pertaininé to this problem in the positive characteritic case.
Moreover, our result in § 6 is necessary to complete the proof
in § 3.
Notation. Throughout this article, Xk 1is an algebraically closed

field of characteristic p(20). Under a scheme we understand



I.5

a separated algebraic k-scheme. By a variety, we mean
a reduced irreducible algebraic k-scheme. OPn (1) 1is
the line bundle corresponding to the divisor class of

hyperplanes in the n-dimensional projective space " .

M Ny
If X is isomorphic to P x... x P 7, 0(a1,...,ak)
denotes i§1 priOIJH.(ai) Whife pry if the i-th
n .
projection from P 1x...x P X to P . This notation

is often used where there is no danger of confusion. For

a hypersurface X in p*1 ' OX(1) denotes the line bundle

corresponding to a hyperplane section of X 1in Pn+1 '

abbreviated by 0(1). For a line bundle L on a variety,

IL}] denotes a complete linear system. We use the terms
vector bundle and locally free sheaf interchangeably. Gr(n,d)
denotes the Grassmann variety parameterizing d-dimensional
linear subspace of the n-dimeqsional space " . F2(n,1,0)

is the flag variety {(x,y) € Gr(n,1) x EJIILX 3 y with the
line Ly o©on P corresponding to x}.,é denotes the
dual vector bundle of a vector bundle E. If T is a closed
subscheme of § , thenrwe use the notation EIT instead of

i*E where i is the natural immersion i:T & S . Moreover,

when T 1is a locally complete intersection in S, then

NT/S denotes the normal bundle of T in 8. hl(S,E) denotes
dim Hl(S,E). When X 1is a non-singular variety, Q; (or, Tx)

denotes the sheaf of differential 1-forms (or, the tangent

sheaf, respectively) on X.

The author completed this article during a stay at the

Max~-Planck-Institut flir Mathematik in Bonn. I would like to



express my thanks to the Max-Planck-Institut filir Mathematik
for making my research possible, and especially for providing

such a pleasant atmosphere to work.



1.1

§ 1. Definition of £(X,L) and its properties.

First let us begin with some remarks about definition A

of (X,A) in the introduction.

Remark 1.1 For (X,A), let X be a subvariety embedded in
P IAl

by A . Then if one projects X from a point outside

E’lAI , a line in X is projected to a line as well.

X in
Moreover there is a variety (X,L) which is biregularly
projected from a point. But in this paper we consider only

a complete linear system.

Remark 1.2 There is a variety X and finite many line

bundles L,,...,L_ (r22) on X such that (X,L;)
contains many lines. For each (X,L) in the sense of A,
Qé introduce an integer £(X,L) which describes the
quantity of lines on wL(X). Let Y be a Hilpert scheme
of lines in wL(X). Then it is well-known that Y is a
projective scheme. Let Y1 be an irreducible component of

Y. Then for (X,L) we define 2(X,L) as follows:

(1.3) L(X,I) = @im X - 1 - max dim (q(p” ' (x)) NY,)
| 1

where lines in Yi fill up the whole space X, and p

and gq are projection as in the following diagram

A

FL(N,1,00N\d

1 N

XcP Gr(N,1)cY



and N denotes dim |L|

(1.4) Hereafter we use this diagram and projections
p,q very often where we choose Y as a fixed irreducible

component which gives rise to &(X,L).

Remark 1.5 One can describe £(X,L) in the following

terms:

L(X,L) = dim X - 1 - max dim H0(£,N

® 0,(-1))
) 2/x ® Vg

where & is .a line and N is generated by its global

L/X
sections.

L(X,L) takes the following numerical values.
Lemma 1.6 0 £ 2(X,L) £dim X - 1

Proof. It is sufficient to show the left-hand inequality.
For this purpose we prove the following Sublemma 1.7. If

2(X,L) 0, (X,L}) is isomorphic to (E’n,O n(1)). Moreover
P
L(P®,0 (1)) = o.
pn

Proof. Take a generic smooth point x in X and consider

the tangent space T at x in E’dlmlLI.

X Then Tx contains

all lines passing through x', which is of, at least, n

dimensional. Noting that Tx is an n-dimensional linear

space in E’dlmlLI, it is obvious that (X,L) is (@2",0 n(‘I)).
r

The latter part is trivial.



We now deduce the relation between 2(X,L) and
2(H,Lly) - where H is a hyperplane section in |[L].

Namely, we have

Proposition 1.8. Let (X,L) be a variety which contains

many lines and H an effective divisor of |L| which

is reduced and irreducible. Assume that &(X,L) $dim X - 2.

Then (H ,LIH) contains many lines and we have the inequality

R(X,L)Z’Q(H,LIH). Moreover if H 1is a general member of |LI,

their eqguality holds.

Proof. The assumption means that for every point x in X,

there is at least a one-dimensional family of lines passing:

through x , which makes a cone C in X with a vertex x.

Hence any hyperplane H through x contains a genefator of

the cone C , which yields dim (CNH) 2dim C - 1. Therefore
we get the inequality. The latter part is trivial.,

qg.e.d.

To end this section, let us investigate the structure in the

surface case,

Proposition 1.9. Let (X,L) be a smooth surface which contains

many lines. Assume that 2{(X,L) = 1. Then there is a m:X —> C

P1—bundle over a smooth curve C whose fiber is a line.

Proof. Our assumption yields a curve C (see the diagram
(1.3)). Take its general line £ 1in X. Then we see easily

that NQ/X is trivial, which means that two general lines



parameterized by Y does not intersect each other and
p(1.3) 1is a separable morphism. Hence deg p - must be
1 , which implies that p is an isomorphism since X 1is

normal.

g.e.d

Corollary 1.10. Let (X,L) be as in Proposition 1.9. Assume

that there are at least two lines through a general point in X.

Then (X,L) is a gquadric surface in i Consequently the

Hilbert scheme of lines in the smooth quadric surface is

'l pl.

Proof. The proof of Proposition 1.9 implies that X

has two fiberings nix - Cy such that every fiber of L

is a line and Ci is a smooth curve, which gives rise to the

morphism 7= (ﬂ1,ﬂ2):X — C,xC,. Easily we see that 1 is

an isomorphism.

q.e.d.



§ 2. vVvarieties whose hyperplane section is arquadric

hypersurface fiber space over a curve.

In this section we shall study an extension theory
with respect to a morphism. Throughout this section we

assume that char k * 2.

(2.1) Let (X,L) and (X,L) be smooth varieties and X

an ample divisor in |IL| with dim X223 and N = L. We

X/X

assume that @:X - C 1is a fiber space over a non-singular

curve C such that for every point (a general point) ¢,

(w_1(cLI4b_1 ) is a quadric (irreducible quadric) hyper-
(c)

surface in PN, Hereafter we call such (X,L) a quadric

hypersurface fiber space.
Then we have

Theorem 2. Let (X,L) and (X,L) be as above. Then o

can be extended to a morphism ¢:X — C. (Lemma' 2.6. and

2.7)

First we shall prove the following lemma.

Lemma 2.2 Let (X,L) and (X,L) be as above (2.1). If

dim Alb X = 0, C is isomorphic to P1 and
H1(X,OX5‘ = H1(i,0§) = 0. Here Alb X denotes the Albanese variety
of X.

For this lemma, we prepare several propositions.

(2.3) Let us assume that dim X = 3 and take a general

smooth hyperplane section S in |LI by virture of Beritini's



Theorem. Then we have

Proposition 2.3 S 1s a ruled surface.

Proof. By the assumption of X, we see that there are
infinitely many smooth conics in S. Moreover we use

Sublemma 2.4 Let S be a non-singular surface in iPN .

Assume that there is an.infinite set of non-singular rational

curves whose degree is constant with respect to the hyper-

lane in IPN . Then § 1is ruled.
plane 1n ihen 1S ruleéda.

Proof. The above infinite set yields an algebraic family

C = {CA} (€ sxT) with dim T2 1 by the general theory

AET
of Hilbert scheme. Hence Ci 2 0. On the other hand we know
C, - Kg = -2 - Cis -2 Dby the adjunction formular applied to
CX , which means |m KSI = ¢ for every positive integer m.
Then we use the Zariski Theorem [17].

g.e.d

The sublemma 2.4 immediately implies Proposition 2.3.

Proposition 2.5. For the above S , there is a canonical

i
isomorphism Alb § ~ Alb C, induced by the restriction map

w|S:S —> (. Moreover we have the commutativity of morphims:

w1s . AC = AS * i where AV is canonical morphism: V — Alb V.

.Proof. First of all assume that C = ]l?1 . Then Alb C and Alb S

are both just a point, by virtue of the definition.of the

Albanese variety. Secondly assume that C ¢ ]P1 . Since every

1



1
fiber of 9g is a conic, we get H1(S OS) = H (C,OC)(¢0).
Hence S 1is not rational by [17]. Therefore the commutativity

is obvious.

qg.e.d.

Proof of Lemma 2.2. By taking successive hyperplane sections

of X, we get a sequence of smooth subvarieties

X = Xy2X,>...2X _, where L, =1L, L, = » X5 €L,

Liql x, o1l

i
and dim X, = n - i. Then we get the following isomorphism:

Alb Xn—2 = Alb Xn-3 =z ,..%Alb X by virtue of Theorem 5 of § 2

in VIII [10].

