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1 Introduction

This work was started as an attempt to apply theory from noncommutative
graded algebra to questions about the holonomy algebra of a hyperplane
arrangement. We soon realized these algebras and their deformations form a
class of quadratic graded algebras that have not been studied much and are
interesting to algebra, arrangement theory and combinatorics.

Let X be a topological space having homotopy type of a finite cell complex
and H,(X) its homology coalgebra with coefficients in a field and comulti-
plication dual to the cup product. Then the holonomy Lie algebra Gy of
X is the quotient of the free Lie algebra on H,(X) over the ideal generated
by the image of the comultiplication Ho(X) — A*(H,(X)). The universal
enveloping algebra U(X) of (/x is called the holonomy algebra of X.

Holonomy algebras were introduced to arrangement theory by T.Kohno
in (15, 16]. If A is an arrangement over €, that is a set {H,..., H,} of linear
hyperplanes in a linear space €¢ then put X = C\U%, #; and U(A) = U(X).
In [15], U(A) is defined explicitly by generators and relations that can be
read from the combinatorics of A (see Section 5). Recall that there is another
graded algebra defined by the combinatorics of A, the Orlik-Solomon algebra
A(A), {20]. A well known theorem of Brieskorn-Orlik-Solomon says A(A) is
isomorphic to H*(X, €).

In his papers, Kohno studied a complex, K, of free modules over U(.A)
defined by K, = Homg(A(A),, U(A)) (p = 0,1,...) and K_; = € (the
Aomoto-Kohno complex). He proved the acyclicity of this complex for certain
classes of reflection arrangements. He also proved that if this complex is
acyclic then the Lower Central Series (LCS) formula holds:

P(-t) = [0 -y,

n>1
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where P(%) is the Poincare polynomial of X and ¢, are the ranks of successive
quotients in the lower central series of its fundamental group. The LCS
formula was later extended to all supersolvable arrangements (equivalently
fiber-type) by Falk and Randell [9] (see also [13]). The acyclicity of the
complex for arbitrary supersolvable arrangements remained open in spite of
attempts to prove it (e.g., see [12] and correction in [13]).

We begin our work with the simple but crucial observation that the al-
gebra U(A) is dual (in the sense of Koszul algebra theory) to the quadratic
closure A(A) of A(A). Notice that the algebras U(A4) and A(A) are de-
fined over an arbitrary field F' and we substitute it for €. Let T be the free
graded F-algebra on a set of degree one generators z,,...,z,. All of our
graded F-algebras will be graded quotients of such a 7. The Koszul dual
of a quadratic graded F-algebra B is the quadratic graded F'-algebra whose
generating relations form an orthogonal complement in 73 to the quadratic
relations of B. This algebra is denoted B'. The algebra B is said to be
Koszul if B' is isomorphic to the cohomology ring of the trivial graded B-
module F' = B/Bsg. An immediate implication of our observation above is
that the Aomoto-Kohno complex K is never exact if A(A) is not quadratic.
Moreover, in the quadratic case the exactness of K is equiva lent to U(.A)
(equivalently A(A)) being a Koszul algebra.

To analyze the class of algebras U(A) we use the idea of deformation
theory, attempting to deform U(A) into a simpler quadratic algebra. In par-
ticular, if there exists a monomial basis of A(A) such that the complementary
set of monomials in the free algebra T' forms a an ideal generated in degree
2, then there is a nice deformation of U(A) into an algebra in a class of
quadratic algebras we call graph algebras.

A graph algebra is an algebra given by a collection of relations of the form
T;T; —qi 2% = 0, ¢i; € 7. Graph algebras seem, by themselves, to form an
interesting class of quadratic algebras. These algebras (at least for ¢; ; = £1)
have appeared in the literature under different names (see [6, 10, 11, 14]) but
no general results about their Koszul properties are known to us. We prove
all such algebras are Koszul.

Now the success of the deformation method depends on the existence of
a good monomial basis for the Orlik-Solomon algebras A(A), as mentioned
above. This problem was studied by Bjorner and Ziegler in [5]. It was
shown there every supersolvable arrangement has such a basis. Moreover, it
is known that for supersolvable arrangements A(A) = A(A). Using this, we
give a deformation of U(A), U, with the properties U; & U(A) for ¢t # 0 and
Up is a graph algebra. Now an application of a theorem of Drinfeld, 7], gives
the Koszul property for U(A) whenever A is a supersolvable arrangement.

Our presentation is outlined as follows. In section 2 we recall several
equivalent definitions of the Koszul property and some basic results about



Koszul algebras. Section 3 defines graph algebras and proves such algebras
are Koszul. We also recover here some interesting combinatorial information
previously known from [10] and [11], see Corollary 3.11. Section 4 gives a
generalization ol the definitions and results of sections 3 to a larger class
of algebras called generalized graph algebras. In section 5 we return to the
study of arrangements. Here we recall the basic definitions of the algebras
associated to an arrangement and prove the two main results: A(A) must
be quadratic for the complex K to be exact and U(A) is Koszul for all
supersolvable arrangements. We conclude, in Section 6, with 3 examples
of arrangements that are not supersolvable and which we analyze by more
ad-hoc arguments. The last of these examples provides an open question.
The second author is indebted to T.Kohno for introducing him to holon-
omy algebras and to M.Falk, R.Hain and R.Stanley for uselul discussions.

2 Koszul Algebras: Preliminaries

We collect in this section some of the basic results about Koszul Algebras,
cf. [4], [3] and [19]. Let [ be a field and V' an n-dimensional vector space
over F'. We let T' = T'(V) denote the full F-tensor algebra over V. Choosing
a basis z;...,z, for V we can write T' = F{zy,...,z,), the free F-algebra
on Zp,...,%,. We use the usual grading on 7" where T} = V and T = F.
Fix an F-inner product on the space of 2-tensors V@V = T,. To ease the
notation we will usually assume this is the standard inner product induced
by the basis z;...,z,.

