
Koszul algebras from graphs and
hyperplane arrangements

Brad Shelton and Sergey Yuzvinsky

Max-Planck-]nsti tut
für Mathematik
Gottfried-Claren-Str. 26
53225 Bann
GERMANY

MPI95-108





Koszul algebras from graphs and
hyperplane arrangements

BRAD SHELTON anel SERGEY YUZVINSKY

University o/Ore!Jon, Eugene, on, 97403 USA

Septelnber 8, 1995

1 Introduction

This work was started as an attelnpt to apply theory from noncomnllltative
graded algebra to questions about thc holonomy algebra of a hyperplane
arl'angernent. We soon realized these algebras anel their defonnations fornl a
dass of quaelratic graded algebras that have not been studied much anel are
interesting to algebra, arrangement theory and cornbinatorics.

Let X be a topological space having homotopy type of a finite cell cOlnplex
anel H. (X) its hOlll0logy coalgebra with coefficients in a field anel cornulti
plication dual to the cup product. Then the holonolny Lie algebra GIX of
X is the quotient of thc free Lie algebra on fl1(X) over the ideal generated
by the irnage of the cOll1ultiplication f/2(X) --+ }\2(H1(X)). 'Jlhe universal
enveloping algebra U(X) of Gx is called the holonomy algebra of X.

HolonoIl1Y algcbras were introduced to arrangement thcory by T.Kohno
in [15, 16]. If A is an arrangenlent over <V, that is a set {H1 , • .• , Hn } of linear
hyperplanes in a linear space <Bi then put)[ = <B l \Ui=l Ili anel U(A) = UCX).
In [15], U(A) is defined explicitly by generators anel relations that can be
read fr0l11 thc combinatorics of A (see Section 5). Recall that there is another
graded algebra defined by the cOlllbinatorics of A, the Orlik-Sololnon algebra
A(A), [20]. A weIl known thcoreIl1 of Brieskorn-Orlik-SolOIl1on says A(A) is
isoInorphic to H* (X, <B).

In his papers, Kohno studied a cOlnplex, {(, of free modules over U(A)
defined by !(p = Homa:(A(A)p, U(A)) (p = 0,1, ...) anel K_ 1 = a:: (thc
AOIl1otü-Kohno coolplex). He proved the acyc1icity of this cOlnplex for certain
dasses of reflcction arrangclnents. He also proved that if this complex is
acydic then the Lower Central Series (LCS) fonnula holds:

P(- t) = 11 (1 -tn ) q)n ,

n'2:1
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where P(t) is the Poincare polynOinial of X and cPn are the ranks of successive
quotients in the lower central scries of its fundarnental group. Thc LeS
fornntla was later extended to all supersolvablc arrangelnents (equivalently
fiber-type) by Falk and Randell [9] (see also [13]). The acyclicity of the
conlplex for arbitrary supersolvable arrangements rernained open in spite of
attempts to prove it (e.g., see [12] and correction in [13]).

'vVe begin our work with thc simple but erucial observation that the al
gebra U(A) is dual (in the sense of Koszul algebra theory) to the quadratie
closurc A(A) of A(A). Notice that the algebras U(A) anel A(A) are de
fined over an arbitl'ary fjeld Fand we substitute it for <C. Let T be the ffee
graeled F-algebra on a set of degree one generators XI, ... , x n . All of our
graded F-algebras will be graded quotients of such a T. The Koszul dual
of a quadratic graded F-algebra 8 is the quadratic graded F-algebra whose
genel'ating relations fornl an orthogonal cornplement in T2 to the quadratie
relations of B. This algebra is denoted 8 1

• The algebra ß is said to be
Koszul if 8! is isomorphie to thc eohomology ring of thc trivial graded B
1110dule F = B / B>o. An inllncdiate ilnplieation of our observation above is
that the Aonl0to-Kohno eotnplex j{ is never exaet if A(A) is not quadratie.
Moreover, in the quadratie ease the exaetness of i< is equiva lent to U(A)
(equivalently A(A)) being a Koszul algebra.

To analyze the dass of algebras U(A) we use the idea of defornlation
theory, attempting to defornl U(A) into a simpler quadratie algebra. In par
ticular, if therc exists a I110nOlnial basis of A(A) such that the eomplenlentary
set of mononlials in the free algebra T fonns a, an ideal generated in degree
2, thcn there is a niec deformation of U(A) into an algebra in a dass of
quadratie algebras we eall graph algebras.

A graph algebra is an algebra gi Yen by a eolleetion of relations of the fonn
XiXj - qi,jXjXi = 0, qi,j E F-. Graph algebras seenl, by themselves, to form an
intercsting dass of quadratie algebras. These algebras (at least for qi,j = ±1)
have appeared in the literatllre under different narnes (see [6, 10, 11, 14]) but
no general results about theil' Koszul properties are known to uso 'YVe prove
all such algebras are Koszul.

Now thc suceess of the dcforInation method depends on the existence of
a good nl0nonüal basis for the Orlik-Solornon algebras A(A), as Inentioned
above. This problem was studied by Bjorner and Ziegler in [5]. It was
shown there every supersolvable arrangenlent has such a basis. I\1oreover, it
is known that for supersolvable arrangetnents Ä(A) = A(A). Using this, we
give adeformation of U(A), Ut , with the properties Ut ~ U(A) for t f:. 0 anel
Ua is a graph algebra. Now an application of a theoreITI of Drinfeld, [7], gives
thc Koszul property for U(A) whcnever A is a supersolvable arrangement.

Our presentation is outlined as folIows. In seetion 2 we reeall several
equivalent definitions of the Koszul property and SOIne basic results about
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Koszul algebras. Section 3 defines graph algebras and proves such algebras
are Koszul. vVe also recover here SOlllC intercsting combinatorial inforIllation
previously known frorn [10] and [11L see COl'oll3ol'Y 3.11. Section 4 givcs a
generalization of the definitions and rcsults of scctions 3 to a larger dass
of algebras called generalized graph algcbra.s. In section 5 we return to the
study of arrangements. Here we recall the basic definitions of the algebras
associated to an arrangelnent anel prove the two main results: A(A) must
be quadratic for the cornplex j{ to be exact and U(A) is I<oszul for all
supersolvable arrangemcnts. We conclude, in Section 6, with 3 cxamples
of arrangelnents that are not supersolvable and which we analyze by more
ad-hoc arguments. The last of these exalnples provides an open question.

The seconel author is indebted to T.Kohno for introducing hirn to holon
OIny algebras and to l\1.Falk: R.Hain anel R.Stanley for useful discussions.

