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VARIETIES WHICH CONTAIN MANY LINES

by

Eiichi Sato

In the present paper, the author will study varieties

containing many lines and determine the structure of such

varieties. As easy and simple examples, well-known are

hypersurfaces of low degree in the projective space and'

pr-bundle embedded by very ample tautological line bundle.

Our aim is to ask the reverse, narnely, what is the structure

of variety containing many lines? First J.et X be a

projective variety and A a linear system which induces a

1 d mb dd ' X C7",._ d im I A I h d f'c ose e e lng <.PA: -;---,.- JP • T en one e lnes as

follows.

Definition A (X,A) is said to contain many lines, if for

every point x in <.PA (X) , there is a line

contained in ~A(X).

Now we pose the following

t in lPdim I A I
x

Problem. Under the above definition and the assumption

describe the properties of (X,A) and classify (X,A).

But without the assumption of suitable conditions, I think

it is meaningless and loose to consider the classification

of (X,A) simply. Therefore, for (X,A) we introduce
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a numerical quantity 2(X,A) which indicates the extent

of the existence of.lines on X. (See 1.3).

(B) In this paper let us assume that A is a complete

linear,system ILI of a very ample line bundle L on X

and (X,L) is written in place of (X,ILI).

(C) Throughout this paper, (X,L) denotes a variety which

contains many lines in the sense of A and B.

Then our Main Theorem is as folIows.

Main Theorem. Let (X,L) be a smooth variety which contains

many lines. Assume that 2(X,L) ~ 2. In positive characteristic

case moreover, assume that p 1s separable (see 1.3). Then

we have

2(X,L)

o

1

2

\.

(X, L)

(JPn, 0 ( 1 ) )
JPn

(Qn 0 ( 1 ) ), Qn b . d .e~ng .. a qua r~c

Qn

hypersurface in. ~n+J

(lP (E) , 0lP (E) (1)) , where E is a very

arnple vector bundle of rank n over a

non-singular curve.

(Cubic hypersurface X, 0x(1))

(Q~+ 1 n Q~+1 (= X), 0 X ( 1 ) )

(Gr (4 , 1) n Li (= X), 0X( 1 )) (i = 6:, 7 , 8) ,

where Li 1s an i-dimensional linear

subspace in ]p9 and Gr'( 4, 1 ) is
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embedded in :w9

embedding.

by the Plücker

where E is a

very arnple vector bundle cf rank

rank n - 1 over a non-singular

surface.

(Quadric hypersurface fiber space

X,L) (See 2.1).

In the next place, let us talk about the method to get

Main Theorem briefly, 1t is trivial to determine (X,L) with

~(X,L) = 0 (Sublernma 1.7). Moreover we determine the sur-

face with ~(X,L) = 1 (Proposition 1.9) and 3-fold with

~(X,L) = 2 (§ 5). For higher dimensional case, taking

several hyperplane sections we observe the structure of (X,L).

In order to give more detailed explation, let us statethe

titles of each section.

§ 1. Definition of ~(X,L) and its properties.

§ 2. Varieties where hyperplane 5ection i5 a quadric

hypersurface fiber space over a curve.

§ 3. Varieties whose hyperplane section i5 r
JP - bundle

and (X,L) with t(X,L) = 1 •

§ 4. 3-folds with many quadric surfaces.

§ 5. Classification of (X,L) with t(X,L) = 2.
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§ 6 3-folds with two fiber space structures. Section

2 and 3 show that a variety inherits a fiber structure

from the ample divisor. In the characteristic zero case,

there are many results by A. Somrnese and T. Fuj,ita

(Proposition III in [13], Corollary 2.10 in [4] and [14]),

whichutilize Kodaira's vanishing Theorem and Lefschetz's

Theorem.

On the other hand, in the characteristic p case,

lacking the above two powerful theorems, we shall show

the restricted results in § 3 and 4 by using Serre's

Vanishing Theorem and the Li~ting rnethod.

In § 5, a big problem is to deterrnine the structure

of Fano 3-folds with special properties. Theorem 5.12

is important in order to obtain the classification

of 3-folds with ~(X,L) = 2 with more ease. Moreover,

to get the final results, we make u~e of some results by

T. Fujita [5] and Iskovskih [7]. In § 6 , we classify

3-folds (X,L) with two fiber structures whose fiber is

a line. Unlike the characteristic zero casei we cannot

obtain a complete solution of this problem in the positive

characteristic case. We give a pathological example (6.11)

pertaining to this problem in the positiye characteritic case.

Moreover, our result in § 6 is necessary to complete the proof

in § 3.

Notation. Throughout this article, k is an. alg,ebraically closed

field of characteristic p(~O). Under a scheme we understand
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aseparated algebraie k-scheme. By a variety, we mean

a reduced irreducible algebraic k-seheme. 0Fn (1) is

the line bundle eorresponding to the divisor elass of

hyperplanes in the n-dimensional projective space F n .
n

1
n kIf X is isomorphie to F x ••• x lP ,O(a1 , ... ,ak )

denotes . ~1 pr. 0Fn . (a.) where pr. is the i-th
1.= 1. ..1. 1. 1.

n nk n.
proj eetion from lP 1 x ••• x F to lP 1. • This notation

is often used where there is no danger of eonfusion. For

a hypersurfaee X in F n+ 1 , 0x(1) denotes the line bundle

corresponding to a hyperplane seetion of X in F n
+

1

abbreviated by 0(1). For a line bundle L on a variety,

ILI denotes a eomplete linear syst~m. We use the terms

veetor bundle and loeally free sheaf interehangeably. Gr(n,d)

denotes the Grassmann variety parameterizing d-dimensional

linear subspaee of the n-dimensional spaee ]pn. F~(n,1,O)

with the

denotes theonline

is the flag variety· {(X ,y) (: Gr (n, 1) x ]pn I L 3 Y
v X

corresponding to x} •. E

dual vector bundle of a veetor bundle E. If T is a closed

subscheme of S , then we use the notation EI
T

instead of

i*E where i is the natural immersion i:T ~ S . Moreover,

when T is a locally complete interseetion in S, then

NT/ S denotes the normal 'bundle of T in S. hi(S,E) denotes

dirn Hi(S,E). When X is a non-singular variety, n~ (or, Tx )

denotes the sheaf of differential 1-forms (or, the tangent

sheaf, respectively) on X.

The author completed this article during a stay at the

Max-Planck-Institut für Mathematik in Bonn. I would like to
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express my thanks to the Max-Planck-Institut für Mathematik

for making my research possible, and especially for providing

such a pleasant atrnosphere to work.
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§ 1. Definition of t(X,L) and its properties.

First let us begin with some remarks about definition A

of (X,A) in the introduction.

Remark 1.1 For (X,A), let X be a subvariety embedded in

F lAI by A. Then if one projects X from a point outside

X in F lAI a line in X is projected to a line as weIl.

Moreover there is a variety (X,L) which is biregularly

projected from a point. But in this paper we consider only

a compl~te linear system.

Remark 1.2 There is a variety X and finite many line

bundles L
1

, ••• ,Lr (r ~ 2) on X such that (X,L.)
1.

contain5 many lines. For each (X,L) in the sense of A,

we introduce an integer t(X,L) which describes the

quantity of lines on ~L (X). Let Y be a Hilbert scheme

of lines in ~L(X). Then it i5 well-known that Y i5 a

projective scheme. Let Y i be an irreducible component of

Y. Then for (X,L) we define t(X,L) as folIows:

( 1 • 3) t(X,L) = dirn X - 1 ,- rnax
i

-1dirn (q (p (x)) n Yi)

where lines in Y.
1.

fill up the whole 5pace X, and p

and q are projection as in the following diagrarn

N
XcP

z

p 1
Ft(N,1,0)

/'
Gr (N ,1) c Y
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and N denotes dirn ILI .

(1.4) Hereafter we use this diagram and projeetions

p,q very often where we ehoose Y as a fixed irreducible

eomponent which gives rise to ~(X,L).

Remark 1.5

terms:

One can describe 2(X,L) in the following

~(X,L) = dirn X - 1 - max dirn HO(~,N2/X ~ 0~(-1))
~

where ~ iS.a line and N.e./X is generated by its global

seetions.

2(X,L) takes the following numerical values.

Lenuna 1. 6 0 ~ ~ (X, L) ;;;ij d im X - 1

Proof. It is suffieient to show the leit-hand inequality.

For this purpose we prove the following Sublemma 1.7. If

J?(X,L) $ 0, (X,L) is isomorphie to
n

(~ ,0 (1)). Moreover
pn

Proof. Take a generic smooth point x in X and consider

dimlLIthe tangent space Tx at x in ~ . Then Tx contain5

allIines passing through x, which is of, at least, n

dimensional. Noting that T i5 an n-dimensional linearx

space in ~ dimlL I, it is obvious that (X,L) i5 (1P n, 0 (1)) .
]pn

The latter part is trivial.
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We now deduee the relation between 2(X,~) and

~(H,LIH)' where H is a hyperplane seetion in ILI.

Namely, we have

Proposition 1.8. Let (X,L) be a variety whieh eontains

rnany lines and H an,-effeetive divisor of ILI which

is reduced and irreducible. Assurne that 2(X,L) ~dirn X - 2.

Then (H, LI
H

) eontains rnany lines and we have the inequality

~ (X, L) ~ ~ (H, LI H). Moreover if H is a general mernber of ILI,

their equality holds.

Proof. The assurnption rneans that for every point x in X,

there is at least a one-dirnensional family of lines passing,.'

through x, whieh makes a eone C in X with a vertex x.

Henee any hyperplane H through x eontains a generator of

the eone C , which yields dirn (C n H) ~ dirn C - 1. Therefore

we get the inequality. The latter part is trivial.

q.e.d.

To end this section, let us investigate the structure in the

surface case.

Proposition 1.9. Let (X,L) be a smooth surface which eontains

rnany lines. Assurne that 2(X,L) = 1. Then there is a TT:X ~ C

p
1-bundle over a srnooth curve C whose fiber is a line.

Proof. Our assurnption yields a curve C (see the diagram

(1.3)). Take its general line ~ in X. Then we see easily

that N~/X is trivial, which means that two general lines
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parameterized by Y does not intersect each other and

p(1.3) is a separable rnorphisrn. Hence deg p . rnust be

1 , which implies that p is an isomorphisrn since X is

normal.

q.e.d

Corollary 1.10. Let (X,L) be as in Proposition 1.-9. Assurne

that there are at least two lines through a general point in X.