Fix a homogeneous ideal [ of 7" and let U = U(I) be the graded algebra
T/I. We may assume [ contains no non-zero elements of degree 1 and we say
that U is quadratic if I is generated, as an ideal, by its elements of degree 2.
Since Ty — Uy is an isomorphism, we identify these spaces and use z,,...,z,
to denote a basis of the space.

Definition 2.1 Let U = U(!) be « quadratic algebra. Let [} be the orthog-
onal complement to Iy in V@V and I' the ideal of T generated by I, The
quadratic algebra U' = U(I') = T/1' is called the Koszul dual of U.

We observe at once that (U')' = U.

Definition 2.2 Let U = U(I) be a quadratic algebra and let y F be the trivial
graded left U-module U/Usq. The algebra U is said to be Koszul if y F' admits

a free graded resolution
e PP s PP PPy F 50

such that P is generated by its component of degree 1.

3



There are many equivalent ways of expressing this definition. The fol-
lowing theorem collects some of these variations. We denote by E(U) the
graded cohomology algebra Eztf;(y F, yF). For any graded F-vector space
M we denote the Hilbert Series of M by H(M,{) ;= ¥, dimp(M,)t*. The

Koszul complex of U is the sequence
a2 K= 2 K23 Kg=23yf =0

of free (except y F) left U-modules and their homomorphisms where K; =
Homp(U;,U), and d; : K; = K;_; is defined by d;f(e) = ©¢_, f(zia)z; for
every a € U;_;.

Theorem 2.3 Let U = U(!I) be a quadratic algebra. The following state-
ments are all equivalent.

(a) U is Koszul.

(b) U' is Koszul.

(c) E(U) is a quadratic I'-algebra generaled as an algebra in degree 1.

(d) E(U)=U".

(e) The Koszul complex of U s acyclic.

() H(U,1)- H(B(U),—t) = 1

The various equivalences of the theorem can be found in [3], [4], and [19].
Several more equivalent versions of the Koszul condition can also be found
in these references.

Corollary 2.4 IfU is a Koszul algebra then H(U,t) - H(U', —t) = 1.

It is not known if the converse to this corollary is true.

3 Graph algebras

Let £ be a field. Let I' be an edge-labelled graph (without loops or multiple
edges) on n vertices 1,2,...,n with a set £ of edges. Each edge {i,7} in &
is labelled by a non-zero field element ¢; ;. We associate two F-algebras to I,
Recall T = @457y, the free F-algebra on n generators zy,. .., z,, naturally
graded. Define the ideal /(') of T

I(T) = (ziz; — qijoja:l{i, 7} € E,i < 7).
One checks that
(DY = (D) = (ziz;, grazss + zize| {7, 5} € B, {k, 1} € B,k < 1).
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Notice that 22 € I'(T) for every i. Then put
UT) = T/I(T),  A() = UNT) = T/I{(T).

Clearly both algebras are quadratic and dual to each other. Let A(V) denote
the exterior algebra on V over . We note that A(I') is a deformation of the
factor algebra A(V)/(ziz;|{i,7} & E,i # j7) and the two algebras have the
same Hilbert series. In particular it follows, as for the exterior algebra, that

dimp A(T) < 27,

Examples 3.1 1. Lel ' be discrete, i.e., E = 0. Then U(I') = T and
A(lY = F & V with zero multiplication on V.

2. Let " be the complete graph K, with oll labels g;; = 1. Then U(I') =
Flzy,...,z,] and A(T) = A(V).

3. Let T' be the complete bipartite graph Ki; (k+ 1 = n) and all labels
giy=1. Then U(T) =T'QT" where T' and T” are free algebras on k and
l generators respectively. A(I') is the ezterior algebra on n generators with
extra relations of products of generalors for a fized k-subset of generalors
and its complement. Equivalently, A(I') = A(I")QA([") where I and " are
discrete graphs on k and [ vertices respectively and & is the operation Koszul
dual to tensor multiplication (see [19]).

4. Let n = 2 and assume (1,2) € E. Set ¢ = q12. Then the alge-
bra U(T) is usually denoted Fylzy,x3]. This ring is often referred to as the
quantum line as it can be realized as the twisted homogeneous coordinate ring
of projective one-space. Alternatively one may think of this ring as the set
of polynomials F[zy,z2] with a new multiplicative structure, @, defined by
F(1,22) © gl(81,32) = J (31,4 22)g(21,3) for all f,g € Flay, ws).

In the rest of the paper we will apply to T' the usual terminology from
polynomial rings. For instance, each element ¢ of T is the uniquely defined
sum (with nonzero coefficients) of monomials. These monomials form the
support S(a) of a. If S(a) has only two elements « is a binomial. Note that
S(a) does not involve the coefficients of the monomials in .

The fact that graph algebras form a manageable class is based on the
following simple observation.

Lemma 3.2 Let [ = I(I"). Ifa € [ then a = ¥ a; where each a; is a
binomial from I and S(a) = U; S(a;).

Proof. To write a given ¢ € I as ¢ = }_ a; where each «¢; is a binomial in
I is a triviality, since [ is generated by binomials. Moreover, the containment
S(a) C US(a;) is clear. It is the opposite containment that is not automat-
tcally true. Among all possible representations @ = 3 a;, choose one with a
minimal number of terms, say k.



Let us prove S(ax) C S(a). Suppose not. Choose a monomial ¢ € S(az)
with 4 & S(a). For each 7,1 < i < k, let 7; be the coeflicient of p in the
binomial a; (of course r; = 0 unless p is one of the two elements of S(a;)).
Since p € S(a) we must have 3;7; = 0. Define b; = a; — ri(rx) " 'ay for
1 <1< k~—1. By construction, each b; is a binomial in I and a = ¥ ;.
This contradicts the minimality of the representation @ = ¥; a; and proves
the Lemma. 0O

Let ¢ and b be elements of T. We say a and b belong to the same
projective coset of I, or are projectively congruent modulo I, if there exists
non-zero scalars A and v with Aa —vb € [I.