2 Koszul Algebras: Preliminaries

vVe collect in this section sonle of the basic results about Koszul Algebl'as,
cf. [4], [3] anel [19]. Let F be a fidd and V an n-dinlensional vector space
over F. vVe let T = T(V) denote the full F-tensor algebra over V. Choosing
a basis Xl ..• , Xn for V we can write T ~ F(XI, ... , x n ), the free F-algebra
on Xl,"" X n . \Ne use the usuaJ grading on T where Tl = V alld To = F.
Fix an F-inner product on thc space of 2-tensors V @ V = T2 . To ease the
notation we will usually aSSllI11e this is the standard inner product indllced
by the basis Xl •.. ,Xn .

Fix a homogeneous ideal J of T anel let U = U(I) be the graded algebra
T I I. vVe nlay aSSlilne I contains no non-zero e1elnents of degree 1 and we say
that U is qlladratic if I is generated, as an ideal, by its elenlents of degree 2.
Since Tl --+ UI is an isomorphisln, we identify these spaces and use Xl, .•. , X n

to denote a basis of the space.

Definition 2.1 Let U = U( I) be a quadratic algebra. Let I~ be the orthog
onal co'mplement to h in V ® \I and r the ideal 0/ T genc'l'ated by [~. The
quadratic algeb1'a (j! = U(t) = TI J! is ca//ed the !{oszul dual of U.

vVe observe at once that (U!)! = U.

Definition 2.2 Let. U = U( I) be a quadralic algebra and lel u F be the trivial
gl'aded left {j -module UIU>o. rhe algebra U is said to be !{oszul if u F ad1nits
a free graded resolution

. I 0... --+ pi --+ . . . --+ P --+ P --+ U F --+ 0

such that pi is gene1'ated by its c01nponent of deg1'ee i.
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There are n1any equivalent ways of expressing this definition. The fol
lowing theorem collects some of these variations. vVe denote by E(U) the
graded COhOl11ology algebra Extu(u F, u F). POl' any graded F-vector space
lV! we elenote the Hilbert Series of AI by [f(M, 'l) := Ln diIllF(l\ln )tn

. The
Koszul con1plex of V is the sequence

... ---7 [{i ---7 ... --+ !{1 --+ !{0 --+ U F ---7 0

of free (except u F) left V-modules and their homomorphisms where [(i =
HOffiF(vI, U), and di : [{i --+ !(i-l is defined by dif( Cl) = Lk=l f( xia )Xi for
every a E Vi-I.

Theorem 2.3 Let U = U( J) be a quadratic algebra. Thc Jollowing state
'lnents are alt equivalent.

(a) U is !(oszul.
(b) U! is I(oszul.
(c) E(U) is a q7.1adratic F -algebra generaled as an algebra in degree 1.
(d) E(U) ~ V'.
(e) The l\.·osz7.11 cO'1Ttplex 0/ U is acyclic.
(/) H(U, t) . H(E(U), -t) = 1

l'he various equivalences of the theorelll can be found in [3], [4], and [19].
Several more equivalent versions of the Koszul condition can also be found
in these references.

Corollary 2.4 IJ U is a [(osz'ul algebra lhen II(V, t) . 11(U!, -t) = 1.

It is not known if the converse to this corollary is true.

3 Graph algebras

Let P be a fielel. Let r be an eelge-Iabelled graph (wi thout loops 01' multiple
edges) on n vertices 1,2, ... , n with a set E of edges. Each edge {i,j} in E
is labelIed by a non-zero field e1eInent qi,j. "Ve associate two F -algebras to r.
Recall T = EBd2:0Td, the free F -algebra on n generators Xl, ... ,xn , naturally
graded. Define thc ideal [(f) of T

One checks that
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Notice that x~ E t(1') for every i. Then put

u(1') = T/I(1'),

Clearly both algebras are quadratic and dual to each other. Let 1\(\1) denote
thc cxteriol' algebra on \I over F. Wc note that A(r') is adefonnation of the
factor algebra 1\( \I) / (XiX j I{i, j} tf. E 1 i =f j) and the two algebras have the
sanle Hilbel't series. In particular it follows, as for the exterior algebra, that
dilnF A(r') :S 2n .

Examples 3.1 1. Let r be discretc, i.e., E = 0. Then U(r') = T und
A (r) = F EB \I with zero multiplicatio11 on \I.

2. Let r be lhe cOlnplete graph !(n with alt labels qi,j = 1. Then U(f) =
F[xl, ... ,xn ] and A(r) = 1\(\1).

3. Let r be the cO'TTtplele bipal,ti/'e 9'raph [\k,l (k + I = n) and all labels
qk,l = 1. Then U(r') = T' 0 TI! whe1'c T' and T" al'C free algeb'ras on k and
l generators respeetively. A( 1') is the exterior algebra 011 11, generators with
exl'l'a relations 0/ products 0/ generators for a fixed k-subset of generators
and its cOlnplemenl. Equivalent./y, A([,) = A(r')~A(r") where 1" und [''' are
dl:screte graphs on k and I vertices 1'espectively and.& is the opel'ation !{oszul
dual to tensOl' mu/tiplication (see [19j).

4. Let n = 2 and aSSU'T1le (1,2) E E. Set q = QI,2' Then the alge
b'ra U(1') is usually denoted Fq [Xl, X2]' This 'ring is often 'refern~d io as the
quantum, line a$ il can be realized as the twis/'ed homogeneous cool'dinate ring
01 vrojeclive one-space. Alternatively one n~ay think of this l'ing as the set
01 polyno'mia/s F[XI, X2] with a new 'multiplicative sl'ruetuTe, <::), defined by
f(XI, X2) <::::> g(x], X2) = J(x], Q- 1X2)g(Xt, X2) Jor all /, 9 E P[XI, X2]'

In the rest of the paper we will apply to T the usual terminology from
polynomial rings. For instance, cach element Cl of T is the uniquely defined
sunl (wi th nonzero coefficients) of Illonoilliais. These lllonomials fonn the
support S(a) of a. lf S(a) has only two elelllents a is a binol11ial. Note that
8(Cl) does not involve the coefficients of thc 1110n0111 ials in Cl.

The fact that graph algebras fonn a Illa.nageable class is based on the
following silllpie observation.

Len1nla 3.2 Let! = 1(1"'). If a E [ then a
binomial from ! and S(a) = Ui S(ai)'

L ai where each ai lS a

Proof. To write a given a E J as a = Lai where each ai is a binoIllial in
I is a triviality, since I is genel'ated by binolnials. Moreovel', the containnlent
S(a) C US(ai) is clear. It is the opposite containlnent that is not autolnat
ically true. Anlong all possible representations a = Lai, choose one with a
minimal number of tenns, say k.