On the other hand dim Alb X

0 and Proposition 2.5. means

that C = P'  and H1(S,OS) 0 with § = X_ ..

n-2

Now we have

L 0 for any non-positive integer

Claim. H (xn_2(= s), an

)

-2
m.
Proof. Since L _, 1is very ample, take a curve X 4 in
|L__,| and consider the exact sequence:
#n-20 - (m- 1L _, > mnL , —*nth—Zl.Xn_1 — 0

We infer that h1(S,an_2) is a monotomesincreasing
function with respect to non-positive integers m. Therefore

h1(S,OS) = 0 proves this claim.

Finally, to complete fhe proof of Lemma 2.2, we shall

show H1(§’0?) = 0,.It suffices to prove the following:



2.4

If H1(Xi,mLi) =0 (isn - 3) for every non-positive

.integer m, so is H1(Xi-1'mLi ) = 0. In the same way

-1
as in above claim, the vanishing of Hl(Xi,mLi)(nlSO)

gives rise to the surjection:

1 S 1

by the exact sequence *, .. Hence Serre's vanishing

theorem yields our desired result.

g.e.d of Lemma 2.2,

~

Lemma 2.6. Let (X,L) and (X,L) be as (2.1). Assume that

C ¢Iﬂ . Then ¢:X — C can be extended to a morphism @:X —> C

and for every point ¢ in C, (w_1(c),fl -1 ) = (Qn—1’oQ (1))
¢ (<) n-1
where Qn-1 is a (n-1)-dimensional quadric hypersurface in PRI
and 0 (1) =0 (1) .
Qn-1 p" |Qn—J

Proof. First we have the following

Claim: Let Y and Z be smooth varieties and Y an effective

divisor in 2. We suppose that

1) Alb Y 5 Alb Z % 0.

2) Y is numerically positive in Z, that is, for every

curve C in 2, Y - C>0

Then we have the commutative diagram:

i
< > yA

Py I /D lAZ

Alb Y == alb 3z, and j ° A,(Y) = A (2) o i



The proof is easy, hence we omit it. See the proof of

Theorem 3 in [2].

Now for the proof of Lemma 2.6 we can suppose dim Alb X>0

by Lemma 2.2.

First assume that dim X = 3. Taking a general smooth
surface S in |Ll, we see that j - AS(S) = Ax(x) o i by
claim above and Lang's Theorem and it follows that AX(X) ~ C
by Proposition 2.4. Similarly we get the desired morphism
@:X — C induced by the albanese map X — Alb X. If dim X > 3,
we take a hyperplane section. Then in the same way as above,
we can get a morphism @:X — C which is extended from -

@:X — C° 1inductively. Let us show that every fiber is a

quadric hypersurface. There is a following sequence:

0 — Oi —_— Oi(X) — NX/? —> 0

Taking the direct image of ¢ , we get

0 — 0p —> 70, (X) —— m,N —> R'm, 05 —>

X/X
H
E

(|

Then noting that R1

“*OY =0 and E 1is a vector bundle of
rank (n + 1) over C ,we see that E 1s a vector bundle
of rank (n + 2} over C. Since X .is a divisor of

P(E) , it is easy to check that X 1is linearly equivalent

S



to {(2) ® o*L. where L is a line bundle on C.

OEWE)

Hence we see that X 1is linearly equivalent to

0 )(2) s p*M where M is a line bundle on C, which

P(E
show that each fiber of ©¥:X — C 1is a quadric hyper-

surface.
In the next place, we shall show the following

Lemma 2.7. Under the same condition as in (2.5), let us

assume that dim X2 3, and C = Eﬂ . Then for X the same

conclusion holds as in (2.6).

- Before coming to the proof of 2.7. we make a few preliminary

remarks.

Taking the normal bundle of a general fiber (= ¢ ' (c))
in X where w-1(c)(=v) is a non-singular quadric hyper-
surface, we obtain the following exact seguence:

(2.7.0) 0 — Nv/x(=0) — Ny g —> N (=M) — 0 .

v/ X/XIV

Since X 1is a very ample divisor in X , so is M. On the
other hand, since we see easily that. H1(V,ﬁ)= 0, we get
NV/? = (0 ® M. Hence let T be an irreducible component of
the Hilbert scheme of w-1(c)(=v) and * w the universal

scheme (< X xT) of T,



Then the first projection p:w — X 1s surjective.
Moreover remark that T is smooth at [V] which denotes
the point in T corresponding to V by virtue of

H1(V,N 0 and that w is a quadric hypersurface

v/x) © t
in ®" and C is naturally embedded in T.

Now to prove Lemma 2.7, we prepare several propositions.
First of all, let us investigate the property of a quadric
hypersurface U in X whose intersection number U‘mt
with Wy .is zero. The next proposition is a useful

oberservation.

Proposition 2.8, Let X and X be as in (2.1), and U

an subvariety in X whose codimension in X is 2 and

which is not in X. Assume that codim (wc Nu) &3 with a

peint ¢ in C. Then the order of C(U) is one where C(U)

denotes the set {cec| Un w_ * ¢}.
c

Proof. Since X is ample in X, W, N X 1is connected. The

fiber structure of X immediately implies the proposition. ,

This gives rise to the following

Proposition 2.9. Using the above notations, let us consider

the following three cases for U:

1) U is irreducible, reduced and is not contained in X.

2) U is reducible, namely, U = P1UP2 and

dim P, P, = n -3 where P, is an. (n - 2)-linear space




2.8

and n = dim X.

3) U is a double (n - 2) plane.

Then C{U) consists of one point in each of mentioned cases.

Proof. First consider the case 2). Moreover assume that neither
P1 non P2 is contained in X. By Proposition 2.8., we see

that C(Pz) is a point =N in C. On the other hand,

recalling that P, = P"?  and Py NP, = p3 we get
Cqy = Cye Secondly, assume that only P1 is contained in X.
Since any morphism from :Pn-2 to a curve is a constant map,

we see P1 is in a fiber of ¢:X — C. Hence for this case,
we get the desired result. Finally assume that both P, are
contained in X. Easily we obtain the same result. Hence we

complete the proof of case 2). Case 1) and 3) are trivial.
qg.e.d.

By virtue of the above investigation, we divide Lemma 2.7

to two cases:

(2.7.1) For every member wtttﬁcn, the order of C(wt) is

one.

(2.7.2) There is an irreducible mt(t £ C) in T which is

contained in X and which meets wc(c€(3).

Proof of Lemma 2.7 in the case (2.7.1),

for every element ¢ in C(=P1), we define
D, = U{wt |wtr1wc¢ ¢} such that D. has a reduced structure.

. . . ~ 1
It is obvious that {Dc}c€P1 induces a pencil {Dc.cEiP }



~

of divisors in X. Moreover, we see that SCFIDC, = ¢
for generic elements c¢,c' in IP1 by our construction
of Dc and Proposition 2.9. Hence we can take a reduced
and irreducible divisor (=D) and get the following exact

sequence:

0 — Oi —s [D] — ND(=OD) —> 0 .

Noting that H1(§,OY) = 0, the complete linear system of

1

[D] gives rise to a morphism ¢:X — P , which extends the

morphism .

Next, let us consider the case (2.7.2). The conclusion

in this case is as follows

Proposition 2.10, The case 2.7.2 does not occur. Hereafter,

till the end of this section, we shall be concerned only

-

with this case. First let us show

(2.11) Step 1. dim X = 3 and w% is a non-singular quadric

surface (Hereafter we write simply Y 1in place of this wt).

Hence for every point ¢ in C, w_1(c)r1Y corresponds to a

]
fiber (=P ) of Y(=zP'xp').
Proof. Since ¢, 1is a surjective map from Y to P1 , it
is easy to see that Y is isomorphic to Proj k [XO,...,Xn_ﬂ/F
3
(=Q ) where F = ') X.% and n = dim X(z 4). Then
n-2 i%o i .
Pic Q _,=*2%2 ® E (See Ex. II. 6.5 in [7]). Moreover it is easy

to check that every fiber of 2 is Pn_3. Hence it follows
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that every fiber w-1(c) is an (n-2)-dimensional quadric

hypersurface and contains a EP_3 as an ample divisor. Now

assume that dim X 2 4. Noting that a general fiber w_1(c)

is smooth, it is known that the Picard group of such a fiber

w—1(c) is Z if nz5, which yields a contradiction. to

the fact that w_1

(c) 1is a projective space by Corollary 3.11
in [(11]). Hence we see that dim X = 3 and w«w is a non-singular

quadric surface. The last part is trivial.

(2.12) Step 2 NY = 0 (1 1) where NY is the restriction of

N on Y.

X/X
Proof. By virtue of Proposition 5 (Kleiman [9]),

2 _ : e (T T - . .
NY = (Nx/i'Nx/i'w)x = (L,L,w)X where L. is a line bundle
of a divisor X in X. Since Y and ¢ '(c) belong to
the same algebraic family (see Lemma 2.7) and w_1(c) is a

Y2 = 2, On the other hand NY is an

quadric surface, we get N
ample line bundle on a smooth quadratic surface, which

completes this step.

(2.13) Step 3 NY/X is a trivial line bundle.

Proof., We have the following exact sequence:

0 — N {= 0(a,b)) —- N,,, = NY(=0(1'1)) — 0.

Y/X Y/X

Assume that a or b 1is negative. Then

£

ho(w,N. =) shl (@' xP',0(1,1)) = 4, which means that dim T < 4

Y/X
because w 1is contained in T.



On the other hand we remark that M in (2,7.0) 1is

0(1.1) by M° =2, 80 " ),0 & M)

0 and, therefore,

dim T = 5. Hence we see that a and b are non-negative.
1

. v, _ =

Since H (Y'Ny/x ® NY) = 0 , we get NY/X O(a,b) ® 0(1.1).
Noting that H1(w’NY/X) = 0 and, therefore, T is smooth
at Y, we see that a = b = 0, by the computation of

0

(2.14) Step 4 X is isomorphic to P XIE>1 XEJ.