Corollary 3.3 Let I be as in Lemma 3.2. If B is a set of monomials of
T, composed of ezactly one element from each projective coset of I, then the
image of B in U = T/ under the standard projection is an F'-basis of U.

Proof. Clearly B generates U/ over F'. The linear independence follows im-
mediately from Lemma 3.2. O

Now we need to fix a specific monomial basis of U = U(I'). To do this we
impose a total order on the monomials of T" as follows. Let 7 be the standard
projection T = Flzy,...,z,]. We order the monomials of Flz,,...,z,] first
by degree and then by the inverse lexicographic order. Now if w(u) # 7(p2)
for monomials g and pg from T' we say that gy < pz whenever m(p) < m(p2).
If, on the other hand, m(y;) = m(u2), we use the inverse lexicographic order.
Now we say that a monomial g of T' is standard il p is minimal among all
the monomials in the same projective coset of 1 modulo /. We will identify
standard monomials with their images in /. By corollary 3.3, standard
monomials form an F-basis of U that we call the standard basis.

Another useful feature of the ideal /(I'} is the ease with which we can
check if two monomials of 7' are in the same projective coset. For each pair
(7,7) such that 1 <17 < 7 < n denote by ;; the [-algebra homomorphism
from T to F'(z;,z;) defined by evaluation of z; at 1 for every k& # i or 3. For
each pair (1,7) € £ we get an induced epimorphism 7, ; : U(I') = F(z,,z;)
and for each pair (7,7) € I we get an induced epimorphism m;; : U(I") —
Fylo, 23] (where = gij).

Lemma 3.4 Two monomials m; and my of T' are in the same projective
cosel modulo I(1') if and only if m;;(m1) and m;j(ma) are projectively congru-
ent modulo 0 for every pair (1,7) , 1 <1< 73 < n.

Proof. The “only if-part” follows from m;;(m,;) = m;(m2) for every gen-
crator g = ¢ymy ++ comy (c1,¢c2 € F) of I(I') and every pair (7,7). Now sup-
pose m;;(m,) and m;;{(m;) are projectively congruent modulo 0 for every pair
(7,7) but m; and my are not projectively congruent modulo /(I'). Changing
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the monomials in their projective congruency classes one can assume they
are both standard monomials. Write the monomials as m; = «,z;b and
ma = aaa;b where ay, az, and b are some monomials of 7" and 7 # j. One can
assume that 7 > j. Then applying the condition for (7, 7) one can represent
ay = az;x;, --- T, z;b for some monomial a and some integers k,7y,...,%.
Applying the condition for the pairs 7,7, (r = 1,...,k) and (¢, 7) one sees
that all these pairs belong to F, whence m; is projectively congruent to
the monomial ms = az;, - - z;, x;2;b. Since msz < m; this contradicts the
assumption that m; is standard. O

We now consider certain subalgebras of the algebra U(I"). Our first goal
is to prove these subalgebras are quadratic. Let J be a subset of the vertices
of the graph I' and write I'y for the complete subgraph of I' with vertices J.
The graph I'; also inherits the edge labels from I'.

Lemma 3.5 Let U;(1") be the F-subalgebra of U(L') generated by the set
{zilt € J}. Then the canonical epimorphism p : U(L';) = Uy(T") is an
isomorphism. In particular, Uy(T') is a quadratic algebra.

Proof. Let T; be the subalgebra of T generated by {z;]z € J}. It suffices
to prove: 1, N I(T') is generated, as an ideal of T, by its elements of degree
two, i.e. T, N I(T") = I(I'y). By Lemma 3.2, it suffices to consider binomials
in T; N I(T"). But then by Lemma 3.4, applied to /(L;), it is clear that any
such binomial must be in /(). O

With this Lemma in hand we will now identify U(I';) and U;(I"). Now
we must analyze U(I'} as right module over the subalgebras U(I'y).

Lemma 3.6 The algebra U(T) is free as a right U(I';)-module for every
subsel J of the vertices.

Proof. Reordering if necessary, we may assume J = {1,...,k} for some
k, 1 <k <n—1, (the case k = n is trivial). Let J’ = {1,...,k,k+ 1}.
Assume k& < n — 1. By downward induction on k, we may assume U(I') is
free as a right U(I';:) module. By induction on n, we may assume U(I'/) is
a free right U(I';)-module. Transitivity then tells us U(T") is {rec as a right
U(l';)-module.

It remains only to get the first induction started, i.e. we may assume
k =n—1. Let B be the set {1} union with the set of all standard monomials
in T of the form az,, where ¢ is some monomial. We claim the image of
B in U(I') is a basis for U(I') as a right U([';)-module. We begin with the
following observation: the ordering on the monomials in T defined by the
graph ['; is exactly the same as the ordering inherited from the ordering on
the monomials in 7. From this we can immediately conclude the following:
if az,, € B and b is a monomial in T}, then az,b is a standard monomial
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in T if and only if b is a standard monomial in 7. The claim now follows
immediately from Corollary 3.3 applied to both U(T') and U(T';). O

Let F(I') denote the trivial one-dimensional graded U(I')-module, con-
centrated in degree 0. If J is any subset of the indices of I' we define
the U(I'y)-module F(I';) similarly. Observe that the graded U(I')-module
U(T) @u(r,y F(T'y) is isomorphic to U(T')/(2;es U(I")zi). We need one last
technical Lemma before our main theorem of the section. Recall the usual
notation for the shift operation on graded objects. For any graded object M,
M(n] is the graded object defined by M([n]y = Miypn.