5



Let us prove S(ud C S(a). Suppose not. Choose a monomial J1 E S(ak)
with fl Fj. S(a). For each i, 1 :S i :S k, let r'i be the coeHicient or J.l in the
binomial ai (of course r'i = 0 unless J1 is one of the two elements of S(ai)).
Since J-l Fj. S(a) we must have Lir'i = O. Define bi = ai -ri(rk)-lak for
1 :S i :S k - 1. By construction, each bi is a binOlnial in 1 anel a = L7::-11 bio
This contraelicts the minill1ality of the representation a = Li ai and proves
the Lenlma. 0

Let a and b be elelnents of T. 'vVe say a and b belong to the salne
projeetive coset, oJ I, 01' are p'l'ojeetively congr'uent modulo 1, if there exists
non-zero scalars A and l with Aa - ,b E 1.

Corollary 3.3 Let. J be as in Lentma 3.2. 11 B is a set of nW710rnials of
T) contposed of exaetly one ele'menl fr'o'm each projeetive coset of I, then the
im.age of B in U = T / I 1.Lnder lhe standard projeclion is an F-basis oJ U.

Proof. Clearly B generates U aver F. The linear independence follows inl
Inediately from LenlIna 3.2. 0

Now we need to fix a specific 1110nOlnial basis of U = U( r). To da this we
ilnpose a total order on the Inonomials of T as follows. Let 7r be the standard
projection T -+ F[x 1, ... ,xn ]. We order thc mOl101nials of F[XI' ... ,xn ] first
by degree and then by the inverse lexicographic order. Naw if 7r(J-lI) i= 7r(ft2)
for InonOlnials PI and P2 frolll T we say that J-li < J-l2 whcnever 7f(/LI) < 7r(P2)'
If, on thc other hand, 7r(ji.) = 1r(J-l2), we use the inverse lexicographic order.
Now we say that a 1l10nolllial ft of T is slanda'1'd ir fl is nlinilnal among 3011
the 1110nolllials in thc satne projective coset of J-l nl0dulo 1. vVe will identify
standard InonOIllials with their inlages in U. By corollary 3.3, standard
1110nomials fornl an F -basis of U that we call the standard basis.

Another userul feature of the ideal l(r) is the ease with which we can
check if two monomials of T are in the same projective caset. For each pair
(i, j) such that ] :S i < j :::; n denote by ifi,j the F-algebra hOITIOIllOrphisln
fronl T to F(Xi, Xj) defined by evaluation of Xk at 1 for every k i= i 01' j. For
each pair (i,j) Fj. E we get an induced epiI110rphisln 7fi,j : U(f) -+ F(Xi, Xj)

and for each pair (i,j) E E we get an induced epimorphism 1ri,j : U(r) -+
Fq[Xil Xi] (where q = qi,j).

Len1n1a 3.4 Two rnonornials r111 and 1n2 01 T are in the same projective
cosel modulo J(r') lj and only if 1rij(m·d and 1rij(m2) are p1'ojeetively congru
cnt rnodulo 0 Jo'l' ever'y pair' (i 1 j) , 1 :S i < j :S n.

Proof. The "only if-part" follows fronl 1rij(rnd = 1rij(rn2) for every gen
erator 9 = CI nt I + C2 m 2 (Cl, C2 E F) of f(r) anel every pai r (i, j). Now sup
pose 1rij(ntd and 7rij(nt2) are projectively congruent D10dulo 0 for every pair
(i, j) but m'I and rn2 are not projectively congruent modulo 1(r). Changing
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the monOlnials in their projective congruency dasses one can assuTne they
are both standard Inonol11ials. \tVrite the l11onolllials as 1Hl = al Xib anel
1n2 = a2xjb where al, a2, and bare SOlllC monOlnials of T and i #- j. One can
aSSUl11e that i > j. Then applying the condition for (i, j) one can represent
al = aXjXit ... XikXib for some ll10noInial a and some intcgers k, i 1 , ... ,ik.
Applying the condition for the pairs j, i r (r = 1, ... , k) and (i, j) one sees
that a11 these pairs belong to E, whence 1n\ is projectively congruent to
the ll10noIniai 1n3 = (LXiI'" XikXixjb. Since 1113 < 1nl this contradicts the
assumption that 1nl is standard. 0

We now considcr ccrtain subalgebras of thc algebra U(r'). Our first goal
is to prove these subalgebras are quadl'atic. Let J be a subset of the vertices
of the graph rand writc r J for thc COll1plcte subgraph of r with vertices J.
The graph r J also inherits thc edge labels fron1 r.

Len1Ina 3.5 Let UJ(r') be the F -subalgeb'ra of U(r) gene1'ated by the set
{Xiii E J}. Then the canonical epinlotphisrn p : U(rJ) --+ UJ(r) 1-5 an
isomol'phis1n. fn particula1', UJ (r) is a quadratic algebra.

Proof. Let TJ be the subalgebra of T generated by {xdi E J}. Tt suffices
to prove: TJ n f(r) is generated, as an ideal of Tl, by its elements of degree
two, i.e. Tj n f (r) = I( f J)' By Lelnma 3.2, it suffices to consider binomials
in TJ n I(r). Hut then by LelllIna 3.4, applied to f(rJ ), it is deal' that any
such binOlnial must be in I(fJ)' 0

\tVith this Lenuna in hand we will now idcntify U(r'j) anel UJ(r'). Now
we must analyze U(r) as right l110dule over thc subalgebras U(r'J).

Lemll1a 3.6 The algebra U(f) is free as a right U(f J )-'module Jor every
subsd J 01 the ve1'l.ices.

Proof. Reordering if necessary, we Inay assume J = {I, ,k} for SOlne
k, 1 :S k :S Tl - 1, (the case k = 12 is trivial). Let J' = {I, , k, k + I}.
Assun1e k < 12 - 1. By downward induction on k, we ll1ay assuffie U(r) is
free as a right U(rJI) Il10dule. By induction on n, we may aSSUIl1e U(rJI) is
a free right U(r J )-module. Transitivity then teIls us U(r) is frec as a right
U(r j )-lnodule.

It rernains only to get the first induction started, i.e. we Illay asslllne
k = 12 - 1. Let B be the set {I} union with the set of all standard Inonomials
in T of the fOrIn axn , whcre a is some lnonornial. vVe daiIll the ilnage of
ß in U(r) is a basis for U(r) as a right U(r J )-module. vVe begin with the
following observation: the ordering on the Inonomials in TJ defined by the
graph r J is exactly the SaIne as thc ordering inherited from the ordering on
the Inonolnials in T. Froll1 this we can imlnediately conclude thc following:
ifaxn E Band b is a Illonoll1ial in TJ , then axnb is a standard 1110nolnial
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in T if and on1y if b is a standard tl1onomial in 1j. The clailTI now follows
ilnmediately fronl Corollary 3.3 applied to both U(r) anel U(fJ)' 0

Let F( r) denote the trivial one-dinlensional graded U(r)-nlodule, con
centrated in degree O. Ir J is any subset of thc indices of r we define
the U(rJ)-nl0dule F(rJ) similarly. Observe that the graded U(r)-module
U(r) ®u(rJ) F( rJ) is isomorphic to U(r)/(LiEJ U( f)x;). 'Ne need one last
technical Lelnma before Dur nlain theorenl of the section. Rccall the llsual
notation for the shift operation on graded objects. For any graded object 1\1,
1\1[n] is thc gradcd object defined by l\1[n]k = Mk+n.

