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DELIGNE-BEILINSON COHOMOLOGY

Héléne Esnault* (Bonn)

Eckart Viehweg (Essen)

In these notes we describe the Deligne cohomology of a complex
manifold as well as Beilinson's algebraic cohomology theory of a quasi-
projective complex manifold and some of its properties. In fact, most
of the content of our manuscript can be foqu (in a more cbmpressed
form) in the first paragraph of Beilinson's article [3]. We tried to
include all details neeaed, and we hope thatwour presentation is

sufficiently "down to earth" to serve as an introduction to this theory.

We like to emphasize that credit for the ideas presented here
should be given to A. Beilinson, S. Bloch, P. Deligne and some other
mathematicians, whereas any possible inaccuracies and errors are due

to us (and to our efforts to be as explicit as possible).

In §1 we recall the definition of the (analytic) Deligne cohomo-
logy and - following (4] -we give S. Bloch's definition of the regulator
map for curves, hoping that the concrete description in this case may help
to understand the more formal calculations of the fdllowing chapters.

In §2 &e describe the Deliéne—Beilinson (D - b) complex on a
good compactification of a quasiprojective (real or complex) hanifold”
and the corresponding cohomology theo;y. The properties of the

D - b - cohomology arising from abstract nonsense are discussed and some
of the cohomology groups are determined. At the end of §2 we explain
to some extent the description of the D-b - complex Z]R(p)D by using
real. ¢ forms.

The formal definition of the D-b - cohomology using relative cohomo-
logy is explained in §4. This might be a more conceptional approach.
However, we have tried to aveoid using the relative cohomology as far
as possible, although it forces us to use a rather artificial way of
defining the product on the D-b- complex (3.3).

In §3 the definition and properties of the product'are explained. We
could not resist to include the calculations of all the compatibilities
and homotonies needed.

Without giving all details, we sketch in §5 the usual extensions of
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the definitions of the cohomology theory to simplicial schemes of

finite type over €. At the end of this section one constructs a complex
of sheaves in the Zarisky topology, which on open subvarieties describes
the - D~ b - cohomology.

In §6 we recall the definition and some properties of the cycle class

in the De Rham cohomology (following [2],[9] and [1]). Especially we
explain the behaviour of those classes with respect to the Hodge
filtration. These constructions are needed in §7. There we first ex-
plain the relations between the Deligne cohomoleogy of a projective
manifold and the intermediate Jacobian of Griffiths. We reproduce
Deligne's definition of the cycle class in the D-1% - cohomology ([101])
and we compare it to the Abel-Jacobi map. Our presentation is slightly
different from the one given in [10]. Finally, in §8 we sketch the de-

finition of Chern classes of vector bundles in the D -5 - cohomology.
Wwe donot consider in this note Beilinson's descrivotion of the D-D5

cohomology as an extension of Hodge structures,

Notations and conventions:

Throughout these notes X 1is a complex analytic variety. Even if
X happens to be algebraic, it is considered as an analytic variety,
except if the index "Zar" is added. Correspondingly Qk denotes the
De Rham complex of holomorphic differential forms.
We use the notations of the derived category, whenever it is necessary
of bounded complexes (even if it is sometimes not explicitly mentioned).
A nice introduction can be found in [6] or [14]. In particular we
constantly use the notation of a cone of a map £ : A —> B* of
complexes. If the map just exists in the derived category we always
replace B by an injective resolution.

iy is the hypercohomology functor from the derived category of Z-
sheaves to the derived category of abelian groups whereas qu(A') is
the g-th cohomology of the complex H (A"). If A 1is a subring of

R we write
a(p) = (2im)P . acc

Of course, for the purpose of this volume, one needs the cohomology
theory for real algebraic varieties. However, as explained in (2.1,II),
this theory is obtained from the one for complex varieties by a quite
simple procedure, "compatible with all the statements made in these
notes".



§1 The Deligne cohomology

The dilogarithm function and the regqulator map on a Riemann

surface (after S. Bloch)

1.1. Following [5] we define the Deligne complex Z(p)v an ©On

a complex analytic manifold X as
0 — Z(p) — Ox — Q; —_—> ... —> 93—1 —> 0

(where Z(p) 1is in degree zero) and the Deligne cohomology as

Hj (X.E(p)) == B (X2 (R L)
an

r

For simplicity, in this paragraph, we drop the sub-script "an" and
write Z(p)D and Hg .

1.2. We define a multiplication
v z(p)v ® Z(p')D ——>-Z(p-+p')p
[x.y if deg x = 0
by XUy = TXAdy if deg x > 0 and deg y = p'

0 otherwise

U is a morphism of complexes. In fact, if we denote the differential
in z(p)D by d (where, of course, d : Z(p) —> OX is the

inclusion) and p = deg x and u' = deg y, we have:
x-dy p=0, p'<p’
! . = = L I
d(XUY) - X dy dX/\dy B 0, p P = dXUY"' (_1)JJ-dey .
dxady . wu>0, p'=p'
0 otherwise

It is quite easy to show that U 1is associative.

1.3. Using thevusual arguments from homological algebra, or by
calculating the Cech-cohomology on a suitable cover we obtain a ring
structure on p@qH%(x,z(p)). In fact: the product is anticonutative,
i.e. for a€HJ(X,Z(p)) and BeHI(X,2(p")) aub= (- guya.

This will be shown in (1.6) for p=p'=g=qg'=1 and in a more general



set up in §3. For the reader who wants to check the anticommutativity
directly we just reveal that the homotopy between xUy and

. ' .
(=1)H7H yUx is given by:

hix @ y) =
(—1)ux,«y otherwise .

1.4, Examples for low values of p and qg:

i) (p = 0) Obviocusly Z(O)D =Z and H%(X,Z(O)) is nothing but the

singular cohomology 1 (x,2),

ii) (p =1, g =1y If 0§ denotes the sheaf of invertible holomorphic
functions, Z(1)D is guasi-isomorphic to 0§[—1] via x — exp(x). A
For a suitable open cover {Ua} of X an element of H;(X,Z(1)) is

represented by a Cech-cocycle
(2imm_, ,F ) € Cl(z(1)) xc%0)
aB "o
where the cocycle condition says

cS(Fa) 1= F _FBzziﬂmaB .

o

:Hence fa 1= exp(Fa) is the restriction of fEIHO(X,0§) and the

isomorphism
HY(X,Z(1)) —> HO(X,0%)
[ X
maps the cohomology class of the cocycle to £,

iii) (p = 2, g=2) The exponential x — exp(z%;) defines a

quasi-isomorphism:

zZ(2), —> (0% -d log 9)‘()[—11.

v
Hence ptEHg(X,Z(Z)) can be described by a Cech-cocycle

((2im)%+n ) € ct@2) x ¢ (o) x @)

aBY'HaB’

with



2 _ _
(2im) naBY-ﬁaHaB , dHaB GQG

An element of ZH1(X,O§ - Q;) is .represented by
S0 IPUUR I
(Eae'ma)€ C (0*) x C(Q)

with SEGB =1, d log EaB =6wOl

The image of p wunder the isomorphism of the two cohomology

groups is given by
E = e (..._1_. H ) a d w = _1._ 0
o XP 31T MaB n o 2im Ta ¢

iv) The multiplication

1 1 2
U : HD(X,ZH)) xHD(x,x(n) —_— HD(X,Z(Z))

. . 2 .
(2im maB,Fa),(21ﬂ naB'Gd) — ((2i7) maBnBY’Zl“ maé}B’Fade)
can be written via the isomorphisms ii) and iii) as
v s BO(x,0%) x B0 (x,0%) — m'(x, 0% —> o)
’ R ¢ ¢ R 4 X
with fug = ( Tag 1 F - 29y Hence, for Eech e {U_} such
g = \g r 3im Yo g " ' a cover o! . Suc

that log f[U is defined (and denoted by loga f) one can describe
ftg by the %ocylce (Ea B'wa) with

== (log, £ - logB f)

and w_ = 1 log £ dg .
o 2im o g

EGB =
1.5. P. Deligne (see [3], 1.3) interprets ZM1(X,O§——¢ Q;) as the
group of rank one bundles & with holomorphic connection V
. v
identifying (&,V) with the class of the Cech-cocycle (EaB'wa)'

where alUu = OUd' e

[= -

o “ EGB.eB and Ve =uw, e

a ac

By definition égas = 1 and the Leibniz rule
a a gaB €8 "EaB “g eB'*dEuB €g

implies Swa==d leog EaB' The group structure corresponds to the

®-product of bundles with connection and OX equipped with the usual



L] k3 ] £l V '
differential d is the unit. On the other hand each Cech~cocycle comes

from a pair (£,9Y). We have (§,V) = (O‘ (d) if and only if £ has a
non-trivial flat. section, locally descrlbed by A 'eOt with
Aa- EaB B and 0 “VAa-eu = Aawaea-kdka-ea. Hence (£§,V) = (Ox,d) if

and only if EaB =AB/Aa and wa=44ilogka, that is, if (Eas’wa) is
a coboundary.

If one looks. at the exact sequence

1 1 1 1 1
EI(X,Oi —_ QX) —> H (X,O;) —> H {X,Qx)

one finds thewell known fact that a rank one bundle with trivial first
De Rham Chern class has a holomorphic connection.

* —99 )

From now on we will identify the cohomology classes ln]H(X OX

w1th the isomorphic-classes of bundles with connection. The
product fUg in (1.4, iv) defines rfor two functions f,géﬁHO(X,0§) a

rank one bundle with connection, which we call r(f,qg).

Lemma 1.6. (see [4])
a)  r(f,9) e r(g,f) = (0y,d) for f,geu’(X,0% .
b)  r(1-g,9) = (0,,Q) 1f- g,1-gen’(x,08).

v
Proof. We choose a Cech-cover such that loga G, loga f (or loga(1 -q)
in part b)) are defined.

a) Then r(f,g) » r(g,f) 1is represented by

1 1,
~ 317 (log £ - 1ong) §Iﬁ(logag - long)
gaB = 4g - £ ’

1

W

N 2mtlog £ —‘3 + log a —)

A flat section is given by

b) To obtain a flat section one has to find Aa satisfying

2l“(log (1=-g) - logBH -qg))

AB/)‘a =9



= 1 -aq) d
and - = 3317 1oga(1 g) _g .
The second differential equation leads to the solution
- - - )99
A, = expl 71T { log (1 -g) g)

(S. Bloch's dilogarithm function).

Since loga(1-g)-log8(1-g) is constant on the components of

U one has
aB

AB/KG

exp(~l- I(loga(1-—g)-—log8(1-g))gg)

exp(ﬁ (loga(1 -g) - logBH ~-g))logag) .