Lemma 3.7 Set J = {1,...,n — 1} and C = {i|{i,n} € E}. Let K be
the kernel of the left U(T)-module epimorphism U(T') Qyu(r,y F'(T's) = F(T).

Then K 2 (U(T) Quqre) F(T'c)) [1].

Proof. The module K is graded and cyclic and generated in degree one by
the tensor z, ® 1. We need only compute the annihilator of this vector. Let
m be any standard monomial in 7. Then there are two exclusive possibilities
for mz,, either mz, is also a standard monomial or mz, is not a standard
monomial, in which case mz, is projectively equivalent modulo I(T') to some
monomial m'z; where 7 # n. In the latter case, by Lemma 3.4, 7 ,(mz,) and
7;n(m/x;) must be projectively equivalent modulo 0 and this can only happen
if y € C. We have shown that either mz,, is standard or m € 3°;c T'x;. Let
a € U(l') be in the annihilator of z, ® 1p. Write ¢ = 3, a,m, where
o € I' and my, is the image in U(I') of a standard monomial m, in 7. Then
ATn = Yoo GaMaln is in U(Iy)t. Since the images of the standard monomials
form an F-basis, this can only happen if ¢, = 0 for every « such that m,z,, is
a standard monomial. Thus a € 3~;.c U(I')z; and the annihilator of z, @ 1
is therefore exactly 3°;cc U(I')z;. This proves the Lemma. O

Theorem 3.8 The algebra U(T") is Roszul for every edge labelled graph T".

Proof. We assume that I' has n vertices, labelled {1,...,n} and a set
of edges . We proceed by induction on n, the case n = 1 being trivial.
Let J = {1,...,n — 1} and let C = {i|({,n) € E}. By Lemma 3.5 and
3.6, the graph algebras U(I';) and U(I'¢) are quadratic algebras that can
be identified with their images in U(T'). By induction, the algebras U(I';)
and U(['¢) are Koszul. To expedite notation, let U = U(T'), R = U(T';) and
S=U(I'c).

Let K be the kernel of the canonical epimorphism [ : U@pg F([';) —
F(I). By Lemma 3.7, K = (U ®g F(['¢))[1].

Since the algebra S is Koszul, the module F(I'c) has a {ree resolution
P; — F(I'¢) with each PP & S[m])*= k, = dimg(S.). Since Us is a



free module we may tensor this resolution by U and shift in every degree
by 1 to get a free U-resolution P; — K where P = (U Rs S[m]“"‘) (1] =
Ulm 4 1%,

Similarly, since the algebra R is K{oszul, the module F(I';) has a free
resolution Py — F(Ly) with each PF = R[m]'™, [, = dimp(R.,). Since Ug
is a free module we may tensor this resolution by U to get a free U-resolution
Qy = (UQg F(T))) where QFF = (U Qg Rim]'™) & Ulm]™.

All that is left is to apply the algebraic mapping cone, [18], page 46, to
the short exact sequence

0= K= U F(;) > F(F)—0.
n

We obtain a free U-resolution Nj; = F(I') where
N = PP @D QR & U]t

By Definition 2.2 | U is Koszul. O

Corollary 3.9 The finite dimensional algebra A(l') is Koszul.

We note the Hilbert series of U/(I') is now easily computed from the graph
. Let X = X(I') be the simplicial complex on {1,...,n} defined as lollows:
the set K = {41,...,1,} is a (p— 1)-simplex in X if and only if the unlabeled
subgraph 'y of [ is a complete graph (X is called the flag-complex of T,
cf. [22]). Notice that [' itsell is the 2-skeleton of X. Let J and C be
as in the proof of Theorem 3.8 and let X; and X¢ be the corresponding
simplicial complexes. We notice that X; is the subcomplex of X on the
vertices 1,...,n — 1 and X¢ is the link of the vertex n in X. For any
simplicial complex X, let F,(X) be the number of (p — 1)-simplices of X
(Fo(X) = 1). We denote the Euler characteristic polynomial of X by E(X,1),
e, E(X, 1) = Xi(=1) Fi(X)¢

Corollary 3.10 H(A(T),—t) = E(X,1).

Proof. We proceed by induction on n, the number of vertices in I'. In-
ductively we have H(A(l'¢), —t) = E(X¢,t) and H(A([,),t) = E(Xy,t). 1t
therefore suffices to prove

H(A(D),2) = H(A(T)), 1) + tH(A(T), 1)

The algebras A(I'), A(l'y) and A([¢) are the Koszul duals of the Koszul
algebras U(T), U(T,) and U(T'¢) respectively. Using the notation from the
proof of Theorem 3.8 we have H(A(I';),t) = ;4" and H(A(T¢),t) =
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5, mit'. Furthermore, the free resolution Nj; — F(T') constructed in the
proof must be a minimal resolution. Thus the equation above follows from
the last equation in the the proof of Theorem 3.8.

0

The polynomial E(X,t) considered as an invariant of I' is called depen-
dence polynomial of ' (see {11]). The next corollary and some combinatorial
implications are contained in [10, 11] (cf. also {22]).

Corollary 3.11 H(U(D),1)E(X,t) =1.

Corollary 3.12 gldim(U(T')) < n with equality if and only if I' is the com-
plete graph on n vertices.

Proof. The global dimension of U(I') is the projective dimension of the
trivial module F. By the Koszul property this is the maximal k& for which
A(D)x # 0. But A(I')us1 = 0 and A(T), # 0 if and only if there are no
relations of the form x;2;, 7 # j in the ideal ', O

4 Generalized Graph Algebras

In this section we extend Theorem 3.8 to a class of algebras containing the
graph algebras. Our proof that the algebras in this larger class are Koszul is
nearly the same as Theorem 3.8.