3Then (X,L) is a quadric surface in F . Consequently the

Hilbert scherne of lines in the smooth quadric surface is

p 1
11 P'.

Proof. The proof of Proposition 1.9 implies that X

has two fiberings TI.X ---:;... C.
1 1

such that every fiber of TI.
1

is a line and C. is a smooth curve, which gives rise to the
1

rnorphism TI = (TI, ,TIZ):X ->-- C, x CZ. Easily we see that TI is

an isomorphism.

q.e.d.
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§ 2. Varieties whose hyperplane section is a quadric

hypersurface fiber space over a curve.

In this section we shall study an extension theory

with respect to amorphism. Throughout this section we

assume that char k * 2:

(2.1) Let (X,L) and (X,L) be smooth varieties and X

an ample divisor in ILI with dirn X ~ 3 and N = L. WeX/X

assume that ~:X ~ C is a fiber space over a non-singular

curve C such that for every point (a general point) c,

-1
(~ (c),.LL"'_1 ) is a quadric (irreducible quadric) hyper-

r4J (c)
sur~ace in Fn. Hereafter we call such (X,L) a quadric

hypersurface fiber space.

Then we have

Theorem 2. Let (X,L) and (X,I) be as above. Then ~

can be extended to a morphism ~:X ~ C. (Lemma' 2.6. and

2.7)

First we shall prove the following lemma.

Lemma 2.2 Let (X,L) and (X,L) be as above (2.1). If

denotes the Albanese variety

JE'
1 and= 0, C is isomorphie to

1 -= H (X,Ox) = O. Here Alb X

dirn Alb X
1 ~ ,

H (X'~x)

of. X.

For this lemma, we prepare several propositions.

(2.3) Let us assume that dirn X = 3 and take a general

smooth hyperplane section S in ILI by virture of Beritini's
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Theorem. Then we have

Proposition 2.3 S 1s a ruled surface.

Proof. By the assumption of X, we see that there are

infinitely many smooth conies in S. Moreover we use

Sublernrna 2.4 Let S be a non-singular surface in F N .

Assume that there is an,·infinite set of non-singular rational

curves whose degree i5 constant with respect to the hyper­

plane in JPN. Then S is ruled.

Proof. The above infinite set yields an algebraic family

C = {CA} AET ( C S x T) with dirn T ~ 1 by the general theory

of Hilbert ~cheme. Hence 2CA ~ o. On the other hand we know

CA · Ks = -2 - c~ ~ -2 by the adjunction formular applied to

CA whieh means Im Ksl = ~ for every positive integer m.

Then we use the Zariski Theorem [17].

q.e.d

The sublemrna 2.4 immediately implies Proposition 2.3.

Proposition 2.5. For the above S, there is a eanonieal

i
isomorphism Alb S ...:;..... Alb C" induced by the restrietion map

~ls:S ~ C. Moreover we have the eommutativity of morphims:

~'I S . AC' = AS · i where ~ is canonieal morphism: V -+ Alb V.

.proof. First of all assume that C = JP1 • Then Alb C and Alb S

are both just a point, by virtue of the definition,of the

Albanese variety. Secondly assume that C ~ F 1 • Sinee every

l'
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2.3

is a conic, we get

Hence S is not rational by [17]. Therefore the commutativity

is obvious.

g.e.d.

Proof of Lemma 2.2. By taking successive hyperplane sections

of X, we get a sequence of smooth subvarieties

X ;;;;: XO:J X 1 :J ••• :J Xn - 2

and dirn X. ;;;;: n - i.
~

where LO ;;;;: L, L. ;;;;: L. 1 1 X ' X. E: I L. 1 1
~ 1- i 1 1-

Then we get the following isomorphism:

Alb X 2 I:: Alb X 3;; ••• ;;:: Alb X by virtue of Theorem 5 of § 2n- n-

in VII I [1 0] .

On the other hand dirn Alb X ;;;;: 0 and Proposition 2. 5 ~ means

that C JP1 and 1
0 with S;;;;: H (5,0

5
) ;;;;: ;;;;: Xn-2·

Now we have

Claim. H1 (X (;;;;: S) , mL
n

_
2

) ;;;;: 0 for any non-positive integer
n-2

m.

Proof. Since L n-2
is very ample, take a curve Xn-1 in

I L 1 and consider the exact sequence:
n-2

* 0 ~n-2 (m - 1) Ln - 2 ~ mL 2 ~ m L 2 I X --iiIo-n- n-, n-1
o

We infer that is a monotome~increasing

function with respect to non-positive integers m. Therefore

1h (5,0 5 ) ;;;;: 0 proves ~his claim.

show

Finally, to complete the proof of Lemma 2.2, we shall

1 -H (X,Ox) ;;;;: O.. It suffices to prove the following:
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1If H (X. ,mL.) = 0 (i ~ n - 3) for every non-positive
1. 1.

1.integer m, so is H (X. 1,mL. 1) = O. In the same way
1- 1.-

as in above claim, the vanishing of H
i (Xi ,mL

i
) (m :S 0)

gives rise to the surjection:

1 1
H (X. l' (m - 1) L . 1) ~ H (X. l'mL . 1) --;... 01- 1- 1- 1-

by the exact sequence *i-1. Hence Serre's vanishing

theorem yields our desired result.

q.e.d of Lemma 2.2.
/

Lemma 2.6. Let (X,L) and (X,L) be as (2.1). Assume that

C :f: F
1 . Then lP: X ~ C can be extended to a morphism lP: X ~ C

-1 -
and for every point c in C, (lP (c) ,LI -1 ) ~ (Qn-1,Oa (1))

·lP (c) n-1
where Qn-1 is a (n-1)-dimensional quadric hypersurface in pn

and 0Q ( 1) = 0 n (1 ) IQ •
n-1 lP n-j

Proof. First we have the following

Claim: Let Y and Z be smooth varieties and Y an effective

divisor in Z. We suppose that

roJ

1.) Alb Y + Alb Z :f: O.

2) Y is numerically positive in Z, that is, for every

curve C in Z, y. C > 0 .

Then we have the commutative diagram:

i
Y c- > Z

A J ') J AZ, .y

Alb Y
r---..-/ Alb Z, and j o A

y
(y) AZ (.Z) i)- = 0
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The proof is easy, hence we omit it. See the proof of

Theorem 3 in [2].

Now for the proof of Lemma 2.6 we can suppose dirn Alb X > 0

by Lemma 2.2.

First assume that dirn X = 3. Taking a general smooth

surface S in ILI, we see that j · AS(S) = AX(X) 0 i by

claim above and Lang's Theorem and it follows that Ax(X) ~ C

by Proposition 2.4. Similarly we get the cesired morphism

4): X -+- C induced by the albanese map X --r Alb X. If dirn X > 3,

we take a hyperplane section. Then in the same way as above,

we can get a morphism 4):X ~ C which is extended from

~:X ~ C' inductively. Let us show that every fiber is a

quadric hypersurface. There is a following sequence:

o-~
X

o

Taking the direct image of ~, we get

·11
E

1I
E

Then noting that and E is a vector bundle of

rank (n + 1) over C ,we see that E is a vector bundle

of rank (n + 2) over C. Since X -is a divisor of

F(E) , it is easy to check that X is linearly equivalent



is linearly equivalent to

to 0lP(E) (2) 0 tp*L

Hence we see that X

where

2.6

L is a line bundle on c.

where M is a line bundle on C, which

show that each fiber of ~:X ~ C is a quadric hyper-

surface.

In the next place, we shall show the following

Lemma 2.7. Under the same condition as in (2.5), let us

assume that dirn X ~ 3, and C = ]I?
1

• Then for X the same

conclusion holds as in (2.6).

Before coming to the proof of 2.7. we make a few preliminary

remarks.

Taking the normal bundle of a general fiber -1
(= tP (c))

in X where
-1

tP (c) (=V) is a non-singular quadric hyper-

surface, we obtain the following exact sequence:

(2.7.0)

Since X is a very ample divisor in -x , so is M. On the

other hand, since we see easily that
1 y

H (V,M)= 0, we get

NV/ X = 0 e M. Hence let T be an irreducible component of

the Hilbert scheme of tp-1 (c) (=V) and· w the universal

scheme (c X ~T) of T.
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Then the first projection p:w ~ X is surjective.

Moreover rernark that T is smooth at [vJ which denotes

the point in T corresponding to V by virtue' of

is naturally embedded in T.

1
H (V,NV/ x) ::: 0

in ]pn and C

and that is a quadric hypersurface

Now to prove Lemma 2.7, we prepare several propositions.

First of all, let us investigate the property of a quadric

hypersurface U in X whose intersection number U·w
t

with wt is zero. The next proposition is a useful

oberservation.

Proposition 2.8. Let X and X be as in (2.1) , and U

an subvariety in X who5e codimension in X i5 2 and

which is not in X. Assurne that codirn (w n U) :;;; 3 with a
c

point c in C. Then the order of C(U) is one where C(U)

denotes the set {c E cl U n w '* ep } •c

Proof. Since X is ample in X, Wc n X i5 connected. The

fiber structure of X irnrnediately irnplies the proposition. ,

This gives rise to the-fol~owing

Proposition 2.9. Using the above notations, let us consider

the following three cases for U:

1) u is irreducible, reduced and is not contained in X.

is reducible, namely,2) U

dirn P 1 P 2 ~ n - 3 where P.
1.

U ::: P 1 U P 2 and ..

i5 an. (n - 2)-lihear space
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and n = dirn X.

3) U is a double (n - 2) plane.

Then C(U) consists of one point in each of mentioned cases.

Proof. First consider the case 2). Moreover assume that neither

P1 non P2 is contained in x. By Proposition 2.8. , we see

that C (P 2 ) is a point c. in C. On the other hand,
l.

recalling that P. n-2 and P1 n P2 == ]pn-3 we get::; ]p
1.

c 1 = c 2 . Secondly, assume that only P1 is contained in X.

Since any morphism from n-2
F to a curve is a constant map,

we see P1 is in a fiber of ~:x ~ C. Hence for this case,

we get the desired result. Finally assume that both P.
1.

are

contained in X. Easily we obtain the same result. Hence we

complete the proof of case 2). Case 1) and 3) are trivial.

q.e.d.

By virtue of the above investigation, we divide Lemma 2.7

to two cases:

(2.7.1) For every member tut (t rt C), the order of C (wt ) is

one.

