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DELIGNE-BEILINSON COHOMOLOGY

Helene Esnault*' (Bann)

Eckart'Viehweg (Essen)

In these notes we describe the Deligne cohomology of a complex

manifold as wellas Beilin~on's algebraic cohomology theory of a quasi­

projective complex manifold and some of its properties. In fact, most

of the content of our manuscript can be faund (in a more compressed
"

form) in the first paragraph of Beilinson I s article [3]. We tried to

include all details needed, and we hope that our presentation is

sufficiently "down to earth lt to serve as an introduction to this theory.

We like to emphasize that credit for the ideas presented her~

should be given to A. Beilinsan, S. Bloch, P. qeligne and same other

mathematicians, whereas any possible inaccuracies and errors are due

to us (and to our efforts to be as explicit as possible).

In §1 we recall the definition of the (analytic) Oeligne cohomo­

logy and - following [4] - we g,ive S. Bloch I 5 definition of the regulator

map for curves, hoping that the concrete description in this case mayhelp

to understand the more formal calculations of the f6l1owing chapters.

In §2 we describe the Oeligne-Beilinson (0 - E) complex on a

good compactification of a quasiprojective (real or complex) manifold
I

and the corresponding cahomology theory. The properties of the

o - b - cohomology arising from abstract nonsense are discussed and same

~f the cohornalogy groups are deterrnined. At the end of §2 we explain

to sorne extent the description of the D - E - complex :IR (p) V by using
co

real. C forms.

The formal definition of the D - E - cohomology using relative cohomo­

logy is explained in §4. This might be a more conceptional approach.

However, we have tried to avoid using the relative cohomology as far

as possible, although it forces us to use a rather artificial way of

def ining the product on the 0 - b - complex (3. 3) .

In §3 the definition and properties of the product are explained. We

could not resist to include the calculationsofall the compatibilities

and hornotopies needed.

Without giving all details, we sketch in §5 the usual extensions of

* supported by a Heisenberg fellowship, DFG



the definitions of the cohomology theory to simplicial schemes of

finite type over ~. At the end cf this section one constructs a complex

of sheaves in the Zarisky topology, which on open subvarieties describes

the - D - b - cohomology.

In §6 we recall the definition"and some properties of the cycle class

in the De Rham cohomology (following [2],[9] and [1]). Especially we

explain the behaviour of those classes with respect to the Hodge

filtration. These constructions are needed in §7. There we first ex­

plain the relations betwee~ the Deligne cohomology cf a projective

rnanifold and the intermediate Jacobian of Griffiths. We reproduce

Deligne's definition of the cycle class in the D-E-cohornology ([10])

and we compare it to the Abel-Jacobi map. Gur presentation is slightly

different from the one given in [10]. Finally, in §8 we sketch the de­

finition of Chern classes of vector bundles in the D - ö - cohomology.
We do not consider in this note Beilinson I 5 descri!?tion of the D - E

cohomology as an extension cf Hodge structures.

Notations and conventions:

Throughout these notes X is a eomplex analytic variety. Even if

X happens to be algebraie, it is considered as an analytic variety,

except if the index "Zar" is added. Correspondingly nx denotes the

De Rham complex of holomorphic differential forms.

We use the notations of the derived category, whenever it is necessary

of bounded complexes (even if it is sometirnes not explicitly mentioned) .

A niee introduction ean be found in [6] or [14]. In partieular we

eonstantly use the notation of a cone of a rnap f : A· ~ B· of

eornplexes. If the map just exists in the derived category we always

replaee B· by an injective resolution.

m· is the hypercohomology functor from the derived eategory of ~­

sheaves to the derived eategory of abelian groups whereas mq(A·) is

the q-th cohomology of the complex m- (A-) _ If A is a subring of

:IR we write

A(p) = (2i7f)P - Ac a: _

Of course, for the purpose of this volume, one needs the eohomology

theory for real algebraic varieties_ However, as explained in (2_1,II),

this theory is obtained from the one for complex varieties by a quite

simple proeedure, "compatible with all the statements made in these
notes 11 _



§1 The Deliane cohornology

The dilogarithrn function and the regulator .rnap on aRiemann

surface (after S. Bloch)

1.1. Following [5] we define the Deligne complex ~(p)V,an on

a cornplex analytic manifold X as

(where ~(p) is in degree zero) and the Deligne cohornology as

For simplicity, in this paragraph, we drop the sub-script " an " and

write ~(p)V and Hß

1.2. We define a rnultiplication

by xUy

if deg x = 0

if deg x > 0

otherwise

and deg y = pi

ü is a morphism of cornplexes. In fact, if we denote the differential

in Z(p)V by d (where, of course, d: Z(p) -~ 0x is the

inclusion) and ~ = deg x and ~l = deg y, we have:

x·dy J..L = 0 , ~I < pi

d (x LJ y) = x . dy :; dXAdy J..L = 0 , J..L' = pi
= dx UY + (-1)~xUdy .

dXAdy J..L > 0, J..LI = pi

0 otherwise

It is quite easy to show that U is associative.

1.3. Using the usual arguments from hornological algebra, or by
v

calculating the Cech-cohornology on a suitable cover we obtain a ring

structure on p'qH~(X,Z(p)). In fact: the product is antico~utative,

i.e. for Cl E Hß(X,X (p)) and ß E Hß(X,Z (pI)) Cl Li ß = (-1 )qq ß u Cl.

This will be shown in (1. 6) for p = pI = q = q I = 1 and in a more general



set up in §3. Por the reader who wants to check the anticomrnutativity

direetly we just reveal that the homotopy between x LJ y and

(-1 ) Jl • Jl' Y L: xis given by:

--10 ~ = 0h(x 0 y)

(-1)~XAY

or ~I = 0

otherwise

1.4. Examples for low values of p and q:

i) (p = 0) Obviously ~ (0) V =~ and Hß (X,:?l (0)) is nothing but the

5 ingular cohomo loqy Hq (-X,X L

ii) (p = 1, q = 1) If 0x denotes the sheaf of invertible holomorphie

functions, ~(1)V is quasi-isomorphie to 0x[-1] via x ~ exp(x).

For a suitable open cover {U} of X an element of HV
1 (X,~(1)) is

v a.
represented by a Cech-eocycle

(2 i TI m ß ' F ) E C1
(71 ( 1)) x C°(0)a. a.

where the coeycle eondition says

eS (Fa.) : = Fct - F ß = 2 i 7T' IDa ß •

:Hence f : = exp (F) is the restrietion of f E HO (X, 0x*) and the
Ct ct

isomorphism

maps the cohomology class of the cocycle to f.

quasi-isomorphism:

iii) (p = 2, q=2) The exponential x
x j-----.;... exp (-2' )

1.1T
defines a

.." ( 2 ) (0* cl log) fi

x
1 ) [-1 ] •

.t4l V '-? X ~,

Hence p E H~(X,Z (2))
v

can be described by a Cech-cocycle

with



(2i Tl" ) 2n S = 0H ß' dH ß = 8n ·
~ y 0. a a

An element of m1 (X,OX ~n~) is .represented by

(~ S' W ) €' C1 (0 *) x CO (n 1 )
a 0.

wi th 0 E.: a. ß = 1 , d log ~ ß = 8w .
0. CL

The image of p under the isomorphism of the two cohomology

groups is given by

iv) The multiplication

U : H~ (X,71 (1 )) x H~ (X ,~ ( 1 )) -;:.. H~ (X , Z ( 2) )

can be written via the isomorphisms ii) and iii) as

u JH1 (X, 0* --+- n1)
X X

· ~). Hence, for a cech cover {Va} such

(and denoted by logo. f) one can describe

with

that

fLJg

mo.S 1
f U g :;;:: (g , 2iTl" Fa.

log fl v is defined
a.

by the cocylce (E.:~,ß,wa) with

1
---2' (log f - logS f)

1.7f a
E.: aS = g and w :;;:: 1 log f ~

a 2i Tl" a. g

1.5. P. Deligne (see [3]., 1.3) interprets JH1 (x,ox~ n~) as the

group of rank one bundles ~ with holomorphic connection ~
v

identifying (~,V) with the class of the Cech-cocycle (~ß'w),
a. ~

where E:: IV :;;:: 0u'· e o. e o. :;;:: E.: aß · eS and V e a :;;:: wo.· ea..
a a.

By definition 8E.:o.ß = and the Leibniz rule

implies 8w a =d log E.: aß . The group structure corresponds to the

s-productofbundles with connection and 0x equipped with the usual



differential

from a pair

non-trivial

Aa· ~ Ct ß = ,\ ß and °=~ Aa· e a =
and only if ~aß =Aß/A a and

a caboundary.

v
d is the unit. On the other hand each Cech-cocycle comes

(~,~). We have (~,~) = (Ox,d) if and only if s has a

flat. section, locally described, by A·e with
a CL

Aawaea + dA a · e CL • Hence (s,~) = (OX ,d) if

wa=-dlogA a , that is, if (~CLß,wa) is

If one looks, at the exact sequence

one finds the weIl known fact that a rank one bundle with trivial first

De Rham Chern class has a holomorphic connection.

From now on we will identify the cohomalogy classes inm\x,Ox ~n~)

with the isornorphic-classes of bundles with connection. The

product f U g in (1.4, iv) defines tor two functions f ,'g' E HO (X, 0X) a

rank one bundle with connection, which we call r(f,g).

Lemma 1.6. (see [4])

a) r(f,g)" r(g,f) = (Ox,d) for' f,g E. HO (X,OX).

b) r(1 - g,g) = (Ox,d)
o '

g ,1 ;.. gEH (X, O.x) •

v
Praof. We choose a Cech-cover such that log g, log f (or logN(1 -g)

a. a Vo

in part b» are defined.

a) Then r(f,g) ~ r(g,f) is represented by

w
a.