Proof. As for the line bundle N we have the following

Y/X
exact sequence:

0O —» Ox —_— [¥Y] — OY —s 0 .

Noting H1(X}0X) = 0, we get a morphism oa:X —> ]P1 whose
general fiber is a non-singular quadric surface. On the
other hand, there is originally the morphism ¢ X —> I>1
by ocur .assumption, which gives rise to.a morphism

(a,9) :X ——>{P1XIP1. By Step 1, for every point ¢ in C -

w_1(é)n Yz P' . We now

Claim: Every o '(c) is a non-singular quadric surface.

Proof. Notice that every w-1(c) is a guadric surface.
Since we know that every curve on a singular cone intersects
other, it does not happen that w_1(c) is a singular cone.

Similarly it does not occur that w_1(c) is reducible.

The above claim says that the intersection of a fiber of o

1

and a fiber of &« 1is a line. Hence (qo,@):X — P X ]?‘I
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1
which is a Proj of vector bundle E of rank 2 on P x P1 .

We see easily that IP1><1E>1 itself is an irreducible component

of the Hilbert scheme of a general fiber with respect to
@ because this fiber is a line. Moreover the universal scheme
over P1x P1 is X itself by construction. Finally to

complete this step we have the following

Claim E 1is isomorphic to L & L for a line bundle L on

IP1>< IP1 .

Proof. Let pry be a i-th projection from P1x P1 to P1 .

We must again note that fibres of ¢ and o are non-singular

. : . 1
quadric surfaces. Hence for every point ¢ in P,

Iw , is Pxp (o = m—1(c)), which implies that
c

E|wc is isomorphic to 0P1 (ac) ® OI” (ac) with an integer

P (E)

a - On the other hand c1(E) is O0(s,t), therefore

c1(E)‘mc = 0(t) and 2aC = t, which follows that a, is
independent of c¢. Applying the base change theorem, we

see that E @ 0(0,%) is isomorphic to pr;L where L is

a vector bundle on IE"‘1 . Next, taking another projection, we
see that E is a direct sum of copies of the same line

bundle, which completes this claim and Step 4 at the same time,

In the next step, let us assume that the characteristic of

the base field is zero.

(2.15) Step 5. For the characteristic zero case, there is

no 4-fold which contains P P1XIP1(=Y) as an_ample divisor.

Proof. Assume that there exists 4-fold (=X)enjoying the above

property. Let p. be the i=th projection: ]P1>< ]P1><IP1 —.‘;>]I?‘I .
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. . 1
Then there is a surjective morphism qi:X — P

extending P by virtue of Proposition III in [14].
Hence we get a surjection (qT’qZ’q3):x —>.P1x P1XZP1.
which means that rank Pic X2 4. This contradicts the

Lefschetz theorem. (For example, see § 1 in [4])

gq.e.d.

This yields Proposition in the zero characteristic case.

We now turn to the case of positive characteristic.

In the.next step, we shall prove that (X,X) has a lifting
(X,X) and Xg is isomorphic to P;(?flPTKX IP1K. Then it is
straight-forward to get a contradiction by virtue of the
previous step 5. For this purpose, we gather some notation.
Given an algebraically closed field k with char k = p> 0,

let W(k) denote the ring of Witt vectors. This is a discrete
valuation ring with the residue field k, the maximal ideal is
(p) and the quotient field K is of characteristic zero.

S denotes Spec W(k). Let ¢ be the closed point of S. Let

X Dbe a non-singular variety defined over k. Then X is

said to be liftable if there is an S-scheme £:X —> S such that
£l c) is a given k-scheme X. Then X 1is called a lift of X.
Similarly for a given divisor D on X , the pair (%¥,D) |is
called a 1lift of (X,D) if there is a lift f:X — S not X

and there is an effective Cartier divisor D on X whose

restriction to X is D.

As for a criterion for a pair (X,X) as above to have a lift

(X,X), we have the following



Theorem 2.15. Assume that

1) H"(X,0.) = H (i,oi) =0 for i =1,2

2) H (X,N) = 0 , where N is line bundle corresponding

to a divisor X in X.

3) Hz(i,TY) = 0.

Then (X,X) has a lifting.

For the proof, see Lemma 1 in [3] and Theorem (A1) in [5].

(2.16) Step 6. The (X,X) in question has a lifting (X,X).
‘ 3
Proof. Here, O(a1,a2,a3) denotes a line bundle pr;,OIﬂ (ai)

1 i=1
where pri:P1x ]P1x ]P1 —> P is the i-th projection. Notice,

that N is 0(1,1,b) with b>0 where N, is the restriction

X X
of N to X . First we have the following:
Claim Hl(x,aNX) = 0 for any integer a and i = 1,2.
Therefore HY(X,aN) = 0 under the above condition.

Proof. By the Kinneth Formula, the former is trivial. For the

latter case, we use the exact sequence:
0 — (a - 1)N —> aN — aN, —> O

which induces the following

—> H'(X,(a-1)N) — H'(X,aN) —> H| (X,aN,)

— > H%(X,(a-1)N) — H?(X,aN)

Hence dim H1(X,aN) is monotone decreasing with respect to a,



which implies H1(i,aN) = 0 by Serre duality and Serre's
vanishing theorem for ample line bundles. In the same way,

we see that Hzti,aN) = 0.
Finally, to show that Hz(f,TE) vanishes, we use the following:

0> Tg® (a-1)N —> Tg @ aN —> Ty ® aNix —- 0

and 0 —> T, ® aN, —> Ty @ aN|x — (a+ 1)Ny, — 0.

where N, denote N|, .

It suffices to show that HZ(TX ® aNX) vanishes.

But since TX ® aNx = (a+2,a+ 2,ab+ 2) the vanishing

is easy by the Kilinneth formula.

2.17 Step 7 XK is isomorphic to P _ X IﬂKX‘P where XK denotes

X Xg Spec K.

Proof. It is well-known that Pic XK = Pic X 2 Pic X by

virtue of section 6 in [5]. Hence take a line bundle

L' on X such that Ll>g Spec k (= Li) is isomorphic to a
i-th

line bundle (0,1,0) on Blx P! x®) (=X) . About the
notation. Then we have

. j i . i i
Claim _H](XK,LK) =0 for j =1,2,3 where LK = L~ x SSpec K.
Therefore dim HO (XK,Lé) = 2,
Proof. It is trivial that HJ(Kk,L;) =0 for jz21.

Hence by the semi-continuity of the cohomology of L' as for
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w:X —» S, the former ia obvious. Moreover by the flatness

of ¢, we get x(XK,L;) = x(Xk,Li) , which means the latter.
g.e.d.

The above claim implies the following:

w*Ll is a torsion free sheaf on S. Since S 1is a

discrete valuation ring, w*Ll is a free module of rank 2.
Hence take a basis S118, of w*Ll,which gives rise to an
1

S-rational map o+ from X to PS . It is straight -forward

to see that ¢' is a morphism, because ot x k is equal to

S
. 1 1 1
pr;. Hence we can construct a morphism O.XK — PKXIPKXIPK
as the fiber product of the ¢§ (1 = 1,2,3). Noting that 1

is the intersection number of three line. bundles

(1,0,0) - (0,1,0) - (0,0,1) in X, we know 1 = L. - 1.2 . L3
K K K

in XK . Hence it is easy to check that o¢ 1s a finite

birational morphism, and therefore, by Zariski Main Theorem,

an isomorphism.

g.e.d. Step 7

Now at last we show Lemma 2.10.

Xf and fﬁ are defined over an algebraically closed field
K of characteristic 0 and Xz 1is isomorphic to

ZP%XZP% XZP%- and ample in ff , which yields a contradiction

to Step 5.
Finally in this section let us give an important

Lemma 2.18. Let (Y,L}) and (¥,T) Dbe a smooth 3-fold and

a 4-fold respectively and let Y a divisor in Y. Assume Y




is isomorphic to S1 XCSZ where S; is a JE>1 -bundle over

a curve C and 1L -1 = 0(1,1) with the canonical pro-=
¢ " (c)

jection ¢:S.x.S, —> C . Then Y 1is not ample in Y.

Proof. If Y were ample, Lemma 2.6 and 2.7 would yield a
morphism ©:¥Y —> C extending ¢. Then since every fiber
of @ 1is a quadric hypersurface we can use the latter part of

the proof in Proposition 4.10 in [4].



§ 3 Varieties whose hyperplane section is a p"-bundle.

In this section we work over an arbitrary characteristic

field. What we shall prove is as follows:

Theorem 3.1. Let (X,L) be an {(m+ n)-dimensional smooth

variety containing many lines, (X,L) and (m+ n+ 1)-dimensional

polarized smooth variety such that ‘T is a very ample line

bundle on X . Assume .that there is a vector bundle E of

rank (n+ 1) over an m-dimensional variety S such that

(X,L) 1is isomorphic to (P (E),O (1)) and that X 1is a

P(E)

member of |L|, N =L and n+ 12m. Then, unless X

X/X

is a quadric surface, there is a vector bundle E of

rank n+ 2 over S enjoying the following exact segquence:.