Lemlna 3.7 Sel J = {l, ... ,n -I} and C = {il{i,n} E E}. Let!( be
the ke1ilel 0/ the left U(r)-'mod'llie epin"orphisnl U(r) ®u(r J) F(rJ) --+ F(r).

Then !( ~ (U(r)®u(rc) F(rc )) [1].

Proof. The 1110dule !( is graded and cyclic and generated in degree one by
the tensor X n 0] p. 'vVe need only C01l1pute the annihilator of this vector. Let
1n be any standard mononlial in T. Then there are two exclusive possibilities
for rTlX n , either 1nXn is also a standard mononlial 01' mXn is not a standard
monolnial, in which case 711,X n is projectively equivalent Inodulo !(r) to SOITIe
111onolnial rn'xj where j =f=. n. In the latter case, by LelTIITIa 3.4, 'lrj,n(1nx n ) anel
7fj,n(1n'Xj) 111USt bc projectively cquivalent modulo 0 and this can only happen
if j E C. vVe have shown that either 712X n is standard 01' 1n E L:jEC TXj. Let
a E U(r) be in the annihilator of .r,n 0 IF. Write a = La aa1na where
aa E Fand iho is the image in U(r) of a standard 1110nonlial 111. 0 in T. Then
a:cn = La aa 1na X n is in U(rJ)+. Since the ilnages of the standard monOInials
forn1 an F-basis, this can only happen if a cr = 0 for every 0: such that m'aXn is
a standard monomial. Thus a E L:jEC U(r)Xj and the annihilator of X n lS) IF
is therefore exactly LjEC U(r)Xj. This proves the Lemnla. 0

Theorem 3.8 The algebra U(r') is Koszul for every edgc labelled graph f.

Proof. \Ve assurne that r has Tl vertices, labelIed {l, ... , n} a.nd a set
of edges E. vVe proceed by induction on n, the case n = 1 being trivial.
Let J = {l, ... , n - l} allel let C = {il(i, n) E E}. ßy LClnma 3.5 and
3.6, the graph algebras U(r'J) and U(rc) are quadratic algebras that can
be identified with their ill1ages in U(r). ßy induction, the algebras U(fJ)
and U(fc ) are Koszul. To expedite notation, let U = U(f), R = U(rJ ) and
5=U(l"'c).

Let !( be the kernel of the canonical epirnorphisln J : U ®R F(rJ) --+
F(r). 13y Lenlnla 3.7, J( ~ (U ®s F(rc )) [1].

Since the algebra 5 is Koszul, the llloelule F( r c ) has a [ree resolution
Ps -4 F(rc) with each Ps ~ 5[nl]km

, km = dj111F(S~). Since Us is a
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free module we may tensor this resolution by U and shift in every degree
by 1 to gct a free U-resolution Pu -+ !( wherc Pu ~ (U ®s S[n~]km) [1] ~
U[1n + l]km .

Simila,rly, since the algebra R is Koszul, the Illoclule F(rJ ) has a. free
resolution PR -+ F(rJ ) with each PR ~ R[mJlm, Im = dinlF(R~J. Since UR
is a free 1110dule we may tensor this resolution by V to get a free V-resolution
Q'ü -+ (U ®R F(rJ)) where QLl ~ (U 09R R[1n]lm

) ~ V [rn,J1m .
All that is left is to apply the algebraic 111apping cone, [18], page 46, to

the short exact sequence

o-+ !( -+ V ® F (rJ) -+ F (r) -+ O.
n

'vVe obtain a free U-resolution lVi; -+ p(r) where

By Definition 2.2 , U is Kos2ul. D

Corollary 3.9 The finite di'mensional algebra A(f) is j{osz71l.

,",Ve note the Hilbert series of U(r) is now easily COlllputed from the graph
r. Let X = X (r) be thc si111plicial cOlnplex on {I, ... , n} defineel as follows:
the set l( = {i I, ... , ip } is a (p - 1)-sitnplex in X if anel only if thc unlabelecl
subgraph f K of r is a c0111plete graph (X is calleel the ftag-co111plex of r 1

cf. [22]). Notice that r itself is the 2-skeleton of X. Let J and C be
as in the proof of Theore111 3.8 anel let X J anel Xc be the corresponding
silnplicial cOlnplexes. We noticc that X J is the SUbCOlllpleX of X on thc
vertices 1, ... , n - 1 anel Xc is the link of the vertex n in X. For any
simplicial cOlnplex X, let }~(X) be the number of (p - 1)-Silllplices of X
(Fo(X) = 1). We elenote thc Euler characteristic polynomial of X by E(X, t),
i.e. E(){,t) = Li(-l)iPi(X)t i .

Corollary 3.10 lI(A(r), -t) = E(X, t).

Proof. 'vVc proceeel by ineluction on n, the nlunber of vCl'tices in r. In
eluctively we have 1!(A( f c ), -t) = EC'Kc , t) anel H(A(rJ), t) = E(XJ , t). lt
therefore suffices to prove

H(A(r), t) = H(A(rJ), t) + tfI(A(rc ), t).

The algebras A(r), A( r J) and A(r c ) are the Koszul cl uals of the Koszul
algebras U (r), U (rJ) anel U ( r c ) respecti vely. Using thc notation frOITI thc
proof of Theorem 3.8 we have fI(A(r'J),t) = L.iliti and H(A(fc),t) =

9



Li miti . FurtherIl10re, the free resolution Nu --+ F( r) constructed in the
proof must be a lninilnal resolution. Thus the equation above [ol1ows fron1
the last equation in the the proof of Theoren1 3.8.

o

The polynoIl1iai E(X, I) cOl1sidered as an invariant of r is ca11ed depen
dence polynoll1ial of f (see [11]). The next coro11ary anel some combinatorial
in1plications are contained in [10, 11] (er. also [22]).

Corollary 3.11 f[(U(r), t)E(X,t) = 1.

Corollary 3.12 gldi7n(U(r)) ::; n with equalit.y iJ and only if r is the corn
plete graph 011 n verÜces.