= -~- (log f ~ + log er df)
2~7T a. 9 0:,- f ·

A flat section is given by

b) Ta obtain a flat section one has to find A
CL

satisfying

1
-2. (log (1 - q) - log ß (1 - g) )

~'IT a= 9 .



and

The second differential equation leads to the solution

1 da
A = exp (- -.- flog (1 - g)~)a 2~TI a g

(5. Bloch's dilogarithm function).

5ince loga (1 - g) - log ß(1 - g) is constant on the cornponents 0 f

UaS one has

= exp (-2~ f (log (1 - g) - log S (1 - g) )~)
~1T Cl g

1
= exp (2 i TI ( logCl (1 - g) - logß (1 - g) ) log g) •

1.8. From now on, we consider a compact Riemann surface Y, a finite

set of points 5 and j : X = Y - S ~ Y. We define 0yt*S) to be

the sheaf of meromorphic functions, holomorphic and invertible on X

and ni(lOg 5) to be the sheaf of meromorphic differential forms,

holomorphic on X and of logarithrnic growth at 5. If f , g E HO (Y , Oy (*' S) )

the cocycle of r(f,g) is by (1.4, iv) in fact a cocycle in

0*(*5) ~Y .
1ny (log 5).

For x E 5 let ordx :, Oy (* 5) ~ Zlx

or pole and let res x : n~(log'5) ~ ~x

residue. We have. resxd.log = ordx '

denote the order of a zero

denote the Cauchy-Poincare

kernel (1-1ordx) = Oy and
xES

1
kernel (1-1 res ) = Qy

xES x

(1 • 9 )

Altogether we obtain a distinguished triangle (see [6] or (2.2)

for this notation)

~* g.i.> (0* d log) Qy1 ) --? (0*(*5) d log) Qy1 (log 5))
y Y Y .

[11\ j (ord,res)

(1-1 X C-......).. 1-10:) g.i. ) 1-10:*[-1]
xES x xES x exp(2i1T) xES x

The components of the induced map

U
xES

~*x



are denoted by

an element p
any Ci. with
Lemma 1.10.

v
d • If on a Cech cover {U} of Y

x Ci.

of the left hand side, then dX(p) =
x € U

a. •

( c w) represents
sCi.ß' Ci. -

exp·(2in.resxw~) for

a) The natural map

is a quasi-isomorphism.

b) where T is the lttame-symbol"
x

Proof.

ord f·ord.g
T (f,g) =[(-1) x x

x .

ord f -ord g
. g x. f x] (x)

a) ~ induces a morphism of the triangle (1.9) into the triangle

being an isomorphism at two corners.

b) d 0 rand T are multiplicative in both arguments. As forx x
dxOr one has Tx(f,g) ·Tx(g,f) = 1. If both, fand gare units one

has dx·r(f,g) = 1 and Tx(f,g) = 1. From the definition of Tx one

obtains Tx (1 - g, g) = 1. If t is a loeal parameter at x we ean wr i te

f = u·tV and g = v.t~ for loeal units u and v. By multiplicativity

and (1.6,a) the proof of b) is redueed to

Ci.) f a unit and g = t

ß) f = g ::::: t,

where we may assume that all poles and zeroes of t are in S. Sinee

(by (1.6,b)) and sinee the same holds for T we have
x

dxr(t,t) = a r(t - l,t) and T (t,t) ::::: T (t - 1,t). Henee case ß)x x x
follows from a). The explicit deseription of r(f,g) in 1.4, iv)



teIls us that for a suitable cover of

and resxwa = 2~n logaf(x). Therefore

1 dt
Y - S wa = 2in logaf ~
d r (f , t) = f (x) = T-1 (f , t) .
x x

1.11. By Matsumoto's description of K2 of a field one has

K
2

(a:(y)) = {[(Y)* 0
Z
{[(y)*/<g 0 (1-g),g({[(Y) -{O,1}> ·

On the other hand, r induces a map

whose kernel contains all g 0 (1 - g)

over

K2 ({[ (Y) ) •

(1.6,b). Therefore r· factors

From (1.10,a) we have a comrnutative diagram

_11 Tx
UK2 (Y) > K2 (CI:(Y)) ): 0:*
xEX x

!r !() -1

_11 dX
0 ~:IH1 (y,Oy 1

1 im lH
1

(Y , 0Y(*8)
1 8) ) U (1:*-7- Qy) ~ --->' ny(log )

~y xEX x

where the first line is the exact sequence obtained from the Gersten­

Quillen resolution (we just need that this is a cornplex, which is easier

to prove ) and the second line is the exact sequence of the triangle

(1.9). Therefore we obtain

Theorem 1.12 (Bloch, [4]) r induces a map

= lH1 (Y, 0* ~ n1 )
Y Y

(calied the regulator rnap).

Remarks 1.13.

The description due to S. Bloch of the regulator map rnay serve as an

introduction to the constructions of §2. There wewilldefine cornplexes

F·{p) such that on an open Riemann surface



X::::y-S

and such that

(2.12)

It will be even possible to realize F· (p) as a complex of sheaves in

th~ Zariski-topology, whereas for any algebraic manifold and q~ 1

The reason why this construction is not necessary in the case of a

curve is just that the target. group of the regulator map is

(2.13)

§2 The Deliane-Beilinson complex

In this section we want to generalize the definition of the Deligne

cohomology in several respects. In particular we want to explain

]{. Beilinson's "theory with. logarithmic growth along the boundaryll which

- using ·GAGA - can be viewed as an algebraic version of the Deligne

cohomology (see [3]).

For the applications to higher regulators described in this volume,

A. Beilinson uses cohomology theories for real algebraic manifolds. The

difference between the cornplex algebraic and the real algebraic theory

only comes in when one calculates exarnples or when one tries to deter­

mine the image of the 0 - b - cohornelogy in the Hodge fil tratien of the

De Rham cohomology. Hence, as long as it is not stated otherwise,

the definitionsand results'hold in e~ther of the following situations:

2.1. I. X ia an algebraic variety over ~ considered with the classical

topology and Ov denotes the sheaf of holomorphic functions .
4~ .

m· is the hypercohomology viewed as a functor from the derived cate-

gory (of complexes) of Z-sheaves on X to the derived ca~eg~ry of abelian

groups and - for a complex F· of sheaves - mq(X,F·) is the q-th
v

cohomology of the complex m· (X,F·), as usual calculated by Cech-cohomo-

logy or using injective resolutions.



11) X is an algebraic variety over E _ Then a sheaf (or a complex

of sheaves) F on X is defined to be a pair (F,o) consisting of

a sheaf (or a complex) F on X(~) and an involution 0 compatible

with the complex conjugation Foo on X(<I:), ieee: 0: F"':::"""" Foo*F-

Of course, all rnorphisrns and quasi-isornorphisrns of cornplexes are

supposed to be cornpatible with the involution chosen, <0> ~ Z/2

operates on Eq(X(<I:),F-) and on the complex m- (X(~),F-) (in the

derived category) _ If H-«a>, denotes the group cohornology functor

on the derived category of abelian groups with a-action, we define

m - (X,F-) :::: H- «o>,m- (X(a:) ,F-)) and lHq(X,F-) as the q-th cohornology

of this complex_ In dow~ to earth terms mPTq(X,F-) is the abutrnent of a

spectral sequence HP«o>~q(X(a:) ,F-)) and, if F- i5 a complex of

sheaves over W,. JHq (X ,'F- ) are the invariants E q (X (<<:) , F -) 0 _

Exarnples:

On the constant sheaf ~ on X (<I:) , there are two possible involutions:

Foo:~ ~·Foo*~ :::: ~ acting on <I: as identity and o:a: ~ Foo*<I:

acting as cornplex conjugation_ We always assume that the sheaf a:

on X is the pair (~,o) _ Correspondingly, if SX(<I:) denotes the
00

complex of lR-valued C forms the involution chosen on Ax(<I:) :::: Sx (t) lZlR{[

is the one induced by 0 on the second factor_ Restrictinq this·

to ·the, subcomplex nX(<I:) of holomorphic forms we obtain the involution

operating on the coefficients of a differential form by conjugation_

On the algebraic differential forms this corresponds to the action of

Gal (<tl JR) induced by base change from JR to ([ on the algebraic Kähler

differentials_ Denoting all those involutions by 0 we remark that a

respects the Hodge decompostion of Hk(X(~) ,(C) ieee: O(Hk-p,P) ::::Hk-p,P_

2.2_ Let u:A- ~ S- be a morphism of cornplexes of sheaves on X.

The cone of u is the complex

Cone(A- C· :::::
u

with the differentials

(a,b) ~ (-d(a) ,u(a) + d (b)).



The natural inclusion

complete the triangle

Bq ~ C
q

and the projection
u

A· )& B·

[1~ /

C~ (where is exact) .

An arbitrary trianqle in the derived category is.distinguished, if it is

the image of one of those just constructed. If one applies a qerived

functor to a distinguished triangle one obtains a distinguished triangle,

For example if

is distinguished, then

]Ir (A·) ~ lH· (B·)

[1]~ I
lH· (C·) (where :Irr denotes the hypercohomology

functor in the derived category)

is distinguished and - regarding the cohomology of the complexes

JH. (A· ) , E· (B· ) and JH. (C -) - ane obtains the lang exact sequence

~ ...

(see [6] or [14] for a nice introduction).

Lemma 2.3. Let

of complexes and

u 1 : Ai ~ B· and u2 Ai --7 B· be two morphisrns

C· = Cone (Ai E9 A; Ul- u
2> E"·) [-1]. Then

u 2C· = Cone(Ai ----+) Cone

-u= Cone(A; 2)& Cone (Ai

-u
__2 _-+ B·)) [-1 ]

__U_l > B-)) [-1] .

Proof. " All three complexes are equal to

differential

A· e A· fB 8·[-1]
1 2 with the

(a, ,a 2 ,b) r---+- (-d (a, ) ,-d (a 2 ) ,u, (al) - u 2 (a 2 ) + d (b) ) .