)

0 —» (0 —» E > E > 0,
where X 1is contained in X (= P(E)) via ¢. If X is a
quadric surface, (X,L) is isomorphic to (Q3,0Q (1)),
3
Hereafter for our proof we consider X to be
embedded in PV by the line bundle L, and X to be

a hyperplane section of X in N,

Moreover we consider three cases separately:

a) nz22
B) n =1 and m = 2
Y) n =1 and m = 1 ,



Case a)
Step a.l. (X,L) contains many lines.
Proof. Take a line & in a fiber 1 '(s) (= X,) for a

point s in S where 1w 1is a canonical projection

P(E) —» S. Then we have the following exact sequence:

0 — NQ/X —> N — N — 0

|
s XS/X L

2/X

which means that N = 021 ® 01 (™1,

/X

Moreover we get the exact sequence:

(3.17) 0 — N —> N

/X > N

L/X X/X|2 " 0

which implies N = 021 & OI” (1)h .

L/X
Hence we obtain step 1 by the computation of hl(R,NR/X)

i
and h (E'Nl/i)'

g.e.d.

Remark. In step 1, take an irreducible component T (or, T)
of Hilbert scheme of lines.in X (or, X, resp.) containing a
line 2 in a fiber of 1. Note that T (or, T) can be
naturally considered to be a smooth subvariety in Gr(Nn,1)
(or, a variety in Gr(N+ 1,1) which is smooth on §S) where

Gr(N,1) 1is a canonically embedded in Gr(N+ 1,1).

. ' n . .
Step ¢.2. For every fiber of (=Pﬂ), there is a unique

{n+ 1)-linear space in X containing P? . Hence X is
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fulled up by these (n+ 1)-linear spaces.

Proof. First of all, for a subset B in PN+1 and a
point y in B, BB denotes the set of lines in B
passing through Y. Now take a line & of a fiber Pﬁ
and a point x in & . P§ and X, are naturally a
hyperplane section (= PN_1) and an (n- 1)-dimensional
linear subspace in (PN+1 ( PN respectively.

Moreover by considerding the exact sequence (3,1) o OE(_X)’

X, is an irreducible component of Xx n CPN)x and it is

an (n - 1)-dimensional linear space with multiplicity 1.

Taking account of Kx & E¢Lq ' ix has an n-dimensiocnal

linear space in 1P§+1 as its component which yields an

. : . , = I n
(n + 1)-dimensiocnal linear space in X <containing E}

g.e.d.

Now fix an (n+ 1)-linear space R in X and take
an irreducible component U of Hilbert scheme containing
R in X . Let I be the universal scheme in U x X
where pa (or pi) is the canonical projection U —> U
(or, U — X, resp.). Remark that S itself is a Hilbert
scheme of a fiber of m and X itself its universal scheme.
Then taking an inverse image p%1(x), we get the morphism
9:U — S by the universality of Hilbert scheme U‘, which
follows that ¢ is an isomorphism by Step «¢.2 and Zariski

Main Theorem. Hence pg:ll —> X 1is birational, and when

we put W = {x € X | dim p%1(x) 21}, W is at most a finitely



many set because ‘X 1s an ample divisor on X and
pizp§1(x) —> X 1is an isomorphism. Now we shall show

that W is empty. Assume that n2m and W is not empty.
That W is a finite subset means that there are two

(n + 1)-linear spaces: R,+R, in X such that dim (R, NR,) =0,
which immediately yields a contradiction because

dim R, + dim R, - dim Xz2n -m+ 121. Secondly assume that
n+1=m and W is a finitely many set. Then we see that
every (n+ 1)-dimensional linear space Ru induced by U
intersects at, one point with each other. Moreover there is
unique point 3 in X - X contained in every R, because

of the flatness of pu:u — U and finiteness of the set W.

Now take a tangent space T, of ¥ at % in pPV'T, Clearly
X 1s contained in T, (= Ep+m+1) which follows that
X = 1Pn+1. This is absurd. Therefore W is empty, which

follows that pg:li — X is an isomorphism. This is a

desired fact.

g.e.d.

Case B) 1In this case, taking account of the above proof,
we divide to two cases. We maintain the‘notations T, Gr(n, 1)

in Remark.

(B.1) S is the only irreducible component in T N Gr(N,1)

whose lines f£ill up the whole space X.

(B.2) Otherwise, namely, there is another line passing

through a general point X in X besides a fiber of m,
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which yields another irreducible component 82 of

Hilbert scheme of another lines whose lines move X.

Hereafter we shall determine the structure of X

in case of (B,1)

(B.1) If one reads the proof of step (a.1) and (a.2)
carefully, these say the.fact that there .is unigue

2-linear space R with multiplicity 1 containing a general
line & in X. Now maintain notations UI,U in Step «a.1.
Then for every point of w in U , p61(w)) is isomorphic

to a 2-linear space, because pa1(U) for a general point u
in U is a 2-linear space. Simultaneously we seé that there
is a point u in U whose 2-linear space contains a fiber of

T (=line). Therefore we have

Claim (B.6). For every fiber F of m , put as U(F) the subset

{fueu |Ru:3F} where Ru is a 2~plane corresponding to u.

Then for a general fiber F, U(F) is one point with multiplicity 1.

Moreover for every F , U(F) is a finite set.

Proof. The former part is already proved. For the latter part
assume that U(F) is an infinite set. One-dimensioanl ‘irreducible
curve C in U(F) yields a divisor D in X . Hence

dim (bnX) = 2.

On the other hand, R (= 2-linear space) is not contained in

X, therefore RNX = F. Hence DNX = & which is absurd.

qg.e.d.



Continued proof.

The above claim induces a finite birational morphism

®:U — S Dby the same way as in (a.2). Hence ¢ is an
isomorphism. The remainder is entirely same as in case o.
Hence we finish the case (B.1). "

(B,2) By virtue of Th. 6.3., X 1is one of the following
(g.2.1) X sIP(T]PZ)

(B.2.2) X =8 XCS

1 where Si is a EJ -bundle over a smooth

2
curve C.

Hereafter we shall show that above two cases do not

occur.

Case (R,2.1) At first we show that -(K,L) has the following
property: A(X,L) = 1, g(X,L) =1 and d(X,L) = 6 4in the

sense of Fujita [5].

The Second and last part are tivial. For the first, we

must check the following: H1(X,mN = 0 for any integer m,

x/X)
which implies that H1(§,0§) = 0 by virtue of Serre's vanishing

Theorem.

Hence we get A (X,L) = 1. Consequently we see that (X,L)

. . . 2 2
is isomorphic to (IP"x Ip ,p%‘O]Pz (1) & pEOJPZ (1)) where

2 2

piﬁPv x]Pz —> 1P is the i-th proposition by virtue of

[5], which implies that two pieces of family of lines in

P(T are induced by two pieces of family of planes in

p2’

P2XIP2. This is a contradiction.



Case (B.2,2) This case does not occur by virtue of

Lemma 2.18.

Case y) First assume that x 1is a quadric surface.
Then by virtue of Corollary 1.10, there is only one
line going through a general point. In the same way

as in (B.1) above, we get a desired result.

Gathering the above observations of case a),R)

and y) we complete a proof of Theorem 3.1.

Finally we shall give a

(3.2) Proof of Main Theorem in the case: &£(xL) = 1,

Let (x,L) be a smooth n-fold (n 23} which
contains many lines in any characteristic case. Assume

that 2(x,L) = 1. Then (x,L) is isomorphic to

1) (Quadric hypersurface @ in 2"" 01
2) (Proj of a very ample vector bundle E of rank n

over a smooth curve, QP(E)(1))

Proof. In the same way as the proof in Lemma 2.2 we
take a sequence of smooth subvarieties X = Xg2X2 ...2 X
with dim xi = n - i. Then Proposition 1.8 gives rise to the

fact that R(Xi,Li) = 1. Hence by Proposition 1.9 and Corollary

7.10, Theorem 3.1, we get the desired result.

g.e.d.



§ 4. 3-fold with many quadric surfaces

In the present section we shall study the structure
of 3-fold (X,L) with many quadric surfaces, which is
defined as follows: Let L be a very ample line bundle on
X and @ the corresponding closed im@ersion of L.

We assume the existence of an irreducible quadric surface

E,dlmILI

in wL(X) in passing through a general point

in wL(X). Hereafter throughout this section (X,L) denotes

the above.
Our main goal in this section is to show

Theorem 4 Let (X,L) be as above. Then (X,L}) is isomorphic

to one of the following:

1) X is a quadric surface fiber space over a smooth curve (2.1}
2) (B! x®%, 0(1,1).

3) (smooth quadric hypersurface Q in EA ,OQ(1))

(4.1) Now take a general irreducible quadric surface Q

in wL(X) and congider the Hilbert scheme of Q . in wL(X).
Then there is an irreducible component T of the Hilbert
scheme containing Q such that dim T2 1. Moreover let
w={w.} Dbe the universal scheme of T(c XxT) where

wt=wﬂ{t} x T.

(4.2) Assume that there is a general.pocint (r,s) in TXxT

such that wrr1ws = ¢, which is maintained until (4.6).



After (4.7) we shall discuss the case of wrn ws¢($.
Put as N the normal bundle of Q in X. To observe

the structure of X, we divide to two cases:

a) There is a point t such that Wy is smooth.

b) There is no point t such that Wy is smooth.

Lemma 4.2.a. For the case a), dim T = 1 and N is trivial.

1 1

Proof. Put N{(=N = 0(c,d) (Q=P xIP ).

Q/x!

The assumption of (4.2) means that ¢ .and d are non-
negative. On the other hand if either ¢ or d 4is positive,
then dim H°(Q,N) 22 and H'(Q,N) = 0, which follows there
are two points 1r,s such that W properly. This contradicts

(4.2)
g.e.d.

(4.2.b) For the case (b), we have.the same result as in case

of (a).