1.8. From now on, we consider a compact Riemann surface Y, a finite
set of points S and j : X =Y - § — Y. We define O§(*S) to be

the sheaf of meromorphic functions, holomorphic and invertible on X

and Q;(log S) to be the sheaf of meromorphic differential fogms,
holomorphic on X and of logarithmic growth at S. If £f,g€H (Y,O§(f8))

the cocycle of xr(f,g) 4is by (1.4, iv) in fact a cocycle in
o*(*s) — Q (log S).

For x€S let ordy :.O§(*S) —_— Zx denote the order of a zero
or pole and let res  : Q§(log-s) —> €, denote the Cauchy-Poincaré
residue. We have . resxd log = ordx,

1
and kernel ( res ) = Q. .

kernel (j ord } o= O§ v

XS XES

Altogether we obtain a distinguished triangle (see [6] or (2.2)
for this notation)

(1.9) e} g.i., (0% d log, sz ) —> (0%(x5) d log, o y{log $))

[1]R\\\ z/ (ord,res)

c g.i. - _
(L1 Zy l—l exp (2ir) l—lm;[ 1]

XES XES o XES

The components of the induced map

W' (v,05065) —> Ql(loq §)) — W (v, | exl-1) = 1 1 e
xES xX€S



v
are denoted by ax. If on a Cech cover {Ua} of Y (EaB,wa) represents

an element p of the left hand side, then ax(p) = exp{Zin-resxwd) for
any o with x € Ua
Lemma 1.10.

a) The natural map

Q : (0*(*8) —> Q (log S)) —> Rj*(O* -— Q x)
is a quasi-isomorphism.
b) d_rr = T; where T _ is the "tame-symbol"

ord _f-.-ord_g ord f =-ord g
T (£,9) =[(-1) % g g )

Proof.
a) ¢ induces a morphism of the triangle (1.9) into the triangle

Tf —> RjLy g-1., Rjx(0% —> o )

NS

m*[ 1]
xES

being an isomorphism at two corners.

b) 8x° r and Tx are multiplicative in both arguments. As for

8x°r one has Tx(f,q)°Tx(g,f) = 1. If both, f and g are units one
has Sx-r(f,g) = 1 and Tx(f,g) = 1. From the definition of Tx one
obtains Tx(1-g,g) = 1. If t 1is a local parameter at x we can write

f = u-t’ and g = v.tt for local units u and v. By multiplicativity
and (1.6,a) the proof of b) is reduced to

a) f a unit and g = t
B) £ =g =1t,

where we may assume that all poles and zeroes of t are in S. Since

—_

t t-1

1 - S bl L
(by (1.6,b)) and since the same holds for TX we have
axr(t,t} = axr(t-1,t) and Tx(t,t) = Tx(t- 1,t). Hence case R)

follows from o). The explicit description of r(f,g) in 1.4, iv)



tells us that for a suitable cover of Y - § W, = 5%? logaf Q%
= 1 - -
and res ., = 317 logaf(x). Therefore er(f,t) f(x) Tx (£,t).

1.11. By Matsumoto's description of K, of a field one has
KZ(E(Y)) = L(Y)* @zm(Y)*/<g @ (1-g),gec(y) -{0,1}> .
On the other hand, r induces a map

CH(V)@yT (¥)* = Lim B (-5,03 (8) ) K (¥-5,03 () —> Lim B ' (¥-5,03+S) — 2 (log S))
sy

Sy
whose kernel contains all ge® (1-g) (1.6,b). Therefore r - factors
over
Kz(E(Y)).

From (1.10,a) we have a commutative diagram

1 Tx

KZ(Y) > KZ(CE(Y))

lr
3y

1 1 \ 1 1
0 > H (Y,0§ - QY) —> éé.r;]H (Y,O;(*S) — QY(log S)) ——

A 4
A
PR

"

m

>
-—

-
m
>
8
ok

where the first line is the exact sequence obtained from the Gersten-
Quillen resolution (we just need that this is a complex, which is easier
to prove ) and the second line is the exact sequence of the triangle
(1.9). Therefore we obtain '

Theorem 1.12 (Bloch, [4]) r induces a map

] 1 *1 = oyl 1
ro: Ky(Y) —> B (Y,C*) = H (Y, 0§ —> Q)

(called the regulator map).

Remarks 1.13.

The description due to S. Bloch of the regulator map may serve as an
introduction to the constructions of §2. There we will define complexes
F'(p) such that on an open Riemann surface



x=¥-5 H(X,F(1) = B(Y,08(85)) (2.12)

and such that
HE(X,F (2) =H' (X,0%* —> Q) = H'(Y,0*(*S) —> Q. (loa S))
’ Yy X Y ' G .

It will be even possible to realize F°(p) as a complex of sheaves in
the Zariski-topology, whereas for any algebraic manifold and gz 1

q =197 (x, 0Py
]HZar ‘X'Z(P’v) ]HZar( at X )

The reason why this construction is not necessary in the case of a
curve is just that the target. group of the regulator map is

B (x,F"(2)) and that 2>dim¥ . (2.13)

§2 The Deligne-Beilinson complex

In this section we want to generalize the definition of the Deligne
cohomology in several respects. In particular we want to explain
Xx. Beilinson's "theory with. logarithmic growth along the boundary" which
- using GAGA - can be viewed as an algebraic version of the Deligne
cohomology (see [3]).

For the applications to higher regulators described in this volume,
A, Beilinson uses cohomology theories for real algebraic manifolds. The
difference between the complex algebraic and the real algebraic theory
only comes in when one calculates examples or when one tries to deter-
mine the image of the D-Db - cohomology in the Hodge filtration of the
De Rham cohomblogy. Hence, as long as it is not stated otherwise,
the definitions and results hold in either of the following situations:

2.1. I. X is an algebraic variety over T considered with the classical
topology and 0, denotes the sheaf of holomorphic functions .

H®° 1is the hypércohomology viewed as a functor from the derived cate-
gory (of complexes) of Z-sheaves on X to the derived category of abelian
groups and - for a complex F° of sheaves -:mq(x,F') is the g-th
cohomology of the complex H'(X,F"), as usual calculated by éech—cohomo—
logy or using injective resolutions.



II) X 1is an algebraic variety over IR . Then a sheaf (or a complex
of sheaves) F on X is defined to be a pair (F,o0) consisting of

a sheaf (or a complex) F on X(€) and an involution ¢ compatible
with the complex conjugation F_ on XI(C), ie.: o:F s F_4F.

Of course, all morphisms and quasi-isomorphisms of complexes are
supposed to be compatible with the involution chosen, <g> = Z/2
operates on :mq(x(m),F') and on the complex M (X(T),F") (in the
derived category). If H'(ko>, ) denotes the group cohomology functor
on the derived category of abelian groups with c-action, we define

H " (X,F") = H (<o>,H" (X(C),F")) and HY(X,F") as the g-th cohomology
of this complex. In down to earth terms :ﬁp*q(X,F') is the abutment of a

spectral sequence HP (<o>mY(x(C),F")) and, if F' is a complex of
sheaves over m,.:mq(x,?') are the invariants :Hq(x(m),F')o.
Examples:

On the constant sheaf € on X({(C), there are two possible involutions:
F :L —F ,L =T acting on T as identity and o0:C — F__C

@x (== w

acting as complex conjugation. We always assume that the sheaf [T

on X is the pair (I,0). Correspondingly, if S denotes the

X(CT)
complex of IR-valued ¢® forms the involution chosen on

Axo) T Sk ®mT
is the one induced by ¢ on the second factor. Restricting this.

X(T)
operating on the coefficients of a differential form by conjugation.

to the subcomplex & of holomorphic forms we obtain the involution

On the algebraic differential forms this corresponds to the action of
Gal (€/IR) induced by base change from IR to € on the algebraic Kihler
differentials. Denoting all those involutions by ¢ we remark that o
respects the Hodge decompostion of 85 (x(T),0) i.e.: o(BXTPrP) - gkP/P,

2.2. Let u:A —> B~ Dbe a morphism of complexes of sheaves on X.
The cone of u 1is the complex

Cone (A" —2> B*) = c, i= A'[1] @ B

with the differentials

A9t g g9, A9%2 g gd*]

(a,b) > (-d(a),u(a) +d(b)).



The natural inclusion B% — CE and the projection (-1)q°pr:C3 — Aq+1

complete the triangle

A =———> B~

K/

An arbitrary triancgle in the derived category is.distinguished, if it is

twhere B 'S—> CG —>> A'[1] 1is exact) .

the image of one of those just constructed. If one applies a derived
functor to a distinguished triangle one obtains a distinguished triangle,
For example if ‘ o

A" ———>» B°

o\,

C
is distinguished, then

H (A°) ———> H"(B")

SN

m°(C7) (where H® denotes the hypercchomology
functor in the derived category}

is distinguished and - regarding the cohomology of the complexes
H"(A"), H"(B") and IE" (C") - one obtains the long exact seqguence

i —wYA) —-w9B) —mYC) — e ) — ...
(see [b] or [14] for a nice introduction).

Lemma 2.3. Let u, : A3 —> B" and Yy : A5 —> B’ be two morphisms
of complexes and C° =Cone (Ai ® Aé 2172, E*)[-1]. Then

u -u

C* = Cone(Ai ~2——> Cone (Aé ——2——~+ B*))y[(-11
. Y2 . U1 .
= Cone(A2 —=%—> Cone (/-’\.I —> B"))[-1]

Proof.  All three complexes are equal to A% ® Aé ® B;[-1] with the

differential

(a,,a,,b) F— (—d(a1),-d(a2),u1(a1)-uz(az) + d(b)).



Corollary 2.4. Using the notations from 2.3. we have three long exact

sequences:

a) —uic) —ul) ewdiay) —ulie) —wl () —

b) —md(cr) ~—>mq(A1') —> m% (Cone (4; —2—> 8")) — BT (07)—
c) — m (") — HI(A;) — H¥ (Cone (4] 215 g)) —>mqfi(C'j—>.

2.5 Let X be a n-dimensional algebraic manifold (over € over IR) .
A "good compactification" of X 1is a proper algebraic manifold X with

an embedding j : X —> X such that D = X - X is a normal crossing
divisor (i.e.: locally in the analytic topology D has smooth components
intersecting transversally).

Let Qi (log D) be the De Rham complex of meromorphic forms on X,
holomorphic on X and with at most logarithmic poles along D. We have
a filtration of Qi (log D) Ly subcomplexes

P2 = (0 —> 2B(log D) —> 2B (log D) —> ... —> Q% (log D)).
The properties of logarithmic forms needed are (see [7]):

a) Since j is affine Rj*9i==j Q.