Corollary 2.4. Using the notations frorn 2.3. we have three lang exact

sequences:

a) ~ lliq (C·) ~ ]Hq (A;.) €B JHq (A ~ ) ~ JHq (B·) ~ JHq + 1 ( C·) ~
2

~ lHq (C·) ~ ]Hq (A· ) --+- lli
q

(Cone (Ai
-u

--+- JHq + 1 (C • )---7b) 2 > B • ) )
1

c) -~ mq (C· ) ----+- ]Hq (Ai )~ ]Hq (Cone (Ai
U1 ;)- B ~ ) ) ----710- JHq + 1 (C· j -)J. •

2.5 Let X be an-dimensional algebraic manifold (over ~ over m).
A "good compactification" of X is a proper algebraic manifold X with

an embedding j : X --+- X such that D = X - X is anormal crossing

divisor (i.e.: locally in the analytic topology D has smooth components

intersecting transversally) .

Let n~ (log D) be the De Rham cornplex of rnerornorphic forrns on X,
X

holomorphic on X and with at most logarithmic poles along D. We have

a filtration of n~ (log D) ty subcomplexes

The properties of logarithrnic forms needed are (see [7]):

a) ,Since j is affine Rj*r2X:: j*r2X. There are quasi-isomorphisms:

and hence

b) The natural maps

q - p+1 q - P
T P : lH (X I F D ) --+- lH ( X , F D ) and

q - P q -
t : lH (X,FD) ~E (X,n~(log D)) are injective.

Hq(X,~) carries a mixed Hodge structure, and the Hodge filtration

FPHq(X,~) is given by Im(T). Moreover the cokernel Hq(X,~)/FPHq(X,~)

of T is the same as lHq(X,n~p (log D)) where n~P(log D) denotes

the complex



1 e-1o ----+ 0x ~ r23{ (log D) ~ ••• ----7 &1
X

(log D). ---7 O.

The cokernel of 1"
P

. q - pc) By GAGA, lli (X,FD~ can be ealeulated using the.corresponding

eomplex of algebraie differential forms in the Zariski topology.

is independent of the good compactification chosen.

o f JR and A (p ) = ( 2 i Tl" ) P • A cer;.

- complex) of (X,X) is

E-l > Rj*r2X)[-1] where E

Rj*r2X is represented in such

by the direct 'image of an

Definition 2.6. Let A be a subring

The Deligne-Beilinson complex (D - 0

A(p)V = A(p)V,X = Cone (R~*A(p) ~ F~

and 1 are the natural maps and where

a way that both maps exist (for exarnple

injective resolution of &1X).

If f: y ~ x. is a morphism of alqebraie manifolds we can choose

good cornpactifications Y and X such that f extends to 1:~ ~ x.
Thereby we obtain a morphism I*:A(p)V,x ~ f*A(p)V,y .

2.7. Other descriptions: By (2.3) we rnay write as weIl:

A (p) V = Cone (FE ----+ Rj* (Cone (A'(p) --...... n~) ) ) [-1] or

A(p)V = Cone (Rj*A(p) ~ Cone (F~ --7 Rj*nx»)[-1] .

Using the second deseription one sees immediately that ~(P)Vlx

quasi-isomorphie to the complex ~(p)V,an ~efined in (1.1). A

quasi-isomorphism a: ~(p)V,an ~ Z(P)Vlx is given by

is

7l (p) ----iIo- °x ~ p-2 p-1
0• •• '----+ r2

X
') &1

X
)

11 11 1~-2 ~a ~
:;Z(p) ~ °x ----+ ••• ~ °x d

1 ) nPmnP- 1
d p

) nP +1enE
p-1 X X X X

for a(w) = (dw,w). The proof follows easily since d
p

_ 1 (~) = (O,d~)

d (n,~) = (-dn;-n+d~).
p

Lemma 2.8.

chosen.

mq(X,A(P)V) is independent of the good compaetification

Proof. JH. (X,A (p) V) is one edge of a distinguished triangle whose other

two edges,



remain quasi-isomorphie under T* for a morphisrn T

between good eompaetifieations of X.

Sinee eaeh manifold over ~ allows a good eornpaetifieation we

ean define:

Definition 2.9. Let X be an algebraie manifold (over ~ or E).

Then the Deligne-Beilinson eohornology (or D- E eohomology) is

defined as

Keeping in mind that Cone(F~ ~ Rj*QX) . is quasi-isomorphie to

Q~P (log D) and that Cone (Rj*A(p) ~ Rj*QX) = Rj* ~/A(p) we ean

rewrite (2.4) as:

Corollary 2.10. There are long exaet sequenees

a) ~ H~(X,A(p») ~ Hq (X,A (p) ) !B pPHq(X,([) --+- Hq(X,<I:) ~

~ H~+1 ~ X, A (p) ) ~ ...

b) ~ Hß (X , A (p) )j ~ Hq (X, A (p) ) ----il- Hq(X,CC)/FP --;... Hß+1 (X,A(p» ~

e) ~ Hß (X, A (p) ) ~ FPHq(X,CC) ~ Hq(X,CC/A(p» --+- H~+1 (X, A (p) ) ~

Proposition 2.12.

i) H~ (X,A (p) = 0 for q ~ ° and p;;;: 1 .

ii) H~(X,A(1» = {fEHO(X,j*OX/A(1»); dfEHO(X,n~(log D»)}

iii) Let O(X)*l denote the group of algebraie invertible·functions
a g

on X. Then there is a natural rnap

For A = ~ the rnap p is an isomorphism.

p 1HV(X,A(1».

•



Proof. Sinee Hq (X,(t/A(p) = 0 for q < 0 and FPH
O(X,(t) = 0

for p 2: 1 i) follows from (2. 10 , e) •

ii) We have a morphism of eomplexes

r-'
A(1) :=

By (2.4,e) we obtain

o - ,-'

F
1

H
1 (X,(t)

1 _
O~ H (X,j*CC/A(1)) --+JH1 (X,A(1)) ~ ~ H (X,j*<I:/A (1) )

11 11 !n 11 f
O~ HO (X, (t / A (1 ) ) 1

F
1H1 (X,<I:) H

1 (X,«:/A(1))--7 HV (X,A (1 ) ) ~ ----+-

and
r-/
A (1 )

- using the five - Lemma we find

is quasi isomorphie to

n to be an isomorphism.

(w, f) ~--~) (-dw,-w+df)

and H~(X,A(1))· is given by oH (ker 6) .

iii) The inelusion Z(1) ~ A(1) induees Hb(X,~(1)) ~ H~(X,A(1))

and we just have to consider ~ = A.

Sinee

0x/~ (1 ) d) n~ cornrnutes,

exp'\. / d log
0*

X

and since <.p E HO (X, j *0'X) is merornorphie along D if and only if
0-1d log <.p E: H (X, r2X (log D)), we obtain from ii) that

By GAGA, the merornorphic functions

as the algebraic functions.

are the same

2.13. Remark. As in (1.1) one defines·



Hqv (X,A(p» =Eq(X,A(p) ~ 0x ~
,an

which - by (2.7) - is the same as mq(X,A(p)V!x). One has the

natural map

H~ (X , A (p» ~ Hv
q

(X , A (p) ) •,an

This map is - of course - an isornorphism if X i5 compact, but also

if p > dirn X, since in this case

However, for example for q =p = 1 and A = lZ, we have j us't seen that

2. 1 4 • The II rea lll D - b - cohomology

Let Sx be the complex of

Ax be the complex of (t-valued

for all p, one has maps

C
OOm-valued forms over X (a:) and

C
OO

forms. Since (t = m (p) EI) JR (p-1 )

In the/derived category those are the same as the projections.

ct ~ JR (p-1). Therefore we have quasi-isomorphisms

Cone (:IR (p) --+ ~x) ---+ Sx (p - 1) •

We denote the induced maps Pb ---+ j *rlx---+- j *Sx (p - 1 ) also by

'IT p _ 1 . Since Rj*Sx(p-1) = j*SX(p-1), (2.7) implies:

Lemma 2.15.

Pp : JR(p)V

P - 0
p!JR(p) -

r-..J
Letr-3 (p) V : =

----;... JR (p) V be

and P IR' n·p J* X

-TI -1
Cone (F~ P ) j*SX(p-1»[-1], and let

the morphism given by Ppl~h = id,
= 'IT

p
_

1
. Then Pp is a quasi-isornorphism.

~orollary 2.16.

a) For q ~ P Hß (X, IR (p) }
o ~

H (X,JR(p)V).

is the q-th cohornology of the cornplex



b)

~(X,1R(1).) =

More precisely, if then d n
z

1
= -<.02

c) If dirn X = 1 then

H~ (X , :IR ( 2» = H
1

(X, IR ( 1 » .

,-.J
Proof. :IR(p)V is the complex

\·;i'lere j*S~(p - 1) is in degree one. Slnce all the j*S~(P - 1) are

acyclic one obtains a) .

For p = q = 1 a) implies that H~ (X , :IR ( 1 ) ) is the kernel of

o - 1 0- - 0H (X,üx(log D» e H (X,j*S )

1
If dn = 'IT 0<.0 then dzn = ~ and d<.O = 0, and we obtain the two

descriptions of Hb(X,JR(1» given in b)

c) . is obvious since on a curve F~ = 0

quasi-isomorphie to Rj*JR(1) [-1].

ro-I
and JR (2) V = j *Sx ( 1 ) [-1 ] is

2.17. Remarks.

i) The isomorphism between the two explicit descriptions of

H~(X;lR(1» .obtained in (2.12,1i) and (2.16,b) is given by

f ~ 'ITO(f) = n and df = 2d z ('IT O(f».

of currents ([11], Chap. 3.1), one can rewrite

different way. For exarnple, if X is a curve and

= Res (2d n) = Res (d<..O) for x E S. Sincex z x
has logarithmic poles and both, n and d n,z
denotes the current associated to d n thez

ii) Using the language

(2.16,b) in a slightly

S = X - X, we wr i te a
o - 1 x

dzn EH (X,nx(log D», n

are integrable. If T
d zn



generalized Cauehy fermula implies (lee. cit.)