Proof. Picard.group of an irreducible singular quadric surface

Q is isomorphic to 2L whre L is the line bundle corresponding

to a hyperplane section. Remarking that hO(Q,OQ(c)) = ho(]P3,OIP3(c))
and h1(Q,OQ(c)) = 0 for every integer ¢ , one can get

the same result as in case a)

(4.3) Assume that H1(X,0) = 0.

(4.3.a) For the case a) , we have the following exact sequence:



0 — 0 —.[Q] — N(=0) — 0 ,

which gives rise to the exact sequence of cochomologies

0 — %0 — u%(10l) — 8%y — 0

where [Q] is the line bundle corresponding to the divisor

Q. It yields the morphism | Pp:X — Eﬂ

(4.3.b) For b}, we get a morphism @:X —> Eﬂ entirely
in the same way. By the construction, a general fiber is

irreducible, hence, smooth, which contradicts. our assumption b}).
Summerising the above results,

Lemma 4.4. Let (X,L) be a smooth 3-fold. Assume (X,L} has

many quadric surface, general such surface is irreducible and

there is a point (r,s) in T xT such that w, Nwg = ¢.
Moreover we assume H1(X,0X) =.0. Then there 1s a.morphism
Q:X —> ﬁ>1 whose general fiber is smooth quadric.

On the next place let us assume
1
{(4.5) H (X,Ox) # 0.
Then we shall show

Lemma 4.6 Let (X,L) be a smooth 3-fold satisfyiﬁg the

same condition as in Lemma 4.4 except H1(X,0X) = 0.

If H1(X,OX) # 0, the same conclusion holds.

For the purpose we prepare the several steps.



(4.6.1) Step 1, Let S be a generic smooth member in |L]|.

Then S 1is ruled.

Proof. Noting that an irreducible quadric surface has
at most one singular point and its general hyperplane section

is a smooth conic, we get Step 1 by virtue of sublemma 2.4.

(4.6.2) Step 2 . H1(S,m[S]|S)= 0 for m<0 where [S]

is the line bundle in X corresponding to a divisor S.

Proof. By step 1, S 1is ruled. In the set {wtfﬁs(=ct)|t.€T}

there is an infinitely many elements T0 and T such that

Ct and Ct' have no common point for t# t' in T

Noting that C

0
£ is a smooth conic, S has a fiber structure

p:s —> C where Ct (ttiTO) is a fiber of ¢. Hence Leray

spectral sequence yields the isomorphism H1(S,m[S]

12

)
|s
HO(C,R1®*(m[S]]S)) for m< 0 because Ho(f,m[sllf) = 0,

where f is a fiber of . Now take a general element C'
in [[s]|g]. The morphism ¢:S —> C  induces a double
covering ' C' —>.C where ¢' is the restrict of ¢ to

C'. We have the following exact sequence:
0 — 0(-C') —> OS —_— OC' — 0 ,
hence, 0 — {m - 1)[S]ls —_— m[S]lS — m[S]lC. — 0 *

For m< 0, take a direct image of the above exact seguence

by % . Then we get



0 —> w*(m[S]]C.) — R'w*((m-1)[S]|S) — R'w*(m[s]ls) — 0.

E

m
Hence, taking the long exact sequence of above exact and noting
that —m[S]lC, is ample for m< 0, we see that hO(C,Em)
is a monotone-increasing function with respect to negative

integers m. Now we have

claim HO(C1,E = 0.

)

In fact, consider the direct image of * Then we get the

0.
following:
(D*ot_cl) —_—> t-p-*os —— (D*OC‘ —— R'(-p* 0(-0') e R‘(D*OS
| | | |
0 0, E_, 0

On the other hand, since ¢' C' —> C is a double covering,

we see that v,0,, = 0, ® R'9,0(-C'") by char k+2 and trace

Cl

map of ¢' . Hence we get a desired result.

Step 2 is shown immediately by the monotone-increasing

property and the above claim.

g.e.d. of Step 2

(4.6.3) Step 3 H1(S,OS)(= H1(C,OC))¢ 0

Proof. Consider the exact sequence:
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0 —> (m-1)[8] — ml[s] — nlsl|g —> 0.

Step 2 says that H1((n1-1)[s]) e H1(m[S]) is
surjective for any negative integer m, hence, which infers
that H1(S,m[S]) vanishes for m<0 by Serre's vanishing

theorem. Therefore we can show Step 3 by the exact sequence:
0 —> [-8] — Ox — 0S — 9

and by our assumption that H1(X,OX) # 0. It is trivial

that H1(S,OS) is isomorphic to H1(0,OC).
' g.e.d of Step 3.

Finally to complete the proof Lemma 4.6, we take an

Albanese variety as for S&» X.

S%‘ X

ul | ls

a

At first we must remark that a is isomorphic by virtue of
Theorem 5 of § 2 in VIII [10]. Moreover o factorizes the
product of the morphism ¢:S — C and a closed immersion
i:C &> Alb S. Hence noting the claim in Lemma 2.5, we see
easily that B8(c) is C and a general fiber of 8 1is a

guadric surface.

Remark. In characteristic zero case, we can obtain Lemma 4.6

more easily. We have only to take the albanese map of X,



i:X — Alb X. Then we know that any quadric surface collapses

one point by i, which induces lemma 4.6.

Let us maintain the condition and notations in (4.1)

Now we assume that

(4.7) (X,L) is not isomorphic to (P3 ,0(1)) and there is

a general point (r,s) in TxT

such that w,. n We ¥ 9,

Since w_ 1is a quadric surface in , let [mr] be the
smallest linear subspace containing W, . For almost all wr .
[mr] is of 3-dimensional. Hence for two general W oy

noting that [mr] * [ws] by X # P  and taking account of

the fact that [@r] N w Dw nw , w_n g is one of the

S r S r
following
(4.8) W n w, 1is a line
(4.9) . n We is a conic which may be singular, including

a double line.

From now on we shall show that

Lemma 4.10 X in (4.8) 1is isomorphic to IP2XZP1 , and X

in (4.9) 1is a quadric hypersurface in P4 .

In the first place let us investigate (4.8). Then we shall

H

divide to two cases
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(4.8.1) every member (w, (£t€T) 1is singular.

t

(4.8.2) a general member w is smooth.

£
(4.8.1) Both w, and w, are singular cone.
Hence, if W, n g contain a vertex of either cone,

W n Wy must be singular at this vertex..On the other
hand, a line on a cone must go through a vertex. It is

absurd.

(4.8.2) For a smooth member w. » We can take another
line £ on wr such that wr n ws n 2 =* w,.- Then we have

the following exact sequence:

0 — Nz/m———>-N ——> N — 0

/X w. /X| 2
| |
0 0(1)

which follows that NQ/X = OI” & OIﬂ (1). Therefore by

virtue of we see that £(X,L) = 1, which means that X
is one of a quadric hypersurface QB' in IIE’4 and :I]?2 -bundle
over curve C, But the former does not occur because the

intersection of two quadric surfaces in Q3 is conic.

In the next place, when m:X — C denotes an Pz—bundle
over C, we see that C is P1 because w,. is a smooth

quadric surface and‘ ﬁ|w 1w —> C 1is surjective. Hence
r
X 1is described as Proj of vector bundle 0® 0(a) & 0(b) on

P1. Tt is easy to check that Hq(X,OX) = 0 by Leray's spectral

sequence.



Now there is the following exact sequence:
0 — Ox —_— [mr] —_— Nmr/x (= 0(1,0)) — O
hence we get

0 —» HO(OX) — HO([mr]) —_— H0(0(1,0» —> 0

which gives rise to a morphism g:X — P2 .

By the construction of g , a general fiber of g is

a line. Hence the morphism (w,g):X —> P1 XZP2 is a
birational morphism by virtue of the property of m and

g. On the other hand, the structure of Chow ring as for X
and P1x P2 is equal to each dther, which means that (mw,qg)

is finite, therefore is isomorphism.

Finally, let us consider the case (4,9). If we can show

that dim |L| = 4, it is straight-forward to see that (X,L)
is a quadric hypersurface in P4 .

Therefore assume that dim IL|25. Then 4 is the dimension
of the smallest linear space which contains two generic

I>dlmlL| because w_ N w is a

uadric surface w_,w in
gq ™ r S

r

conic. Hence we can find a divisor Hw = W, g D' in |L]|
where D' 1is an effective divisor or empty. Now take a line

£ on w. - Then we see that the intersection number 2 - W,
and R-ws is 1 respectively, which implies Hw-R 2 2. On

the other hand L.2 = 1 was our assumption, which is absurd.

g.e.d

Gathering Lemma 4.4, 4.6 and 4.8, we complete the proof of

Theorem 4.



§ 5 Classification of (X,L) with &(X,L) = 2

Throughout this section, we assume that p:Z2 — X

is separable (see (1.3)) and &(X,L) = 2.

(5.1) First we suppose dim X = 3, therefore dim Y = 2.
Remark that Z is isomorphic to Proj of the vector bundle
E where E = U(N,1)|, and U(n,1) is the universal bundle

of rank 2 over Grin,1).

Now let Y' be a desingularisation of Y,2' the fiber
product Zx YY' , which is smooth.

P L]

Z &
/Dq\

X Y e—2 v

(5.2) Take a general point Y in Y. Then we can assume
that Y 1is smooth at y. Let lg be a line in X corresponding

to .
Then we have

Proposition 5.3. Let £(=23) be a line in X as above.

Then No/n = OIP1 ® 0p1 -

Proof. The separable morphism p induces a generally surjective

homomorphism of normal bundles: k:N —_— Nz/x. Noting

g V) /z

that the first part of two normal bundles in 0 ® OP1 and

Pl



the latter 0pq (@) & Op1(b) with integers a,b , we
see that a and b are non-negative. On the other hand

L(X,L) = 2 means that hO(Q,N = 2 , namely, a = b = 0.