Proof. The global dimension of U(r) is the projective dimension of the
trivial lTIodule F. By the Koszul property this is the maxilnaJ k for which
A(r)k =1= O. ßut A(r)n+l = 0 and A(f)n =1= 0 if and only if there are no
relations of the form XiXj, i =1= j in the ideal t. 0

4 Generalized Graph Algebras

In this section we extend Theorem 3.8 to a dass of algebras containing the
graph algebras. Gur proof that the algebras in this larger dass are Koszul is
nearly thc sanle as TheorClll 3.8.

Let f be an edge labe11ed graph on n vertices, exactly as in the previous
section. Let /( be a subset of thc vertices. 1'0 the pair r', J{ we associate
one algebra U(r, f() = U(r)/IJ{ where IA: is the ideal of U(r') generated by
elements x% for k E I<.

Fix a graph rand a subset !{ of its vertices. Let J be any other subset
of the vertices. As before, f J is the edge-labelled subgraph on the vertices
in J alld we set !<J = f< n J.

Lemnla 4.1 Lel [' and !( be as above. Lel SB = SB(r) denole the set 0/
standard rnono'mials in the free algebra T with 1'espect to I(r'). Let SB( /() =
SB(r, I<) be all those rnononüals n-t, E SB whose image in U(r, I{) is
nol zero. Then the i'mages 0/ the ele1nents in S B( [<) forrn an F -basis f01'
U(r, J{).

Proof. Recall that the images of the elernents of SB f0I'111 an F-basis for
the algebra U(C). Denote by f( [() thc two-sided ideal of T gencratcd by thc
elements x~ for k EI<. Then U(r, J<) ~ T/(f(f) + I(K)). Notice that if

10



a E f( f() anel rn E Supp(a) then nl, E f( !(). FroIll this it is inlmedi80te that
thc elernents of SB(!() reI11a.in linearly independent in U(r, J(). 0

Let J bc 80 subset of the vertices of rand, as before, let Tj be the free
subalgebra of T generated by the Xj, j E J. In the proof of Lelnma 3.5 it
was shown that T j n !(r) = !(r'j). This in turn ilnplies the following: if m
is 80 rnonoillial in T j then 1)1, is a standard monomial in T j with respect to

f(r j) jf anel only if m, is a standard I110nomial in T with respect to r, i.e.
SB(1"') nTj = SB(l'j). Clearly a I110nomial from SB(r) n TJ will vanish in
U(fJ , !(j) ifand only ifit vanishes in U(r, [(). C0I11biningthis with Lcrnrl1a
4.1 we have proved thc following.

Lenlnla 4.2 Lei rand !( be as above. Fix a subsetJ J J of the ve'T'tices of r'.
Let Uj be t.he subalgeb1'n 01 u(r, !{) genernted by the Xj f01' j E J. Then Uj

is a quadralic algebTa isorno'rphic to U(r j, !(j).

We will identify the subalgebra Uj of U(f, l{) with U(r'j, }(J).

Len1ma 4.3 The algebra U(r, f{) is free as a right U(r j, [(j )-1nodule.

Proof. 'I'he proof of this leI11I118o is exactly the SaI11e as the proof of Lemlna
3.6 with the following exception. The set ß should now consist of {I} union
with the set of 8011 111onornials of the fonn aXn which are in SB(r, [().

"Ve need now the analog of LenlIna 3.7. We let F(r, l() be the trivial
graded U(r, [()-lnodule. If there is Iittle chance of confusion we write sünply
F.

Len1 n1a 4.4 Let J = {1, ... , n - I} and C = {i I(i, n) E E} (n 0 te: n rf. C).
Let }(er be the kernel of the lefl. U (l', }{) -1nodule epimorphiS'Tn
U(r,[()@u(rJ,J{J) F --+ F.

(a) Assu'T1le n rf. [{. Then f{er ~ (U(r'[()@U(rc,Kc) F) [1].
(b) Ass'll'me J<={l, ... ,n}. Let.C'= CU{n}. Then

J{eT ~ (U(r'!()@U(I'c1,Kc,) F) [1].

Proof. (80) Assurne n ~ K. As in LeIllm80 3.7, it suffices to prove th80t

the annihilator of X n 0 1F is LiEG U(r, I{)xi. The proof is exactly thc sarne
as Lemnla 3.7 once we make the following observation: for a monomial rn
in S' B( r, [{), the inlage of 1nXn in U( r, [() cannot be zero. This is because

12 rf. Je
(b) Asslllne J{ = {I, ... , n}. Now for a DlonOlnial m in 5'B(I', }(), the

image of 1nXn in U(r, I{) can be zero, but only if n/, is projectively equivalent
I110dulo I(f) to a rnonOlniaI11~'xn. This shows, as in the proof of Lernnla 3.7
that the annihilator of ;r,n 0 1F in }{e1' is cxactly LiEGI U(r, I()Xi. 0

1]



Theorenl 4.5 The algebra U(r, /{) is l\'oszul Jor every edge labelIed graph
rand every subset, }{, 0/ its vertices.

Proof. Assume r has n vertices, {I,."., n} anel use incluctioll on n.
The proof proceeds exactly as the proof of Thoerem 3.8 with the following
replaceInents. LeInma 4.2 is used in place of LerTIIna 3.5. Lemma 4.3 replaces
LelTIlna 3.6. Lenllna 3.7 is replaced by part (a) 01' part (b) of Lemma 4.4
depending on whether 11, ~ !{ 01' !{ = {I, ... ,11,} respectively. 0

5 Holonomy algebras of arrangements

In this section wc are concerned with certain quadratic algebras related to
an arrangernent of hyperplanes.

Let A = {H1 , ... , [in} be"a set of (e -l)-dimensionallinear subspaces of
an f-dimensionallinear space V over a field P. vVe fix linear functionals O'i

such that ker O'i = Hi a.nel call a. su bset of A independent if thc respecti ve set
of functionals is linearly independent. The collection of nlininlal dependent
subsets of A (circuits) fornls a Inatroid M. FroIn the point of view of matroid
theory A is a represelltation of j\lt ovel' F. In fact lnost constructions in this
section depend just on M and not on its representation A.

Associated with A, is the well-known Orlik-Solomon algebra A(A) = A
[20]. A slightly unusual definition of A is as fo11ows. Recall [roIn the previous
seetion that T is the free F -algebra on generators {Xl, ... , Xn } and denote by
J(A) = J the ideal ofT generated by Xl,XiXj +XjXi for every] ::; i < j::; n,
and

k

""(-l)j-Ix' ".. x'. x'· " .. x·L..J 11 1]-1 1]+1 1,1;

j=1

for all dependent subsets {Hi ], ... , Hi,l;} of A. l'hen A = T / J. One can
easily sec that Ap = 0 for p > e.