= 2 i 'IT L Re s (d n) 8 = i 11" L
xES(~) x z x

a 8
x x

where 8 is the Dirae distribution. On the other hand, this equality
x

implies that dzn has at most logarithmie poles. Hence

100HO (X,lR ( 1 )) = {n E H (X , SX) ; n

§3 Products

integrable and

The aim of this section is to extend the definition of the product

given in (1.2) on ~(p)v
,an

(X,X), where, as in § 2, X

3.1. Example: We define

to the full D - b complex of a pair

is a good compactification of X (See [3]).

A(p + q)Vlx

x . Y if xEA(p), yEA(q)

x· y if xEA(p), y E 0x

by x U Y = XAy if x E: FP , Y E Fq
0 I: ~ y

if x E. Ux , Y E F
q

otherwise

where x (and y) are supposed to be a Ioeal 5ection of A{p), pP

or 0X. For A = Z this product is cornpatible under the quasi-isomorphism

a described in (2.7) with the product defined in (1.1), i.e.

Z(p)v
u

o ~(q)v ) 7l(p+q)V,an ,an 1 ~ ,an1(a ~ a)

Uo
~{p)V!X e Z(q)Vlx > X(P+q)Vlx

i5 cornmutative.



Definition 3.2. Let ~ E JR. Then we define a product

Ucx : A (p) V ~ A (q) V ~ A (p + q) V by the following table:

a
q

f
q wq

a a . a 0 (1 - a.)a ·wp p q p q

f p 0 f 1\ f (-1 ) deg f p a. . f 1\ tuP q .
p q

w a.. W ··a (1-a)w 1\ f 0
P P q P q

representing elements of

qA(q) FD
n·

X

A(p) A (p + q) 0 n·
X

FP 0 FP+q Q.
D 0 X

n· n· n· 0:
X X X

concentrated in one degree.

3.3. To make sense out of this definition ofa product one should inter­

prete this table in the following way:

On X we have the produc~s

A(p) ~ A(q) ----+ A(p+q)

A(p) ~ O· ~ 0·
X X

n· ~ A (q) ----+ n·
X X

. *FP n· ----+- n"] D ~ X X

n~ ~ j*pq ~ n·
D X

as described above. They fit together to define a product

uCi. : Cone (A (p) e j .*Fg ~ 0 X) [- 1 ] 0 Cone (A (q) €B j *P6 ~ nx) [-1] ~

~ Cone(A(p+q) ~ S"2X)[-1].



In fact, if 8 denotes the differential, one has to verify for

elements y and y' of degree ~ and ~I that

8 (y lJ Y ') ::: 8 y U y' + (-1) ~y U 8 y I •0'. a 0..

The left hand side is

a p
. a 0 (1-a) a dwq p q

0
(-1)~·a

(-1)2~a

(1-0..) aw 1\ f +P q
a . a dw ~-1 0q P (1-0) (-1) w df

P q

whereas the right hand side is

Ci.·a • ap q

+(1-0..)a • ap q

(1-0'.)a · f
P q

+ (1-0) a . (.-f )
P q

o

+(1-a)a dwP q

a(-f ) •p

+(-1)2~a

a
q

f
P

· a q

(-1) ~+10'. (-df ) AW
P q

+ (-1 ) 2~Ci.f ... --1 wq "u. p

Ci. • a •
q

+ 0

dw
P

(1-Ci.) dupl\fq

+(-1)~(1-a)w A(-df )
P q

o

Here the entries live in



q~' ~t-1
A(g) (j *F0) I nX-

A(p) °x 0
~tn
X

(j *FP ) ~ 0 LX ~+~I

0
n

X

~-1 n~ ~+~' 0nX x nX

Taking injective resolutions of FO ' A( ) ,n~ we obtain a product

We complete this product to a product

A (p) V 0 A (q) V ~ A (p + q) V = Cone (F~+q

by taking the usual wedge product . F~ ~ F6 ~ F~+q . This is possible

since - by the following computations - the wedge product cornmutes v:ith

the differen~ials in A( )V.One has

8(f A f) = [-df Af - (-1)J.1 · f Adf ,-f Af ]
P q - P q P q P q

in Fg+q e Rj*nx whereas 8fp = [-dfp,-fp ] ( Fg $ Rj*n~ ,

6f U f = [-df A f ,- (1 - 0:.) f "f] and similarlyp a q p q p q

3.4 Remark. The quite complicated description of the product is

necessary, since at this stage, we tried to avoid the more formal

language of sheaves on pairs of topological spaces. Nevertheless, the

reader should compare the defintion with the definition of the tensor­

product of those pairs, given in (4.5 - 4.8). From now on, we just work

with the multiplication table (3.2) to verify the properties of the

product, and we leave it to the reader to distinguish whether a given



expression lives on X or on X

Proposition 3.5.

a) U
1

/
2

is anti-comrnutative. More generally, if y and y'

concentrated in degree ~ and ~' then

b) Uo and U1 are associative.

are

c) The element (aO = 1, f O = 1) in A(O)V is a left-identify for

Uo and a right-identity for U1 .

d) For a,ß ~ m the products ~a and Wß are homotopic.

Proof:

We choose elements y and y' living in A(p)V and A(q)V in deqree

~ and }J.'.

a) is obvious from the definition. For example if
}J.1-1

Y = f p € (j*Fg)}J. and .yl = wq E nx ,then

(-1)}J.·}J.'y ' U y
( 1-a)

b) Let y"

sider Uo·
or all the

two of the

be an element of A(r)p. Using a) it is ~nough to con­

If y,y' and y" represent all the three elements of A(

three elements of F~) the associativity is obvious. If

elements belong to nx ' then (y UaY I) Uoy" = y U 0 (y I U
o

y 11)::;: 0 .

The same holds if two of the elements are belonging to A() and one

to F6) or one to A() and two to F6). Since a:. 0 both

uOlnx~A() and uolF~ )~nx are zero. Hence the only cases left, where

one of the two sides can be nonzero, are (a ,a ,w ), (a ,w ,f) andp q r p q r
(w ,f ,f) and both, (y U y') U y" and "( U

o
(y' U

o
yll) are

p q r 0 C
a ·a ·w, a·w A fand W 1\ f 1\ f respectively.p q r p q r p q r

c) Again it is enough to consider ~O and (1,1) Uo yl is given by



a "f W

Iq "":q q

1 EA{O) 1 • a ° 1 • w
EJ q

1 E{FO)O 0 1 1\ f = f °D q q

d) The homotopy between Ua and Uß is given by

h : (A(p) V ~ A(q) v~~ (A{p + q) V) k-1

__ {(-1)IJ.(a- ß)YI\.Y'
h{Y0Y ' ) ° otherwise

if
11 -1

Y E 01"':' and
X

Y 1 E: n~ 1-1

where - as usual - Y

each in A{ ), F6 )
and y' are elements of degree

or 0x. We have to show that

and IJ. I ,

y U Y - Y 'u Y I = (ho + 0h) (y GY') = h ( 8ycay ') + (-1) J.l. h (y 0 oy') + 0 (h (y 0 Y I ) ) •
Cl ß

The left hand side is given by

° ° (ß-a)a ·w
p q

° ° (-1)J.l.(a-ß)f AW
p q

{(l- ß)" W • a (ß-a) w 1\ f °P q P q
in the notation of (3.2) •

For the right hand side we remark first that h (oy c Y I) ::: 0 if

y' *wq , h(y~8y') =0 if y*w
p

and 8(h(Y31Y'» =0 if

(y,y') * (w ,W ). We have
p q

(ho + oh) (w ~ ) = (-1) 1J.+1 (a-ß) dw AW + (-1) 21J. (a-6) W Adw + 0 ( (-1 ) ~ (ci~ß) W I\W ) =-0 ,
pq pq p q pq

(ho + oh) (a ~ W ) = h(oa ~ W ) = (-1) (a - ß) a 1\ W
P q P q P q

(ho + oh) (f ~w ) = (_1)JJ.+1 (0 - ß) (-f ) 1\ W
P q P q

(hö + 0h) (w • a ) = (-1) JJ. h (w <§ 0a ) = (-1) 21J. (Cl - 6) w • a and
p p p q p p



3 • 6 • Le t E A : A (p ) V

EF::A(p)V

factor (-1tdeg ( ) ,

and

be the projections, as in (2.2) with a

EA E
En : A(p)V )' Rj *A (p) > Rlj*nX and

En: A(p)V
EF FP l

Rj*n~): ): .
D

By definition of A(p)V (2.6) En - En
in a distinguished triangle and hence

map. We define products

is the cornposition of two maps

En - En is homotopic to the zero

_1\_+-) FP +q
D

and

Since Un can - up to homotopy - also be defined as

Erz ~ id
---~): Rj *n~:» Rj *nx

the morphism

is compatible with vA,UF and, up to homotopy, with Un.
Moreover EA (Y U0 Y I) = Y UA EAY land EF (y U0 Y I) =.y UF EFY I

easily verifies using the multiplication table (3.2).

For the natural map n : Rj*O~'~ A{q)V one has as weIl

y Uo n(w
q

) = n(y Un w
q
). Altogether we obtain:

as one

Proposition 3.7. In the triangle

Rj*A(q)



the operations of A (p) '!J c.ef ined by Ul'~ ,Ur ,:.J~ and Va Cl.re cornpatible

with the morphisros.

3.8. Since A(p)V has a flat resolution (of finite length) over

Z ([6] V,6) one has a map A{p)V ~L, A(q)V ~ A(p)V ~ A(q)V · Therefore

one has for all a E :IR a product

L )Ua. : A(:r::)v 0 A(q)v ----+ A(p + q V

anc - by the usual constructions from hornological algebra a 9rcduct on

the hypercohomology. By (3.'5,d) this product is indepenäent of a. .