X There are quasi-isomorphisms:

R3,C —> Rj*Q% = j*Qk S e Qi(log D)

and hence
#Y(x,€) = mI(X,0%(log D).

b) The natural maps

. w3z Pt g, P
Tp : H (X,FD ) — H (X,FD) and

T :qu(i,Fg) ——9jmq(§,9§(log D))} are injective.

Hq(x,m) carries.a mixed Hodge structure, and the Hodge filtration
Fqu(x,E) is given by Im(t}. Moreover the cokernel Hq(x,m)/Fqu(X,E)
cf T 1is the same as Imq(§,9§p (log D)) where Q%p(log D) denotes
the complex



0 —> 0 —> le (log D) —» ... —> Q§-1(log D) — 0.

The cokernel of T, is #97P(%,0P (1og D)).
X

c) By GAGa, :Hq(ﬁ,Fg) can be calculated using the.corresponding
complex of algebraic differential forms in the Zariski topology.

- d) Imq(?,Fg) is independent of the good compactification chosen.

Definition 2.6. Let A be a subring of R and A(p) = (2im)FP-a c t.

The Deligne-Beilinson complex (D - b - complex) of (X,X) is

Alp)p = Alp)y § = Cone (Rj,A(p) © Fg e Rjwfy) [-1] where ¢

and 1 are the natural maps and where Rj*Qi is represented in such
a way that both maps exist (for example by the direct image of an

injective resolution of Qi).

If £ : Y —> X 1s a morphism of algebraic manifolds we can choose
good compactifications Y and X such that f extends to f : Y — X.
. k3 —*. — = —
Thereby we obtain a morphism f£ .A(p)D,X —_— f*A(p)D,Y .

2.7. Other descriptions: By (2.3) we may write as well:

A(p), = Cone (Fg —> Rj, (Cone (A(p) —>.Qg)))[-1] or

A(p)D Cone (Rj,A({p) —> Cone (Fg —_— Rj*Qi))I-1]

Using the second description one sees immediately that Z(p)le is
qguasi-isomorphic to the complex Z(p)D an defined in (1.1). A

r

quasi-isomorphism a Z(p)D an z(p)D|X is given by

> > p-2 p-1
Z (p) > OX I QX —_— QX —> 0
L 1, CHP W
Z(p) — OX —_ ... —> QX r- Qxeﬂk - QX eﬂx .o
p-1 P
for a(w) = (dw,w). The proof follows easily since dp_1(¢) = (0,de)
dy(nsy) = (=dn,-n+dy) .

Lemma 2.8. qu(i,A(p)v) is independent of the good compactification
chosen.

Proof. ZM'(?,A(p)D) is one edge of a distinguished triangle whose other
two edges,



H' (X,Rj,A(P)) @ H (X,F5) and M (X,Rj,.0;),

remain quasi-isomorphic under t* for a morphism T : X' — X

between good compactifications of X.

Since each manifold over € allows a good compactification we

can define:

Definition 2.9. Let X be an algebraic manifolé (over T or R) .

Then the Deligne-Beilinson cohomology (or D - b cohomology) is

defined as
B3 (X,A(p)) = HY(X,A(p) )
Keeping in mind that Cone(Fg — Rj*Q%) is quasi-isomorphic to
Qﬁp (log D) and that Cone (Rj,A(p) —> Rj*Qg) = Rj, C/A(p) we can
rewrite (2.4) as:
Corollary 2.10. There are long exact sequences
a) - Hj(X,A(p)) — HI(X,A(p)) & FPEI(X,0) — wi(x,0) —
— 13" x,a0m)) — ...
b) — #I(x,a(p)) — #(x,a(0)) — BYx,0) /FP — 53" (x,a(p)) —>

c) — H3(x,a(p)) — FPEY(x,0) > w¥x,e/a(p)) — 5] (x,a(p) —

Proposition 2.12.

1

i) H%(X,A(p)) 0 for gs0 and p21-

11) Hy(x,a01)) = (£€8%(%,3,0,/A(1)); df e ¥ (X,2%(log D))}

iii) Let O(X);lg denote the group of algebraic invertible functions
on X. Then there is a natural map

oo 0K —> H;(X,A(‘I)).

For A =Z the map p 1is an isomorphism.



Proof. Since Hq(x,m/A(pﬁ = 0 for g<0 and FPHO(X,E) =0
for pz2z1 i) follows from (2.10,c).

ii) We have a morphism of complexes

~ 1 .
A(1) := Cone(F) —> j,Cone(A(1) —> Q;))[-1]
A(1), = Cone(F) —> Rj,Cone(A(1) —>a;))[-1]

By (2.4,c) we obtain

0,< . 1 = 1.1 1 5 .
0 — H (X,3,C/A(1)) — H (X,A(1)) —> F H (X,0) —= H (X,],C/A(1))

I I | f

0 — B (x,T/A(1))  —> Hy(X,A(1)) —> F'H (X,0) —> H' (X,L/A(1))

and - using the five - Lemma we find n to be an isomorphism.

A(1) 1is quasi isomorphic to

0 —> 0x(log D) @ 3,0,/a(1) 2> 0Z(log D) @ 3,25 —> ...

{w,f) P— (-dw,-w+df)

and H;(X,A(1))A is given by Ho(ker a) .

iii) The inclusion Z{1) — A(1) induces H;(X,Z(1)) — H;(X,A(1))

and we just have to consider Z = A.

Since
Ox/%(1) 4. Q; commutes,
exp\ / d log
0%

and since ¢@E€ HO(Y,j*Oi) is meromorphic along D if and only if
d log wEZHO(i,Q%(log D)}, we obtain from ii) that

H;(X,Z(1)) = {wEﬁHo(i,j*O§); ¢ meromorphic along D}.

By GAGA, the meromorphic functions 1lim Ho{ﬁ,ox(v-D)) are the same

as the algebraic functions. v

2.13. Remark. As in (1.1) one defines -




(x,a(p)) = HUK,A(p) —> 0 —> ... —oP™ T

g
HD,an X

which - by (2.7) - is the same as IHq(X,A(p)D[X) . One has the
natural map

Hq(x A(p)) — HD L (X/A(R)) .

This map is - of course - an isomorphism if X 1is compact, but also
if p>dim X, since in this case '

A(p)v = Cone (Rj,A(p)— Rj*Q};)[—ﬂ = Rj*(A(p)DIX) .

However, for example for q=p=1 and A = Z, we have just seen that

1 1 _ 0
O(X);l HD(X,Z(1)) C;%b Hv’an(x,z(1)) = H (X,O&).

2.14. The "real" D-b - cohomology

Let S}'( be the complex of R -valued ¢” forms over XI(T) and
A}'( be the complex of C-valued ¢c® forms. Since € = R (p) ® R(p-1)
for all ©p, one has maps

Toet ° Q}‘{ — A)'(=S)’(-81R(IR(p) ® R(p=-1)) —> S)'{(p-T) 1= SXOP]R(D 1) .

In the,derived category those are the same as the projections.
C — IR (p-1). Therefore we have quasi-isomorphisms

Cone (R(p) —> Qg) —> S;(p-1)

We denote the induced maps Fg — j*Q}} —> j*S)'((p - 1) also by

“p-T' Since Rj*S}'((p-U = j*S)‘((p-U, (2.7) implies:
~1
Lemma 2.15. Let(&(p) := Cone (Fp——E——:» I« x(p 1))[=1], and let
pp s IR(p)D —_— IR(p)D be the morphlsm given by pp|FR = id,
= 0 and =T Then is a quasi-isomorphism,

"pIR(p) "piRILy T Tp-1 °p

Qorollary 2.16.

a) For gsp Hq(X IR(p})) 1is the g-th cohomology of the complex
Ot

H (X, IR(p)D).



b)
TT
{tne r (x,;,s ); dn lies in Im(H° Qi(log D)) —> & (XrJ*S ))}

0

H;(x,mm.)

0= . 0 0= 41
{neH (X,3,8y); d n€H (X,05(log D))}.
More precisely, if dn =w0(w) then dzn = =P .
c) If dim X = 1 then
2 1
HD(X,]R(Z)) = H (X,IR(1)) .
[y .

Proof. Zm(p)v is the complex
0 = 3,89(p-1) = ... = 3,87 2(e-1) >0B(log D) © 3,55 (o-1) »L" (log D)@ (p-1—>-.
where j*Sg(p-T) is in degree one. Since all the j*Si(p-1) are
acyclic one obtains a).
For p=g=1 a) implies that H;(X,EQH)) is the kernel of

u° (X, ﬂ—(log D)) ® 1° (X,3,S ) — &° (X, Q—(log D)) o u° (X, ]*S )

(9,n) > (do,-Te+ dn).

If dn-—now then d LN = %w and dyw = 0, and we obtain the two

descriptions of H (X, IH1)) given in b) .

~/
c)  is obvious since on a curve Fg==0 and 2R(2)D= j*Si(1)[-1] is

quasi~isomorphic to Ry, IR(1) [-1].

2.17. Remarks.

1)} The isomorphism between the two explicit descriptions of
H;(X;]R(1)) obtained in (2.12,ii) and (2.16,b) is given by
f b— ﬂo(f) =7 and df = 2dz(n0(f)).

ii) Using the lénguage of currents ([11], Chap. 3.1), one can rewrite
(2.16,b) in a slightly different way. For example, if X 1s a curve and
s = X- X, we write a Resx(Zdzn) = Resx(dw) for x€ 8. Since

X
d nE:H (X, Q (log D)), n has logarithmic poles and both, n and dzn,

are lntegrable. If Td n denotes the current associated to dzn the
z .



generalized Cauchy formula implies (loc. cit.)

d5Tq o = 217 ) Res (d n)é, = im ] a &

z XES (T)

where SX is the Dirac distribution. On the other hand, this equality
implies that dzn has at most logarithmic poles. Hence

1 0 0 . .
Hy (X,R(1)) ={n€H (X,S.);n integrable and d-T, . =im § a_&_}
D X 2 dzn x€S (L) X X

§3 Products
The aim of this secticon is to extend the definition of the product
given in (1.2) on Z(p), . ~ to the full D - b complex of a pair
+

(X,X), where, as in § 2, X is a good compactification of X (See [3]).