'T'he algebra A is not necessarily quadratic. First of all for it to be
qlladratic A nUIst be formal, i.e., all the linear relations anlong the fllnction
als of Hi shollid be linearly generated by relations anlong tri pies of thenl.
Indeed if A is not fonnal thcn there exists CL fonnal arrangelnent .A such
that J(A) c J(A) and J(Ah = J(Ah but J(..4) # J(A) (cf. [23]). But
even [orillal arrangements do not in general produce a quadratic algebra A.
A necessary condition for a formal arrangement to have a quadratic Orlik
Sololnon algebra is contained in [8]. It is proved there in particular that for
all the reflection arrangements of type Dk (k 2:: 3) thc algebras A are not
quadratic.

It is easy to COllstruct a. quadratic algebra that is in a way the quadratic
closllre of A. This is the algebra A = A(A) = T / J where J is the ideal of
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T generated by 12 . Notice that A is a finite-eliluensional algebra since it is
a factor of the exterior algebra on 11, generators. It is also graeled since J is
homogeneous hut unlike A it ean have graded cOillponents of elegrce lügher
than I!. Another algebra associated with A is the algebra U = U(A) studieel
by Aomoto anel Kohno [1, 15, 16] that is the universal enveloping algebra
of thc holonomy Lic algebra of thc eOillplenlent of UHe in V (for F = (1;).
The explicit discription of U (over an arbitrary field P) is as follows. Let
I(A) = [be the ideal of T generated by [Xi,LjEXXj] for every i and every
I11aximal X C {l, ... , n} such that i E X anel njEX Hj has codimension 2 in
V. Here we put [a, b] = ab - ba for a, b E T. Then U = TI J. The following
siInple observation has initiateel this work.

Lenlma 5.1 For euery ar1YLnge'Tnent A we haue U(A) = (Ä(A)r.

Now we elefine a complex I<. of frec left U-rllodules (the Aomoto-Kohno
conlplex). For every p 2:: °put I{p = Hon1F(A p, U) and elefine dp : /{p ----t

J{p-l (p = 1, ... ,e) via
n

dpf(a) = Lf(Xia)Xj
i=1

for every f E HOffip(A p, U) anel a E Ap- t . Clearly lmd t = U+ whence I<.
ean be auginented on the fight by the canollical Iuap do : U ----tu F. Exactly
in the salue lnanner one can construct a cOlnplex J? using A insteael of A.

The natural questioll about J{. is whether this complex is exact. Kohno
proveel the exactness for the reflection arrangements of types Ak in [16] anel
claiIlleel it for types Ck , Dk , G2 , anel I2(p) in his unpublisheel but often citeel
paper [17]. Since the arrangements of the first two types are supersolvable
the result for then1 also follows froll1 the lllain theorem of this section. The
following proposition shows that it cannot be true for Dk (k > 3).

Proposition 5.2 If I{. is exaet then A is quadratic.

Proof. Sllppose that A is not quadratic anel Ai = Ai for i = 0,1, ... ,p - 1
while Ap =f A p . If 1(. is not exact in some dilnension less than p - 1 then thc
result is proved. Suppose that 1(. is exact in all dilnensions less than p - 1.
lt suffices to prove that 1(. is not exact in J<p-I.

Notice that J~~. = I{. up to dilnension p - 1. Suppose that I<. is exact in
dimension p-l, i.e., Imdp = ker dp_ l . Denote by Cf thc differential I?p ----t I(p-I
of i?. Since J c J we have a surjeetive graded homomorphisill A ----t A that
allows us to view I<p as a subspace of i<p. Besidcs dlKp = dp. Thus thc
exactness assumption inlplies that

In1d = 11ndp .

13
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On the other hand, since Äp =f:. A p therc exists a nonzero map f : Äp -4 F =
Uo such that f tt f\p. Notice that deg J = 0 and (1.) ilnplics that thcrc exists
9 E l\p such that f - 9 E ker dp. But it is easy to see from definition of
dp that ker dp cannot have nonzero elelnents of degree O. Thus f = gwhich
contradicts the choice of f. Thc contradiction cOll1pletes the proof. 0

Now we [OCllS our attention on the cOlllplex i?... It is deal' fronl definition
anel Lelnnla 5.1 that this c01nplcx is thc usual Koszul cOlnplex for the algebra
U whence this complex is exact if anel only if U is Kosul (Theore1n 2.3). In the
rest of the section we prove that U is Koszul for supersolvable arrangelnents.

There are lllany different ways to characterize supersolvable arrangements
(cf. [20}). The best suitable definition for our goal is thc one given by Bjorner
anel Ziegle~jn [5]. First let us recall that for any (ordered) arangenlent A one
can exhibit a specific monolnial F-basis of A = A(A) called the broken circuit
basis. A circuit is a sequence of hyperplanes such that their functionals form
a mininlal dcpendent set. A broken circuit is a sequence ([lii" .. , llip ) such
that i 1 < ... < ip and (Ifit , ... , Hip, H j ) is a circuit for sOlne j > i p . Now the
brokcn circuit basis is fOflned by the set of monOInials Xii' .. Xi p such that
i 1 < ... < i p anel the respective sequence of hyperplanes does not contain any
broken circuit. Finally an arrangetnent A is supersolvable if every lllininlal
broken circuit consists of two hyperplanes.

It follows from [8, 9] that [01' a supersolvable arrangement the algebra A
is quadratic, i.e., Ä = A. Since the proof there involves rational homotopy
theory we give a direct cletnentary proof below.

Lelnnla 5.3 If A is s1lpe'l'solvable then A = A(A) is q1lad1·atic.

Praof. Define the F-linear rnap d : T -4 T via

p

d(x" ... x· ) = '"'"'(-I)j- 1x" ... x"" x"· ... x"
11 Ip L...J 11 1)-1 1)+1 • 1p '

j=l

Clearly J2 = 0 and d( ab) = (da)b + (-1 )Padb for a E Tp and b E T. Since
all generators of J are annihilated by d the ideal .J is invariant with respect
to d. Recall frolll the begining of this section that only generators of J of
degrce different frolll 2 have fornl d(/lS) where IlS = Xit ... Xi p for adependent
sequence S' = (Jl i1 , ••. , flip) (p > 3).

Suppose now that A is not quaelratic, i.e., j =f:. J. Then the previous
paragraph implies that there exists a Inonotnial J-l = Ils rt J while the sc
quence S is elependent. \Vithout any 10ss of generality wc can aSSUillC that
Il is Inaximal in the reverse lexicographic order among all the monomials of
degree p with these properties. Clearly SOlne subsequence of S is a broken
circuit. Since A is supersolvable there exist i r and i s with 1 ::; l' < .$ ::; P

14



anel such that So = (in i3l u) is a circuit for some u with u > i 3 • Since So is
dependent we have

Ilo = Xi,.Xi,X u = (dJ-lo)x u E J2 C J.