(3.5) and (3.7) give irr~ediately:

Theorem 3.9. U
a

induces a product U, making p~q H~(X!A(P)) into a

bigraded ring with ~nit. Por y E Hß (X ,A (p)) and y I E H~ t (X ,A (p 1)) we

have y U y' = (-'1) qq y' U y. Moreover one has an operation of

m HqV(X,A(p)) on e Hq(X,A(p)), ~ pPHq(X,~) and mHq(X,~) corning
p,q p,q p,q q
via EA,E p and En from the standard products. The exact sequence

is compatible with the operations.

3.10. The product on the ureal" D - 1) cohornolooy

We return to the notations introduced in (2.14). On

m(p)V = cone(FE -TIp -1) j*Sx(p-1))[-1] one defines a product

given by

f q So

f f /\ f (-1 ) deg f
P 1T iP/\ S

P P q P q

s S /\ TI f 0p p q q

Lemma 3.11.

a) TI is a morphism of complexes.

Pp +q 0 Ua is homotopic to U 0 (Pp ~ Pq ) (where

~(p)V ~~)V is the quasi-isomorphism given in (2.15)).



Proof: a) For y and y' of degree ~ and ~'

is

(-d f 1\ f - (-1 ) jJ. f 1\ d f
P q P q'

- TI (f Af )]
p+q-1 P q

jJ.-1[ O,ds I\Tr f +(-1)' . 5 I\TI' df ]
P q -q P 'q q

whereas

ÖyUy' is

[0,(-1 )~TI df 1\ S + (-1 )2~Tr f I\ds ]
P P q P P q

o

[ -df 1\ f , -Tr 1 f 1\ TI' f ] [O,-(-1)jJ.+1 Tr df "5 ]P q. p- p q q p p q '.

[ 0 , ds "7T f ] 0p q q

and (- 1 ) ~Y tJ ÖY , i ~

[-(-1)jJ.f "df -(-1)2~1T f "TI 1f] [0, (-1)2j.!7T f "ds]
P q' P P q- q P P q

[O,(-1)jJ.s "(-TI df)] 0

I
p q q

Since

TI' 1 (f "f ) =71' 1 ((TI 1f + 1T f ) "(71' f + TI 1 f )) = TI' 1f 1\ 1T f + 1T f "TI' 1fp+q- P q p+q- P-P pp qq q-q p-p qq pp q-q

we obtain a).



b) The homotopy is

{
(-1)~'IT yAn 1 yl

h (y ~ y') = p q-
o otherwise.

We have to verify that

if and yIEr2~f_1
X

The left hand side is (see (3.2))

0 0 -a . 1T. W
P q-1 q

0 0 (-1)~1T f A1T 1wP p q- q

1T 1w A1T f -
0

p- p q q
0

-TI (w 1\ f q)p+q-1 P

As in the proof of (3.5d) all the terms occuring on the right hand side

are evidently zero except

(ho+oh)(wow) = (-1)~+1(TI dw ATI 1 w) + (-1)2~(1T WA1T 1dw)+ (-1)~(d(TIpWp·A7Tq_1Wq}).~O,pq ppq-q ppq-q

(h Ö + 0h) (w 0 a ) :: (-1) ~ h (W
p

0 Öa q )
p q = 0

(ho+oh) (w ~f ) = (-1) 2~11" W1\7T 1(-f ) = -Tl" 1 (w Af ) + Tl" 1w ATl" f •
pq ppq- q p+q- pq p-pqq

Example 3.12.

Let [toP, n] and [toP' ,.Tl I] represent two elements of ]-I
1 (X,W) V). Then

As we have seen in (2.16)



where ~ corresponds to

n and n' is given by

2d n. Hence the product of two elementsz

in ]i2 (X ;(2) V) = H~ (X ,JR (2 ) ) .

In particular, if dirn X = 1

by 2·n·TI d n' - 2·n'·TI d n
1 z 1 z

§ 4 Relative cohomology

and therefore F; = 0, n LJ n '
in HO (X,S~ (1)) /dHO (X,S~ (1)) ::

is represented

H1 (X,JR(1)) •

In [3] the D - E - cohomology is defined using relative cohomology.

This approach, giving m· (X,A(p)V) as a derived functor on the category

of sheaves on pairs of topelogical spaces, applied to (F~,Rj*cone(A(p)~nx))

will be needed in § 5 to define a D - b - complex on X in the

Zariski-topology. One also defines a tensor product on thi5 derived

category, to obtain the product for the D - E - complexes in the

Zariski-topology. In fact, using this tensor product one can simplify

the definition (3.2) and clarify the constructions described in (3.3).

4.1. Let j : T ~ T be a continuous morphisrn of topological space5.

A sheaf on (T,T) is a t:tiple FT,T := er, F,c.c) where F is a sheaf on

T, F i5 a sheaf on T and ~ : F~ j*F amorphism of sheaves.

·Correspondingly a morphism a : FT,T ~ FT,T is a pair of morphisrns

a.: F~ F', Ci. : F -.> F' such that Ci.~=tP'CZ.

4.2. Let Sh(T,T) denote the category of sheaves on (T,T). It is easy

to see that Sh(T,T) has enough injectives. Fer example: if T and

I are injective sheaves on T and T respectively, the triple

J"T,T = (J = T e j*I, J= I, pr 2 ) is injective in Sh(T,T). If F'T,T

is any sheaf we can find 1,1 such that T : r~ T and' p :F~ I.

Then (T e po~,p) defines an inclusion F'T,T ~ Jf,T . Therefore each

sheaf has aresolution by those "special injective sheaves ll
•

4.3. Consider the functor

defined asrO : Sh(T,T) ~ Ab

"rO(FT,T) = Ker(HO(T,1) tP °--.".> H (T,F)).



Obviously rO is left exaet. If O+(T,T) is the derived eategory

of eomplexes of sheaves in Sh(T,T), bounded below., we define

to be the derived funetor of rO

Proposition 4.4.

a) If F~,T = (1· ,F·,~·). is a eomplex of sheaves on (T,T)

_ . RlP;
Rr · ( Fif , T ) = Cone (]H. (T,~. ) > JH. (T , F· ) ) [-1 ] •

then

b) If X is a good compaetifieation of the algebraie manifold X and

if A(p) V·,x,x denotes the eomplex (Fg,Cone (A(p) ~ S"Gx),-1) on

(X,x) then Hß(X,A(P)) is the q-th cohornology of

Proof. It is enough to verify a) for the special injeetive sheaf

JT,T defined in (3.2). On the right hand side of the equality we have

the eone of

pr2 °.
--+-) JH·(T,]) = H (T,!),

whieh is quasi-isomorphie to

HO(T,I) as weIl.

HO(T,l). On the other hand
I

Rr · (]- ) = Rr°(J- ) :T,T T,T

b) By (2.7) Hß(X,A(p)) is the q-th eohomology of

E·(x,Cone(~~ Rj*Cone(A(p) --)J. ~))[-1)) = ConeOH" (x,Eß) --)J.]f~((X,Cone(A(p)-> ~)))[-1)"

4"5" For two cornplexes of sheaves

F" = CF",F·,~·) and
-T,T

we define the tensor produet F~,T ~ ~,T to be the eornplex (E· ,E",nO)

with

The eonnecting morphism n" , is - on the level of sheaves - defined by



Since ,pi. n i i5 the zero map ni commutes with the differentials

and n is a morphism of complexes.

4.6. If C(T,T) denotes the category of complexes of sheave5 on (T,T)

and K(T,T) the corresponding homotopy category we have thereby

constructed a bifunctor ~. C (iji ,T) x C (T, T) ~ C (if, T). Since the ,~

product respects homotopies it also defines the bifunctor

~ : K(T,T) x K(T,T) ~ K(T,T). For a fixed complex Fif,T'

. 'T ,T ~ :z::-espect,s triangles and if both Fand F are flat F'T ,Tl!! maps

exact complexes to exact ones. Hence FT,T l!! respects quasi-isomorphisms

in this case. Sh(T,T) has Bnough flat sheaves (for example, if P on

T and P on T are flat and P P > Fand P ~F both surjective,

(~, j*~ e P, id e 0) maps surjectively to (~,F,~) via (~,~ 0 ~ + p)).

The standard machinery of derived categories and derived functors

shows the existence of a left derived functor

(see [14], for example).

From now on we assume that

dimension. Then both Rr·
of bounded complexes.

T

and

and
L

~

T have finite cohomological

are defined on the derived category

4 • 7 • If H;; T = n:r·, H' ~ y • )
-l. ,

is a third complex of sheaves, a pairing

U : FTT ~ ~ T ~ H~ T
- I I I

F • -L G· H·)
if,T 0 'f,T ~ T,T

(and - using flat resolutions as in 3.8

is given by a pair

compatible with n· and y . Taking the special injective resolutions

described in (4.2) one obtains from U a pairing



4.8. If - as.in (4.4,b' - we consider on (X,X) the compiexes

F~,X = A(p)V,X,x ' ~,x = A(q)V,X,x and H~,x = A(p+q)V,x,x

the muItipIication table {3.2) defines pairings

A(p)V,'X,X
L

~ A(q)V,X,x ~ A(p+q)V,x,x

In fact, the first calculation made in (3.3) shows that U is. x·Cl,
weIl defined and the second part of (3.3) shows at the same time that

U -X is amorphism of complexes and that U
N

= (U -x~u x) isa, ...... a, a,
compatible 'with the morphisms n fram (4.5) and Y·=-t . Hence (3.2)

defines a product ,

which - on the cohomology of the compiexes - coincides with (3.9) and

is independent of. a .

§ 5 Extensions and cornplements

5.1. The definitions and properties af the D - E - cohomology given in

§2 .and §3 carry over to the case of smooth simplicial schemes x. of

finite type over ~:

As in [8] we compactify x. by. a smooth simplicial scheme X. where

each ~i is proper and where D. = X. - x. has normal crossings. We

define H6(x.,A(P)) as the hypercohomology (in the sense of cohomology

of simplicial schemes) of Cone(Rj*A(p) e F~. ~ Rj*n~.) [-1] on X.
As in (2.8) one obtains the independence of Hß(X. ,A(p)) of the

compactification.