3.1. Example: We define

Up:a(Rlp|y @ Bl gy —> AP+ Q) p

X-y if x€A(p), y€A(qg)
X-y if xEA(p),yGQ}'(

(X AY if xerF® , yerd

by X U0 Yy

XAY if xEQ}'(, yEFq

0 otherwise

where x (and y) are supposed to be a local section of A(p), FP 7
or Qi. For A =2 this product is compatible under the quasi-isomorphism
o described in (2.7) with the product defined in (1.1), i.e.

U
z(p)D,an ® Z(q)D,an - Z(pikq)v,an
(o ® ) :J o
Yo
m(p)o[xoz(q)plx-—-——-——» Z(p+q)v|x

is commutative.



Definition 3.2. Let o€ IR. Then we define a product

Ua :A(p)D ® A(q)v — A(p-rq)v by the following table:

£
%q q Yq
. 0 1-a)a_*w
ap ap aq ( ) o Yq
o 0 o tq (-1)%%9 fp « a - £ o
P g
wp a-wp--aq (1 —a)prf 0

representing elements of

q »

Alq) Fp g

A(p) A{p +q) 0 Qk
P p+q .

FD 0 FD QX
Qx Qx Qx 0

concentrated in one degree.

3.3. To make sense out of this definition ofa product one should inter-
prete this table in the following way:
On X we have the products

A(p) ® A(g) — A(p +9q)
A(p) @Q}‘( e QX
Ly @A(q) — Qx
j*FgoQ}'{, — 0y

. e =d .
Qx OJ*FD —_— Qx

as described above. They fit together to define a product

. %P V(= : xpd V=
U, :Cone (A(p) @j‘*FD —> Q. ) [-1] @ Cone (A(q) ®J*Fy —> Q) [-1] —

—> Cone(A(p +g) —> Q%)[-1].



In fact, if & denotes the differential, one has
elements vy and Yy' of degree p and u' that

, _ . ' 1y M
Sy ba Y') = S8y La y'+ (=1) Ylja Sy!

The left hand side is

to verify for

. 0 1- d
a a { a)ap mq

- u'o +
0 ( 1)2ua dfp/;wq
- £
(-1)"Fa o A mq
(1-a)dw_ A £ +
P q
@t agdvy b ogy (-1)* e at 0
P q
whereas the right hand side is
. . 1= . 0
o ap aq ( a)ap fq |
1- . +(1- - +(1- a
+( u)ap 3y ( a)ap { fq) (1 a)ap o
—-f . PRl D
a( p; aq {(-1) 2 o { dfp)Amq
- ey . - - [
+(=1)“Pg fp ag +(=1) afq Adwp
o aq- dwp (1—a)dmpqu
0
+ 0 (-1 *(1-a -df
(=17 ( )pr( q)

Here the entries live in




A(q) (j*Fg)hu' Q;"1
A(p) 0, 0 Qﬁ.
(j*Fg)u 0 Q?*H'
Q;'1 Q; Q;"'P' , ;
Taking injective resolutions of Fp, Al ),Qk we obtain a product

A(p)v ® A(q)D —> RjxCone (A(p) ® j*Fg —_— Qﬁ)[—1](aRj*Cone(A(q)$j*Fg —
—> Q) {-1] —> Rj,Cone(A(p+q) —> a@l-11 .

We complete this product to a product

A(p)y ® Alq)y —> Alp+q)y = cOne(Fg+q —> Rj,Cone(A(p+q) —> Q. ))[-1]

by taking the usual wedge product . Fg ® Fg —> Fg+q . This is possible
since - by the following computations - the wedge product commutes with

the differentials in A({ )D.One has
= [- £ - (-1)* - £ Adf_,-f_Af
S(E,n £,) [-df A £y = (=1) pAAf - A q

. pP+g . . = _ - P .
in Fp * ® Rj,Q, whereas Gfp [ dfp, fp] € Fy © Rj,Q

€ U £ = [-4f £f ,-(1- f f and similarl
n Uy fg [ B A Eg ( a) p A q] n milarly

X’

B - B 2y
-1)Pf SE = [-(-1 df_,- (-1 £ Af 1.
(e, Uy 8y = [-DFE A af - (-1 e A g ]

3.4 Remark. The quite complicated description of the product is

necessary, since at this stage, we tried to avoid the more formal
language of sheaves on pairs of topological spaces. Nevertheless, the
reader should compare the defintion with the definition of the tensor-
product of those pairs, given in (4.5 - 4.8). From now on, we just work
with the multiplication table (3.2) to verify the properties of the
product, and we leave it to the reader to distinguish whether a given



expression lives on X or on X

Prggosition 3.5.

a) U1/2 is anti-commutative. More generally, if Yy and Yy' are
concentrated in degree u and u' then

Vo= (oq BRI
Y Ua Y - ( 1) Y U (1_0,')Y

b} UO and U1 are associative.

E) The element (ap =1, f; = 1) in A(0), is a left-identify for

Ug and a right-identity for Uqe

d) For «,8 ¢ IR the products Ua and UB are homotopic,

Proof:

We choose elements Yy and y' living in A(p)D and A(q)v in degree
p and pu'.

a) is obvious from the definition.'F?r examplé if
= - *le» LI R
Y fp e (3 FD) and .y wq € Qx , then

v e (o1 B = (oqyHTRpt=1) = (=1 KB
YU, Y (-1) afp;\wq (-1) awq,«fp (-1) Y'Y -

b) Let y" be an element of A(r)v . Using a) it is enough to con-

sider U,. If y,y' and Y" represent all the three elements of A( )
or all the three elements of Fé ) the associativity is obvious. If
two of the elements belong to Qk , then (YlbY')UOY" = YUO(Y'UOY")=0-
The same holds if two of the elements are belonging to A( ) and one
to Fé ) or one to A( )} and two to Fé ). Since =0 Dboth

UOIQ'QA( y and UOIF( )gn: are zero. Hence the only cases left, where
one “0of the two sides can “"be nonzero, are (ap,aq,mr), (ap,wq,fr) and
(wp,fq,fr) and both, (y UO"-(')UC y" and v U0 OY'UO‘Y"} are

ap.aq-mr, ap-mq/\fr and wp'\fq'\fr respectively.

c) Again it is enough to consider UO and (1,1) on' is given by



1€A(0) 1-a 0 1-w

0,0 =
1 E(FD) 0 1 qu-—fq 0

d) The homotopy between U, and UB is given by

h i (alp)y @ Alg) pfi—>(alp+q) )

(-)P(a=-B)yay"' if Y€Q;-1 and Y'E.Q; -1
hivey') ={ _
0 otherwise

where - as usual - v and Yy' are elements of degree yu and u',

each in A{ ), Fé ) or Q. - We have to show that

YUGY-Y‘UBY' = (h§ +8h) (Yyey') =h(syey') + (-1 Fh(y e sy') +S(hiyavy")).

The left hand side is given by

0 | 0 (B-a)ap-wq
0 0 (-1)“(a-s}fp Ao
(a—B)wP-aq (B-a)wp/\ fq 0 in the notationof (3.2).

For the right hand side we remark first that h(dyey') = 0 1if
Y'*mq,h(*{oﬁy')=0 if y#wp and S(h{yevy')) =0 1if
(Y,vy') # (wp,mq). We have

= (et oy 2B PR T -
{hs + Sh) (mp@(uq) {=1) (o B)dmpawq+ -1)" (o B)prqu+ §((=1) (avB)mpAwq)—O.

hé + éh = (= -
( + Hapewq) h(Gapswq) (-1) (a B)apAwq ,

(RS + 8h) (£, @ ) (-1)** o - gy (=€) Aug

hé ~1) M = (=1)%H (o - .
{ + &h) (wpoap) (=1) h(wpaéaq) (-1} (o B)wp a and

P



. =_2u-' (=
(h6+6h)(mpr& fq) (-1) """ {a B)wp/ { fq).

3.6. Let e, :Alply —> RjxA(p) and
. - ep tA(p)y —> FB be the projections, as in (2.2) with a
factor (~1ydeg( )

€ ‘ €
€q :A(p)v ———§—> Rj*A(p) ——> Rj*Q% and
€ :
- F __p 1 P
EQ : A(p)p > FD r RJ*QX
By definition of A(p)v (2.6) EQ-Eé is the composition of two maps
in a distinguished triangle and hence EQ-Eé is homotopic to the zero

map. We define products

e.® id
Uy : Alp), ® Rj,A(q) —E——> RI,A(p) 8 RI,A(G) —> RI,A(P+q)
e @ id :
. d F P g _A p+q
UF : A(p)D ® FD —_— FD ® FD —_ FD
and
£E,® id A
UQ : A(p)D @ R]*Qx ————————>' R]*Qx ® RJ*QX —_— Rj*Qx .

Since UQ can - up to homotopy - also be defined as

el 3 id
. . . . . . A .
A(p)D ® R]*QX _— Rj*ﬂxs RJ*QX —_—t Rj*QX

the morphism

Rj,Alq) ® F¥ =—— Rrj,0q

is compatible with and, up to homotopy, with U

AV
") =
Moreover EA{YUO'Y ) =y U

Q.
and sF(Y UO Y'Y =y U e ! as one

1
A a¥ F °F

easily verifies using the multiplication table (3.2).

For the natural map n : Rj*Qé'——> A(q)v one has as well
Y U, n(wq) = nly Ug wq). Altogether we obtain:

Proposition 3.7. In the triangle
. 1 NP
R A(gq) & Fy > Rj,0

\ /[1]




the operations oI A(p)v efined by U UE,J, and U0 are compatible

with the morphisms.

3.8. Since A(p)v has a flat resolution (of finite length} over
% ([6] V,6) one has a map A(p)v oL'A(q)D —> A(p)D ® A(q)D . Therefore
one has for all o € R a product

L ,
U, : Alplpy @ AlQ)y, —> AP+,
ané - by the usual constructions from homological algebra a preduct on

the hypercohomology. By (3.5,d) this product is independent of «
(3.5) and (3.7) give immediately:

Theorem 3.9. Uy induces a product U , makiné- peq H (X, A(p)) 1into a
bigraded ring with unit For YEZHq(X A(p)) and Y'E€ Hq (X A(p')) we
have yYUY' = (- 1)qq vy'Uy. Moreover one has an operatlon of

HD(X,A(p)) on pQ?qu(X,A(p)), p?quHq(X,m) and ©H?(X,C) coming
via €EarEp and €4 from the standard products. The exact sequence

— 13 x,a(p)) — 83 (X,A(P) © FPHIX,0) — wI(X,0) — 13" (x,a(p))

i

is compatible with the operations.