(2.7.2) There is an irreducible wt(t ~ C) in T which is

contained in X and which meets W (c E C) •c

Proof cf Lemma 2.7 in the case (2.7.1),

for every element e in C(=p 1 ), we define

De = U{wt IW t n we * ep} such that De has a redueed strueture.

'" 1It is obvious that {De }eEP 1 induees a penell {Dc:e E P }



2.9

of divisors in X. Moreover, we see that

for generie elements e,e' in w 1 by our eonstruetion

of De
and Proposition 2.9. Henee we ean take a redueed

and irredueible divisor (=D) and get the following exaet

sequenee:

o-~
X

o .

1 -Noting that H (X,Ox) = 0 , the eomplete linear system of

[D] gives rise to a morphism ~:X ~ p 1 , whieh extends the

morphism <'p.

q.e.d.

Next, let us eonsider the ease (2.7.2). The eonclusion

in this case is as follows

Proposition 2.1Q The ease 2.7.2 does not occur. Hereafter,

till the end of this section, we shall be eoneerned only

with this ease. First let us show

(2.11) Step 1. dirn X = 3 and w~ is a non-singular guadric

surface (Hereafter we write simply Y in plaee of this wt ).

H f . t . C, fn-1 (e) n yenee or every pOln e ln ~

fiber (;;:;P
1

) of y ( ;;: p 1 x P 1 ) .

eorresponds to a

Proof. Sinee <.Py is a surjeetive map from Y to F
1 , it

is easy to see that Y is isomorphie to Proj k [XO'· .. ,Xn _ 1]/F
3 2

(=Qn-2) where F = I x. and n = dirn x( ~ 4) • Then ' .
i=O 1

Pie o ~z EI:) Z (See Ex. 11. 6.5 in [ 7 ] ) . Moreover it is easyn-2

to eheck that fiber of is n-3 Hence it followsevery <.Py F .
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-1that every fiber ~ (c) is an (n-2)-dirnensional quadric

hypersurface and conta'ins a IP""- 3 as an arnple divisor. Now

assume that dirn X ~ 4. Noting that a general fiber -1
~ (c)

is srnooth, it is known that the Picard group of such a fiber

~-1 (c) is Z if n ~ 5, which y ields a contradiction _ to

the fact that -1
~ (c) is a projective space by Corollary 3.11

i:n [11]. Hence we see that dirn X = 3 and w is a non-singular

quadric surface. The last part is trivial.

(2.12) Step 2 Ny = 0 (1 1) where Ny is the restriction of

on y.

Proof. By virtue of Proposition 5 (Kleiman [9]),

2 -
Ny = (NX/X,NX/X'W)x = (L,L,w)X where L, is a line bundle

of a divisor X in X. Since Y and ~-1 (c) belong to

the same algebraic farnily (see Lemma 2.7) and ~-1 (c) is a

quadric surface, we get N 2 = 2. On.the other handy is an

arnple line bundle on a srnooth quadratic surface, which

cornpletes this step.

(2. 13) Step 3 Ny / X is a trivial line bundle.

Proof. We have the following exact sequence:

Assume that a or b is negative. Then
o 0 1 1h (w,Ny / x) ~h (P xp ,0(1,1» = 4, which rneans that dirn T~4

because w is contained in T.
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On the other hand we remark that M in (2,7.0) is

0(1.1) by
2

M ;;;; 2, H1 (0- 1 (c) ,0 m M) ;;;; 0 and, therefore,

dirn T ;;;; 5. Hence we see that a and b are non-negative.

Since 1 v 0 we get Ny/X ;;;; O(a,b) EB 0(1.1).H (y,Ny / X lB Ny) ;;;; ,

Noting that 1 0 and, therefore, T is smoothH (w,Ny / X) ;;;;

at y, we see that a ;;;; b ;;;; 0, by the cornputation of

(2 • 1 4 ) Step 4 X is isomorphie to lP 1 xlP 1 xlP 1 •

Proof. As for the line bundle Ny / X we have the following

exact sequence:

Noting H1 (X;Ox) ;;;; 0, we get amorphism 1
et:X -+ lP whose

general fiber is a non-singular quadric surface. On the

other hand, there is originally the morphism ~ X ~ F 1

by our.assurnption, .which gives rise to.a morphism

1 1
(et,~) : X ---;.. lP x lP • By Step 1, for every point c in C·'

lV- 1 (i:) n y ;: :p 1 • We now

Claim: Every
-1

tP (c) i5 a non-singular quadric surface.

Proof. Notice that every
-1

lV (c) is a quadric surface.

Since we know that every curve on a singular cone intersects

other, it does not happen that

Similarly it does not occur that

-1
~ (c)

-1
lP (c)

is a singular cone.

is reducible.

The above claim says that the intersection of a fiber of tP

and a fiber of et is a line. Hence 1 1
(et,tP) :X ~ F x F
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which is a Proj of veetor bundle E of rank 2 on

We see easily that IP
1 x]p 1 itself 1s an irreducible eomponent

of the Hilbert seheme of a general fiber with respeet to

~ beeause this fiber is a line. Moreover the universal scheme

over is X itself by construction. Finally to

eomplete this step we have the following

Claim E is isomorphie to L e L for a line bundle L on

]pl x JPl .

Proof. Let pr. be a i-th projection from ]pl x :1>1 to ]pl .1.

O(s,t), therefore

We must again note that fibres of

quadrie surfaees. Henee

are non-singular

lP
1 ,in

implies that

with an integer

Ci.and

cl (E) is

for every point c

(~ = ~-1 (e)), whieh
e

O]pl (ae ) EB 0Fl (ac)

, isJP(E) I~
e

EI is isomorphie to
~c

a . On the other hand
c

cl (E) I~ = O(t) and 2ae = t, whieh follows that a e is
c

independent of c. Applying the base ehange theorem, we

see that E ~ O(O,~) is isomorphie to priL where L is
.~

a vector bundle on IP . Next, taking another projeetion, we

see that E is a direet surn of eopies of the same line

bundle, which completes this claim and Step 4 at the same time.

In the next step, let us assume that the eharaeteristic of

the base field is zero.

(2.15) Step 5. For the eharaeteristie zero ease, there is

no 4-fold whieh contains F 1x JP
1x JP

1 (=Y) as an ample divisor.

Proof. Assume that there exists 4-fold (=X)enjoying the above

t L t b th . th . t . JPl]pl JPl 1proper y. e Pi e e 1.-:-. pro]ec 1.on: x x -_4>:1>.
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Then there is a surjeetive morphism

extending p., by virtue of Proposition 111 in [14].
l.

Henee we get a surjeetion (q,. ,Q2 ,Q3) :X ~ .lP
1

x F
1

x :IP
1

•

whieh means that rank Pie X ~ 4. This eontradiets the

Lefsehetz theorem. (For exarnple, see § 1 in [4])

Q.e.d.

This yields Proposition in the zero charaeteristie ease.

We now turn to the ease of positive eharacteristic.

In the,,'·,next step, we shall prove that (X,X) has a lifting

1 1 1(i, X) and KK is isomorphie to :IPK ~ JP K x JP K. Then i t is

straight-forward to get a contradietion by·virtue of the

previous step 5. For this purpose, we gather some notation.

Given an alg~bbaically elosed field k with ehar k = P > 0,

let W(k) denote the ring of Witt vectors. This is a discrete

valuation ring with the residue field k, the maximal ideal is

(p) and the quotient field K is of charaeteristic zero.

S denotes Spec W(k). Let .c be the closed point of S. Let

X be a non-singular variety defined over k. Then X is

said to be liftable if there is an S-scherne f:K ~ S such that

f- 1 (c) is a given k-scherne X. Then K is called a lift of X.

Sirnilarly for a given divisor D on X, the pair (K,D) is

called a lift of (X,D) if there is a lift f:K ~ S not X

and there is an effective Cartier divisor D on X whose

restriction to X is D.

As for a criterion for a pair (X,X) as above to have a lift

(X,X), we have ·the following
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Theorem 2.15. Assume that

1 )

2)

3)

i i -
H (X,Ox) = H (X,Ox) = 0 for i = 1,2

1 -H (X,N) = 0 , where N is line bundle corresponding

to a divisor X in X.
2 -

H (X, TX) = o.

Then (X,X) has a lifting.

For the proof, see Lemma 1 in [3] and Theorem (A1) in [5].

(2.16) Step 6.' The (X,X) in question has a lifting (X,X).

1
]I?

Proof.

where

Here, O(a 1 ,a2 ,a
3

)

111pr i ::P x:p x]I? ~

3
denotes a line bundle n pr~, OJP 1 (ai)

i= 1 J.

is the i-th projection. Notice,

that NX is O(1,1,b) with b > 0 where N
X

i5 the restrictiJon_

of N to X. First we have the following:

Claim Hi(X,aNx ) = 0 for any integer a and i = 1,2.

i -Therefore H (X, aN) = 0 under the above condition.

Proof. By the Künneth Formula, the former is trivial. For the

latter case, we use the exact sequence:

o~ (a - 1)N ~ aN ~ aNx~ 0

which induces the following

~ H1 (X, (a - 1) N) --;... H1 (X, aN) ~ H1 (X, aN~)

----* H
2 (X, (a - 1 ) N) ~ H

2 (X, aN)

Hence
, 1
dirn H (X, aN) is monotone decreasing with respect to a,
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by Serre duality and .Serre's

vanishing theorem for ample line bundles. In the same way,

we see that H2 (X,aN) = O.

Finally, to show that vanishes, we use the following:

and O~. ·Tx 0 aNx ~ TX QD aN IX ~ (a + 1) Nx ~ O.

where NX denote Nix.

It suffices to show that H2 (Tx @ aNx) vanishes.

But since Tx 0 aNx = (a + 2,a + 2 ,ab + 2) the vanishing

is easy by the Künneth formula.

2.17 Step 7 XK is isomorphie to

X x s Spee K.

where *K denotes

Proof. It is well-known that Pie *K ~ Pic X ~ Pic X by

virtue of section 6 in [5]. Hence take a line bundle

line bundle

on X such that

(0,1,0)

i iL ~. Spec k (= Lk ) is isomorphie to a
i-th

on JP~ ~ JP~ x F 1
k

(=X) • About the

notation. Then we have

Claim. Hj(XK,L~) = 0 for j = 1,2,3
·0 .

Therefore dirn H (*K,L~) = 2.

where iL x sSpec K.