5.2. If Z. is an arbitrary simplicial scheme of finite type over ~,

we can find a proper hypercovering p : X. ~ Z. with X. smooth (,see

[8]). A hypercovering satisfies (by definition) cohomological descent.

Hence, if T : X:' ~ X. is a morphism of hypercoverings ar..d if we

choose the compactifications such that Textends to T: X! ~ x.
the induced maps T* are isomorphisrns on the cohomology with values in

A(p), ~ and (see [8]) T* is an isornorphism on the F-filtration on the

De Rham cohomology. By (2.10,a) T*: H~(X.,A(P)) ~ Hß(X:,A(P)) is an

isornorphism as weIl. Therefore we define:



Definition 5.3. The D - b - cohomology of Z. is

H6 (Z. , A (p» : = Hß (X. , A (p) ) •

Remarks 5.4. If f: y. ~ Z. is a morphisre of simplicial schemes

one has - choosing the smooth hypercoverings and compactifications

in the right way - the obvious, map

f * : Hß (Z. , A (p» ---)00 Hß (Y • , A (p) ) •

The exact sequences (2.10) exist as weIl for simplicial schemes, the

definition and the properties of the product remain unchanged. As in

(2.1,II) the D - E - cohomology exists as weIl for sirnpIicial schemes

over :IR.

5.5. Sheafification of the Zariski topology

Theorem. Let X· be a smooth algebraic manifold.

a)

on

There exists a complex A(p)V Z of sheaves in the Zariski topology, ar
X such that for all open subvarieties XI c X one has

b) We have natural morphisms

A --7 A(O)V Z and cl : 0x* Z [-1] ---)00 A(l)V z, ar , ar , ar

(c 1 induces on X I C X the morphism. p descr ibed in (2. 12 , i ii) ) .

c) In the derived category of sheaves in the Zariski-topology we have

a product

L
A (p ) V , Zar 0 A (q )V , Zar ~ A (p + q) V ,Zar

inducing on XI c X the product defi~ed in (3.9).

Proof. Let V be the category of complex algebraic manifolds (or

real ones - in case 2.1,II). We denote by rr the category of pairs

(V,V), where V is a proper complex (or real) algebraic manifold and

V c V the complernent of anormal crossing divisor.



We define a sheaf F*,* on IT to be a collection of sheaves

Fv,v', = (~V' Fv'lPv ) on (V ,V~ (as in 4. 1 ), together with a morphism

f* : (Fv,Fv'lPv) ~ (f*F'u,f*Fu,f*lPu ) . for each morphism

f: (Ü,U) ~ (v,V), satisfying (f.g)*=g*of* and id* = id. One
,

denotes by Sh(TI) the eategory of sheaves on IT. As in (4.2) one finds

that Sh(IT) has enough injeetives. If o:TI ~ LI is the "forget-functor ll

o((V,V» = V, one defines for F*,* E Sh(TI) the direet image

o*F*,* to be the Zariski sheaf on V associated to the presheaf

x ~~ lim r O
(F -X x) ,

) 1 '
(X;X)Eo- (X)

where r O is the funetor deseribed in (4.3), and where the limit is

taken over the direct family 0- 1 (X) of all good eompactifications of

x. 0*: Sh(IT) ~ Sh(V) is 1eft exact. Let RO* : n+(TI) ~ D+(V) be

the derived functor. Sinee

1im
>

one has for a comp1ex F~,* of sheaves on TI

Eq(X,RO*F*,*) = 1im
~

0- 1 (X)

Rrq (F - )
X,X

Let A(p)V be the comp1ex of sheaves introduced in (4.4,b).
,*,*

Then we define A(p)V Z :=.RO*A(p)V *. From (4.4) and (2.9) one, ar ,*,
obtains

JFßO{zar,A(P)V,zar) = lim Rrq(A(p)V,X,x) = lirn F(X,A(p)V) = ~(X,A(p».
-:---+): -~7):

0"-1 (X) °-1 (X)

b) Sinee A(O)V is quasi-isomorphie to the constant sheaf A

Hg(XI,A(O» = A for each connected open subvariety Xl of· X and

we obtain Co · Similarly, by (2.12,i) we can describe A(p)V,zar for

p > 0 by a cornplex starting in degree 1 and (2.12,iii) gives on each open

subvariety XI c X the morphism

C : 0 (X I ) * = HO (~ 0* ) ~ -,u
1 (X..!. A (1 ) )

1 . alg ---zar' X, zar .10 ---zar' V, Zar = Ker (HO (X~ , (A (1 ) V;? ) 1) 4
--Zar , war

HÜ(Xzar ,(A(1)V,zar)2» ·



c) By (4.8) the products

plexes A( )V,X,X for all

u from (3.2) define products on the com­
Ct

(X,X) Eil. The product

A(p+q)V * *, ,

in the derived category gives

§ 6 The cycle map in the Oe Rham cohomology

In [10] one finds the definition (due to P. Deligne) of the class

of a cycle in the Delign~ cohomology. Before describing this construction

in a slightly modified way (9 7) we recall some of the properties of the

cycle class in the De Rham cohomology. Especially we will need that

those cycle classes behave weIl with respect to the F-filtration (6.10).

Since we do not know any reference we sketch a proof. We thank F. ElZein

and J.L. Verdier for useful conversations on those topics.

6.1. Let Y be an algebraic rnanifold over CI: and Tl (. Y be an

irreducible subvariety of codirnension p. We will frequently use some

properties of the local cohornology with support in n (see for example

[14]) :

a) If F· is a complex of sheaves and ·Y'c Y an open subvariety one

has an exact sequence

b) If F is a locally free 0x sheaf and j < p one has Hj (Y,F) = O.
n

c) Assurne that n - Y' *n. Then b) applied to the cycle n - y'
implies that

Hp (Y I F'.)~ HP (Y I F-l )n nny , , I Y I •

d) Let F· be a complex of locally free 0x sheaves with Fi = 0

for i < p. Then lH~ (X, F·) = 0 for j < 2p and



In fact, one has the spectral sequence associated to the

""filtration bete"

By b) Hj,(X, Fi ) = 0 for j < p and - of course - for i < p.
t:l.

Hence EtJ.. = 0 for all i + j < 2p. For i + j = 2p one obtains that

E~P =JH~P (X,F·) 1s embedded in E~:9 = H~ (X,FP).

of

The example we have in mind is: If FP

n· (see 2.5) then one has an inclusion
X

denotes the F-filtration

6.2. Since

D1 ,···,Dp
Di = Di n y'
such that

n i5 smooth at the general point one can find div1so~s

on y and an open affine subvariety Y' of Y such that

are non singular divisors intersecting transversally and

p
n l =nnyl = n

i=1
D~

1.

{U~ =Yl_D!}'_1 is a covering of Y' -n'. Let c(n l
) be the

1. 1. 1.- ••• p P v
element of HP-1 (Y I - nIn) giyen by the Cech-cocycle, Y'-n'

dt 1"···,,dt
P

t 1 • • • • • t p

on U' = yl -
1 , ••• , p

p
U

1=1
D~

1.

where t i is the defining equation of DI . By (6.1,a) we have a map

Hp -1 (Y I I i'""'I P ) HP (Y' i'""'I
0 )- n ,Hyr_nl ~ n' ,Hy' ,

surjective since y' is affine. We denote the image of c(n") by

c n (y I r Tl' ). Moreover, by (6. 1 "~cl we have an inclusion

Theorem 6. 3. ([ 2] and [9])

There exists a cycle class cn(n) = cn(y,n) of n on Y, lying in

HP(y nP ) such that
n ' y



Remark 6.4. a) F. ElZein [9] shows in addition that cQ(n) can be

defined by a cocycle in the closed differential forms (Q~)Cl. There­

fore cQ(n) is the image of a class cF(n) in E~P(Y,FP), uniquely

determined by (6.1,d).

b) The image of cF (n) in JET~ I (Y, n~) ~ HT~ I (Y, a:) is denoted by

ca;(n). Of course, one can also considerthe fundamental class of n
2p . P 2pin Hlnl (Y,Z) or - after multiplication with (2in) - in H1nl{Y,Z(p)).

We denote it by cz(n). The image of cz(n) is again ca:(n). In fact,

by the deseription of (6.2) and (6.3) it is enough to eonsider the case

'p = 1. For divisors the equality of the two classes easily follows from

the definition of C z (n) (see [7]).

Rernark 6.5. Let D be anormal crossing divisor on Y, containing n.
Then the image of cn(n) in H~(y,n~(lOg D)) is zero.

Proof .. Keeping the notations from (6.2) it is enough to show that the

image of c (n ' ) in HP- 1 (Y' - n ' , nP (log (Y I n D) )) is zero. \oJe may
Y'-n' r

choose the divisors D1 , ... ,Dp such that D =i~1Di for sorne r.

Then the cocycle

t 1 • • • • • t. P

in Cp - 1 (n~ I (log (Y I n D)))

c(n') = O.

extends to
p

U ' = Y 1 - \.j 0 ! and
r+1, ... ,p i=r+1 l

6.6. Let f: X~ Y be abirational morphism, isomorphie over

X = Y - n, such that 0 = f-
1 (n) is anormal crossing divisor. One

has natural maps

HP(y nP )n ' Y
f*

Proposition. The image of cn(n) in P - EHO (X , nX ( log D)) is zero.

Proof. One would like to say that f*cn(n) is the SUffi of cyele

classes of codimension p cycles and that (6.5) implies (6.6). However

to get hold of f~n(n) we have to use the description of cyele

classes given by B. Angeniol and M. Lejeu·ne-Jalabe.rt [1]:



Let M· be aperfeet eomplex of 0x sheaves on Y. The first

Atiyah elass A~ E Ext 1 (M· ,n~ ~L M·) is the obstruetion for M· to

have a holomorphie eonneetion. One defines the p-th Atiyah elass
O' 1 P • P LAM. as the p-th exterior power of AM. in Ext (M ,ny ~ M·). If

M· is aeyelic outside of a subvariety Z ~ Y one uses the isomorphism

ExtP (At· ,n~ ~L M·) c::! l~m ExtP (OZ
m IrL

and the trace

_L M· nP _L 111 .) ~ E tp(O nP)
~ ,3'y ~ ~ ~ x Z ,Hy

rn

to define the p-th Newton elass ~\)~. in

(see [1], § I I) .

