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Unstable Atomicity and Loop Spaces on Lie Groups

J.R. Hubbuck

1. A (k-1)-connected space X with Hk(X,Z ) ~ Z has been
p p

defined to be p-atomic if any map f: X ~ X which induces an

isomorphism f*: Hk(X,Zp) ~ Hk(X,Zp) must induce an isomorphism

f*: H*(X,Z ) ~ H*(X,Z). We describe such X as being C ..P.
p , p

~

p-atomic (Cohen, P~terson) and consider some variants of the

definition. C.P. p-atomicity i5 an indecomposability condition

on aspace implying for example that the space has no non

trivial mod p homotopy retracts.

We define aspace X to be weakly p-atomic If any map

f: X ~ X is either a mod p homotopy equivalence er for each n,

f.: Hn(X,Zp) ~ Hn(X,Zp) is nilpotent under composition. If X

is a (k-l)-connected CW complex of finite type, Hk(X,Zp) ~ zp'

k > 1 and X 19 elther an H-space or a co-H-space (in particular,

a suspension), then X is C.P. p-atomic if and only if it i9

weakly p-atomic (see comment 2 following Proposition 5.1).

The spaces considered satisfy a stronger condit1on. A

space X is def1ned to be p-atomic if any map f: X ~ X 1s either

a mod p 'homotopy equivalence or f.: R*(X,Z ) ~ H*(X,Z ) 15
p P

nilpotent. Not every weakly p-atomic space i9 p-atomic, for

example, BSU i5 weakly 2-atomic but i9 not 2-atomic (see comment

2 following Lemma 3.3).

A p-atomic space X 1s defined to be p-atomic of degree t if

whenever f.: H*(X,Zp) ~ H*(X,Zp) is nilpotent, (f*)t = 0 but

there exists some such f with (f*)t-l ~ 0, t > O. The author

does not know if every p-atomic 5pace i5 p-atomic of finite

degree.

below.

The 9ign1flcance of the degree twill become apparent
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We consider the 2-atomic1ty cf OG where G 1s a l-connected

simple Lie group.

Theorem 1.1

(a) OG is 2-atomic of degree 1 when G = Sp(m),G 2 ,F 4 ,E7 or Es'

(b) OEs 1s 2-atomic of degree 3.

t-1 t
(c) nSU(n) is 2-atomic of degree t, where 2 < n ~ 2 .

The spinor groups are not mentioned in Theorem 1.1 because

nSpin(7) and OSpin(8) decompose as products at the prime 2 in a

non trivial manner; it has not been determined if nSpin(q) 1s

2-atom1c for q ~ 9.

For the exceptional Lie groups, we prove a more precise

result than Theorem 1.1. Let nG be 2-atomlc cf degree t. We

consider the homomorphism cf Abelian groups

a: [OG,OG] ~ Alg.Hom
A

{H*(OG,Z2),H*(OG,Z2)}
2

where in [OG,OG] loep multipllcation induce5 the group structure

and Alg.HomA {H*(OG,Z2),H*(OG,Z2)} has the corresponding
2

Abelian group addition derlved from the Hepf algebra H*(OG,Z2)'

In addition (f+g).h = r.h + g.h in [OG,OG] and a(f.g) =
a(g).a(f) where . denotes compositlon. Let g: OG ~ OG be

defined by n(x) n= x = ( ... ((x)x) ... ) for n E Z and let ~ be the

subgroup of [OG,OG] generated by 1. If n i5 odd, n i5 a mod 2

homotopy equivalence and if n i5 even, a(n) i5 nilpotent (in

reduced cohomology) . In particular a(2 t ) = 0 and a(Z) ~ Z- s
. 2

where s ~ t. If fE [OG,OG], then 2 s f = ~s.f and so 25 15 the

exponent cf the Abelian group ~(G) = Image a. We will show

that s = t and ~(G) ~ Z t when G '19 an except10nal Lie group.
2

We set !(G) = R.Alg.HomA {H*(OG,Z2),H*(nG'Z2)}' the group
2
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of those ring homomorphisms over the Steenrod algebra (acting