3.10. The product on the "real” D - b cohomology

We return to the notations introduced in (2.14). On
ﬁi(p)v = Cone(Fp -1, J#Sy (P 1)) [-1] one defines a product

~ —~— ~— e’
U IR(p)v ® IR(q)D ——>1R(p+q)p

given by
£
q °q
deg £

£ f g Ip
p qu (-1) TT%AS
s
D SpAﬁqfq 0

Lemma 3.11.

=

a) is a morphism of complexes.

b) Poeq® Yo is homotopic to U o (0, @ pq) (where

o, : R(p) R (o -
p Pl —> R(p)y 1is the quasi-isomorphism given in (2.15)).



Proof: a) For Yy and y' of degree u and u'

[ + !
S(yey') € (Fg+q)“+“ 1o 5.88™ (p+qg-1)

X
is
Ldf Af - (-1)H ~1)hr a +(=1)%1 £ Ad
{dprfq (-1) fp.\dfq , [(0,(-1) ﬂp fp/\sq (-1) wp o’ sq]
- £ A
Trp+q-1(p q)]
[0,ds AT £ +(=1)* 1s an_af ] 0
P ag P’ g q
whereas
Sy uvy'! is
~4f A f_, - £ AT £ (-1 ar
(=af n fqr =T fp A Tgfqd [0/= (=17 Tmdf, as,]
0,d £ 0
[ spA'rrq q]
and (-1)Hyusy' is
Tl=(-1*E ndaf (-1 2P0 £ A1 £ ] [0, (-1)%*1 £ ads ]
P g PP g-17¢g PP q
0,(-n*# -7 _df 0
[0, ( sy a (- af )]

Since

(pr fq)=7r£_ﬁq_1 ((ﬂp_1fp+wpfp) A(Trqfq+1rq_1fq)) =7 . f Anf +mf am _f

T
p+g-1 p-17p aq pp g-14q

we obtain a).



b) The homotopy is

-1 H ' i oLl N T B
(-1) %}YA ﬂq—1Y if vy QQX and vy EQX

hivyey') = {
0 otherwise

We have to verify that
[ Ty =t ' - M ' '
DPY UDqY Dp+q(Y Ug Y ) =h{(Sy®y') + (-1)"h(yedy') + S(thiysaY')).

The left hand side is (see (3.2))

0 0 -ap ) né_1wq
0 0 -)Mr £ ﬂ w
: (1) ToEp & Tg-19g
m w aAanw £ -
0 p-1"p " 'q'q 0
-7 (w_ A £ )
ptg-1""p g

As in the proof of (3.5d) all the terms occuring on the right hand side
are evidently zero except

= (oryBrT , _1y 2K T A .

(h6+6h)(mpomq) -1 (ﬂpdwp/\ﬁq_1 uq) + (-1) (ﬂpubAvq_1dqq)+ (=1) (d‘“ppr“q—1“%;”-‘0'
hé+8h = = (= .
(hé+ )(ap@ wq) h(cSap ® wq) ( T}ap T=1%g
- p+1 -
(th-dh)(fpcswq) = (=1) np( fp) A Wq—1wq
(h§ +6h) (w_ ® a) = (- hiw_ o da_) = (1) %Fr w *m__,a_ =0
p q o q op g-17q

= (_1y 2 _ - _
(h6+6h)(mp®ﬁq)- (=1) prpAﬂq_1( fq) = ﬂp+q_1(prfq)+ ﬂp_1prﬂqfq .
Example 3.12.

1 ot

Let {¢,n] and [¢',n'] represent two elements of H™ (XJR(1)D). Then
[o,n] T lo', n'1=lo Ao, namo - m0an'l.

As we have seen in (2.16)



0= . .0 0= 1
H;(X,IRH)) = (n€H(X,3,5,): d,n € B (X,05(log D))}

where ¢ corresponds to ZdZn. Hence the product of two elements

n and n' 1is given by
[4-dzn A dzn',?.-(n . 1r1dzn' ~ n'-ﬂ1dzn)]
in B (XR(2),) = Hg(x,m(z)).

In particular, if dim X = 1 and therefore Fg = 0, ntn' 1is represented

by 2-nemd,n’ - 2-n'emdon in BO(x,53(1)) /a8’ (x,83(1)) = H' (X, R(1) .

1

g 4 Relative cohomolggx

In [3] the D - b - cohomology is defined using relative cohomology.

This approach, giving IH'(?,A(p)D) as a derived functor on the category

of sheaves on pairs of topological spaces, applied to (Fg,Rj*Cone(A(p)—>9i))
will be needed in § 5 to define a D - b - complex on X 1in the
Zariski-topology. One also defines a tensor product on this derived

category, to obtain the product for the D - b - complexes in the
Zariski-topology. In fact, using this tensor product one can simplify

the definition (3.2) and clarify the constructions described in (3.3).

4.1. Let j : T — T be a continuous morphism of topological spaces.
A sheaf on (T,T) is a triple Fg , := (F, ;) where F is a sheaf on
T, F is a sheaf on T and ¢ : F —> j,Ff a morphism of sheaves.

Correspondingly a morphism o : F

T > Fé p 1is a pair of morphisms
®:F —> F', a: F—> F' such that ap=9¢'a.
v

4.2. Let Sh(T,T) denote the category of sheaves'on (T,T). It is easy

to see that Sh(T,T) has enough injectives. For example: if T and

I are injective sheaves on T and T respectively, the triple

Jg p= 0 =Tej,1,J=1, pry) 1is injective in Sh(T,T). If Fg o
is any sheaf we can find 7,1 such that t1 : T<% 1 and p :F &—» 1I.
Then (1t @ pew,p) defines an inclusion FT 7 C~a-JT T Therefore each

sheaf has a resolution by those "special injective sheaves".

4.3. Consider the functor

0

T Sh(T,T) —> Ab defined as

0 - =
I (F5 q) = Rer (8°(T,F) -2 #%(T,F)).



0

Obviously T is left exact. If D+(T,T) is the derived category

of complexes of sheaves in Sh(T,T), bounded below, we define

o +
R['" : D (T,T) —> D (Ab)

to be the derived functor of FO
Proposition 4.4.
a) If Fg o= (F*,F,0"). is a complex of sheaves on (T,T) then
’
_ ... Ro; .
R[S (Fg o) = Cone (H" (T, F') ——> W (T,F"))[-11].

b) If X is a good compactification of the algebraic manifold X and

if A(p)D'i X denotes the complex (Fg,Cone(A(p) -£5 Qi),-l) on
(X,X) then H%(X,A(p)) is the g-th cohomology of '
RI'* (A (p)

0,X,X ).

Proof. It is enough to verify a) for the special injective sheaf

JT ¢ defined in (3.2). On the right hand side of the equality we have
I

the cone of

cm Ty L w0 T 0 Prao .. _ 40
® (T,7) = 0 (T,T) ® 5 (7,1) —=> W (T,]) = H (T, 1),

which is quasi-isomorphic to HO(T,T)7 On the other hand RT'(JT T):=RP0(JT T)=
[E——— r7 7
8% (F,7) as well.

b) By (2.7) H%(X,A(p)) is the g-th cohomology of

H' (X,Cone (F§ = Rj,Cone (Alp) —> %)) [-1]) = Cone®" (X,FB) —> H" (X,Cone (A(p)—> 23))) [-1].

4.5. TFor two complexes of sheaves
ﬁ%'T = (F",F,0") and 63 ¢ = (G*,G6",y")
we define the tensor product F%,T ® Gé,T to be the complex (E ,E',n")
with
T =F o G and (for' p; = @' o id - id & y")
E* = Cone((3*F @ G°) @ (F' o i*G') —&» F'eG6")[-1].

The connecting morphism n° - is - on the level of sheaves - defined by



e eniraa e Yewts id) 801: B2 — 5, (7*Fte 6Y) @ 3, (F e Th @ (3, F e, )

Since .p* - n* is the zero map n* commutes with the differentials

and n° is a morphism of complexes.

4.6. If C(T,T) denotes the category of complexes of sheaves on (T,T)
and K(T,T) the corresponding homotopy category we have thereby
constructed a bifunctor o . C(T,T) xC(T,T) —> C(T,T). Since the =
product respects homotopies it also defines the bifunctor

® : K(T,T) xK(T,T) —> K(T,T). For a fixed complex Ef,T

. F§ ¢ ® respects triangles and if both F and F are flat FT T® maps

exact complexes to exact ones. Hence FT T ® respects quasi-isomorphisms
in this case. Sh{(T,T) has enough flat sheaves (for example, if 7 on
T and P on T are flat and P 22— F and P 2>F both surjective,

(P, j*P @ P, id ® 0) maps surjectively to (F,F,9) via (0,0 o p + p)).

r

The standard machinery of derived categories and derived functors

shows the existence of a left derived functor
o : D (F,T) xD (T,T) —> D (F,T).
(see [14], for example). _
From now on we assume that T and T have finite cohomological

dimension. Then both RI'® and oL are defined on the derived category
of bounded complexes.

4.7. 1If H%,T = (H',H ,y") is a third complex of sheaves, a pairing
U : Fé,T ® Gé,T —> H%,T (and - using flat resolutions as in 3.8
F%,T oL G%,T — Hé,T) is given by a pair

UE:TF' ® 6 — H* and

Uy : Cone((3*F" o G*)@(F 8 3*G") 2> F 2 6") [-1]—> H"
compatible with n° and y" . Taking the special injective resolutions

described in (4.2) one obtains from U a pairing

U : RF'(F%'T) ® RF'(Gé'T) —_—> RF'(Hé ), and

,T

P PR _—_
U : RT (FT’T) RT (GT,T) —> RT {HT,T)

.



4.8. If - as.in (4.4,b) - we consider on (X,X) the complexes

G= = Al(q)

2 x = Ay 3%+ %% .x and He . = A(p+q)

D,X,X X,X 7,X,x '

the multiplication table (3.2) defines pairings

L
Alplp 3,x © Rldlp z,x — Alrdy g x -
In fact, the first calculation made in (3.3) shows that Ua X is
!
well defined and the second part of (3.3) shows at the same time that
Ua,i is a morphism of complexes and that Ua = (Ua,f’ua,x) is
compatible with the morphisms n° from (4.5) and Y =-, . Hence (3.2)
defines a product N

. S A . '

RT = R A = —> RT + =
(A(p)D,X,X} ® RI’( (q)v,x,x) (A(p q)D,X,x)

which - on the cohomology of the domplexes - coincides with (3.9) and

is independent of o .

§ 5 Extensions and complements

5.1. The definitions and properties of the D - b - cohomology given in
§2 and §3 carry over to the case of smooth simplicial schemes X. of
finite type over [

As in [8] we compactify X. by a smooth simplicial scheme X. where
each Xi is proper and where D. = X. - X. has normal crossings. We

~ define H%(X.,A(p)) as the hypercohomology (in the sense of cohomology
of simplicial schemes) of Cone(Rj,A(p) ® Fg. — Rj*Qi_)[-1] on X.