11m ExtP (OZ ,n~) = H~ (y ,n~)
m rn

As shown in the proof of 11, 2.5.3 (loe. eit.) en(n) is - up to

a eonstant - the same as the p-th Newton elass n Vb . By 11, 4.2.1

f*A~ = A~f*O in ExtP(Lf*On,n~ ~L Lf*On). The tr~ce is eornpatible

withnpullback~ ([13].V. 3.9.3) and one obtains f*AvS
n

= DV~f*On
Therefore (6.6) follows from:

Lemma 6.7. Let M·
outside of D. Then

be aperfeet cornplex of sheaves on X,- ex~ct
. D P

0.( 'J M.) = ° for

P - EHD(X,nx(log 0».

Proof. We denote by 0. as weIl the morphisrn

and we eall o.(A~.) the logarithmie Atiyah class of M· .

Case I: Assume that M· . is quasi-isomorphie to a loeally free sheaf

on a smooth divisor DIe D. We ~ay write M· = (M- 1
C ~ ) MO) for

locally free 0x - modules M- 1 and MO. On a suitable Cech eover

{Ui } we have isomorphisms Mriui'~ O~~ and, if f i is an equation

for 0 I n u. , ~. = ~ IU. can be given b~ a diagonal matrix with 1
~ ~ ~

and f. in the diagonal. As in [1], 11, 1.5 the logarithmic Atiyah
~ v

class is represented by a Ceeh-co~ycle of morphisms

Mrl . ----+ Mr+p-k l3l nEx(!og 0) \
Ui ,···,.lk Ui .° °'·.·,.lk



In our situation only r =0, k =P and r =-1, P ~ k ~ P - 1 may occur.

We claim, that a(A~.) ean be represented by a cocycle öP (1 0 , ... ,i).
1 r p

Sinee a(A~.) is obtained from "a(AM.) by exterlor produet (11, 1.4

loe. cit), it is enough to verify thl.s for p = 1. S1nee M· lu . has a

logarithmic connection for all i, a(A~.IU.) is zero. This ~eans in

partieular that Ö~l (i) 1s for all 1 on~ Ui a eoboundary in the

corresponding eomplex. Hence we ean change the"·whole eocyele to obtain

the representation wanted.

(Explieitly, if we use the notations from 11, 1.5 (loe. cit)

0
1 (1 ) = d(~· I ) = B-df where B is a diagonal matrix having only
-1 0 10 UiO

1 or ° in the diagonal_ We have.a morppism

M- 1 ,
IU.

~O

-1
M

and Ö~l (i o) = ~i · Bdi If d' denotes the differential in the

Ceeh complex we hRve to change tr..e Ceeh cocyc1e Öp (i) by d ' (B
df ) to

r - f
obtain the representation wanted.)

Since M·
obtain a (A~ • )

is acyelic outside of D we may pass to the limit and

as a ~ech cocycle in

By definition of the trace map in [13], V, 3.7,the traee map can be
~ D P .

calculated on a ceeh-eovering. Hence a( v M.) is represented by a

collection of elements of

Those groups however are zero.

To reduce the general case to ease I, we need that the logarithrnic

Newton elasses a(Dv~.) with support in 0 are additive for exact

sequences of perfeet cornplexes, acyclic outside of D. In fact, the

proof in [1],11,4.3 uses just the additivity of the traee ([13],V, 3.7.7)

ane carries over to logarithrnic Newton classes with support.

Case 11: If Die 0

we can take an 0D'

is smooth and M· quasi-isomorphie to a

loeally free resolution N. Since N
°D,-module,

1s bounded



and

(0 -+ N-r +1 -+ ••• -+ N-s -+ 0) -+(0 -+ N-r -+. ••• -+ N-s -+ 0) -+ (0 -+ N-r -+ 0)

1s exaet, ease 11 follows from ease I.

Case 111: If M· is quasi-isomorphie to any 0- - eoherent sheaf F
X

0x(- I m.O.). Forwith support in 0, we ean filter F by F = F ~m '=1 1. 1.

!!! I = (m 1 ' • • • , In i + 1 , • • • • , mr ) Fm/ FIn '
is an O~,-sheaf and Qe are in ease 11.

1.

Case IV: 1f M· is any perfeet eomplex, aeyelie outside of 0, we use

the surjeetion

-1 -5-1
(O-+M -+ ••• -+ M

with kernel

(0 -+ M- r -+ ••• -+ M- s - 1 -+ Im 8 -+ 0)
-s

to reduee the proof of (6.7) to ease 111.

-r
(0 -+ M -+ •••

-s-2
-+M -+ Ker 8 +0)

-s

6.8. The definitions.of the eyele elasses with values in nP , FP , ~

and Z are - as usual - extended to the group Zp(Y) of eodimension

p-eycles. For example, for n =L \), n. E Zp (y) one defines
1. .1.

eil (n ) = L \),. mul t (n 1.' ) • C Il ( (n ' ) d)
~G 1.. H 1. re

in Hlnl (y,n~), where Inl is the support of n. 1f, keeping the

notations from (6.6), f : X~ Y is abirational morphisrn, isomorphie

over X = Y - I n land sueh that f- 1 ( I n I) = D is anormal crossing

erossing divisor one obtains as weIl that af*(c~(n)) = O.

Remark 6.9. One can eonsider the statement corresponding to (6.6) for

e F instead of c n : 1f FÖ denotes the F-filtration of r2~(log 0)

it would be niee to know that cF(n) is mapped to zero under

Without this we still obtain:



Proposition 6.10. If Y is a complete algebraic manifold and if
2p P 2p Pcp{n) lies in the kernel of minI (Y,P ) ~m (Y,P), then cp{n)

lies in the image of the composed map

Proof. Under the assumption cQ(n) lies in the kernel of

Hl
nl

(y,n~) ~ HP{y,n~) and by (6.1,a) in the image of HP-~ (x,n~).

(6.6) and the commutative diagram

p - E) H I D I {X, nx (log D))
A

Uof*

with exact first row implies that cn{n) lies in the image of lOY.

One has a commutative diagram

JH
2p- 1 (X,P~) ß > HP- 1 (X, n~ (log D) )

T 1 !t·y

]H2p (Y Pp) ) H~n I (Y, n~)I n I ' ßI .

ßI is injective (6.2,d) and, since X is compact, ß is surjective

(2.5) •

§ 7 The cycle map in the Deligne cohomology

7.1. Let Y be a complete algebraic manifold, n a codimension P
i .

cycle and X = Y - Inl. We define H
lnl

(Y,Z(p)V) as the hypercohomology'
igroup E
lnl

(Y,~(p)V) ~ By definition of Z(p)V as a cone (2.6) we have

an exact sequence (2.2)

Since 2p - 1 is smaller than the rea 1 codimens ion H~~11 (Y , CL) = O.

Moreover, since e is the difference of the two natural maps E and

1, e{C~ (n) 'C'F (n) ) is zero (see 6.4). Therefore we may regard



(cz(n) ,cF(n» as an element of

By the forget morphism

we obtain the cycle class of n without support, called ~(n) in

the sequel.

Remark 7.2. If Y is non compact and Z{p)V is the D - E - complex

on a good compactification Y, the same construction works with
2E, - P )' 2p 0E
lnl

(y,F(y_y) ~nstead of E
lnl

(Y,F-) . However, since the class

cF(Y,n) of the closure n of n is already defined as an element of

JH2p ,"Y' ,FP) \ie can as weIl cornpactify first and use at the very end the map
Inl

to get classes in the D - b.- cohomology of Y.

·7.3. Let n be a codimension p-cycle and n' a codimension q-cycle.

If both intersect properly n· n' i9 a codimension p + q cycle. The

product U: ~(p)V e
L ~(q)V ~ Z(p+q)V defined in (1.1) (see also §3)

gives

,Proposition 7.4. If' n

cv (n) U Cv (n t) = Cv (n . nt )

and n' intersect praperly

and W(n) u ~ (n I) = ~ (n · n') .

Proof. The second equality follows fram the first ane. By (3.7) the

cup product is compatible with the usual produc~s on Hf· I (Y,Z(.)) and

H~· I (Y, F· ). Since Cv is unique ly deterrnined by c'Zl and cOF ' the

first equality follows from the corresponding ones for Cz and cF

(see [9], for exarnple).

The same argument proves:

Proposition 7.5.

P cycle such that

,g*cV(n) = <:v (g*n)

H~P (Y I ,'ll (p») .

If g : Y' ~ Y is a morphism and n a codimension

g*n is of codimension p as weIl, then

in ]Hf~*n'(Y"~ (p)v) and g* (ljJ(n)) = 1jJ (g*n) in



cycles on

Proposition 7.6.

codimension P

Let and n2 be two rationally equivalent

Y. Then· W(n 1 ) =w (n 2) •

Proof. By definition of rational equivalenee there is a codimension

p cyele t; on Y x' lP land x 1 ,x
2

E: lP
1 such that nk = 1k (t;) for

. 1 1
1k : Y :z Y x {x

k
}~ Y x lP If t i8 an isomorphi8m of lP with

t (x
1

) = X
2

' 1;· (id x t) * (~) = n2 . t* acts on H·· (lP 1 ,Z) as identity.