unstably) which arise as ring homomorphisms of H*(OG,Z{2r' to

itself. More explicltly let

R.Alg.Hom.{H*(OG,Z2' ,H*(OG,Z2)}

= (Alg.Hom.{H*(OG'Z(2»,H*(OG'Z(2»}} ~ 2 2

which is a subgroup of Alg.Hom.{H*(OG,Z2),H*(OG,Z2)} as

H*(OG,Z2) = H*{OG,Z(2» 9 Z2 and let !(G) be those homomorphisms

defined over the Steenrod algebra.

groups

There is an inclusion of

For small

~(G) c !(G) c Alg.HomA (H*(OG,Z2),H*(OG,Z2)}'
2

The theorem whieh follows determines !(G) and shows that

o::(G} := !(G) .

Theorem 1.2

(a) !(G). ~ Z2 generated by 1* when G = G2 ,F4 ,E7" or E,S'

(b) !(ES ) ~ Za generated by 1*·

It i9 also true·that a(Sp(m» = !(Sp(m» ~ Z2

generated by 1* but this will not be proved in this paper. For

SU(n) the situation has not been resolved; !(5U(n» is a finite

t t-1 tAbelian group of exponent 2 where 2 < n ~ 2 and the

subgroup generated by 1* is isomorphie to Z t'
2

values of none can eheck that ~(SU'(n» = !(SU(n») ~ Z t'
2

A different generallzation of atomielty at p has been given

1n [3]. Let G be a compact, simply conneeted Lie group and

assume that no Spin(q) factor with q > 6 occurs when G 1s

expressed as a product of simple L1e groups.

Theorem 1.3 Let f: nG ~ OG 1nduce an isamorphism

f$: H2 (OG,Z2} ~ H2 (OG,Z2).

equivalence.

Then t 1s a mod 2 homotopy



4

Corollary 1.4 (Proposition 2.1 of [3])

(a) Let g: G ~ G induce an isomorphism g.: H
3

(G,Z2) ~ H
3

(G,Z2).

Then g is a mod 2 homotopy equivalence.

(b) Let h: BG ~ BG 1nduce an isomorph1sm

h*: H4 (BG,Z2) ~ H4 (BG,Z2)'

equ1valence.

Then h 1s a mod 2 homotopy

Corollary 1.4 conta1ns little that 1s new. However it

demonstrates that one cannot expect that Theorems 1.1 and 1.3

will extend to odd primes except for a comparatively small

number of Lie groups; at odd primes 'most' Lie groups decompose

as products. Results on the indecomposabi11ty of BG at each

prime, where G has the Lie multiplication, can be found in [11].

The more subtle questions associated with OG being stably

2-atom1c when G 1s a simple Lie group [6,14,5] will not be

considered in this paper although seme of the calculations will

be used in a subsequent note establishing 2-atomicity in certain

cases.

Five sections follow this introduction. The next section

1s purely algebraic; Corollary 2.5 shows that being 2-atomic or

weakly 2-atomic are equivalent conditions on OG. In section 3

complex K-theory 1s used to evaluate certain secondary

cohomology operations and to define an unstable operation for

complexes without homology 2-torsion derived from the exterior

power operator ~2 in K-theory. Theorems 1.1 and 1.2 are proved

in sections 4 and 5 and the proof cf Theorem 1.3 is ccmpleted in

section 6.

The first draft of this note was written at the Max Planck

Institute for Mathematics in Bonn and was revised at the
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2 . The algebra H*(nG,z(2)}

Let M be a finite dimensional strictly p09itively graded

6

free Z(2)-module, where Z(2) i9 the ring of integers localized

at the prime 2, and let t: M ~ M be a graded homomorphism

inducing an isomorph1sm t: M 9 Z2 ~ M 9 2 2 .

lemma 1s used repeatedly.