Proof. It is trivial that for j ;:;: 1 •

Henee by the semi-eontinuity of the cohomology of Li as for
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~:X ~ S, the former ia obvious. Moreover by ·the flatness

of t.P, we get

q.e.d.

The above claim implies the following:

it.P*L is a torsion free sheaf on S. Since S is a

discrete valuation ring, i
t.P*L

Hence take a basis s 1 ,52 of

S-rational map <t>i from X to

is a free module of rank 2.

t.P*Li,which gives rise to an

p1 • It is straight -forward
5

to see that wi is amorphism, because

pr .. Hence we can construct a morphism
~

as the fiber product of the 4l
i
K

(i = 1,2, 3). Noting that 1

is the intersection number of three line bundles

(1,0,0) · (0,1,0) (0,0,1) in X, we know 1 = L 1 • L 2
K K

in XK . Hence it is easy to check that a is a finite

birational morphism, and therefore, by Zariski Main Theorem,

an isomorphism.

q.e.d. Step 7

Now at last we show Lemma 2.10.

XI< and XI< are defined over an algebraically closed field

R of characteristic 0 and XI< is isomorphie to

111FR x]PR x]PR and ample in XI<' which yields a contradiction

to Step 5.

Finally in this section let us give an important

Lemma 2.18. Let (Y,L) and (Y,L) be a smooth 3-fold and

a 4-fold respectively and let Y a divisor in Y. Assume Y
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is isomorphie to 51 x
C5 2 where 5. is 1a JP -bundle over

1 --
a eurve C and Ll = 0(1,1) with the eanonieal pro-1

q)-1 (e)
jeetion q):5 1

xc5 2 -+- C . Then Y is not ample in Y.

Proof. If Y were ample, Lemma 2.6 and 2.7 would yield a

rnorphisrn ~:Y ~ C extending q). Then sinee every fiber

of ~ is a quadrie hypersurfaee we ean use the latter part of

the proof in Proposition 4.10 in [4J.
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3. 1

Varieties whose hyperplane section is a nP -bundle.

In this section we work over an arbitrary characteristic

field. What we shall prove is as folIows:

Theorem 3. 1. Let (X, L) be an (m + n) -dimensional smooth

var iety containing many 1 ines, (X,L) and (m + n + 1 ) -dimens iona 1

polarized smooth variety such that "L is a very ample line

bundle on X. Assurne .that there is a veetor bundle E of

rank (n + 1 ) over an rn-dimensional variety S such that

(X, L) is isomorphie to (JP (E) , Op (E) (1 ) ) and that X is a

member of ILI, N
X

/ X = Land n+ 1 '=m. Then, unless X

is a quadrie surface, there is a vector bundle E of

rank n + 2 over S enjoying the following exaet sequence:.

o ----40- 0 ---;.. E~ E ----;... 0,

where X i8 contained in X (;: JP (E)) via lP. If X is a

quadric surface, (X,L) is isomorphie to (Q3,OQ.' (1)).
3

Hereafter for our proof we consider X to be

embedded in N+1
JP ' by the line bundle L, and X to be

a hyperplane section of X in N+1P .

Moreover we consider three cases separately:

cd n 2: 2

ß) n = 1

y) n = 1

and m = 2

and m = 1
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Case cx)

Step cx. 1 . (X,L) contains many lines.

Proof. Take a line in a fiber
-1

TI ( s) (= X )
s for a

point s in S where TI is a canonical projection

F(E) ~ S. Then we have the following exact sequence:

o ----+- N2/ Xs

which means that N2/ X

Moreover we get the exact sequence:

( 3. 1 )

Hence we obtain step 1 by the cornputation of

and

q.e.d.

Remark. In step 1, take an irreducible component T (or, T)

of Hilbert scheme of lines in X (or, X, resp.) containing a

line 2 in a fiber of TI. Note that T (or, T) can be

naturally considered to be a smooth subvariety in Gr(N,1)

(or, a variety in Gr(N+ 1,1) which is smooth on S) where

Gr(N,1) is a canonically embedded in Gr(N+ 1,1).

Step a.2. Für every fiber of TI (=P~), there i8 a unique

(n + 1) -linear space in X containing F
n . Hence X is
TI
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fulled up by these (n+ 1)-linear spaces.

Proof. First of all, for a subset B in' p
N+1 and a

point in B, denotes the set of lines in B

passing through y. Now take a line 9- of a fiber ]pn
TI

Then taking an inverse image

and a point X in 9- . pN and Xx are naturally a
X

hyperplane section (= pN-1 ) and an (n - 1) -dimensional

linear subspace in (rN+1) ( =pN ) respectively.
X

Moreover by consider,ing the exact sequence (3,1) 0 0.t (-x) ,

Xx is an irreducible component of X n (JPN) and i t 1s
X X

an (n-1)-dimensional linear space with multiplicity 1.

Taking .account of Xx ~ wN- 1 , Xx has an n-dimensional

linear space in w~+1 as its component which yields an

(n + 1)-dimensional linear space in X containing

q.e.d.

Now fix an (n + 1)-linear space R in X and take

an .irreducible component U of Hilbert scheme containing

R in X . Let II be the universal scheme in U x X

where Pu (or Px) i5 the canonical projection U~ U

(or, U ~ X, resp.). Remark that S itself is a Hilbert

scheme of a fiber of TI and X itself its universal scheme.

-1Ex (X), we get the morphism

~:U --- S by the universality of Hilbert scheme U', which

follows that ~ is an isornorphisrn by Step a .. 2 and Zariski

Main Theorem. Hence Px:U ~ X is birational, and when

- -1
we put W = {X E X I dirn Px (X) ~ 1}, W is at most a finitely
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many set because 'X 1s an ample divisor on X and

-1px:Px (X) ---+- X is an isomorphism. Now we shall show

that W 1s empty. Assurne that n~m and W 1s not empty.

That W is a finite subset means that there are two

(n + 1) -linear spaces: R1 , R2 in X such that dirn (R
1

n R
2

) = 0,

which immediately yields a contradiction because

dirn R
1

+ dirn R
2

- dirn X ~ n - rn + 1 ~ 1. Secondly assurne that

n + 1 = m and W is a finitely many set. Then we see that

every (n + 1) -dimensional linear space R
u

induced by U

intersects at, one point with each other. Moreover there is

unique point ':a in X - X containe~ in every R
u

because

of the flatness of p:U ~ U and finiteness of the set w.
u

which follows that

Now take a tangent space T of X
i

]pn+m+1 )X 1s contained in T (~
:a

at in N+1P . Clearly

X ~ ~n+1. This is absurd. Therefore W is empty, which

follows that Px:U ~ X

desired fact.

1s an isomorphism. This 1s a

q.e.d.

Case 8) In this case, tak1ng account of the above'proof,

we divide to two cases. We maintain the. notations ~, Gr(N,1)

in Remark.

(8.1) S is the only irreducible component in T n Gr(N,1)

whose lines fill up the whole space X.

(8.2) Otherwise, namely, there is another line passing

through a general point X in .X besides a fiber of TI,
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which yields another irreducible component 8 2 of

Hilbert seheme of another lines whose lines move X.

Hereafter we shall determine the structure of X

in case of ( ß, 1 )

(ß.1) If one reads the proof of step (a.1) and (a.2)

carefully, these say the.fact that there ,is unique

2-linear space R with multiplicity 1 eontaining a general

line ~ in X. Now maintain notations U,U in Step a.1.

inThen for every point of .u

to a 2-linear space, beeause

-1
U , PU (w)). is isomorphie

-1Pu (u) for a general point u

in U 1s a 2-linear spaee. 8imultaneously we see that there

is a point u in U whose 2-linear space eontains a fiber of

TI (=line). Therefore we have

Claim (ß.6). For every fiber F of TI , put as U(F) the subset

{u E U I R ::'l F} where R is a 2-plane corresponding to u.
u u

Then for a general fiber F, U(F) i5 one point with multiplieity 1.

Moreover for every F, U(F) is a finite set.

Proof. The former part is already proved. Für the latter part

assume that U(F) is an infinite set. One-dimensioanl ·irreducible

curve C in U(F) yields a divisor D in X. Hence

d im (D n X) = 2.

On the other hand, R (= 2-1inear spaee) 1s not contained in

X, therefore R n X = F. Hence D n X = 9, whieh 1s absurd.

q.e.d.
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Continued proof.

The above elaim induees a finite birational rnorphism

~:U ~ S by the same way as in (0.2). Hence ~ is an

isornorphisrn. The remainder is entirely same as in ease a.

Hence we finish the case (ß.1).

(ß,2) By virtue of Th. 6.3., X is one of the following

(ß.2.2)

curve C.

s.
~

is a ]I' 1 -bundle over a srnooth

Hereafter we shall show that above two cases do not

oceur.

Case (ß,2.1), At first we show that (X,L) has the following

property: 6(i,L) = 1, g(~,L) = 1

sense of Fujita [5].

and d(X,L) = 6 in the

The Second and last part are tivial. For the first, we

1rnust check the follow·ing: H (X,rnNx/x) = 0 for any integer ro,

1 -whieh irnplies that H (X,Oi) = 0 by virtue of Serre's vanishing

Theorem.

Hence we get ~. (X,L) = 1. Consequently we see that (X,E)

2 2
is isomorphie to (]I' x]p , pi O]p2 (1) e P2 0 JP2 (1» where

222
p. : lP x lP ---?- lP is the i-th proposi tion by virtue of
~

[5], which irnplies that two pieces of family of lines in

lP(TF2 ) are induced by two pieces of farnily of planes in

lP 2 x JP2. This 1s a eontradiction.
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Case (ß.2,2) This ease does not oceur by virtue of

Lemma 2.18.

Case y) First assurne that x is a quadrie surface.

Then by virtue of Corollary 1.10, there is only one

line going through a general point. In the same way

as in (6.1) above, we get a desired result.

q.e.d.

Gathering the above observations of case a) ,ß)

and y) we eornplete a proof of Theorem 3.1.

Finally we shall give a

(3.2) Proof of Main Theorem in the ease: 2(xE) = 1.