Hence (id x T) * is the identi ty on H· (Y x Jl? 1 ,~) and 'therefore on

:IIr(yx']p1,FP ) as weIl. By (2.10,a) (idxT)* is the identity on

H;P (Y x lP 1 ,~(p» and

w(n 2) = 1 1 . (id x T) * (w (s» = 1 l' ,( t/J (s » ::: t/J (n 1 ) •

Coro ary? L t CU (y' rHo CUP(y) b~ ~he Chowring of y,

i.e.: CHP::: ZP(Y)/rat.eq. and HV(Y~ = P~O HVP(y,Z(p». Then

t/J defines a ring-homomorphism

W : CH· (Y) --+ HÖ(Y) ·

Moreover, ~ i8 compatible with g*

g' : Y' --+- Y.

CH(Y) ~ CH· (Y') for

Proof. By (7.6) ~ ractors over CH· (y). Using the moving Lemma it

is .enough to verify the compatibility of ~ with the product for

cycles intersecting properly, and to verify the eompatibility of ~

with g* for cycles n with codim (n) ::: eodim (g*n). This has been

done in (7.4) and (7.5).

7.8. Griffith's interrnediate Jacobian

Recall that Y is a eomplete algebraic manifold. By (2.5) the subqroup

FPHq(y,~) of Hq(y,~) is isomorphie to mq(y,pp) and the quotient

group Hq(y,~)/FP is isomorphie to mq(y,n~p). Since

the image of H2p- 1 (Y,~(p» in H2p- 1 (y,~)/pp is a lattice and

i5 a eornplex torus, called the p-th intermediate Jaeobian of Y. We

denote by HgP(y) the Hodge eycles of Y, i.e.



~his coincides with the usual definition, since
FP +1H2p {y,CL) npp +1'H2p {Y,a:) :::: 0 and therefore

Ker (s - t) :::: s-l (HP,t?) n H
2p {Y,Z (p)). The exact sequence

implies:

(2.10,a)

(7 • 9)

is exact.

By

J. (Y) =
HÖ{Y) ::::

(3.7) the cup product

~oJP(y) is an ideal
p~ 2p
p~0 HV (Y,~ (p) ) •

respects the exact sequence

of the commutative ring

(7 • 9) • Hence

Proposition 7.10.

J. (y) is an ideal of square zero.

Proof. An element of JP(X) is represented by an element of

E 2p- 1 (y,n~p) or, by Hodge theory, of k+~~2P_1Hk(y,n~). The differential
__k .Q. .Q.<p

d is zero on ff-(y,n y ) and (7.10) follows from the definition of C

g i ven in (1. 2) .

Let us return to the cycle map

By construction s 0 ~ : Zp(Y) --+ H2p (y,Z(p)) and factors through

1 o~ : Zp(Y) ~ H2p {Y,FP) are the usual cycle maps. Hence, if HP(Y)h

denotes the subgroup of cycles homologous to zero, E: 0 ~ and i 0 W

are zero on ZP(Y)h. By (7.9) we obtain a lifting of

~IZP{Y)h to ~o : ZP{Y)h --+ JP(y). In fact, by (7.7) ~O factors through

Theorem 7.11. ~o is the Abel Jacobi map.

Before proving (7.11) we have to recall:

7.12. Deligne's description of Griffith's Abel-Jacobi map.

Let n be a codimension p cycle on Y. One has the exact sequence



o ~ H2p- 1 (Y,Zl (p» ~ H
2p

-
1

(X,Z (p» ~ H~; I (Y,~ (p» ---+- H
2p

(y ,X (p) )---+ ••

where X = Y - Inl. All the cohomology groups carry mixed Hodge

structures and the morphisms in the exact sequence respect them.

Since H~~I (Y,Z(p» is generated by the cycle classes of the cornponents

of n, and since those cycle classes are by construction (6.4) of

type (p,p), the cokernel of ß is of type (p;p) and ß induces

isornorphisrns

and

(7.13)·

that for n € ZP(Y}h the

class ~) E H2p
-

1
(X;Zl (p»

,-
by ~(n) as weIl the

defines an element ~6(n)EJP(y).

Regarding the exact sequence one finds

fundamental class C~(n) is the image of a

uniquely deterrnined up to Irn(ß). We denote
2p-1 ,......."

image in H (X,~). By (7.13) cz(n)

Definition 7.14. (Deligne)

Abel Jacobi map .

Proof of 7.11. Consider the commutative diagram of exact sequences:

o

H
2

P (Y , Z (p» e E
2P (Y , FP )

i p

H2p- 1 (X,CI:)

Je
H2p- 1 (Y,CI:)

For nE ZP(Y}h

(~(n), cF(n»

.--' ~

('7l(n) , cl"(n»

we have p(C~(n), CF(n» = 0 . Therefore
,--...; .::=-;

= p' (CZ(n), Cp(n» for sorne

E H
2p

- 1 (X,Zl (p)) EB H2p- 1 (X,FP ) •



Since e(~(n) ,cF(n))

By the snake-lemma one

ß-1 e ' (yn) , c;r'n) ) in

of

,,-.....I r-J '
= 0, e' (~(n),cF(n)) lies in ß(H2p- 1

(Y,<I:)).

finds WO(n) to be ~ image of

JP(y). By (6.10) Cp(n) lies in the image

JH 2p-1 (X, F~ ) = pPH2P-1 (X, <I: ) -+- JH 2P-1 .( X , Pp) •

r-J ,-..J ,.........,

Therefore 8' (~(n) ,cF(n)) and 8' (C~(n) ,0) define the same element in

and by (7. 13 ) lJJ 0 (n) = lJJ 0(n) .

Rernarks. The construction of the Abel-Jacobi map and of the cycle map

in the Deligne cohomoloqy has been done in [10] and. [3] in a s~ightly

diff~rent way. At first glance·it seems surprising that the proof of

(7.11) in [10] or [3] does not need the statement like (6.10).

However, the proof given there uses a description of the Abel-Jacobi

map by currents, which is different from the one given in (7.12).

If one assucies that'both coincide , it proves (G.1D) directly, without

studying the pullback of cycles. On the other hand one can use (6.10)

to show that Wo is the same as the Abel-Jacobi map defined by current·s.

§ 8 Chern classes in the Deligne-Beilinson cohomology

8.1. Let X be an algebraic manifold or - using § 5 - any simplicial

scherne of finite type over 0:. In this section we sketch two methods

tO'define Chern classes

for locally free 0x-sheaves E (calied bundles in the sequel) of rank r

on X. They should depend just on the isomorphism class and satisfy

A) (Functionality) For any rnorphisrn

f : Y~ X one has f*c (E) = c (f*E).
P P

B) (Cornpatibility with the Chern-classes in

cp(E) is mapped under E : H~P(X,~(P)) ~

ehern classes of E.

H· ( ,~))

H2P (X,Z (p) ) to the usual



Of course we can as weIl consider Chern 'classes in H~P(X,A(P}}

for any subring A of ~. However those are just the image of the

classes in H~P(XiZ(P}}.

proposition 8.2. The Chern classes are uniquely determined by conditions

,A and B.

Proof. The classifying space BG = BGLr(~} is a simplicial scheme of

finite type over ~ and, as proved in [8] there are elements c
p

of pure weight (p,p), such that

Therefore H2p- 1 (BG,(C) = 0 and 1 : is an

isomorphism. By (2.10,a) or (2.10,b)

. 2p . 2p
E : HV (BG,Z(p}) ~ H (BG,~(p))

such thatBGz. ----+-

Eun
r

is any bundle of rank r

such that p*E is trivial

is an isomorphism, and the ehern classes of ·the universal bundle

are uniquely determined by B. If E on X

one can take a hypercovering p : Zo ~ X

on each Z . Then there is a morphism f
\)

f*E
un = p *E. By A the ·ehern classes of p"*E are uniquely determined.
r

Since the D - E cohomology of Z. and X are isomorphie (5.2) one

obtains (8.2).

~ ·For a non-singular variety A.Grothendieck defines in [12] ehern

classes '~(E) of vector bundles E in the Chow group CHP(X). Those

are functional and, under the cycle rnap c.~ , compatible with the ehern

.classes in H2p(X,Z(p}}. Therefore c (E) = ~(~J(E)} defines ehernp p
classes for vector bundles on X, satisfying A and B by (7.7) and

(6.4). Of course, one has to use (S.1-)} to extend this definition to

arbitrary simplicial schernes of finite type over ~.

8.4. A second construction of Chern classes is based on (2.12,iii) and

the splitting principle:

Recall that for an algebraic manifold X we constructed an isomorphism

p

By (S.S,b) p induces a morphism (in the derived category) of cornplexes



of sheaves in the Zarisky topology

Taking hypercohomology of sheaves in the Zarisky topology this gives

a map

Since invertible sheaves correspond to elements of H1 (X,Ox) we can

use c
1

to define the first ehern class of an invertible sheaf.

The induced morphisrn

0x -T Z (1 ) V, Zar [ 1] --iiIo- 7l (1 ) [ 1 ]

is in the derived category the " e dge" morphism of the exponential

sequence. This shows that €(c
1

(L» is the first ehern class of L

in H2 (X,lZ (1».

Proposition 8.5. Let E be a vector bundle of rank r on X,

1T : ]I? = ]I? (E) ---;... X the corre sponding pro j ect i ve bundle and

O]l? (1 ) the tautological invertible sheaf on ]I? Then for all q , q I

Proof. As is weIl known, the same maps are isornorphisrns for H·( ,Z(.»,
I

H· (,~) and by [8] for m· ( ,F·). By (3.9) the cup product is cornpatible

with the exact sequence (2.10,a) and therefore (8.5) holds.

8.6. Now one can define ehern classes of rank r vector bundles in

the way of Hirzebruch and Grothendieck:

In H~r (F ,:I: (r)) = ~ 1T*H~P (X ,:I (p)) U c
1

(OlP (1) ) r-p
p=1

we have a relation

r
(1 ) ) r-P = 0L (-1 ) P . 1T*Y U c 1 (OlP

p=O P

with Yp E H~P(X,71(P» and '0 = 1 • We define c ,(E) = Yp .
P



As in [12] one shows that the Chern classes obtained are functorial

and additive. Since the usual Chern classes can be defined by the

splitting pr inciple as weIl, one obtains (8. 1 ,B) .
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