Let T' be an edge labelled graph on n vertices, exactly as in the previous
section. Let K be a subset of the vertices. To the pair I, K we associate
one algebra U(I', K') = U(I")/ I where Iy is the ideal of U(I") generated by
elements z% for k € K.

Fix a graph T and a subset K of its vertices. Let J be any other subset
of the vertices. As before, ['y is the edge-labelled subgraph on the vertices
inJand weset K; = KnNJ.

Lemma 4.1 Let I' and K be as above. Let SB = SB(I') denote the set of
standard monomials in the free algebra T with respect to I(T'). Let SB(K) =
SB(T,K) be all those monomials m € SB whose tmage in U(T, ) is
not zero. Then the images of the elements in SB(K) form an F-basis for

U, K).

Proof. Recall that the images of the elements of SB form an F-basis for
the algebra U(I'). Denote by I(K') the two-sided ideal of T' generated by the
elements 2z for k € K. Then U(I',K) & T/(I(T) + I(K)). Notice that if
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a € I{K) and m € Supp(a) then m € [(K). From this it is immediate that
the elements of SB(K) remain linearly independent in U([', K). O

Let J be a subset of the vertices of I and, as before, let T be the free
subalgebra of T generated by the z;, y € J. In the proof of Lemma 3.5 it
was shown that 7, 0 I(") = I(I';). This in turn implies the following: if m
is a monomial in Ty then m is a standard monomial in T; with respect to
[(T';) if and only if m is a standard monomial in T with respect to T, i.e.
SB(YNT; =SB(l'y). Clearly a monomial from SB(I') N T will vanish in
U(Ty, K;) if and only if it vanishes in U(T', K'). Combining this with Lemma
4.1 we have proved the following.

Lemma 4.2 Let I’ and K be as above. Fiz a subset, J, of the vertices of I'.
Let Uy be the subalgebra of U(T', K') generated by the z; for y € J. Then U,
is a quadratic algebra isomorphic to U(I'y, K,).

We will identify the subalgebra U; of U(T, K') with U(T';, K;).
Lemma 4.3 The algebra U(L, K) is free as a right U(['y, K;)-module.

Proof. The proof of this lemmais exactly the same as the proof of Lemma
3.6 with the following exception. The set B should now consist of {1} union
with the set of all monomials of the form az, which are in SB(T', K).

We need now the analog of Lemma 3.7. We let F/(I', K') be the trivial
graded U(T, K')-module. If there is little chance of confusion we write simply

F.

Lemma 4.4 Let J ={1,...,n =1} and C = {i|(i,n) € E} (note: n & C).
Let Ker be the kernel of the left U(L', K')-module epimorphism
Ul K)Qu,xpn = F.
(a) Assumen & K. Then Ker = (U(l", K)®ure ke) F) (1].
(b) Assume K ={1,...,n}. Let C'= C U {n}. Then
Ker = (U(D, K) Quryk, F) 1.

Proof. (a) Assume n ¢ K. As in Lemma 3.7, it suffices to prove that
the annthilator of z, @ 1p is 3 ;ec U(T, K)z;. The proof is exactly the same
as Lemma 3.7 once we make the following observation: for a monomial m
in SB(T, K'), the image of maz, in U(I', K') cannot be zero. This is because
ng K.

(b) Assume K = {l,...,n}. Now for a monomial m in SB(I', K'), the
image of mx, in U([', ') can be zero, but only if m is projectively equivalent
modulo /(I') to a monomial m’z,. This shows, as in the proof of Lemma 3.7
that the annihilator of @, @ 1p in Ker is exactly Yjec U(I', K)z;. O

11



Theorem 4.5 The algebra U(T, K') is Koszul for every edge labelled graph
I' and every subset, K, of its vertices.

Proof. Assume [' has n vertices, {1,...,n} and use induction on n.
The proof proceeds exactly as the proof of Thoerem 3.8 with the following
replacements. Lemma 4.2 is used in place of Lemma 3.5. Lemma 4.3 replaces
Lemma 3.6. Lemma 3.7 1s replaced by part (a) or part (b) of Lemma 4.4
depending on whether n ¢ K or K = {1,...,n} respectively. D

5 Holonomy algebras of arrangements

In this section we are concerned with certain quadratic algebras related to
an arrangement of hyperplanes.

Let A= {H,,..., H,} beaset of (£— 1)-dimensional linear subspaces of
an f-dimensional linear space V over a field F'. We fix linear functionals ¢;
such that ker o; = H; and call a subset of A independent if the respective set
of functionals is linearly independent. The collection of minimal dependent
subsets of A (circuits) forms a matroid M. From the point of view of matroid
theory A is a representation of M over F'. In fact most constructions in this
section depend just on M and not on its representation A.

Associated with A, is the well-known Orlik-Solomon algebra A(A) = A
[20]. A slightly unusual definition of A is as follows. Recall from the previous
section that T is the free [-algebra on generators {zy,...,z,} and denote by
J(A) = J the ideal of T generated by z?, 2;2; + 2,z; forevery 1 <i < j <n,
and

k .
Z(_I)J-lmil ST Tigy, Ty
=1
for all dependent subsets {H,,,..., H;,} of A. Then A = T/J. One can
easily see that A, =0 for p > £

The algebra A is not necessarily quadratic. First of all for it to be
quadratic 4 must be formal, i.e., all the linear relations among the function-
als of H; should be linearly generated by relations among triples of them.
Indeed if A is not formal then there exists a formal arrangement A such
that J(A) C J(A) and J(A), = J(A), but J(A) # J(A) (cf. [23]). But
even formal arrangements do not in general produce a quadratic algebra A.
A necessary condition for a formal arrangement to have a quadratic Orlik-
Solomon algebra is contained in [8]. It is proved there in particular that for
all the reflection arrangements of type Dy (k > 3) the algebras A are not
quadratic.