Let (x,L) be. a smooth n-fold (n ': 3) whieh

eontains many lines in any eharaeteristie ease. Assume

that 2(x,L) = 1. Then (x,L) 15 isomorphie to

1 ) (Qua~rie hypersurface Q in lP
n + 1 ,0Q (1 ) )

2) (Proj of a very ample veetor bundle E of rank n

over a smooth eurve, 0 lP (E) (1»

Proof. In the same way as the proof in Lemma 2.2 we

take a sequence of smooth subvarieties X = Xo~ X
1
~ •••~ X

n
-

1

with dirn X. = n - i. Then Proposition' 1.8 gives rise to the
~

faet that ~(X.,L.) = 1. Hence by Proposition 1.9 and Corollary
~ ~

7.10, Theorem 3.1, we get the desired result.

q.e.d.
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§ 4. 3-fold with many guadrie surfaces

In the present section we shall study the structure

of 3-fold (X,L) with many quadric surfaces, which is

defined as follows: Let L be a very ample line bundle on

X and ~L the eorresponding elosed immersion of L.

We assume the existence of an irreducible quadric surface

dimlLI .in ~L(X) in F passing through a general p01nt

in ~L(X). Hereafter throughout this seetion (X,L) denotes

the above.

Our main goal in this seetion is to show

Theorem 4 Let (X,L) be as above. Then (X,L) is isomorphie

to one of the following:

1 )

2)

3)

X is a guadrie surface fiber space over a smooth curve (2.1~

1 2
(lP x F , 0(1,1».

(smooth quadric hypersurface Q in

(4.1) Now take a general irreducible quadric surface Q

in ~L(X) and consider the Hilbert scheme of Q - in ~L(X).

Then there is an irreducible component T of the Hilbert

scherne containing Q such that dirn T ~ 1. Moreover let

W = {w t } be the universal scheme of T (= X x T) where

wt=wn{t} x T.

(4 . 2) Assume tha t there. is a general. point (r, s) in T ~ rr

such that w n w = 1',r s which is rnaintained until (4.6) •
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After (4.7) we shall diseuss the ease of W n w * ep.r s

Put as N the normal bundle of Q in X. To observe

the structure of X, we div1de to two eases:

a) There is a point t

b) There 1s no point t

such that

such that

is smooth.

is smooth.

Lemma 4.2.a. For the ease a), dirn T = 1 and N 1s trivial.

Proof. Put N(=NQ/X~ = O(e,d)
~ 1 1(Q::]P x]P.).

The assumption of (4.2) means that C .and d are non-

negative. On the other hand if either e or d is positive,

then dirn HO (Q,N) ;?: 2 and H 1 (Q,N) = 0, which follows there

are two points r,s such that Ws properly. This contradiets

(4 • 2)

q.e.d.

(4.2.b) For the ease (b), we have.the same result as in case

of (a).

Proof. Picard group of an irreducible singular quadric surface

Q is isomorphie to ZL whre L is the line bundle corresponding

a hyperplane section. Remarking that hO(Q,OQ(C) ) ° 3to = h (JP , °lP3 (c) )

and h1(~,OQ(C)) = ° for every integer C , one can get

the same result as in case a)

q.e.d.

(4 • 3) Assume that 1
H (X,O) = O.

(4.3.a) For the case a) , we have the following exact sequence:
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0--70 --7.[Q] --? N(=O) ~ 0 ,

which gives rise to the exact sequence of cohornologies

where [Q] is the line bundle corresponding to the divisor

Q. It yields the rnorphism ~:X ~ ~1

(4.3.b) For b), we get amorphism 1<p:X ~ JP entirely

in the same way. By the construction, a general fiber 1s

irreducible, hence, srnooth, which contradicts.our assumption b).

Summerising the above results,

Lemma 4.4. Let (X,L) be a smooth 3-fold. Assurne (X,L) has

many quadric surface, general such surface is irreducible and

there is a point (r,s) in T x T such that w
r

n Ws = <p.

Moreover we assurne H1 (X,Ox) =·0. Then there i5 a.rnorphism

lP: X ~ iP 1 whose general fiber is smooth quadr ic .

On the next place let us assurne

(4 .5)

Then we shall show

Lemma 4.6 Let (X,L) be a smooth 3-fold satisfying the

same condition as in Lemma 4.4 except H
1

(X,Ox) = O.

If H1 (X, 0x) * 0, the same conclusion holds.

Für the purpose we prepare the several steps.
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4.4

Let 8 be a generic smooth member in ILI.

Then S is ruled.

Proof. Noting that an irreducible quadric surface has

at most one singular point and its general hyperplane section

is a smooth conic, we get Step 1 by virtue of sublemma 2.4.

(.4.6.2) step 2 . 1
H (S, m[ 8 ]Js) = ° f or m < ° where [8]

is the line bundle in X corresponding to a divisor S.

Proof. By step 1, 8 i5 ruled. In the set {W
t

n 8 (=C
t

) 1 t t: T}

there is an infinitely many elements TO and T such that

Ct and Ct , have no common point for t * t' in TO.

Noting that Ct is a smooth conic, 8 has a fiber structure

<.p:S ~ C where C
t

(tETO) 1s a fiber of <.p. Hence Leray

1spectral sequence yields the isomorphisrn H (8,m[S] Is) -

HO(C,R1<.p*(m[s]!s)) for m< ° because HO(f,m[S]l f ) = 0,

where f is a fiber of <.p. Now take a general element C'

in 1 [8] Isl. The morphism ~:S -7 C induces a double

covering <.pI Cl ~.C where <.p' i5 the restrict of ~ to

CI. We have the following exact sequence:

hence, °~ (m - 1) [8] js ~ m[S] Is ~ m[8] Ic' ~ °
For m < 0, take a direct image of the above exact sequence

by ~. Then we get

*m
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o ---+ <.p* (m [ s] Je I) ---+ R I <.p* ( (m - 1) [S] 1 S) ----? RI(p* (m [ S] j S) -+ o.
1I

Em

Hence, taking the long exact sequence of above exact and noting

tha t -m [ S] 1 Cl is ample for m < 0, we see that hO(C,E)
m

is a monotone-increasing function with respect to negative

integers

Claim

m. Now we have

°H (C
1

,E_
1

) = o.

In fact, consider the direct image of *0. Then we get the

following:

11

°
11

o

On the other hand, since (pI CI ~ C is a double covering,

we see that fn 0 ~ 0 ~ R'fn*O(-C I
)'+'* Cl :- C w '+'

by . char. k :1= 2 and trace

map of <'pI • Hence we get a desired result.

Step 2 is shown immediately by the monotone-increasing

property and the above claim.

q.e.d. of Step 2

( 4 . 6 . 3) Step 3

Proof. Consider the exact sequence:
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o~ (m-1) [5] ~ m[S] ~ m[S] Is~ O.

Step 2 says that H 1 ((m - 1) [S]) ----+- H1 (m[S]) is

surjeetive for any negative integer m, henee, whieh infers

that H1 (S, m[5] ) vanishes for m < 0 by Serre I s vanishing

theorem. Therefore we ean show Step 3 by the exaet sequenee:

o -~ -[-s] ~ ° ~ 0S

1and by our assumption that H (X,OX) * O. It is trivial

1 1that H (S,OS) is isomorphie to H (O,Oe).

q.e.d of ~tep 3.

Finally to eomple'te the proof Lerruna 4.6, we take an

Albanese variety as for S~ x.

i
S c ): X

aJ Ja
Alb S ) Alb x .

a

At first we roust remark that a is isomorphie by virtue of

Theorem 5 cf § 2 in VIII [10]. Moreover a factorizes the

product of the morphism ~:S ~ C and a closed immersion

i:C ~ Alb S. Henee noting the claim in Lerruna 2.5, we see

easily that ß(c) is C and a general fiber of ß is a

quadric surface.

Remark. In characteristic zero case, we can obtain Lemma 4.6

more easily. We have only to take ,the albanese map of X,
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i:X ~ Alb X. Then we know that any quadric surface collapses

one point by i, whieh induees lemma 4.6.

Let us maintain the eondition and notations in (4.1)

Now we assurne that

(4.7) (X,L) is not isomorphie to (F 3 ,0(1)) and there is

a general point (r ,s) in T x T

such that w n w * cf.r s

Sinee w is a quadrie surfaee in F 3 " let [w] be ther r

smallest linear subspace eontaining w • For almost all
r w

r

[w ] is of 3-dimensional. Henee for two general wr'ws
,

r

noting that [w ] * [w ] by X * JP3 and taking aeeount of
r s

the fact that [w ] n w ::> w n w , W n Ws is one of the
'r s r 5 r

following

(4.8)

(4 • 9) Wr n Ws is a eonie whieh rnay be singular, ineluding

a double line.

From now on we shall show that

Lemma 4. 1 0 X in (4.8) is isomorphie to ]l?2 x ]I?
1

in (4.9) i5 a quadrie hypersurfaee in JP4

and X

In the first plaee let us investigate (4.8). Then we shall

divide to two eases
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(4.8.1) every member l wt (t E T) is singular.

a general member(4.8.2)

(4.8.1) Both wr and W
S

is smooth.

are singular cone.

Hence, if W n w
r 5

contain a vertex of either cone,

w n w must be singular at this vertex .. On the otherr s

hand, a line on a cone rnust go through a vertex. It is

absurd.

(4.8.2)

line

For a srnooth member

such that

W , we can take another
r

w n w n ~ * wr . Then we haver 5

the following exact sequence:

o ----;:...

o

N9../X

o(1 )

--~> 0

which follows that N~/x = 0F1 $ Op1 (1). Therefore by

virtue of we see that ~(X,L) = 1, which means that X

is one of a quadric hypersurface Q3. in p4 and p2 -bundle

over curve C. But the former does not occur because the

intersection of two quadric surfaces in Q3 is conic.

In the next place,-when n:X ~ C denotes an p2-bundle

over C, we see that C is because is a srnooth

quadric surface and TII :w ~ C is surjective. Hence
W r

r
X is described as Proj of vector bundle -0 lB 0 (a) lB 0 (b) on

1 . 1
P . It is easy to check that H (X,9x) = 0 by Leray's spectral

sequence.
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Now there is the following exaet sequenee:

henee we get

whieh gives rise to a morphism g:X ~ F 2 .

By the eonstruction of g, a general fiber of g is

1 2a line. Hence the morphism (TI , g) : X ---i'- F x]p is a

birational morphism by virtue of the property of TI and

g. On the other hand, the strueture of Chow ring as for X

and F 1
x F

2 is equal to each other, whieh means that (TI ,g)

is finite, therefore is isomorphism.

Finally, let us consider the ease (4,9). Tf we can show

that dim ILI :;;:; 4, it is straight-forward to see that (X,L)

is a quadric hypersurface in F 4 .