2/x
qg.e.d.

The above proposition immediately gives rise to

Corollary 5.4. Under the above diagram in (5.1), let

R .be the ramification divisor in 2' with respect to

P' , which may be empty. Then there is an effective divisor

C in Y' which is possibly empty, such that R = q'" (e

Moreover we have p'*(Kx + 2L) = gq'*(det jJ*E + K,, - Oy.(C)).

Yl

Proof. The former part is obvious by virtue of Corollary 5.4.

As for the latter part, consider the following exact sequence,

0 — q'*Qy, —> Q,, — Q, — 0

0 —> T3 Q, —> gq'*J*E —> T —> 0 ,

where {, 1is the relative canonical bundle with respect to
q' , and T the tautological line bundle of J*E. Noting

that p'*L = T and p'*K, = K

X g1 * 0, (R), we get the

desired results.

q.e.d.

Now at first we shall determine the structure of (X,L)

with deg p = 1.

Proposition 5.5. Let (X,L) be a smooth 3-fold with 2&(X,L)

2.



Assume that deg p = 1 . Then (X,L) 1is isomorphic to

(P (E) A%P(E)(1)), where E(=Q(N,1)|Y) is a very ample

vector bundle on Y.

Proof Put X, as {x € X | dim p_1(x)2 1} and assume
that X, is non-empty. Since X is.smooth we see that

z - p-1(X0) — X - X, is isomorphic and dinm Xy = 1.

By virtue of Proposition 5.2, it follows that p-1(X0)= q ¢
where C' 1is a closed subscheme in Y and dim C' = 1. Because
if dim C' = 0, p:2 ~>» X 1is an isomorphism by the

definition of Hilbert scheme and Zariski Main Theorem as

for p. Noting that ® dim p-1X0:>dim X, and every fiber of

g can be transformed a line in X by p,()cmntradicts the

definition of Hilbert scheme.

Remark 5.5.1 Let F be a locally free sheaf over a smooth
projective M. Then obviously P(F) is smooth. On the
contrary let F' be a torsion free sheaf over a smooth
projective surface S. Assume P (F') is smooth. Then we

have the following result: F' 1is locally free. Because

. P(F') is embedded in a high-dimensional projective'space (=I#H
such that every fiber of m:P(F') —> S is a linear space in
=l Taking a general hyperplane section of P(F') in r
sucessively, we reduce this problem to the case of rank F' = 2.

Finally by Proposition 5.5. we get the result: F' 1is locally

free.



In the next place, we assume that deg pz2 2.
First for every line £ in X , we define a reduced

closed subscheme in X as follows.

{5.6) S(Z2):;= union of lines LH which intersect the line

def
2 where LB is the line corresponding to an element Y
in Y. (Such Lg is said to be a line in Y).

1qp“1(2) as a

Noting that S(2) is equal to pa
set in (5.1), we can give S(&) a reduced algebraic structure.

We see easily that

(5.7) S(2) 1is a 2-dimensional closed subscheme in X

and there exists an open subset Y0 in Y enjoying the
following: For every line £ 1in YO’ there is an irreducible
2-dimensional component A{(&) of S(&) such that A(R)

contains a line in Y passing through every point in £.
Under the above notations, we consider two cases.

{5.7.1) For every point 4§ in YO ’ p*A(Rg) is contained

in g*Pic Y.

(5.7.2) There is a line £ in Y, , such that p*A(L)

0

is not contained in g*Pic Y.

Then we can show for the first case deg p = 2 and X
is a quadric surface fiber space. In the second case, we infer

that X 1is a Fano 3-fold.

For the purpose we need several propositions.



Proposition 5.8. Under .the condition of deg pz2 2, let

D = {DA | A€ A} be a set which consists of infinitely many

irreducible effective divisors in (X,L). Assume that

2(X,L) = 2 and p*D is contained in g*Pic Y for

A

every element in D,

Then the following holds:

1) Set the subset: {D,{D, is a plane as for (X,L)} in

D as M. Then M 1is a finite set.

2) Except a finite many elements in D , p_1DA consists

. of two irreducible components E.

Therefore (X,L) 1is a guadric surface fiber space.

Proof. First of all, we have

Pdlmml

Claim: If (X,L) has infinite many planes in as for

the immersion induced by the complete linear system |LI,

2(X,L) = 0 or 1.

Proof... The above assumption gives rise to an algebra family
of planes (¥,T} with dim T21 and X < X x T by taking
a Hilbert scheme of planes, which infers that there is a plane

P in X such that N, = O0p2 (a) and az0. This yields

the following exact sequence of normal bundles: for a line

£ in X

0 — N —> N —> N

2/P /X P/X|2

I I

02(1) 0,(a)

—_— 0



5.6

Hence we get L(X,L) =0 oxr 1,

The above claim induces 1).

Secondly, noting that if a surface is generated by
r{(z 3) pieces of 1-dimensional families of lines, then
such a surface is a plane, 2) is obvious by 1) and the
separability of p. Finally, since we know that only a
guadric surface has 2-pieces of 1-dimensional families
of lines, the last part is trivial by our assumption of

2(X,L) = 2.

The above immediately yields

Corollary 5.9 Under the notations in (5.6) and (5.7),

assume the condition (5.7.1). Then deg p = 2 and (X,L)

is a quadric surface fiber space.

In the next place, let us determine the structure

of (X,L) in the case (5.7.2)}.

The following proposition (5.10) is a key for main
theorem, which states a criterion for a given line bundle
to be numerically equivalent to zero. Here we consider this
terminoclogy on a complete algebraic scheme which is not
necessarily smooth. Hence let us recall it by Kleiman's

paper [9].



Let V be a complete algebraic scheme over k
and M an invertible sheaf on V. We call M numerically
trivial and write M X 0 if (M - C), = 0 for all closed
integral curve C 1in V. Then he shows that

Proposition (4, Corollary 1 [9])

Let f:V'.— V Dbe a morphism between algebraic

complete. schemes, M an invertible sheaf on V and

M' = f£*M., Then

(1) MT0 =M and conversely.

134
o

(ii) M~ 0« M' 20, if f is surjective.

Now we get

Proposition 5.10. Under the diagram in (5.1), let D be an

irreducible divisor in X , and D1,D2 irreducible Weil

divisors in 2 and let £ be a line sitting on D in X.

Now we assume that

1) D, and D, are irreducible components of p~ 1D in 2z,

2) qD, is a curve in Y and qu =Y , and ,

3) Two curve L4 and 22 are irreducible components of

p 12 such that q(l1) is one point in Y and q(£2)

a curve. At last we assume that there are two lihe bundles

L and M on X and Y respectively, such that p*L = g*M.

Then L and M are numerically trivial.

This proposition immediately provides us with



5.8

Corollary 5.11. Under the condition (5.7.2), K, + 2L

is

X

numerically trivial.

Proof of Proposition 5.10. Consider the restriction of the

line bundle on &,:p*L| = g*M|, . Since q*M| = g* (M|
1 11 21 21

by

q(21)

the commutativity and q(21) is one point, we get

L|, = 0, because the restricted map pf, :%;, —> 2 is an

1

isomorphism. Next, taking p*L|22 = g*M|, , the left-hand side

is

above proposition. Thirdly, taking pP*L| -1 = q*M| -1
q C

(
is

by

2
trivial, which implies that M|q(22)§ 0, because of the

C
q*(M|C)) with qf, = C , we see that the right-hand side

numerically trivial, and, hence so is L|D with D = p(q_1C)

virtue of the above proposition. Entirely in the same way,

assumption 1) yields our proposition.

g.e.d.

Proof of Corollary 5.11. As a divisor D in Proposition 5.10.

take A(f) satisfying the condition (5.7.2). Obviously A(2)

gives two divisor D1,D2 enjoying the condition in

Proposition 5.10. In the same way we have £,% and 2

1 27

Hence we can show this Corollary by Proposition 5.10.

of

to

g.e.d.

The next theorem is important to determine the structure

the variety in (5.7.1) and at the same time it enable us

observe {(5.7.2) easily.

Theorem 5.12. Let (X,L}) be a smooth variety with 2(X,L) = 2.

Assume that dim |L|I 27 and p 1is aseparable morphism. Then




(X,L} is one of P1-bund1e over a surface and a quadric

surface fibre space over a curve.

Let us assume that (X,L} is not a ]P1 -bundle, namely
deg p2 2. Then to show this theorem, by Proposition 5.8, it
suffices to show that there are infinitely many divisors

{p,} in X such that p*D, € g*Pic Y.

A

For this purpose we need several facts.

(5.13) Choose a general line & 1in Y such that Nl/x =00 ¢
and let 0:X —> X be the blowing up with the line & in

X as the center. Then ¢ factors the product 0_1~'W of two

rational maps.

Here ¢ 1is a rational map corresponding to a linear system
|IL - 2] , W an image of X wvia ¢ and ¥ 1is a morphism
corresponding to a linear system iH1]  where B denotes

O*L - o '% and it is base point free. Then we obtain

Proposition 5.14. Under the above notations (5.13), assume

that H3z 4 and N2z25. Then dim W = 3 and (%) is a plane

or a gquadric surface.




Proof. Noting that N =0,© 0, , we see that

/X
w3 = (6*1)3 - 3(c*1) 267 + 30*L(oT 0% - (o7 (2)) 3
=13 4 3(0%L) (~07 1 (8) + c, (N, )VE) + c (N, )
177./X 178/
= L3 - 30*(L -%) = L3 -~ 3 , where f 1is a fiber

of a p'-bundle :0_1(2) — £ and c¢,(*) is a 1 st Chern

class of *. Similarly we get H'™ ‘¢ 2] = 2. (See [61).