As in (2.8) one obtains the independence of H%(X.,A(p)) of the
compactification.
5.2. If Z. 1is an arbitrary simplicial scheme of finite type over (,

we can find a proper hypercovering p : X. —> Z. with X. smooth (see
{8]). A hypercovering satisfies (by definition) cohomological descent.
Hence, if T : X. —> X. 1is a morphism of hypercoverings and if we
choose the compactifications such that T extends to T : X.! — X.

the induced maps 1t* are isomorphisms on the cohomology with values in
A{p), € and (see [8]) T* 1is an isomorphism on the F-filtration on the
De Rham cohomology. By (2.10,a) 1* : H%(X.,A(p)) — Hgtx:,A(p)) is an

isomorphism as well. Therefore we define:



Definition 5.3. The D - b - cohomology of 2. is

Hg(z.,A(p)) := Hg(x.,A(p)).

Remarks 5.4. If £ : ¥, —» Z. 1s a morphism of simplicial schemes

one has - choosing the smooth hypercoverings and compactifications
in the right way -~ the obvious map

£* : HJ(Z.,A(p)) > Hj(Y.,A(p)).
The exact sequences (2.10) exist as well for simplicial schemes, the
definition and the properties of the product remain unchanged. As in
(2.1,II) the D - b - cohomology exists as well for simplicial schemes

over 1R.

5.5. Sheafification of the Zariski topology

Theorem. Let X be a smooth algebraic manifold.

a) There exists a complex A(p) of sheaves in the Zariski topology

D,zar .
on X such that for all open subvarieties X' < X one has

H%(x',A(p))=nq(x- ,A(p) ) .

zar D,zZar

b) We have natural morphisms

. . D* -
Cq A —> A(O)D,Zar and cq OX,Zar[ 1] — A(”D,Zar .

(c1 induces on X'<cX the morphism ¢ described in (2.12,1iii)).

c) In the derived category of sheaves in the Zariski-topology we have
a product

L
A(p)D,Zar ® A(q)D,Zar A(p"'q)D,Zar

inducing on X' < X the product defined in (3.9).

Proof. Let V be the category of complex algebraic manifolds (or
real ones - in case 2.1,II).-We denote by @I the category of pairs
(V,V), where ¥V is a proper complex (or real) algebraic manifold and
VeV the complement of a normal crossing divisor.



We define a sheaf F,,, on [ to be a collection of sheaves

TV = (Fv,Fv,wv) on (V,V) (as in 4.1), together with a morphism
f* :(iV'FV'mV) :—> {f*Fﬁ,f* U,f*ch) . for each morphism
£ : (U,U) —> (V,V), satisfying (f.g)* =g*of* and 1id* = id. One

denotes by Sh(l) the category of sheaves on 1II. As in (4.2) one finds
that Sh(l) has enough injectives. If o:I — V 1is the "forget-functor'
a{(V,v)) =V, one defines for F,,, € Sh(ll) the direct image

O, Firyx to be the Zariski sheaf on V associated to the presheaf

Cro Ly,

X }— _llm 1 r %,X
(X,X)€o " (X)

where T’ is the functor described in (4.3), and where the limit is

taken over the direct family O-T(X) of all good compactifications of

X. o, : Sh(l) —> Sh(V) is left exact. Let Rg, : D () —> D" (V) be

the derived functor. Since

})) = lim r
—_—

o~ tix)

(F.

'?,X)

0
H (X’U*(F?,X

one has for a complex F.,, of sheaves on I

HU(X,Ro,Fesy) = lim  RIT(Fg )
> !
0_1(X)
Let A(P)D . be the complex of sheaves introduced in (4.4,b).
r ¢ N
Then we define A(p)D,Zar :=_R0*A(p)v'*’* From (4.4) and (2.9) one

obtains

(X, APy ) = ln  R9AE), g ) = lim HE®AER), = HxaE).
Faxr >
o™ () o (%)

b} Since A(O)D is quasi-isomorphic to the constant sheaf A
Hg(X',A(O)) = A for each connected open subvariety X' of X ~and

we obtain <y - Similarly, by (2.12,i) we can describe A(p) for

D,Zar
pP>0 Dby a complex starting in degree 1 and (2.12,iii) gives on each open

subvariety X' < X the morphism

” [N

. J = 0 ! 1 ' = 0 1
c1'mxgm H(Qaﬂimg—+m(%MAﬂw£a)-MHHmmemeM)

HO (g
Ko B, 22



c) By (4.8) the products Uy from (3.2) define products on the com-

plexes A({ for all (X,X) € I. The product

)D,i,x

o Ay —> A(p+q)

rx %

A(p)v’*'* D'*,*

in the derived category gives

A(p)D,Zar % Aiq)D,Zar —-a-Ro*(A(p)D’*'* % A(q)D'*'*) — Rc*(A(p+q)D’*'*) = A{p+q)D’Zar .

§ 6 The cvcle map in the De Rham cohomology

In [10] one finds the definition (due to P. Deligne) of the class
of a cycle in the Deligne cohomology. Before describing this construction
in a slightly modified way (§ 7) we recall some of the properties of the
cycle class in the De Rham cohomology. Especially we will need that
those cycle élasses behave well with respect to the F-filtration (6.10).
Since we do not know any reference we sketch a proof. We thank F. ElZein
and J.L. Verdier for useful conversations on those £opics.

6.1. Let Y be an algebraic manifold over € and n€Y be an
irreducible subvariety of codimension p. We will frequently use some
properties of the local cohomology with support in n (see for example
[14]): '

a) If F° 1is a complex of sheaves and Y'c Y an open subvariety one

has an exact sequence

p

. T>
IHT’I

Ly (Y F) -—:-IIHI;(Y,F') ---)-]H?nY,(Y',F'iy,) ——:-JI-Iﬁ:;,,(Y,F') — ...

i
o

b) If F 1is a locally free Ox sheaf and Jj<p one has H%(Y,F)

¢} Assume that n - ¥Y' #*n. Then b) applied to the cycle n -~ Y
implies that

HI;(Y,F.)—9' Hﬁnyi (Y"F1yl) .
d) Let F' be a complex of locally free Ox sheaves with FY = 0
for 1i<p. Then ZM%(X,F') =0 for j<2p and

]Hip(X,F')C——> Hﬁ(x,FP).



In fact, one has the spectral sequence associated to the
A
"filtration bete"
13 o), ) etk F
E1 Hn(X,F ) -»:lHn (X,F ).

By b) H%(X,Fi) =0 for j<p and - of course - for i <p.
Hence EiJ =0 for all i+3<2p. For i+ 3j=2p one obtains that
Ezp =ZII-I§p(X,F') is embedded in E?pr-Hﬁ(X,Fp).

The example we have in mind is: If FP denotes the F-filtration
of Q. (see 2.5) then one has an inclusion

X

2p P . j

6.2. Since n is smooth at the general point one can find divisors

D1""'Dp on Y and an open affine subvariety Y' of Y such that

Di.zDier' are non singular divisors intersecting transversally and
such that

b
n'=nny' = N D

{Ui =Y'-D!} is a covering of Y'-n'. Let c(n') be the

i“i=1

o]

e v
element of HP‘1(Y'-n',Q§,_n,) given by the Cech-cocycle
dt.]l\...f\dt ) P
£ on u oY= L DI,
. N o0y =
t1 .o tp i=1
where t. 1is the defining equation of Df - By (6.1,a) we have a map

p-1 "I p p. ' o
H (Y n 'QY'-nl) I Hnt(Y ’QY') 4

surjective since Y' 1is affine. We denote the image of c(n') by
cQ(Y',n'). Moreover, by (6.1,c) we have an inclusion

. gP P P v P
1o Hn(Y,QY)‘:—é Hn,(Y ,QY,) .

Theorem 6.3. ([2] and [9])

There exists a cycle class cqg(n) = co(¥,n) of n on Y, lying in
Hﬁ(Y,Qi) such that




l(cQ(Y.n)) = CQ(Y'.H')

Remark 6.4. a) F. ElZein [9] shows in addition that cQ(n) can be
cl

defined by a cocycle in the closed differential forms (oP) There-

Y
fore cg(n) is the image of a class c;(n) in Zmip(Y,Fp), uniquely

determined by (6.1,4).

b) The image of cF(n) in }Qp (Y,Qi)s HZPI(Y,I) is denoted by

“Inl In
cm(n). Of course, one can also consider the fundamental class of n
in H??l(Y,Z) or - after multiplication with (2im)P - in H?EIKY,Z(p)).

We denote it by c¢,(n). The image of ¢y (n) is again cm(n). In fact,
by the description of (6.2) and (6.3) it is enough to consider the case
‘P = 1. For divisors the equality of the two classes easily follows from
the definition of ¢, (n) (see [71).

Remark 6.5. Let D be a normal crossing divisor on Y, containing n.

Then the image of cn(n) in H?(Y,Qg(log D)) is zero.

Proof. - Keeping the notations from (6.2) it is enough to show that the

image of c(n') in Hp_1(Y'-n',Qg.nn,(log(Y'ryD))) is zero. We may

choose the divisors D1,...,Dp such that D

r
u Di for some r.

i=1

Then the cocycle

dt.A...Adt
1 B
t.-...°t

17 P
; p-1 P e
in C (28, (log(¥'n D))) extends to U’ =Y'- U D! and

() . Y r+1,...,p i=r+1 T

c(n') = 0, .

6.6. Let f : X —> Y be a birational morphism, isomorphic over

X =Y -n, such that D = f-1(n) is a normal crossing divisor. One
has natural maps

P- P £* P .z P, & P,
o (Y,00) —— HJ(X,08) = HD(x,gg(log D)j.

Proposition. The image of CQ(n) in Hg(f,ﬂg(log D)) 1is zero.