It 1s easy to construct a quadratic algebra that is in a way the quadratic

closure of A. This is the algebra A = A(A) = T/J where J is the ideal of
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T generated by J,. Notice that A is a finite-dimensional algebra since it is
a factor of the exterior algebra on n generators. It is also graded since J is
homogeneous but unlike A it can have graded components of degree higher
than £. Another algebra associated with A is the algebra U = U(A) studied
by Aomoto and Kohno [1, 15, 16] that is the universal enveloping algebra
of the holonomy Lie algebra of the complement of |J H; in V (for F = C).
The explicit discription of U (over an arbitrary field F) is as follows. Let
I(A) = I be the ideal of T generated by [z;,};cx z;] for every 7 and every
maximal X C {1,...,n} such that : € X and N;cx H; has codimension 2 in
V. Here we put [a,b] = ab— ba for a,b € T. Then U = T/I. The following
simple observation has initiated this work.

Lemma 5.1 For every arrangement A we have U(A) = (A(A))'.

Now we define a complex K. of freec left /-modules (the Aomoto-Kohno
complex). For every p > 0 put K, = Homp(A,,U) and define d, : K, —
Kp1 (p=1,...,0) via

dyf(a) = zj: flzia)z;

for every f € Homp(A,,U) and a € A,_,. Clearly Imd;, = U} whence K.
can be augmented on the right by the canonical map do : U —y F. Exactly
in the same manner one can construct a complex ¢, using A instead of A.

The natural question about K., is whether this complex is exact. Kohno
proved the exactness for the reflection arrangements of types Ay in [16] and
claimed it for types Cy, Dy, G, and I3(p) in his unpublished but often cited
paper [17]. Since the arrangements of the first two types are supersolvable
the result for them also follows from the main theorem of this section. The
following proposition shows that it cannot be true for Dy (k > 3).

Proposition 5.2 [f K. is ezact then A is quadratic.

Proof. Suppose that A is not quadratic and A; = A; for i =0,1,...,p— 1
while A, # A,. If K. is not exact in some dimension less than p—1 then the
result is proved. Suppose that K. is exact in all dimensions less than p — 1.
It suffices to prove that K. is not exact in K,_;.

Notice that A, = K, up to dimension p — 1. Suppose that K. is exact in
dimension p—1, i.e., Imd, = ker d,_,. Denote by d the differential K, = K,_,
of K.. Since J C J we have a surjective graded homomorphism A — A that
allows us to view K, as a subspace of [;'p. Besides djx, = d,. Thus the
exactness assumption implies that

Imd = lmd,,. (1)
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On the other hand, since A, # A, there exists a nonzero map f : A, —» F =
Uo such that f & K,. Notice that deg f = 0 and (1) implies that there exists
g € K, such that f — ¢ € kerd,. But it is easy to see from definition of
d, that ker d, cannot have nonzero elements of degree 0. Thus f = ¢ which
contradicts the choice of f. The contradiction completes the proof. 0O

Now we [ocus our attention on the complex K.. It is clear from definition
and Lemma 5.1 that this complex is the usual Koszul complex for the algebra
U whence this complex is exact if and only if U is Kosul (Theorem 2.3). In the
rest of the section we prove that U is Koszul for supersolvable arrangements.

There are many different ways to characterize supersolvable arrangements
(cf. [20]). The best suitable definition for our goal is the one given by Bjorner
and Ziegleriin {5]. First let us recall that for any (ordered) arangement A one
can exhibit a specific monomial F-basis of A = A(A) called the broken circuit
basis. A circuit is a sequence of hyperplanes such that their functionals form
a minimal dependent set. A broken circuit is a sequence (H;,,..., H;,) such
that ; < -+ < iy and (Hy,,..., H;, H;) is a circuit for some j > ¢,. Now the
broken circuit basis is formed by the set of monomials z;, - - - z;, such that
71 < --- < 1, and the respective sequence of hyperplanes does not contain any
broken circuit. Finally an arrangement A is supersolvable if every minimal
hroken circuit consists of two hyperplanes.

It follows from [8, 9] that for a supersolvable arrangement the algebra A
is quadratic, i.e., A = A. Since the proof there involves rational homotopy
theory we give a direct elementary proof below.

Lemma 5.3 If A is supersolvable then A = A(A) is quadratic.

Proof. Define the F-linear map d: T — T via

p .
d(:!:,'l s .'E;p) = Z(—I)J_l:ﬂ,‘l T Ty, Ty
=1

Clearly d* = 0 and d(ab) = (da)b + (—1)Padb for « € T, and b € T. Since
all generators of J are annihilated by d the ideal J is invariant with respect
to d. Recall from the begining of this section that only generators ol J of
degree different from 2 have form d(yss) where pg = z;, - - - z;, for a dependent
sequence S = (H;,..., 1)) (p > 3).

Suppose now that A is not quadratic, i.e., J # J. Then the previous
paragraph implies that there exists a monomial g = us & J while the se-
quence S is dependent. Without any loss of generality we can assume that
¢ 1s maximal in the reverse lexicographic order among all the monomials of
degree p with these properties. Clearly some subsequence of S is a broken
circuit. Since A is supersolvable there exist i, and 7, with 1 < r < s < p
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and such that Sy = (4,,,, %) is a circuit for some u with u > 7,. Since S is
dependent we have

fo = Ti, T, Ty = (dpo)zy € J2 C J.