These yields our proposition.
g.e.d.

(5.15) We must remark that each line intersectingthe line

£ 1in above proposition collapses a point by o on (L) .

Proposition 5.14. Under the above notation (5.13), let us

assume that L>24 and dim |L|26. Then for a general line

£ in YO {see (5.7)) such that NR/X = 02 ® O2 , there

exists an effective divisor H, in |L| such that

0
supp Hy=A(L) 1in (5.7). Moreover assume that dim [H|27.

Then there exists an effective divisor H1 in |Ll such that

besides A(R), H has a component D not contained in S(%).

1

Proof. For a former part, we can take a hyperplane S containing
w(L) (= a plane or a quadric surface) in PN_2 (N - 224) by
virtue of (5.14). Therefore Remark 5.13 1implies that the

divisor in |L| corresponding to S is a desired one. For

the remainder, since there is at least one-dimensional family

of hyperplanes in PN_Z containing (%), we can choose a

hyperplane S' passing through a point in W except ().



The corresponding divisor H, in |ILl is what we look

for.

Remark 5.16. In the above proof when we fix a general point

X in X for a given line £ we can take a divisor H, in

the above sense passing through X . We write this H, as

DQI L4

Proof of Theorem 5,12

Now let us observe the property of A(g) and D2

Noting that the intersection number of L and a line ¢ is
one and that D, and A(4) are irreducible component of a
divisor in |L| , we see that DR *2=0 or A(R) -L=0.
On the other hand it is well known that Pic Z is isomorphic

to 2p*L & g*Pic Y. Hence we see that either p_1D£ or

p_1A(£) is contained in g*Pic Y. Hence we get Theorem 5.12.
g.e.d.

By virtue of Theorem 5.12, we have only the study the

structure of (X,L) with dim |L|s$6.

(5.17) If dim |L| = 4, then we see eaily that (X,L) is a
cubic hypersurface in EA .

To consider the other cases, we need the following

Lemma 5.18. Let (X,L}) be a smooth 3-fold with 2(X,L) = 2.

Assume that KX + 2L 1is numerically trivial. Then




H'(X,tL) = 0 for i = 1,2 and every integer t.

Proof. Take a smooth member H in |L|. Since KH=:KX*-LI

we see that —KH is ample, which implies that H 1is a Del

Pezzo surface. It is known that Picard group of such surface is

H 14

torsion free, hence we get LLH = -K Moreover we know

H -
H1(H,tKH) = 0 for every integer t [See III, Thecorem 1 in

[16]]. Hence considering the following seguence:

®. 0 -— (t - 1)L — tL —> tL|, — 0 .

1
We obtain a surjective morphism: H1(X,(t—1)L) —> H (X,tL) — 0
and an injective morphism 0 — HZ(X,(t—1)L) —_—> HZ(X,tL)
for every integer t. Serre duality and Serre's vanishing

theorem yields our desired fact.

(5.19) Let us consider the case of dim |Ll= 5. Considering

the above exact sequence &, we get dim|-X..| = 4 and, therefore,

1 H
Ké = 4 by Riemann Roch Theorem. H. is known to be a complete
intersection of two quadric hypersurface in P4 . Hence X
is a complete intersection of two quadric hypersurface in IPS
by virtue of Proposition 3.8 in [11].
(5.20) Let us consider the case: dim |L| = 6 , namely
KE = 5. But the proof (6.5) by Iskovskih [8] is valid for our

case, as it is, even in the positive characteristic case.
As other reference, see [5]. By virtue of Lemma 5.18, A(X,L),

in the meaning by Fujita, is 1.



{5.21) Proof of Main Theorem (in the case of L(X,L) = 2)

Finally let us study the structure of an n(z24)
dimensional smooth variety (X,L) with L{X,L) = 2. We

take a series of subvarieties X = X,2X.>...>2 X

0 1 n-3
such that X, is a smooth member of L, (= Li-1ixi)'
X0 = X and L0 = L. Then by virtue of Proposition 1.8,
(X, _3+L,_3) is a 3-fold which contains many lines and

2(X _4sL__3) = 2. Therefore we have five cases (5.5), (5.9),

(5.17), (5.20) and (5.2171). If (Xn-B’L ) 1is as in (5.5},

n-3
we infer that (xn,L) is isomorphism to (P(E),OIP(E)(1))
where E 1is a very ample vector bundle over a smooth

surface by using Theorem 3.1 inductively. For the (5.9) ,

we can get a desired result by virtue of Theorem 2 in the same
way as above. For (5.20) (5.21), we can check that H1(X,OX)=O
entirely in the same way as in Lemma 5.18. Hence it is straight-
forward to see that (X,L) 1is a Del Pezzo manifold whose degree
is 4 and 5 respectively in the meaning by T. Fujity by

using (5.7.3), (5.7.5) in [5]. Hence by virtue of Theorem b,

we have a desired result.



§6. 3-folds with two fiber space structures

In this section we shall study the structure of 3-fold
with two families of lines, each of which fill up the whole

space X .

Let (X,L) be a smooth 3-fold which contains many lines.

(6.1) Assume that there are two irreducible components

5.,S8 of Hilbert scheme of lines in (X,L) whose lines

1772
£fill uwp X.

(6.2) Moreover, we assume that the canonical morphism
Py :Zi ———> X 1is separable (see 1.3) where Zi is the

universal space of Si'

Then we have the following

Theorem 6.3. Let (X,I.) be a smooth 3-fold and let us main-

tain the assumption (6.1) and 6.2). Then (X,L) is one of

the following:

1) P! x p?
2) Sy % o852 where S, is a P'-bundle over a smooth
durvé c.
3) P(T )
2.

To show this, we need several propositions.



(6.4) Remark. If the characteristic of k is zero, (6.2)

holds automatically.

By virtue of our results (= Main Theorem) in 3-dimen-
tional case), there is the following possibility as for

dinlsi (i=1,2)

(6.5) dims; () dims,
3 3.
3 2
2 2

But we immediatly have

Claim. The case of diHlSi= 3 does not occur.

Proof. diHlSi= 3 means that X 1is a Pz—bundle over a
smooth curve Ci by (3.2). On the other hand since every

morphism from P2 to a curve is constant, this case is ab-

surd.

By the same reason, there exists no (X,L) which is
both P2—bundle over a curve and a quadric surface fiber

space over a curve. (abbreviates gsfs often)

(6.6) Hence we shall investigate (X,L) .with following

two fiber structures:



@) P'-bundle and P -bundle
R) P1—bundle and P1—bundle
Y) P1-bundle and gsfs

§) gsfs and gsfs

Then we have

Lemma .
a) 'P1XP2
B) S,*x S , or P(T ,)
1 C P2

where Si is a :P1—bundle over a curve C

Y) ,8) P xP xP

(6.7) Now we would like to study 3-fold with two kinds of

fibre structure in the case o, B, vy, 8§ (6.6). For the

purpose we shall determine the structure under a little wea-
ker condition, namely, not assuming the projective space

fiber bundle in the Zariski topology. Precisely speaking,

let X be a smooth 3-fold which is a P'-bundle p':X-*-O-Sj

over a smooth surface S in the &tale topology. Moreover

as the second fiber structure we consider three cases as

follows (i=a,B,Y): g =Xi(g>0 > Ty is a fiber space,

i
where q, is a Pz-bundle over a non-singular curve T, .
qB a P1-bundle over a smooth surface TB and qB is a

quadric surface fiber space over TY . Note that



q and qg are bundle maps in the étale topology, and the

o
concept of lines is not assumed. On the other hand, remark

that the case 8§ is shown in (2.14).

Theorem 6.7. Let us maintain above notation (6.7) in any

characteristic case. Then the same conclusion as in Lemma 6.6

holds .

For the purpose, the following is useful to determine
whether Si is of negative Kodaira dimension. The first is

a well-known

Proposition 6.8. Let us consider the following exact se-

quence of vector bundles: 0 ——> E, > E —> E2 —> 0
Then Sm(E)(=E}J has 5 sequence of subbundles:

FO = C“FT c c Fm

_ o1 i ,
where Fi+1/Fi = S (E1) ® 5 (Ez) (1 £ism) .

Next, let us consider the following exact sequence of

vector bundles.

k
i
0 ——> Di

> E

> F.
i

> 0 for i=1,2 . Then we

have

Proposition 6.9. Under the above notation, asssume that for

i=1,2 and jzi, HO(Z,Sm_J,(Dj)asj(Fi)) - 0 and

k1+k2
s —> E is generally inijective. Then we have

D,::®& D

1




0

10 (z,8™ (D)) for i-=

Procof is easy.