Proof. One would like to say that f*cQ(n) is the sum of cycle

classes of codimension p cycles and that (6.5) implies (6.6). However
to get hold of f%:Q(n) we have to use the description of cycle
classes given by B. Angéniol and M. Lejeune-Jalabert [1]:



Let M' be a perfect complex of OX sheaves on Y. The first
Atiyah class A; € Ext1(M',Q} @L M*) 1s the obstruction for M° to
have a holomorphic connection. One defines the p-th Atiyah class
Aﬁ. as the b-th exterior power of A;. in Extp{M',Qg @L.M‘). If

M* is acyclic outside of a subvariety ZcY one uses the isomorphism

L L

M',Qp @L M)

Py P
Ext® (M ,QY ® v

M) =1im ExtP (0, @
m it

and the trace

p L e oP L y- p P
Ext FOZm ®- M ,QY ® M') — Ext (Ozm,QY)

to define the p-th Newton class Zvﬁ in lim Extp(oz ,Qg) = HE(Y,Q?)
m m

(see [1]1 § II)'

As shown in the proof of II, 2.5.3 (loc. cit.) c¢q{n) 1is - up to
a constant - the same as the p-th Newton class nv% . By IT, 4.2.1
» P - P Pirex P oL * 1 i
f AO ALf*O in Extf(Lf On’QX ® Lf On)' The trace is compatible

. n . P D
V4 *A; = P
with pullbacks ([13],v, 3.9.3) and one obtains f Von va*On

Therefore (6.6) follows from:

Lemma_6.7. Let M' be a perfect complex of sheaves on X, exact
outside of D. Then a(Dvﬁ.) =0 for '

. uP (% ok P (% oPR
o HD(X,QX) —_— HD(X,QX(log D)).

Proof. We denote by a as well the morphism

Ext? (M, 4" o Q%) — ExtP (M, M @ Q%(log D))
and we call a(kﬁ.) the logarithmic Atiyah class of M°
Case I: Assume that M® ' is quasi-isomorphic to a locally free sheaf
on a smooth divisor D'c D. We may write M° =(M-1C—9—* MO) for
locally free OX ~ modules M_1 and MO. On a suitable Cech cover
{Ui} we have isomorphisms MriUitﬁ Oﬁv and, if £; is an equation

for D‘nUi ' wi==w|Ui can be given b§ a diagonal matrix with 1

and fi in the diagonal. as in [1], II, 1.5 the logarithmic Atiyah
v :

class is represented by a Cech-cocycle of morphisms

P . na r+p-k P
ar(lO'...'lk) M IUi '.-"ik — l\v{ @ Qx(log D) ‘Ui .
0 gre-rrip



In our situation only r=0, k=p and r=-1, pzkap-1 may occur.
We claim, that a(Aﬁ.) can be represented by a cocycle Gg(io,...,ip).
;.) by exterior product (II, 1.4

loc.cit), it is enough to verify this for p=1. Since M’

Since a(hﬁ.) is obtained from -af(A
has a

Ui

logarithmic connection for all i, a(AL is zero. This means in

. )
10,

particular that 611(1) is for all 1 on™* U; a coboundary in the

corresponding complex. Hence we can change the whole cocycle to obtain

the representation wanted.

(Explicitly, if we use the notations from II, 1.5 (loc. cit)
1

§_qig) = d(inIU_ ) = B-df where B is a diagonal matrix having only
= i
1 or 0 in the diagonal. We have .a morphism
pdf . M-1i — W Vel (log D) |
£ U. X 9]

i i

0 0
and 611(i0) =@ B%? . If d' denotes the differential in the

Cech complex we hgve to changetﬂuaﬁech cocycle Gs(i) by d'(B%?) to
obtain the representation wanted.)

Since M°® 1is acyclic outside of D we may pass to the limit and

obtain a(kﬁ.) as a Cech cocycle in
.’ . E = : - . 1 .
Bom (M |Ui ‘ﬁﬂ ® sz(log D) U . ) lﬁﬁ Hcm(ODm ® M U . M oﬁ%(log D)lUi i) .
Ounnlp Ocnop Oa.op Ooo-p

By definition of the trace map in [13], V, 3.7,the trace map can be
calculated on a &ech—covering. Hence a(Dvﬁ.) is représented by a
collection of elements of

. 1 B
lim Hom(0y |, 0% (log D)IU. ) .

m m lO...lp lo...l

Those groups however are zero.

To reduce the general case to case I, we need that the logarithmic
Newton classes a(Dvﬁ.) with support in D are additive for exact
sequences of perfect complexes, acyclic outside of D. In fact, the
proof in [1], II, 4.3 uses just the additivity of thé trace ([(131,v, 3.7.7)
and carries over to logarithmic Newtqn classes with support.

Case II: If D'e D is smooth and M" qguasi-isomorphic to a (_,-module,

D|

we can take an OD' locally free resolution N. Since N 1is bounded



and
O+NT o NS>0 > (0 +NTFT > ... >NS>0)>(0>NT~>0)
is exact, case II follows from case I.

Case III: If M® 1is quasi-isomorphic to any 0? - coherent sheaf F

with support in D, we can filter F by Fm = F @ Oi(- E miDi)' For
. = i =1 .
t - —
m -(m1,...,mi+1,....,mr) EE/FE' is an ODi sheaf and #e are in case II.
Case IV: If M' 1is any perfect complex, acyclic outside of D, we use

the surjection

-s=1 =S, NS

(0-M1 > M —=S,5 > 0) » (0 > MS/Ims__ + 0)

s
with kernel

r

0+ 8% > =W s _ > 0) < (0 MTF » L o752 ker 5__>0)

to reduce the proof of (6.7) to case III.

6.8. The definitions of the cycle classes with values in Qp, Fp, T
and X are - as usual - extended to the group ZP(Y) of codimension
p-cycles. For example, for n=1 Ving € zP(¥) one defines

cQ(n) =z vi-mult(ni)-cﬂ((n )]

i red)

in H?nl(Y,Qs), where |[ni 1is the support of n. If, keeping the
notations from (6.6), £ : X — Y is a birational morphism, isomorphic
over X=Y - |In} and such that f—1(inl) = D is a normal crossing
crossing divisor one obtains as well that af*(cs(n)) = 0.

Remark 6.9. One can consider the statement corresponding to (6.6) for
Cp instead of Cq ¢ If Fb denotes the F-filtration of Qi(log D)
it would be nice to know that cF(n) is mapped to zero under

2p D 2p 7 P

~ Without this we still obtain:



Proposition 6.10. If Y 1is a complete algebraic manifold and if
cF(n) lies in the kernel of ZM?ﬁI(Y,FP) —-9ﬁmzp(Y,Fp), then cF(n)
lies in the image of the composed map

2 (v,FP) .

v moP] (X,F5) —> ® P~1(x,FP) —a—‘mfﬁl
Proof. Under the assumption cQ(n) lies in the kernel of
H?nl(Y,Qi) — HP(Y,Qi) and by (6.1,a) in the image of Hp_j(x,ﬂg}.
(6.6} and the commutative diagram

#P~ ! (X,98 (1og D)) —> #P7] (x,08) —— 8P, (X,08(log D))
4 N

Y = ’ acf*

p-1 p ! p P
H (x,szx) _ Hlni (Y,QY)

with exact first row implies that cQ(n) lies in the image of ieoy.

One has a commutative diagram

w2P~] (X,FB) £ g (X,98 (Log D))

IR

2p P P P
Hh (Y,F¥) = Hip (Y,Qy)

B' is injective (6.2,d) and, since X 1is compact, 8 1is surjective

(2.5).

§ 7 The cycle map in the Deligne cohomolpgy

7.1. Let Y be a complete algebraic manifold, n a codimension p
cycle and X = Y - Inl. We define HTnI(Y,x(p)D) as the hypercohomology:
group ZHTHI(Y,Z(p)D). By definition of z(p)D as a cone (2.6) we have

an exact sequence (2.2)

— Hﬁ’_ﬂ (Y,€) —>mf§1(Y,z{p)D) — Hﬁ’l(y,z(p))emfﬁ' (v,FB 2 Hzlﬁlty,u:) — ...
Since 2p-1 1is smaller than the real codimension H?§I1(Y,E} = 0.
Moreover, since € 1s the difference of the two natural maps ¢ and
v, %, (n) o)) is zero (see 6.4). Therefore we may regard



2p .
(cz{n),cF(n)) as an element of Hlnl(Y’Z(p)D)' and we call it cv(n).

By the forget morphism
BP (v,z2(p).) —> HZP(Y,Z(p))
Int ' D D '

we obtain the cycle class of n without support, called ¢({n) in
the sequel.

Remark 7.2. If Y 1is non compact and Z(p)v is the D - b - complex

on a good compactification ¥, the same construction works with
2p v P . 2
:HIHI(Y’F(Y-Y)) instead of H

cF(Y,ﬁ) of the closure n of n is already defined as an element of

ﬁl(Y,Fp) . However, since the class

H2P (Y,FP) we can as well compactify first and use at the very end the map
Imt

HSP(Y,Z(p)) —> HSP(Y,SZ (p))

to get classes in the D - b.- cohomology of Y.

7.3. Let n be a codimension p-cycle and n' a codimension g-cycle.
If both intersect properly n-n' is a codimension p+ g cycle. The
product U : z(p)v oL Z(q)D —> x(p+q)D defined in (1.1) (see also §3)

gives

Proposition_7.4. If n and n' intersect properly
Cpm Ucy(n') = Cpn-n') and v Uuv(n') = p(n-n').

Proof. The second equality follows from the first one. By (3.7) the

cup product is compatible with the usual products on H?'l(Y,Z(.)) and
Hl'l(Y,F'). Since Cp is uniquely determined by Cop and Cp the
first equality follows from the corresponding ones for Cy and Cp

(see [9], for example).

The same argument proves:

Proposition 7.5. If g : ¥' — Y 1is a morphism and n a codimension

o cycle such that g*n 1is of codimension p as well, then

g*cy(m = glg*m) in WP, (Y'.Z(p)y) and g*(¥(n) = $lg*n) in

2
B P (Y ,Z (p)).



Proposition 7.6. Let N, and No be two rationally equivalent
codimension p cycles on Y. Then - w(n1)=w(n2).

Proof. By definition of rational equivalence there is a codimension
T ana x1,x2€IP1 such that ny = 1#(§) for

K Y = Yx‘{xk}c—> Yx®'. If 1 is an isomorphism 1of P! with
T(x1)==x2, 1? c {idxT)*(E) = ny- T* acts fn H*(IP ,Z) as identity.

p cycle & on YxIP

1

Hence (idx 1)* 1is the identity on H' (Y x TP
B (yx P ,FP) as well. By (2.10,a) (idx t)* is the identity on
ng(Yx:pT,z(p)) and

,Z) and therefore on

viny)= 17 - (Adx1)*(W(E)) = lq(w(é)) =v(n,).