If H, is an element of S then o divides ¢ modulo J whence u € J. That is a
contradiction. Suppose that u is not among i (k =1,...,p). Then consider
two other monomials g’ and g” substituting x,, for z;. and z;, respectively.
Notice that p', u” > g in the reverse lexicographic order and the respective
sequences of hyperplanes are still dependent. Thus by choice of u we have
i, 1" € J. But, modulo J, the monomial y is a linear combination (with co-
efficients +1) of y’ and " whence again u € J. This contradiction completes
the proof. O

Now we want to deform U to a graph algebra. To do this, define the
graph [' = T'(A) on the vertices {1,2,...,n} whose edges are exactly those
2-sets {1,7} for which (H;, H;) is a broken circuit. Label every edge by 1.
Then put A = A(A) = A(I"). For every A € F put Ay = A\(A) = A/J)
where A is the exterior algebra on n generators (as above) and J), is its ideal
generated by the relations

TiT; — NI gomy -+ /\k_’a:ja:k

for every 3-circuit (H;, H;, Hy) with ¢ < j < k. Let us sum up obvious
properties of these algebras.

Lemma 5.4 (i) Ay = A Ay = A.
(ii) For every A # 0 the algebra homomorphism defined by z; — Mz, is
an isomorphism of A onto A,.

Our goal is to apply the Drinfeld theorem [7] to the family Ay (cf. also
[21]). First we need the following definition. If N is a natural number we
call a quadratic algebra N-Koszul if its Koszul complex is exact in the first
N terms from the right.

The formal distinction of our case from the main theorem of {7] is that
the parameter A is not real but belongs to the field F'. However using the
Zariski topology it easy to obtain the following form of the theorem.

Theorem 5.5 Suppose that for every A € F' we have a quadratic algebra A,
whose quadratic relations depend on A polynomially. Suppose that dim(A));
does not depend on A for1 = 1,2, and 3 and Ay 1s Koszul. Then for every
natural number N there exists a Zariski open subset Wy C F' containing 0
and such that for every A € Wy the algebra Ay 1s N-Koszul.

Now we are ready to prove the main result of this section
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Theorem 5.6 [f an arrangement A is supersolvable then the algebras A(A)
and U(A) are Koszul.

Proof. Tt suffices to prove the statement for A(A). Let us check the
conditions of Theorem 5.5. Due to Theorem 3.8 Ag = A is Koszul. Consider
the ideal fy of A defining this algebra. The monomials of A contained in this
ideal are those containing submonomials corresponding to broken circuits of
length 2. Since A is supersolvable this is equivalent to containing any broken
circuits. Thus due to the broken circuit basis theorem H(A,‘t) = H(At) =
H(Ay,t) for every A.

Now extend F' to an infinite field if necessary. 1t follows from theorem
5.5 that for every positive integer N there exists Ay 7# 0 such that A, is
N-Koszul. Now part (i1) of Lemma 5.4 implies that A is Koszul. O

Corollary 5.7 [f an arrangement A is supersolvable then its Aomoto-Kohno
complez is exact.

This result would have followed from a theorem in [12] but that theorem
is false (see [13] for corrections). The following corollary was first proved in
[9] using rational homotopy theory.

Corollary 5.8 If an arrangement A is supersolvable then

H(U(A),t)H(A(A), —1) = 1.

6 Examples

In this section we consider three examples of non-supersolvable arrangements
(or rather matroids). The first two arrangements have non-quadratic alge-
bras A. The last example is quadratic. No example of a non-supersolvable
arrangement with a Koszul algebra U is known to us. The last two exam-
ples are as close to that as we can find. To simplify notation we identify an
arrangement with the respective set of linear functionals.

Example 6.1 Let charF # 2 and A= {z,y,z,z+y,z + 2,y + z}.

This is a formal arrangement whose algebra A is non-quadratic (and is the
smallest such). H(A,t) =1+6t+12t2+ 73, H(A,t) = 1+6t+12t2 483+
t*. The algebra U is not Koszul since some of the coefficients of the series
1/(1 — 6¢ + 12¢* — 8¢ 4 {*) are negative, contradicting Corollary 2.4. (Note:
the first negative coefficient occurs at ¢'3).

Example 6.2 Again charlF’ # 2 and A= {z,z +y,z —y,z + z,z2 — z,y +
z,y — z}. This a representation of the celebrated non-Fano matroid.
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The algebra A is again non-quadratic. H(A,t) =14 7¢ -+ 15t 4 9¢3,
H(A,t) = 147t +15t24+10t3+1*. The series 1/(1—7¢+15¢2—10t>+1*) has all
positive coefficients since the denominator has four positive real roots. There
exist at least two different kinds of deformations A()) of A (i.e., A(1) = A)
such that H(A()),1) = H(A,t) for all A € F. For the first kind all algebras
A(X) with A # 0 are isomorphic to A but A(0) is not Koszul. For the second
kind A(0) is Koszul but A()) are not isomorphic to A anymore.

To describe the deformations of the second kind more explicitly notice
that A is the quotient of the exterior algebra with generators z;,...,zs (in
the given order of the functionals) over the ideal generated by the six elements
Ry = 224 — 2125 + 2475, Ry = 2126 — T137 + TeTr, [I3 = Towy — To27 +
T427, Ry = 2225 — 2206 + T2, s = T3Ty — L3T6 -+ TaTs, Re = x325 — T3z7 +
zsz7. Considering the dual algebra U/ = A' one notices that z = z, +- -+ z7
is a central element. (A similar fact is true for any arrangement). Thus
changing the generators to z,,..., g, z one can make the identification U =
W @ F[z] where W is the subalgebra of U generated by z,,...,zs. (In fact, W
is the holonomy algebra of the affine arrangement induced in the hyperplane
z7 = 1.) Since U is Koszul if and only if W is Koszul we will focus on W.
The algebra B = W' is the quotient of the exterior algebra on generators
Zy,...,xe over the ideal generated by the relations R;, R4, K5 and also by
Ry, = z 26, Iy = zoz4, and R = z3zs. Notice H(B,t) = H(A,1)/(1 +1) =
| ++ 61 + 9t2 + 3. For every A € F define B(A) by the last 3 relations and
by Ri(A) = 2124 — Azy@s + Azqzs, Ra(A) = Tams — Azoz6 + Azss, Rs(A) =
A3y —Taze+ T4ze. Clearly B(1) = B. A staightforward computation shows
that H(B(A),t) does not depend on A.