Therefore assume that dirn IL I ~ 5. Then 4 is the dimension

of the smallest linear space which eontains two generie

quadrie surfaee w,w in FdimlLI because w n w is a
r s r s

eonie. Henee we ean find a divisor H = w + w + D' in ILIw r s

where 0 1 is an effective divisor or empty. Now take a line

t on w . Then we see that the interseetion. number t· w
r r

and is 1 respectively, which implie~ H ·t ~ 2. Onw

the other hand L·t = 1 was our assumption, whieh is absurd.

q.e.d

Gathering Lemma 4.4, 4.6 and 4.8, we eomplete the proof of

Theorem 4.
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§ 5 Classification of (X,L) with ~(X,L) = 2

Throughout this section, we assume that p:Z ~ X

is separable (see (1.3)) and ~(X,L) = 2.

(5.1) First we suppose dirn X = 3, therefore dirn Y = 2.

Remark that Z is isomorphie to Proj of the vector bundle

E where E = U (N,1) IY and U(n,1) is the universal bundle

of rank 2 over Gr(n,1).

Now let y' be a desingularisation of Y,Z' the fiber

product Z x yY I , which is smooth.

~ ZI

I~ q~
j

X Y ~(----- Y'

(5.2) Take a general point y in Y. Then we can assurne

that Y is smooth at M. Let ~y be a line in X eorresponding

to y.

Then we have

Proposition 5.3. Let ~(=tll) be a line in X

Then NllN = OJP1 Ei) OJP1

as above.

Proof. The separable morphism p induces a generally surjective

homomorphism of normal bundles: k:N -1 ~ N~/X. Noting
q (y) Iz

that the first part of two normal bundles in 0F1 ~ 0F 1 and
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the latter GJP1 (a) t& GJP1 (b) with integers a,b, we

see that a and b are non-negative. On the other hand

~(X,L) = 2 means that hO(~,N~/X) = 2 , namely, a = b = O.

q.e.d.

The above proposition immediately gives rise to

Corollary 5.4. Under the above diagram in (5.1), let

R .be the ramification divisor in Z' with respect to

pi , which may be empty. Then there is an effective divisor

C in yl which is possibly empty, such that R = q,-1 (C)

Moreover we have p'*(KX + 2L) = q'*(det j*E + Ky, - Gyl (C)).

Proof. The former part is obvious by virtue of Corollary 5.4.

As for the latter part, consider the following exact sequence,

o --3lo- T 'ZI n* --+- q' *j *E --+ T ---+- 0 ,

where n* is the relative canonical bundle with respect to

ql , and T the tautological line bundle of j*E. Noting

that pl*L = T and P'*KX = KZI + OZI (R) , we get the

desired results.

q.e.d.

Now at first we shall determine the structure of (X,L)

with deg p = 1.

Proposition 5.5. Let (X,L) be a smooth 3-fold with ~(X,L) = 2.
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Assurne that deg p = 1. • Then (X,L) is isomorphie to

(JP(E) ,OJP(E) (1)) , where E(=Q(N,1) Iy ) is a very ample

veetor bundle on Y.

Proof-L Put Xo as {x E X I dirn p-1 (x) ;;; 1 } and qssume

that Xo is non-empty. Sinee X is.smooth we see that

-1Z - p (Xo) ~ X - Xo is isomorphie and dirn Xo = 1.

-1 -1By virtue of Proposition 5.2, it follows that p (X o) = q Cl

where Cl is a elosed subseheme in y and dirn CI = 1. Beeause

if dirn Cl = 0, p:Z ~ X is an isomo~phism by the

definition of Hilbert seheme and Zariski Main Theorem as

a"\ -1for p. Noting that ~ dirn p Xo > dirn Xo and every fiber of

q ean be transformed a line in X by p, ® eontradiets the

definition of Hilbert scheme.

q.e.d.

Remark 5.5.1 Let F be a loeally free sheaf over a srnooth

projeetive M. Then obviously F(F) is smooth. On the

eontrary. let F ' be a torsion free sheaf over a smooth

projective surfaee S. Assume F(F ' ) is smooth. Then we

have the following result: F ' is loeally free. Beeause

JP(F') is embedded in a high-dimensional projective space (=JPN)

such that every fiber of TI:]P (F') ~ S is a linear spaee in

JPN . Taking a general hyperplane section of JP(F')

sucessively, we reduce this problem to the case of rank F' = 2.

Finally by Proposition 5.5. we get the result: F ' is loeally

free.
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In the next place, we assume that deg p 2: 2.

First for every line ~ in X , we define a reduced

closed subscheme in X as follows.

(5.6) S(~) :1= unici>n. of lines Ly which intersect the line
def

~ where Ly is the line corresponding to an element y

in Y. (Such Ly is said to be a line in Y) •

Noting that s (~) is equal to -1 -1pa qp (~) as a

set in (5.1), we can give S(~) a reduced algebraic structure.

We see easily that

(5.7) S(~) is a 2-dimensional closed subscheme in X

and there exists an open subset Yo in Y enjoying the

following: For every line ~ in YO' there is an irreducible

2-dimensional cornponent A(~) of S(~) such that A(~)

contains a line in Y passing through every point in ~.

Under the above notations, we consider two cases.

(5.7.1) For every point y in YO ' p*A(ty ) is contained

in q*Pic Y.

(5.7.2) There is a line ~ in YO ' such that p*A(~)

is not contained in q*Pic Y.

Then we can show for the first case deg p = 2 and X

is a quadric surface fiber space. In the second case, we infer

that X is a Fano 3-fold.

For the purpose we need several propositions.
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Propos i tion 5. 8. Under. the condi tion of deg p 2: 2, let

D = {D)... \ )... E A} be a set which cons ists of infini tely many

irreducible effective divisors in (X,L). Assurne that

2(X,L) = 2 and

every element in

p*D
)...

D.

1s contained in q*Pic Y for

Then the following holds:

1) Set the subset: {D)...\D)... is a plane as for (X,L)} in

D as M. Then M is a finite set.

2) Except a finite many elements in consists

of two irreducible components E.

Therefore (X,L) is a quadric surface fiber space.

Proof. First of all, we have

Cl · I f (X L) h . f . . t l']pdim lL I falm: , as ln lnl e many p anes ln as or

the immersion induced by the complete linear system ILI,

9.., (X, L) = 0 or 1.

Proof ..,[ The above assurnption gives rise to an algebra family

of planes (X, T) with dirn T 2: 1 and ,X c X ~ T by taking

a Hilbert scheme of planes, which infers that there i5 a plane

P in X such that Np IX = OJP2 (a) and a ~ o. This yields

the following exact sequence of normal bundles: for a line

9.., in X

o~ N9..,/P ~

11

(l9..,(1)

N9..,/X~ Np/x l9..,

1I

o9.., (a)

o
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Hence we get 2(X,L) = 0 or 1 ..

q .. e .. d ..

The above claim induces 1) ..

Secondly, noting that if a surface is generated by

r( ~ 3) pieces of 1-dimensional families of lines, then

such a surface is a plane, 2) is obvious by 1) and the

separability of p. Finally, since we know that only a

quadric surface has 2-pieces of 1-dimensional families

of lines, the last part is trivial by our assumption of

2(X,L) = 2 ..

q.e .. d.

The above imrnediately yields

Corollary 5.9 Under the notations in (5.6) and (5.7),

assurne the condition (5.7 .. 1). Then deg p = 2 and (X,L)

is a quadric surface fiber space.

In the next place, let us determine the structure

of (X,L) in the case (5.7.2).

The following proposition (5.10) is a key for main

theorem, which states a criterion for a given line bundle

to be nurnerically equivalent to zero. Here we consider this

terminology on a complete algebraic scheme which is not

necessarily smooth. Hence let us recall it by Kleiman's

paper [9] .
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Let V be a cornplete algebraic scherne over k

and M an invertible sheaf on V. We call M nurnerically

trivial and write M ~ 0 if (M · C) = 0 for all closed
V

integral curve C in V. Then he shows that

Proposition (4, Corollary 1 [9])

Let f:VI~~ V be a rnorphisrn between algebraic

complete. schernes, M an invertible sheaf on V and

MI = f*M. Then

"'" "'"(i) M ~ 0 q MI ~ 0, and conversely.

"'"(ii) M ~ 0 $=- MI

Now we get

0, if f is surjective.

Proposition 5. 10. Under the diagrarn in (5.1) , let D be an--
irreducible divisor in X , and D

1
,D 2 irreducible Weil

divisors in Z and let 9.- be a line sitting on D in x.

Now we assume that

1 )

2)

3)

D
1

and D2 irreducible cornponents of -1 in Z ,are p D

qD 1 is a curve in y and qD2 = Y , and ,--
Two curve 21

and 9.- 2 are irreducible cornponents of

-1 such that q (9.-
1

) is one point in y and q(2 2 )p 9.-

a curve. At last we assume that there are two line bundles

Land M on X and Y respectively, such that p*L = q*M.

Then Land M are numerically trivial.

This proposition irnrnediately provides us with
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Corollary 5.11. Under the condition (5.7.2), KX + 2L

is numerically trivial.

Proof of Proposition 5.10.

line bundle on i 1 :p*Ll i
1

by ~~e. comrnutativity and

Consider the restrietion of the

= q*Ml
i1

· Since q*M!2
1

= q*(Ml q {2
1

)

q(~1) is cine point, we ge~

Ll 2 = Gi because the restricted map pli :21 ~ i is an
1

isomorphism. Next, taking p*L 1 22 = q*M 1

22
' th.e .le.ft-.hand side

i~ triv~al, which impl~es that Mlq(12)~ 0, be~au~e ~f the

above proposition'.'. Third.ly, .takin9 p*L I -1 = q*M I -1
q C . q C

(= q*(Ml c)) with qi2 = C , we see that the right-hand side

is numerically trivial, and, hence so is with

by virtue of the above proposition. Entirely in the same way,

assumption 1) yields our proposition.

q.e.d.

Proof of Corollary 5.11. As a divisor D in Proposition 5.10.

take A(2) satisfying the condition (5.7.2). Obviously A{i)

gives two divisor D1 ,D2 enjoying the condition in

Proposition 5.10. In the same way we have i,i, and i 2 .

Hence we can show this Corollary by Proposition 5.10.

q.e.d.

The next theorem is irnportant to determine the structure

of the variety in (5.7.1) and at the same time it enable us

to öbserve (5.7.2) easily.

Theorem 5.12. Let (X,L) be a ,smooth variety with i{X,L) = 2.

Assurne that dirn I L I ~ 7 and p is a separable morphism. Then
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(X, L) is one of ]p 1_bundle over a surface and a quadr ic

surface fibre space over a curve.