Corollary 7.7. Let CH'(Y) = @ cHP (Y) be the Chowring of Y,

i : P - 4P . . 2p
i.e.: CHF = Z¥(Y)/rat.eq. and HD(Y} p?O HU (Y,Z(p)). Then
Y defines a ring-homomorphism :
Y : CH' (Y) —> Hp(Y).
Moreover, Y 1is compatible with g* : CH(Y) — CH' (Y') for

g : ¥ — vV,

~Proof. By (7.6) ¢ factors over CH'(Y). Using the moving'Lemma it
is .enough to verify the compatibility of ¢ with the product for
cycles intersecting properly, and to verify the compatibility of ¢
with g* for cycles n with codim (n) = codim (g*n). This has been
done in (7.4) and (7.5%).

7.8. Griffith's intermediate Jacobian

Recall that Y 1is a complete algebraic manifold. By (2.5) the subgroup
rPud(y,t) of HY(Y,T) is isomorphic to HY(y,FP) and the guotient
group Hq(Y,(I:)/Fp is isomorphic to ZHq(Y,Q;p). Since

FPa?P~ 1 (v, o) nPPE?P (v, o) = o0

the image of H29_1(Y,Z(p)) in H2p_1(Y,U:)/Fp is a lattice and
2p- - -~ - -
JPy) = %2V v,o) /%P T (v,z (p)) + FPE2P (v, ) =m2P 1(Y,Q;P)/Hzp T(v,z(p))

is a complex torus, called the p-th intermediate Jacobian of Y. We

denote by ng(Y) the Hodge cycles of Y, i.e.




E=1
—

BPv) = Ker (6°P(v,Z(p)) ® WP (¥,FP) 5P (v,0)) .

This coincides with the usual definition, since
P 142P (v o) n PP 4%P (v,€) = 0 and therefore

Ker(e -1) = 5—1(Hp'p)r1HZP(Y,z(p)). The exact sequence (2.10,a)
implies:
(7.9) 0 — JP(¥) — HP(v,2(p)) —>Bgfly) — 0

is exact.

By (3.7) the cup product respects the exact sequence (7.9). Hence

pgo

20

JP(yY) is an ideal of the commutative ring
HOP (Y2 (p)) .

J*(Y)
Hp (Y)

i

Proposition 7.10.

J°(Y) 1is an ideal of square zero.

Proof. An element of JP(X) is represented by an element of
m2p-1(Y'Q<p) or, by Hodge theory, of ® Hk(Y,Qg). The differential
Y k+%22p-1 Y

P
d is zero on Hk(Y,Qé) and (7.10) follows from the definition of U
given in (1.2). '

Let us return to the cycle map )

v : 2P (y) — H%p(Y,Z(P))-

By construction € ¢y : 2P vy — HZP(Y,Z(p)) and factors through
1ol ZP(Y) —> Hzp(Y,Fp) are the usual cycle maps. Hence, if HP(Y)h
denotes the subgroup of cycles homologous to zero, € oy and 190y
are zero on ZP(Y)h. By (7.9) we obtain a lifting of
' . 7P P
wlzp(y)h to wo A (Y)h —> J¥(Y). In fact, by (7.7) wo factors through

p = 9P
CH (Y)h Z (Y)h/rat.eq.

Theorem 7.11. wo is the Abel Jacobi map.

Before proving (7.11) we have to recall:

7.12. Deligne's description of Griffith's Abel-Jacobi map.

Let n be a codimension p cycle on Y. One has the exact sequence



0 — BP v ze)) £ WP xzp)) — B (v,2(p)) — HP(v,Z(p))—>..

where X = Y - |nl. All the cohomology groups carry mixed Hodge

structures and the morphisms in the exact sequence respect them.
2p '
Ini
of n, and since those cycle classes are by construction (6.4) of

Since H (Y,Z(p)) 1is generated by the cycle classes of the components

type (p,p), the cokernel of B 1is of type (p,p) and B induces
isomorphisms

2p-1 2p-1

a1 (v,c) /FPx (v,t) > 5?P~1(x,r)/FPu (X,C)

and

2 2p-1 2p-1

(7.13)  JP(y) = #*P VY (x,r)/H (v,Z(p)) + FPH (X,T).

Regarding the exact sequence one finds that for n € ZP(Y)h the
2p=1 (%2 (p))

uniquely determined up to Im(B). We denote by cz(n} as well the
- o’
image in H?P 1(x,C). By (7.13) Cg(n) defines an element yj(n)edP (y).

P
fundamental class %z(n) is the image of a class Cz(n)EIi

Definition 7.14. (Deligne)

vy zP(Y)h —> JP(Y) is called the Abel Jacobi map .

Proof of 7.11. Consider the commutative diagram of exact sequences:

3P (y) S uZP(v,2(p)) —> B*P(v,z2(p) @ P (v,FP) — u?P(v,0)

] I |

‘ 0
0 — HP (v,2(0) ) — BB,z (p))e BE(v,FP) —> B (v,q)

Ini A N
p 1

- — t -
8P (x, 2000 B2V (x,FP) & w?P 1 (x,0)

B
U
1P~ (v, @)
For née€ Zp(Y)h we have p(cz(n), c_(n)) = 0 . Therefore
e’ “a , F
(qz(n), CF(n)) = p'(cz(n), CF(n)) for some

P Ve g - -
(&g (), e () eu’P 1 (x,z(p)) @ 8P (x,FP).



~ o~ L 2p-1
Since 8(gy(n),cy(n) = 0, 8'(Gy(n),Cp(m) lies in 8P (v,m)).

By the snake-lemma one finds y,(n) to be the image of

-1 7~ —~ 0 r~

B”'8' (g, () ,cp(n))  in gP(y). By (6.10) G, (n) 1lies in the image
of ‘

P (%, B = FPu?PT (x,0) — BT (x,FP) .
Therefore 6'(qn(n),cF(n)) and 6'(cz(n),0) define the same element in

2p-1

12P~ 1 (x, o) /FPu?P V (x,z) + 8PP (v.z(p))

and by (7.13) ¥,(n) = ¢5(n).

Remarks. The construction of the Abel-Jacobi map and of the cycle map
in the Deligne cohomology has been done in [10] and [3] in a slightly
different way. At first glance it seems surprising that the proof of
{7.11) in [10] or [3] does not need the statement like (6.10).

However, the proof given there uses a description of the Abel-Jacobi

map by currents, which is different from the one given in (7.12).

I1f one assumes that 'both coincide , it proves (6.10) directly, without
studying the pullback of cycles. On the other hand one can use (6.10)

to show that ¢6 is the same as the Abel-Jacobi map defined by currents.

§ 8 Chern classes in the Deligne-Beilinson cohomology

8.1. Let X be an algebraic manifold or - using § 5 - any simplicial
scheme of finite type over €. In this section we sketch two methods
to-define Chern classes

2p
cp(E) € HyP (X,Z (p))

for locally free Ox—sheaves E (called bundles in the sequel) of rank r

on X. They should depend just on the isomorphism class and satisfy

A) (Functionality) For any morphism
f : Y —> X one has f*cp(E) = cp(f*E).
B) (Compatibility with the Chern-classes in H'( ,Z))
cp(E) is mapped under ¢ : H%p(x,Z(p)) — Hzp(X,Z(p)) to the usual

Chern classes of E.



Of course we can as well consider Chern classes in H%p(X,A(p))
for any subring A of IR. However those are just the image of the
classes in ng(x,z(p)).

Prggbs;tion 8.2. The Chern classes are uniquely determined by conditions
A and B.

Proof. The classifying space BG = BGLr(E) is a simplicial scheme of

finite type over € and, as proved in [8] there are elements ¢

of pure weight (p,p), such that
H® (BG,Z) = x[c1,...,cr]

Therefore HP '(BG,C) = 0 and 1 : ®?P(BG,FP) —> u%P(BG,T) is an
isomorphism. By (2.10,a) or (2.10,b)

e . H%p(BG,x(p)) — %P (86,z (p))

is an isomorphism, and the Chern classes of ‘the universal bundle Ein

are uniquely determined by B. If E on X 1is any bundle of rank r

one can take a hypercovering o : Z0 —> X such that p*E is trivial
on each z, - Then there is a morphism £ : Z. —> BG  such that
f*EErl = P*E. By A the Chern classes of p*E are uniquely determined.

Since the D - b cohomology of 2Z. and X are isomorphic (5.2) one
obtains (8.2).

8.3. -For a non-singular variety A.Grothendieck defines in [12] Chern
classes ?E(E) of vector bundles E in the Chow group CHP(X). Those
are functional and, under the cycle map Coq 7 compatible with the Chern
.classes in HZP(x,x(p)). Therefore cp(E) = w(g;(E)) defines Chern
classes for vector bundles on X, satisfying A and B by (7.7) and
(6.4). Of course, one has to use (5.1-3) to extend this definition to

arbitrary simplicial schemes of finite type over C.

8.4. A second construction of Chern classes is based on (2.12,iii) and
the splitting principle: '
Recall that for an algebraic manifold X we constructed an isomorphism

P 0 —> H;(X,Z(T)).

By (5.5,b) ¢ induces a morphism (in the derived category) of complexes



of sheaves in the Zarisky topology

Taking hypercohomology of sheaves in the Zarisky topology this gives

a map

. g * 2
Since invertible sheaves correspond to elements of H1(X,O§) we can

use ¢ to define the first Chern class of an invertible sheaf.

1
The induced morphism

*
OX > z(1)D'Zar[1] — Z(1)[1]
is in the derived category the "edge" morphism of the exponential
sequence. This shows that e(c1(L)) is the first Chern class of L
in B2 (X,Z(1)).

Progosition 8.5. Let E be a vector bundle of rank r on X,
7 : P= P(E}) — X the corresponding projective bundle and

OE>”) the tautological invertible sheaf on P . Then for all gqg.,q'

g ' ~ r=1 * q-zp - P

Hy (P ,Z(q')) <— o8 ™*Hp (X,2(q' =p)) U c (0 (1)) .
Proof. As is we%l known, the same maps are isomorphisms for H'( ,Z(.)),
H'( ,C) and by [8] for H'( ,F"). By (3.9) the cup product is compatible

with the exact sequence (2.10,a) and therefore (8.5) holds.

8.6. Now one can define Chern classes of rank r vector bundles in

the way of Hirzebruch and Grothendieck:

r
In H2F (P, (r)) = ® 7*E2P(X,E(p)) U ¢, (0 (1))F°P
? e D 1Y
we have a relation
T r-p
To(-1F - oaxy v c (0 (1)) =0
p=0 P IP

. 2 .
with Yp € HDP(X,Z(p)) and Yo = 1. We define cp(E) = ¥ .



As in [12] one shows that the Chern classes obtained are functorial
and additive. Since the usual Chern classes can be defined by the
splitting principle as well, one cbtains (8.1,B).
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