If Hu is an elclnent of S then Po divides p Inodulo J whence J-l E J. That is a
contradiction. Suppose that II is not among i k (k = 1, ... ,p). Then consider
two other monOlnials p' anel J-l" substituting X u for Xi,. and Xi

8
respectively.

Notice that ll' 1 J-l" > fl in the reverse lexicographic order and the respective
sequences of hyperplanes are still depenelent. Thus by choicc of J-1 we have
11', J-1" E J. But, Inodulo J, the 1110nOnlia.l J-l is a linear c0111bination (with ca-

efficients ±1) of p' anel J-l" whence again II E J. This contradiction cOInpletes
the proof. 0

Now we want to deforrn U to a graph algebra. To do this, define the
graph r = f(A) on the vertices {I, 2, ... ,n} whose edges are exactly those
2-sets {i,j} for which (lfi , I1 j ) is a broken circuit. Label every edge by l.
Then put A = A(A) = A(I'). For every ..\ E F put A.\ = A.\(A) = AI1,\
wherc A is the exterior algebra on n generators (as above) and JA is its ideal
generated by the relations

for every 3-circuit (1fi 1 1lj , lId with i < j < k. Let us Sllin L1p obviollS
properties of these algebras.

Len1n1a 5.4 (i) Al = A, Ao = A.
(ii) For every ..\ =j:. 0 f.he algebra homo'morphiS'm defincd by Xi l---1' A. i Xi lS

an isomorphiS'm oJ A onf.o A,\.

Our goal is to apply the Drinfeld theorenl [7] to the fcunily A.\ (cf. also
[21]). First we need the following definition. If lV is a natural number we
call a quadratic algebra N-Koszul if its ](oszlll c0l11plex is exact in the first
lV terms fronl thc right.

Thc formal distinction of our case frOln thc lnain theorem of [7] is that
the paranletCl' A. is not real but belongs to the field P. However using the
Zariski topology it easy to obta.in the following form of thc theoreln.

Theorenl 5.5 Suppose f.haf. Jor eve1'Y ..\ E F we haue a quad1YLlic algeb'l'a A.\
whose quadraf.ic relations depend on ..\ polyn01nially. Suppose thaf. diIl1(A.\)i
does not depend on A. Jor i = 1,2, and 3 and Ao is J(oszul. Then J01' every
natural llu'mber Ar there exists a Za1'iski open subset WN C Fr containing 0
and such that for evcry ..\ E HIN the algebra A,\ is N -1(oszul.

Now we are ready to prove the main result of this section
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Theorenl 5.6 ff an arTangernent A is supe'l'solvable then the algebr'as A(A)
and U(A) are I(oszul.

Proof. Tt suffices to prove the statement for A(A). Let us check the
conditions of Theorem 5.5. Due to Theorem 3.8 Ao = A is Koszul. Consider
the ideal 10 of 1\ defining this algebra. The 111onOlnials of A contained in this
ideal are those containing SUblllollOlllials corresponding to broken circuits of
length 2. Since A is supersolvable this is equivalent to containing any broken
circuits. Thus duc to the bl'oken circuit basis thcoreIn I/(A,t) = H(A, t) =
f[(AA' t) for every A.

Now extend F to an infinite field if necessary. lt follows from theoreln
5.5 that for every positive integer N there exists AN =f:. 0 such that A>'N 1S

iV-Koszul. Now part (ii) of LelntUa 5.4 implies that A is Koszul. 0

Corollary 5.7 If an an'angement A is supe'rsolvable then its Aornoto-f(ohno
complex is exaet.

This result would have followed frOlu a theoreln in [12] hut that theoren1
is false (see [13] for corrections). The following corollary was first proved in
[9) Llsing rational hOlllotOpy theory.

Corollary 5.8 If an arrangement A is supersolvable then
11(U(A), t)H(A(A), -t) = 1.

6 Examples

In this section we consider three exatnples of non-supersolvahle arrangements
(01' rather Dlatl'oids). The first two arrangelnents have non-quadratic alge
bras A. The last exaDlple is quadratic. No exalnple of a non-supersolvable
arrangclllcnt with a Koszul algebra U is known to uso The last two exanl
pies are as elose to that as we can find. '1'0 siluplify notation we identify an
arl'angelnent with the respective set of linear functionals.

Exanlple 6.1 Let. charF =j:. 2 and A = {x, y, z, x + y, x + z, y + z}.

This is a fornlal arrangelnent whose algebra A is non-quadratic (anel is the

smallest such). H(A, t) = 1 +6t + 12t2 +7t3
, H(A, t) = 1+ 6t + 12t2 + 8t3 +

t4
• Thc algebra U is not Koszul since some of the coefficients of thc series

1/(1 - 6t +12t2
- 8t3 + t4

) are negative, contradicting Corollary 2.4. (Note:
the first negative coefficient occurs at t I3

).

Exanlple 6.2 Agm:71 charF =f:. 2 und A = {z, x + y, x - y, x + z, x - z, y +
z, y - z}. This a representalion of the ce/ebr'ated non-Fano matroid.

16



The algebra A is again non-quadratic. lJ(A, t) = 1 +7t + 15t2 + 9t3
,

[[(A,t) = 1+7t+15t2 +10t3 +t4
. The series 1/(1-7t+15t2 -10t3 +t4

) has 3011
positive coefficients since the denominator has foul' positive real roots. There
exist at least two different kinds of clefonnations A(A) of A (i.e., A(l) = A)
such that H(A(A), t) = H(A, t) for all A E F. For the first kind all algebras
A(A) with A i- 0 are isolllorphic to A but A(O) is not Koszul. For the second
kind A(O) is Koszul hut A(A) are not isomorphie to A anymore.

To describe the deforlllations of thc second kind more explicitly notice
that A is the quotient of the exterior algebra with generators Xl, ... ,X7 (in
the given order of the functionals) over the ideal genel'ated by the six eleInents
RI = XI X 4 - XIXS + X4 X S, R2 = XIXS - XI X 7 + XSX7, R3 = X2 X 4 - X2 X 7 +
X4 X 7, R4 = X2 X S - X2 X S + XSX6, Rs = X3 X " - :r-3 X S + X'IXS, ~ = X3 X S - X3 X 7 +
XSX7. Considering the dual algebra U = A! one notices that z = XI + ... +X7

is a central eleIl1ent. (A silnilar fact is true for any arrangenlent). Thus
changing the generators to x I, ... , Xs, zone can Inakc the identification {} =
1ft! 0 F[z] where 1V is the subalgebra of U generated by Xl,' .. ,X6. (In fact, W
is the holonolny algebra of the affine arrangelnent induced in the hyperplane
X7 = 1.) Since U is Koszul if anel only if ltV is Koszul we will focus on Hl.
The algebra B = IV! is the quotient of the exterior algebra Oll generators
x I, ... ,XG over the ideal generated by the relations R I , R4 , Rs anel also by
R; = XIXS, n; = X2X4, and R~ = X3XS. Notice l/(B, t) = H(A, t)/(l + t) =
1 + 6t + 9t2 + t3 • For cvery A E F define B(A) by the last 3 relations and
by RI(A) = XIX.! - AXIXS + AX4XS, R4 (A) = X2XS - AX2X6 + AXsxs, R5 (A) =
AX3X4 - X3X6 +X.!Xs. Clearly 8(1) = B. A staightforward con1pU tation shows
that H(B(A), t) does not depend on A.