Let us assume that (X, L) is not a 1
]I? -bundle, namely

deg p ~ 2. Then to show this theorem, by Proposi tion 5.8, i t

suffices to show that there are infinitely many divisors

{ DA} in X such that p*D A E q*Pic Y.

For this purpose we need several facts.

N~/X ;;;; 0 ~ 0

9, in

(5.13)

and let

Choose a general line ~ in Y such that

0:X 1 ~ X be the blowing up with the line

X as the center. Then ~ factors the product 0-
1 ., ~

rational rnaps.

of two

N
P

Here ~ is a rational map corresponding to a linear system

IL - ~I , w an image of X via ~ and ~ is a morphisrn

corresponding to a linear system IH 1 I where H1 denotes

o*L - -1
and it is base point free. Then we obtaino 2.

Proposition 5.14. Under the above notations (5.13), assume

that H
3 ~ 4 and N ~ 5. Then dirn W ;;;; 3 and c.p(.Q.,) is a plane

or a quadric surface.
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Proof. Noting that N 2/X = 0 2 lB O2 ' we see that

H,3 = (O*L)3 _ 3(0*L)2 0-1 2 + 30*L(0-19,)2 - (0- 1 (9,))3

3 -1= L + 3 (o*L) (-0 (R.,) + c 1 (N 2/X) f) + c 1 (N 2/X)

= L3 - 30*(L ·2) = L3 - 3, where f is a f.i.ber

1 -1
o~ a P -bundle:o (R.,) ~ 2· and c 1 (*) is a 1 st ehern

class of * Similarly we get H,2 .0-
1 121 = 2. (See [6]).

These yields our proposition.

q.e.d.

(5.15) We must remark that each line intersectingthe line

9, in above proposition collapses a point by ~ on ~(2).

Proposition 5.14. Under the above notation (5.13), let us

assume that L
3 ~ 4 and dirn 1L I '=6. Then for a general line

exists an effective divisor HO in

9, in YO (see (5.7)) such that N2/ X :::: 09, e O2 ' there

lLI such that

~ HO ~ A (9.) in (5. 7). Moreover assurne that dirn 1H1'=7.

Then there exists an effective divisor H1 in ILI such that

besides A(9.), H1 has a component D not contained in 8(9.).

Proof. For a former part,.we can take a hyperplane S containing

lPI9.) (:::: a plane or a quadric surface) in p
N- 2 (N - 2 '= 4) by

virtue of (5.14). Therefore Remark 5.13 implies that the

divisor in ILI corresponding to S is a desired one. For

the remainder, since there is at least one-dimensional family

of hyperplanes in N-2
F containing lP(2), we can choose a

hyperplane S' passing through a point in W except lP(2).
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The corresponding divisor H1 in ILI is what we look

for.

q.e.d.

Remark 5.16. In the above proof-when we fix a general point

x in X for. a given line ~ we can take a divisor H1 in

the above sense passing through X . We write this H1 as

D~ •

Proof of Theorem 5.12

Now let us observe the property of A(~) and D~

Noting that the intersection nurober of Land a line ~ is

one and that D~ and A(~) are irreducible component of a

divisor in ILI, we see that D 9.. • 2 = 0 or A ( 9..) • 2 = O.

On the other hand it is weIl known that Pie Z is isomorphie

to Zp*L e q*~ie Y. Henee we see that either or

p-1 A (2) is eontained in q*Pie Y. Henee we get Theorem 5.12.

q.e.d.

By virt~e of Theorem 5.12, we have only the study the

structure of (X,L) with dirn ILIs6.

(5.17) If dirn ILI = 4, then we see eaily that (X,L) is a

eubic hypersurface in JP4.

To eonsider the other eases, we need the following

Lemma 5.18. Let (X,L) be a smooth 3-fold with 2(X,L) = 2.

Assuroe that KX + .2L 15 nurnerically trivial. Then
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Hi(X/tL) = 0 for i = 1 / 2 and every integer t.

Proof. Take a smooth mernber H in ILI. Since

we see that -K
H

is ampIe , which implies that H

KR =, KX + LI H 1

is aDel

Pezzo surface. 1t is known that Picard group of such surface is

torsion free, hence we get LI
R

= -KR. Moreover ~e know

1H (H,tKH) = 0 for every integer t [See 111, Theorem 1 in

[16]]. Hence considering the following sequence:

(U
t

We obtain a surjective morphism: H1 (X, (t-1)L) ~ H
1

(X,tL) ~ 0

and an injective morphisrn 0 ~ H2 (X,(t-1)L) --+ H2 (X,tL)

for every integer t. Serre duality and Serre's vanishing

theorem yields our desired fact.

q.e.d.

(5.19) Let us consider the case of dirn lLI= 5. Considering

the above exact sequence ~1 ,we get dirnl-KHI = 4 and, therefore,

K~ = 4 by Riemann Roch Theorem. 'H. is known to be a complete

intersection of two quadric hypersurface in w4 • Hence X

is a complete intersection of two quadric hypersurface in F 5

by virtue of Proposition 3.8 in [11].

(5.20) Let us consider the case: dirn ILI = 6 , namely

K
2 = 5. But the proof (6.5) by 1skovskih [8 ] is valid for our
H

case, as it is, even in the positive characteristic case.

As other reference, see [5]. By virtue of Lemma 5.18, 6(X,L),

in the meaning by Fujita, is 1.
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(5.21) Proof of Main Theorem (in the case of ~(X,L) ; 2)

Finally let us study the structure of an n(~4)

dimensional smooth variety (X,L) with ~(X,L) ; 2. We

take aseries of subvarieties X; Xo~ X1 ~ · · · ~ Xn - 3

such that X. is a smooth member of L. (; L. 1 Ix ),
1. 1. 1.-.

1.

Xo ; X and LO ; L. Then by virtue of Proposition 1.8,

(Xn- 3 ,Ln- 3) is a 3-fold which contains many lines and

~(X 3,L 3) ; 2. Therefore we have five cases (5.5), (5.9),n- n-

(5.17), (5.20) and (5.21-). If (Xn- 3 ,Ln-
J

) is as in (5.5),

we infer that (X ,L)
n

is isomorphism to (JP(E) ,OlP(E) (1))

where E is a very ample vector bundle over a smooth

surface by using Theorem 3.1 inductively. For the (5.9) ,

we can get a desired result by virtue of Theorem 2 in the same

way as above. For (5.20) (5.21), we can check that

entirely in the same way as in Lemma 5.18. Hence it is straight-

forward to see that (X,L) is aDel Pezzo manifold whose degree

is 4 and 5 respectively in the meaning by T. Fujity by

using (5.7.3), (5.7.5) in [5]. Hence by virtue of Theorem b,

we have a desired result.
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§6. 3-fo1ds with two fiber space structures

In this section we sha11 study the structure of 3-fo1d

with two fami1ies of 1ines, each of which fi11 up the who1e

space X .

Let (X,L) be a smooth 3-fo1d which contains rnany lines.

(6.1) Assume that there are two irreducible components

5 1 ,8 2 of Hilbert scheme of 1ines in (X,L) whose lines

fil1 up X.

(6.2) Moreover, we assurne that the canonical morphism

Pi : Zi --> X is separable (see 1.3)

universal space of 8 1 .

Then we have the follow1ng

where Z, 1s the
1.

Theorem 6.3. Let (X,L) be a smooth 3-fold and let us ma1n-

tain the assumption (6.1) and 6.2). Then (X,L) is one of

the following:

1) F 1 x p2

2) where 8,
1.

1s a 1P -bundle over a smooth

3) P(T... 2)
p.'

curve C.

To show this, we need several propositions.
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(6.4) Remark. If the characteristic of k is zero, (6.2)

holds automatically.

By virtue of our results (= Main Theorem) in 3-dimen-

tional case), there is the following possibility as for

dirn S . ( i =1 , 2)
~

( 6 • 5) dirn SI

3

3

2

( 6 ) dirn 8 2

3.

2

2

But we immediatly have

Claim. The case of dirn 8 i = 3 does not occur.

Proof. dirn 8. = 3
~

rneans that X is a p2-bundle over a

srnooth curve C. by (3.2). On the other hand since every
~

rnorphisrn from p2 to a curve 15 constant, this case is ab-

surd.

q ..e.d.

both

By the same reason, there exists no (X,L) which is

2P -bundle over a curve and a quadric surface fiber

space over a curve. (abbreviates qsfs often)

(6.6) Hence we shall investigate (X,L) .with following

two fiber structures:
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X is a

a) 1 and 2F -bundle P -bundle

ß) p1-bundle and P 1-bundle

y)
1 and qsfsP -bundle

9) qsfs and qsfs

Then we have

Lemma.

a) F 1 xp2

ß) 8 1 x 82 or
C

where S. is a
1

y) ,8) F1x~1xJP1

1F -bundle over a curve C .

(6.7) Now we would like to study 3-fold with two kinds of

fibre structure in the case a , ß, y, 8 (6. 6). 1"0 r the

purpose we shall determine the structure under a little wea-

ker condition, namely, not assuming the projective space

fiber bundle in the Zariski topology. Precisely speaking,

let X be a smooth 3-fold which is a lP 1-bundle 'P': X -> S 1

over a smooth surface S in the etale topology. Moreover

as the second fiber structure we consider three cases as

follows (i = a·,ß,y): qi: X i (";;" X) --? Ti 15 a fiber space,

2i5 a P -bundle over a non-singular curve T'iwhere

a

qa

1F -bundle over a smooth surface and is a

quadric surface fiber space over T
Y

Note that
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are bundle maps in the etale topology, and the

concept of lines is not assumed. On the other hand, remark

tha t the case .0 is shown in (2. 14) .

Theorem 6.7. Let us maintain above notation (6.7) in any

characteristic case. Then the same conclusion as in Lemma 6.6

holds .

For the purpose, the following is useful to determine

whether Si is of negative Kodaira dimension. The first is

a well-known

Proposition 6.8. Let us consider the following exact se-

quence of vector bundles: 0 ---> E
1

---> E ---> E
2

---> 0 •

Th e n Sm (E) (= F )
m

,
has a sequence of subbundles:

F 0 = c· F l' C ••• C Fm

where F. 1 /F.
1. + 1.

(1 ~ i ~ m)

Next, let us consider the following exact sequence of

vector bundles.
k

io ---> D1 ---> E

have

---> F. ---> 0
1.