As and

a) B) yield

1
S

Q‘I

(1) <

0 —> p*Q. —>

> q*Q;
i

1
fx

0

——

(2) )

Q
q

P

where and

Q are the
P

with respect to and q;

Using Proposition 6.8 and 6

case a),B),y) .
Case o). By virtue of Main
to show that S is P2

zero case,

dominated by 1P2

and C

1,2 .

the following exact sequence:

—_ o —>
P
—_— 91 —> 0
95
relative canonical bundles

.9, let us start the proof of

Theorem in [Sa2] , it suffices.

is :P‘l In characteristic

.

it is obvious because the smooth surface which is

is also 192

Secondly we assume that chark is positive, taking the
second exterior of (1) and (2)a
(1) 0 > p*K ——m>u% b prol @ —> 0
P™%g oAy - p*ig ® &,
(2)' 0 —> q*o) @ o —> 1% DI %\Q E— 0
o q T q K k QX M ¢ q ’
where 9, =\q and Ta = T

We shall check HO(X,S- GAQ%))

-

0‘_

for every positive



6.6

om, ®m

Iﬁ%ejér m , hence, ﬁO(X,p?ké ) :«HOTSTKS ) =0
Restricting (2)& on a fiber (=f) of q , we get
0 Q : 1| K 0
> —> A > >
2 %!, p2

'Yy vanishes

2

2
Therefore Proposition 6.8 says that HO(X,Sm(AQx

‘for m>0 , which implies that S is ruled. Since TP do-

minates S , PicS= % , which means that § 1is P2 .

qg.e.d. of «a)

Case RB) This case is already shown in characteristic zero
case in [13]. Hence we assume that chark is positive. In

the same way as in case a) take the exterior of (1) and (2):

2
(2 )" 0 —> q*KT ———>'AQX1 _— q*Q% ® Qﬁ —> 0

where qB:=q , and TB =T .

1

Qp
. 0 T, & t oxel _

easily that H " (X,S5 (g KT) ® ST (q QT ® Qq)) = 0 for

®m

Restricting g¥* ® Qq to a fiber of g P'), we see

rz20 and t>0 , which yields HO(X,p*KS ) = 0 for every
positive integer m , by virtue of Proposition 6.9. Hence

S 1is ruled,similarly T is ruled. Moreover we have a

Claim. Both S and T are a geometrically ruled surface

or P .

Proof. Taking a general smooth curve C in T , we see

N



that the restricted map p : q_1(C) —> S 1is surjective.

Therefore 1 or 2 is the rank of the first cohomology

group of S modulo numerical equivalence. Hence in the for-
2

mer case S and T are r-, and in the latter case they

are geometrically ruled.

Now if S and T are P2 , we know X is 1lsomorphic

to P(T ,) by virtue of Main .Theorem A in [13] . Secondly
P
in the case of a geometrically:ruled surface, we see that X

is iscomorphic to § x CT where § and T are 1P1-bundle
over a smooth curve C. The proof is completely the same

as the proof of Theorem B in [13]

Case y). First let us determine the structure of S , name-
ly P1x;P1 There is the following exact sequence:
(i)‘ 0 >'p*K — Al — P*Q. ® Q. —> O

On the other hand, since a general fiber of qY is a smooth

quadric surface ¢, there is another exact sequence:

v 1 1
® 0 —> N=0 >_QX _—_ QQ —> 0 .
o

Hence taking 2nd exterior of & , we get

1 2.1, - . .
0 ——-?j?Q _—> AQX,Q_:__"> Koy —> 0 , which implies
that.,ﬁb}b,sm(ﬁﬂ1| )) = 0 for every positiveidnteger m.
SX'Q Ry

®m

This yields HO(X,p*KS ) =0 for m>0, hence,
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®m

HO(S,K )y = 0, namely S 1is ruled. Moreover since S 1is

S

dominated by P1x P1(==Q), we see that S is 2131><-]IE’1 or Pz,

which provides us with the fact that X is a Proj of a vec-

tor bundle E of rank 2 over S (see [1].

(y-1) First we shall show that S is not .

v
Proof. Assume that S is :Pz . Let RA(A €P2) be a line

v
in P2 where P2 denotes the dual space of P2 and let us

denote p—1(£A)r1q-1(a) by D . Now fix a geometrically

a;A
ruled surface : p :p_1(£A) —_— RA . For two points a,a’
in Ci(= P1) ' D .ND_t =¢ , which means the existence
a,xi a’' i, . .
of an irreducible curve C whose self intersection is zero

because H'(F_ 0. ) = 0 with F_ = p_1(2 ) . By virtue of
n, Fn n A
Proposition 3.6 [13]} , we see that p_1(£A) is isomorphic

to P1x P1 . Therefore the vector bundle E over P2 is

uniform, which implies that E 1is a direct sum of the sane
two line bundles by virtue of [12]}. Hence X is isomorphic .

to ZP1X P2 . This easily contradicts our assumption that

g : X > C{= P1) is a quadric surface fiber space.

(v.2) Assume that S 1is a smooth quadric surface.
1 1,_ 1 , . .

Let p, :P xP (=8) > P be the i-th projection and
-1 _‘1 -

Py X (=0 (0,7 (a))) —> p, '(a)  a P'-bundle. Now con-

. -1

id = -

sidering xan q (b) |( Da,b)’ we have Da,b ] Da,b' o .

Since H1(xa,0X ) = 0, there is an irreducible curve

a
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C in Xy such that C2 =0, which means that. xa is P1 XP1

similarly in (y.1). Since X =P(E)} , we see that for every
. . 1 , ,

point a in P, E'f(a) is 0 1(m) ® 0 1(m) with

P r
f(a) = p1-1(a) and it is independent of the choice of a in

P1 by the existence of the 1st Chern class of E., By virtue

of Base change theorem, we see that -

E==p2ﬂJ1ﬂm 91%*(01*(01(s)® 01(tn. As for the second projec-
: r P Pr r

tion Py v taking the same procedure, we know
E = py*0 7 (n) ®PQ*(O 1{w) ® 0 4(v)) . Hence we get s=t=n
P P P

X 1 ] 1

and u=v=m, which means is isomorphic to Pix P :xP .

g.e.d. of Theorem 6.7.

6.10. Remark. Theorem 6.7 gives a complete proof for the

generalization of Theorem B [13] in any characteristic case.

Theorem 6.7 is applied to show theorem in §3. To enable the
application, let us state a useful proposition telling us

when Py becomes a separable morphism.



(6.11) Let (X,L) and (X,L} be smooth projective 3-fold

and _4-fold respectively which contain many lines, and let X

be a member of |L| with Nx/i = L . Moreover, let (X,L)
be as in (6.1) and let us assume that S1 is a surface which
yields a P1—bund1e : X => S1 . Then taking a fiber (= 2)
of T : X > S5 , there is an exact sequence:

0 > NR/X > N,Q,/X R NX/)_(lﬂ, > 0
. ~ 2 _ . ) _
hence, we get Nz/X = O2 ® 02(1) , which implies the irre
ducible component T of Hilbert scheme of &£ in X . Put
N+1 = dim |[L| . Then T (or, S,;) can be naturally conside-

red as a closed subscheme in Gr(N+1,1) (oxr, Gr(N,1) , resp.)
under the canonically embedding: Gr(N,1) ¢«—> Gr(N+1,1) .

(see §3) . Here we obtain the following

Proposition 6.12. Let (X,L), (X,L), s;» T and p, be as

in (6.1) and (6.11).

Assume that S1 and .82 are irreducible components in

Gr(N,1)NT (£ Gr(N+1,1)). Then S2 is a surface and P,

is separable,

Proof. Taking a line L corresponding to a point in Sz,

there is the following exact sequence as for normal bundles

0 > N

/X

> 0

L/X > Nyyxio



By virtue of our assumption, T 1is the irreducible compo-
nent of Hilbert scheme of £ in X whose Hilbert polynomial
is X(Nz/}-{(n)) = 3n+4 . Since L and f{ are contained in
T , we see that (NL/X(n)) = 2n + 2 hence, QetNL/X = 0 .
Now we have a

Claim. There is a smooth hyperplane section H in X con-

taining 2 . Therefore N is 0060 or O0(1) ® 0(=1)

L/X
Proof. Assume X 1is contained in PY . Then Bertini's
Theorem says that a general hyperplane section containing 2
is smooth outside & . The dimension of such hyperplane sec-
tion is N-2. On the other hand, N-4 is the dimension
of hyperplane section H where H>% and H is singular at
a fixed point in £ . Hence we showed the former part. In

the next place we have the following

0

—> N > 0

a/xln (50(1))

!

> Ny /n > Npx

Hence we get N = (-1} , which means the latter.

L/X

By the above Claim, we see H1(L,N ) = 0 , which gives

L/X
us the separability of P,

Finally let us give a pathological example (X,L) which

contains my line.



6.11. Remark. Let p(>0) be the characteristic of the

field k .

—

Put X as {(x:y~:z):x(a:b:c)€P12x1?22|xqa+yqb+zqc = 0}

> P12 be the first projection and

with q=pm . Let r:X

s : X >:P22 the second projection.

Then (X,0(1,1)

) is the following properties:

1} It is a smooth 3-fold which contains my lines.

2) r 1is a P1—bundle and s  an inseparable morphism whose
fiber is P1 set~-theoretically. Every line in X is

a fiber of p or g .

3) Hence r and s yield the Hilbert scheme of lines in
(X,L) . Let fr and fS be the fiber (% P1) or
r and s respectively, set-theoretically. Then

N = (0 @& (¢ and N

m
£ /X = 0(1) & 0(-p") .
r

£ /X
s/

Proof. Let us show the latest part only. X is isomorphic

to P(p*T 2) where ¢ 1is the m-power of a Frobenius map

P
P2 > P2A. Then r means the canonical projection
: P(Q*T ,) > P21 . Now take a line 2(2’P1) induced by
P
is a closed immersion from

8 . Then, noting that r|l

L to P12 , there is the following exact sequence

> N —>

/X Nr/x| >0

/R



where

R means r_1(r(ﬂn = Fq(= Hirzebruch Surface), which

follows that

Since
ponent

plies

> 0(-pM)

> 0(1)

> NR/X > 0 .
s ' yields a 2-dimension surface as an irreducible com-

of Hilbert scheme, we have h°(%,N

Ny = 0(1) @ 0(-p")".

2/X)a 2 ., which im-



(M)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)
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