Now we want to provc that the algebra B(O) is Koszul. This is equivalent
to its dual algebra Hl(O) = B(Or being Koszul. Notice that Hl(O) has the 9
defining relations:

[X5' :Z:6], [X3 + X4, X6]'

The Koszul cOInplex of W(O) has thc fonn

and it is exact (as for every algebra) in tern1S 1<0 and 1<1. So to prove that
it is exact it suffices to prove that the kernel of the Illap <52 : 1<2 -+ [(I

is generated in degrce 1. The lllap 02 can be rcpresented by the following

17



lnatrix
X2 -Xl 0 0 0 0
X3 0 -Xl 0 0 0
Xs 0 0 0 -Xl 0
0 X3 -X2 0 0 0

lVI = 0 Xs 0 0 0 -X2

0 0 X4 -X3 0 0
0 0 ° Xs -X4 °0 0 0 0 Xs -X5

° ° Xs Xs ° -X3 - X4

that acts on the row-vectors fronl [{2 = 1,V(0)9 via. the right multiplication.
Denote the rows of M by 1'1, ... ,1'9. Then a row-vector a = ((LI, ... ,a9) E 1{2

belongs to the kernel of 02 if and only if the vector

9

Lai1'i =°
i=I

(in /(l = W(O)S).
Now we need a lemma.

Len1n1a6.3 Letx,y,zE ItV(O).
(i) 1I XXI + YX4 + zXs = 0 then X = Y = Z = O.
(ii) fj XXI + YX3 + zXs = °then there exists U E IfV(O) such that X =

UX3, Y = -UXIJ and z = O.

Proof. vVe can assume that x, y, z are hOIl1ogeneous of a COIl1I110n degree
d and apply induction on d. Ir d = °the result is obvious. Suppose that
d> °and prove (i). Thc condition inlplies that b = (:z;,O,O,y,Ü,z) belongs to
the kernel of 01 : [{I --+ [(o. Thus there exist elenlents bl , • •• , b9 of H!(O)d-J
such that b = L~=l bi1'i in l/V(O)s. In particular

b8Xs -'b7X4 - b3Xl = 0,

-b2x I - b4 X 2 + bSX 4 + bu X 6 = 0.

Using (i) anel (ii) for d-l wc obtain fro1l1 first two cqualities b3 = b7 = 68 = 0,

61 = UX3, b'l = !lXI, and b5 = °for sOine 1.l E W(O). Substituting this into
the third equality we have

Using again (i) for d - 1 and the absense of zero divisors in W(O) (see for

exalnple [2]) we have b1 = llX3, 62 = -UX2, 64 = U:tl, and the other bi vanish.
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COIllputing vector b we obtain x = y = z = O. The proof of (ii) is sinlilar.
o

Now we can finish the cOInputation of the kernel of oz. Using LeI11Ina
6.3 we have frolll (*) a3 = (Ls = a7 = aB = 0 anel al = UX3, a4 = UXI for
S0I11e u E H/(O). Then tlsing the absense of zero divisors again we obtain

az = -UXz and aß = ag = 0. Thus a = U(X3, -xz, 0, XI, 0, ... ,0) which
cOlnplctes thc proof.

Exanlple 6.4 For this exa'T1"~ple it is 'more instructive to describe the l1~a

b'oid itself. This matroid is known in geometry as the plane 0/ order 3.
ft can be given on 9 ele'menls {l, 2, ... ,9} as lhe colleclion 0/ 3-circuils
;t = {{1,2,3},{4,5,6},{7,8,9},{1,4,7},{2,5,8},{3,6,9},{1,5,9},
{2.6. 7}, {3, 4, 8}, {I, 6, 8}, {2, 4, 9}, {3, 5, 7}} and aU the 4-sets aTe depcndcnt.
lt can be repl'esented ovcr any field having a prinütive cubic root 0/ 1 (sec
[5J).

Let tlS first prove that for this Dlatroid A is quadratic. Notice that every
two elenleIlts i anel j uniquely define a third one k = 4>(i,j) such that {i,j, k}
is a circuit. Now fix an arbitrary 4-circuit S = {it, i z, i3 , i4 } (with the natural
order) anel consider six eleDlents kr,s = 4J(ir, i.,) (1 ::; r < s ::; 4). Since S
is a circuit none of kr ,., belongs to S. Thus there exists a partition of S
in two pairs (without any loss of generality {it,iz} and {i 3 ,i4 }) such that
k1,z = k = k3,4' Now one easily checks that

Rs = RX1 (Xi 3 - Xi 4 ) + (XiI - Xi,JRx'l

in T wherc Xl = (i1,iz,k), X z = (k,X3,X4) and Rz is the elernent of J
corresponding to an ordcl'ed circuit Y. This ilnplics that Rs E J and A is
quaelratic.

'Ne have H(A,l) = (1 +t)( 1+4t )2, in particular all coefficients of thc series
1/H(A, -t) are positive. Using the rooted complex RC constructed in [5},
Exaruple 4.1(4), it is easy to exhibit a [alnily of quadratic algebras A(.\) (.\ E
F) such that A(1) = A, A(O) = A(RCd, and H(A(.\), t) does not depend on
.\. To be more explicit we necd to recall that the root conlplex is defined on
the elenlellts of the Inatroid and its I-skeleton includes exactly two 2-subsets
of each X EX. The ornnlitted 2-subsets, wl'itten in the order of elements of
X above, are {1, 3}, {4, 6}, {7, 9}, {1, 7}, {2, 8}, {3, 6}, {1, 9}, {2, 6}, {4, 8},
{5, 8}, {2, 4}, {3, 5}. Now A(.\) is the quotient of the exterior algebra with
nine generators Xl, ... , Xg over the ideal generated by the relations Rx (.A)
(X E ,l') where for )( = (i,j, k) with thc oDlmitted subset, say {i,j},

Rx(.A) = XiXj - '\XiXk + .AXjXk.

It is not hafd to provc that A is not iS0l110rphic to A(.A) with .\ f. 1. We
suspect that A is I(oszul but cannot prove this.
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