,for 1 = 1 , 2 . Then we

Proposition 6.9. Under the above notation, asssume that for

i =1,2 and j > . HO (Z,Sm- j .(D
j

) ~ Sj(F.)) = 0 and_ 1.

k
1

+k
2

1.

D
1

;;0 D2 > E is generally injective. Then we have
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H
O( Z ,sm (,D.)) = 0 f er i = 1 ,2 •

1.

Proof is easy.

As a) and ß) yield the following exact sequence:

( 1 ) 0 --> *n 1 --> n1 --> n1. --> 0P S X P

( 2) . o --> q*n1
--> n1 --> nl

0-->
l. i Ti X q.

1.

with respect to

where n and
p

are the relative canonical bundles

Using Proposition 6.8 and 6.9, let us start the proof of

case aj, ß) ,y)

Case a). By virtue of Main Theorem in [Sa2] it suffices.

to show that S is F 2 and C i5 p1 In characteristic

zero case, it is obvious because the smooth surface which i5

dominated by ]p2 i5 also ]p2 .

Secondly we assurne that char k is positive, taking the

second exterior cf (1 ) and ( 2) •
a

( 1 ) I 0 p*K
2, 1. * g,1 0 ~-> 0--> -'»JA~ . -->

S P S

*n 1 .,X~
2

( 2) I o --> q T (9 nq --> --? dtn --> 0a q

where and T = T •
a

f~f every positive



-
lnteger m,

Restricting

6.6

hence, HO_(X, ~!:'~'~ ~m) . =~'HO(B;KS@m) = 0 •

(2)' on a fiber (= f) of q, we get
a

o --> n. 2
:IP

-->
2 1

1L rrxl ->
f

K 2
J?

--> o .

'for m > 0, which implies that S is ruled. Since

minates S, Pie S ';;; Z, which means that S is J?2 •

q.e.d. of a)

Case ß) This case is already shown in characteristic zero

case in [13]. Hence we assurne that char k is positive. In

the same way asin case a) take the exterior of (1) and (2):

(2 )'
2 1 1o --> g*KT -->, A~ --> q*Sl,r ~ ftq --> 0

whe're q = q ,
ß

and T
ß

= T •

Restricting q*n~ 3 ng to a fiber of g(~:IP1), we see

easily that HO(X,Sr(q*KT ) 0 st(q*n~ 0 nq )) = ° for

r ~ ° and t > 0, which yields HO (X, P*K
S
~m) = 0 for every

positive integer m, by virtue of Proposition 6.9. Hence

S is ruled,similarly T is ruled. Moreover we have a

Claim. Both Sand T are a geometrically ruled surface

or

Proof. Taking a general smooth eurve C in T, we see



that the restricted map p: q-1 (C) ~ S is surjeetive.

Therefore 1 or 2 is the rank of the first eohomology

group of S module numerical equivalence. Hence in the for-

mer case Sand T are

are geometrically ruled.

and in the latter case they

Now if s and T are we know x is isomorphie

to P(T 2) by virtue of Main.Theorem A in [13] . Secondly
lP

in the case of a g~ometrteally ~:rul,ed surfa..ce, we see that X

is isomorphie to S x cT where Sand T 1are lP -bundle

over a srnooth curve c. The proof is completely the same

as the proof of Theorem B in [13] .

Case y). First let us determine the structure of S, name-

1 1ly P x~F • There is the following exact sequence:

(1 ) I 0 --> P*K
S

--> ~ ~ --> p* r2s @ r2p --> O·

On the other hand, since a general fiber of qy is a smooth

quadric surface Q, there is another exact sequence:

o -->
v
N-= 0 --> --> o .

Hence taking 2nd exterior of e, we get
1 2 1 -o --? fl
Q

--> ;\r2x 1Q -.:.- --> K
Q
-> 0 which implies

-...,--~- ··o··-"~ m 2 1
that H (Q, S (~nx IQ)) = 0 for every posi tive:..:.~eger m.

This yields HO (X, P*KS@ffi) = 0 for m > 0, hence,
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namely S is ruled. Moreover since S is

dominated by P 1 x p 1 (= Q), we see tha t S is P 1 x~ F 1 or JP2,

which provides us with the fact that X i5 a Proj of a vec-

tor bundle E of rank 20ver S (see [1].

(r.1) First we shall show that S is not p2.

Proof.

in p2

Assurne that

v2
where F

S is]p2 Let ~A (A E~2)

denotes the dual space of p2

be a line

and let U5

-1 -1
denote p (R. A) n q (a) by Da,A. Now fix a geometrieally

-1ruled surface : p: p (R. A) --> R.f... For two points a,a'

in 1C(= P ) , D 'nD I =<pa,A a:A, which means the existence

of an irreducible curve C whose self intersection is zero

because H
1

(Pn Op ) 0 with F -1 By virtue of= = p (~A)n, n
-1Proposition 3.6 [ 13] , we see that p (~A) is isomorphie

to P 1x p1 . Therefore the vector bundle E over p2 is

uniform, which implies that E is a direct sum of the same

two line bundles by virtue of [12]. Henee X is isomorphie'

to ~1x p2. This easily eontradicts our assumption that

q : X --> C(= ]p1) i8 a quadric 5urface fiber 8pace.

(y.2) Assume that S 1s a smooth quadric 5urface.

-Let Pi: P 1 x p
1

(= S) --> P
1

be the i-th projection and

p. : X (= P-1 (p. -1 (a) )) -> Pi- 1 (a) a :p1-bundle. Now con-
1. a 1.

sidering Xa n q-1 (b) (= Da,b)' we have Da,b n Da,b
'

= 4J •

Since H1 (Xa ' 0x = 0, there i5 an irreducible curve
a



c in such that which means that. X a is

similarly in ( y • 1) . Sinee X =P (E) , we see that for every

point a in P 1 ,
Elf (a) is o 1 (m) e o 1 (m) with

p ]I?

f(a) -1 and it 1s independent of the choice of in= P1 (a) a

p1 by the existence of the 1st ehern class of E • By virtue

of Base change theorem, we see that

E = P *0 (m) @ P1*(0 1*(0 1 (s) tB 0 1 (t)). As· for the second projec-
. 2 p1 p p p

tion taking the same proeedure, we know

E = P1*0 1 (n) @P2*(0 1 (u) e 0 1 (v))
F JP. :P

Henee we get s = t = n

and u=v=m, whieh means x 1s isomorphie to 111P ;.x ]p ;x p .

q.e.d. of Theorem 6.7.

6:-1"0-. Remark. Theorem 6. 7 gives a complete proof for the

generalization of Theorem B [j3] in any characteristic case.

Theorem 6.7 is applied to show theorem in §3. To enable the

application, let us state a useful"proposition telling us

when p. becornes a separable morphism.
J.

)
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(6.11) Let (X,L) and (X,L) be smooth projective 3-fold

and __ 4-fold respectively which contain many lines, and let X

be a member of ILI with NX/ X = L. Moreover, let (X,L)

be as in (6. 1') and let us assume that S 1 is a surface Whic.h

yields a p1-bundle : X ---'> S1 . Then taking a fiber (= 2)

of TI : X ---> S, there is an exact sequence:

hence, we get which implies the irre-

ducibl~ cornponent T of Hilbert scheme of 2 in X. Put

N + 1 = dirn ILI. Then T (or, Si) can be naturally conside­

red as a closed subscherne in Gr (N + 1 ,1) (or, Gr (N, 1) , resp.)

under the canonically embedding: Gr (N, 1) G---> Gr (N + 1 ,1)

(see §3) Here we obtain the following

Proposition 6.12. Let (X,L), (X,L), S., T
~

and be as

in (6. 1) and (6. 11) .

Proof. Taking a line L corresponding to a point in S2'

there is the following exact sequence as for normal bundles
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By virtue of Qur assumption, T is the irreducible compo-

nent of Hilbert scheme of t in X whose Hilbert polynomial

is X (N i/x (n» :::: 3n + 4. Since Land t are contained in

T, we see that (NL/ X(n» ;;;;: 2n + 2 hence, ~et~NL/X;;;;: 0 .

Now we have a

Claim. There is a smooth hyperplane section H in X con-

taining R,. Therefore NL/ X is 0 e 0 2!: 0 ( 1) e 0 ("':' 1 )

Proof. Assume X is contained in F N Then Bertini's

Theorem says that a general hyperplane section containing t

is smooth outside t. The dimension of such hyperplane sec-

tion is N - 2 . On the other hand, N - 4 is the dimension

of hyperplane section H where H::l t and H is singular at

a fixed point in t. Hence we showed the former part. In

the next place we have the following

o --> NL/ H --> NL/ X --> -->. 0 •

Hence we get NL/ X :::: 0(-1) , which means the latter.

1By the above Claim, we see H (L,NL/ X) ;;;;: 0, which gives

us the separability of P2 •

Finally let us give a pathological example (X,L) which

contains my line.



6.11. Rernark.

field k .

Let p(> 0)

6-.12

be the characterist1c of the

Put

with

s : X

Then

X as {(x :Y": z):x (a:b: c) E F
1
2
)(P22 I xqa+yqb+zqc == O}

rn 2
q == P" • Let r: X --> F 1 be the first proj ection and

--> F
2

2
the second proj~ction.

(X,O (1 ,1) Ix) is the following propert1es:

1) It i5 a srnooth 3-fold which contains rny lines.

2) r is a p1-bundle and s· a~ i~separable rnorphisrn whose

fiber i5 F
1

set-theoretieally. Every 11ne in X is

a fiber of p or q .

3) Henee rand s yield the Hilbert seheme of lines in

(X,L) Let f
r and be the fiber (s:' F 1 ) or

rand 5 respeetively, 5et-theoretieally:. _'rhen

= 0 EB 0 and

Proof. Let us show the latest part only. X i5 isomorphie

to F (4)*T 2) where <.p 1s the rn-power of a Frobenius rnap
F

p2 2 Then the eanonieal projeetion--> F . r mean5

: P(4)*T 2) --> p2
1

.
p

s. Then, noting that

Now take a line 9.- (-~ P 1 ) indueed by

is a elosed immersion fram

to p 2
1

there is the following exaet sequenee



where R means F (= Hirzebruch Surface), which
q

fellows that

o --> --> N /R. X
--> 0(1) -> o .

Since s yields a 2-dimension surface as an irreducible cem-

ponent of Hilbert scheme, we have

plies NR. / X = 0 (1) e 0 (- p IT)-,.•

which im-
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