Now we want to prove that the algebra B(0) is Koszul. This is equivalent
to its dual algebra W(0) = B(0)' being Koszul. Notice that W(0) has the 9

defining relations:
[$1a$2]a [317 :33]3 [$1’$5]’ [5'52: $3]= [:D?a ‘TS]: ['7"3’ $4]a [334’ 3;5]:

[3:51 316]1 [373 + T4, :1"6]'
The Koszul complex of W(0) has the form
00 K3 Ky K 5 Ky—> F=0
and it is exact (as for every algebra) in terms Ky and K. So to prove that

it is exact it suffices to prove that the kernel of the map é; : K; — K
is generated in degree 1. The map &, can be represented by the following
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matrix

Ty —I 0 0 0 0
T3 0 —I, 0 0 0
Ts 0 0 0 -z 0
0 I3 —I9 0 0 0
M = 0 Tg 0 0 0 —Iy
0 0 T4 —I3 0 0
0 0 0 Ts —Ty 0
0 0 0 0 Tg —T5
0 0 Tg Tg 0 —I3 — T4

that acts on the row-vectors from K; = W(0)? via the right multiplication.
Denote the rows of M by ry,...,re. Then a row-vector a = (a4,...,a9) € K,
belongs to the kernel of d; if and only if the vector

9
Z a;ry = 0 (*)
=1

(in K, = W(0)8).

Now we need a lemma.

Lemma 6.3 Let z,y,z € W(0).

(i) If zz) + yzqy+ 226 =0 thenz =y =2 = 0.

(ii) If zxy + yza + zze = 0 then there exists u € W(0) such that x =
uzs, Yy = —uzy, and z = 0.

Proof. We can assume that z,y, z are homogeneous of a common degree
d and apply induction on d. Il d = 0 the result is obvious. Suppose that
d > 0 and prove (i). The condition implies that b = (=, 0,0, y,0, z) belongs to
the kernel of &, : K| = Kp. Thus there exist elements by,..., by of W(0)4_,
such that b = 3°0_, b;ry in W(0)8. In particular

=bizy + byzs + bsze = 0,
bg(EG —.()7334 - b3$1 = 0,

—bgml - b4$2 + b6$4 + b9$6 = 0.

Using (1) and (i1) for d—1 we obtain from first two equalities b3 = by = bg = 0,
by = uzs, by = uzy, and bs = 0 for some u € W(0). Substituting this into
the third equality we have

—(by + uzs)z| + bezy + boze = 0.

Using again (i) for d — 1 and the absense of zero divisors in W(0) (see for
example [2]) we have b; = uzs, by = —uxy, by = uzy, and the other b; vanish.
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Computing vector b we obtain ¢ = y = z = 0. The proof of (ii} is similar.
O

Now we can finish the computation of the kernel of §;. Using Lemma
6.3 we have from (*) a3 = a5 = a7z = ag = 0 and a; = uzs, a4 = uz; for
some u € W(0). Then using the absense of zero divisors again we obtain
az = —uzy and ag = a9 = 0. Thus a = w(z3, —z2,0,2,,0,...,0) which
completes the proof.

Example 6.4 For this example it is more instructive to describe the ma-
troid itself. This matroid is known in geometry as the plane of order 3.
It can be given on 9 elements {1,2,...,9} as the colleclion of $-circuits
X ={{1,2,3},{4,5,6},{7,8,9},{1,4,7},{2,5,8},{3,6,9}, {1, 5,9},

{2.6.7},{3,4,8},{1,6,8},{2,4,9},{3,5,7}} and all the 4-sets are dependent.
It can be represented over any field having a primitive cubic root of 1 (see

[5]).

Let us first prove that for this matroid A is quadratic. Notice that every
two elements 7 and j uniquely define a third one k = ¢(¢, 5) such that {7, j, k}
is a circuit. Now fix an arbitrary 4-circuit S = {1, 73, 13,24} (with the natural
order) and consider six elements k., = ¢(2,,7,) (1 <7 < 5 < 4). Since §
is a circuit none of k., belongs to S. Thus there exists a partition of S
in two pairs (without any loss of generality {i1,72} and {i3,74}) such that
k12 = k = ks 4. Now one easily checks that

Rs = Rx, (zi, — 2i,) + (x4, — z4,) Rx,

in T where Xy = (41,12, k), X2 = (k,z3,24) and Rz is the element of J
corresponding to an ordered circuit Y. This implies that Rs € J and A is
quadratic.

We have H(A,t) = (1+¢)(1+4t)? in particular all coefficients of the series
1/H(A, —t) are positive. Using the rooted complex RC constructed in [5],
Example 4.1(4), it is easy to exhibit a family of quadratic algebras A(X) (A €
F) such that A(1) = A, A(0) = A(RC,), and H(A(A),t) does not depend on
A. To be more explicit we need to recall that the root complex is defined on
the elements of the matroid and its 1-skeleton includes exactly two 2-subsets
of each X € A'. The ommitted 2-subsets, written in the order of elements of
X above, are {1,3},{4,6},{7,9},{1,7},{2,8},{3,6}, {1,9}, {2,6}, {4, 8},
{6,8},{2,4},{3,5}. Now A()) is the quotient of the exterior algebra with
nine generators ,,...,To over the ideal generated by the relations Ry (A)
(X € &) where for X = (1,7, k) with the ommitted subset, say {z,7},

RJ\(/\) = Z;T; — Az + /\:I:J‘:Ek.
It is not hard to prove that A is not isomorphic to A(X) with A 3 1. We

suspect that A 1s Koszul but cannot prove this.
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