The following

Lemma 2.1 For each v ~ 1, there exists n(v) such that

r = tn(v): M 9 2 ~ M Q Z 1s the identity.
2v 2v

Proof Let M = rM
1

, 1 ~ i ~ a. The set of isomorphisms

si: Mi ~ Z2 ~ Mi Q Z2 form a finite group, of exponent ß(1)

say. So s = t ß (1)ß(2) ... ß(a) 15 the ident1ty homomorphism on

v-1
It follows that r = s2 is the identity on M Q Z

2
v

Let G be a compact l-connected Lie group. We recall that

H*(nG,Z) is torsion free and i5 concentrated in even degrees

[2]. Also H*(nG,Q) 19 a polynomial algebra on r = rank(G)

generators. We define N(G) = (QH*(nG,z{2))}/TorS!On, the free

part of the indecomposable quotient module of H*{OG,Z(2)).

Then N = N{G) 19 a free z(2)-module and a map f: OG ~ OG 1nduces

a homomorphism f*: N ~ N.

Let {xi,x2" .. 'X~} be a basis for N and choose

representative classes {x 1 ,x2 , ... ,xr } in H*(OG,Z{2)). Then

considerlng H*(OG,Z(2)) as a subring of H*(nG,Q) under

coefficient inclusion, {x
1

,x
2

' ... ,xr } 1s a set of polynomial

generators of H*(OG,Q).

Proposition 2.2

. 1 {al Let f*: N 9 Z2 ~ N Q Z2 be an lsomorphism. Then
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f*: H*(nG,Z2) ~ H*(OG,Z2) is an isomorphism.

(b) Let f*: N 9 Z2 ~ N Q Z2 be trivial. Then

Proof 2mEach element of H (OG,Z(2)) can be expressed uniquely

as a polynom1al in (x
1

,x 2 ' ... ,x r } with coefficients in Q. As

a2m (OG'Z(2)) is fin1te dimensional, there exists k ~ k(m) such

2m k-1
that for any wEH .(OG,Z(2)' 2 W 1s a poIynom1aI 1n

{X1 'X2 '· .. ,Xr } with coeff1c1ents in Z(2)'

To prove (a), 1t is sufficient to show that for each n,

* 2n 2nsome 1terate of f : H (OG,Z2) ~ H (nG'Z2) 1s an 1somorphism.

As N2 Q Z2 = H
2

(OG,Z2)' f* i5 an 1somorphism for n = 1. We

assume that f* 19 an isomorphism in dimensions less than 2m.

Setting N 21= LH (OG,Z(2»' 1 ~ i < M, in.Lemma 2.1, after

2i 2i
iteration we can assume that f*:!H (OG,Z k) ~ rH (OG,Z k)'

2 2
- 2m1 ~ i < m, i5 the identity homomorphism. Let wEH (OG,Z2)

2mhave representat1ve wEH (OG,Z(2») wh1ch is decomposable as a

class in H*(OG,Q). Let w = P(x1 ,x2 , ... ,Xr ) where

k-l2 P(x1 ,x2 , ... ,Xr ) 1s a polynomial wlth Z(2) coefficients. If

k
dirn xi < 2m, then f*x i = Xi + 2 z1 and so

f*w ~ p(f*x1 ,f*x2 , ... ,f*xr ) = P(x1 ,x2 , ... ,xr } + 2w' where

w· E H2m (OG,Z(2})' . Thus f*~ a w. So to show that

2m 2mf*: H (OG,Z2) ~ H (OG,Z2) 1s an isomorphism, we need just'

2mconsider f*xs where X s E H (OG'Z(2})' We appIy Lemma 2.1 w1th

M = N and v = 1. So f*x a x + d + 2y where d can bes s s s s

chosen to be decomposable in H*(OG,Q}. Thus f*a ='Q ands s

This completes the proof of (a).

To prove (b), we first estabI1sh a lemma us1ng the

techn1ques of [9]. Th1s relies upon H*(OG,Z(2}) being a free



Then there exists

a

z(2}-module of finite type and H*(OG,Q) being a connected,

bi-associative, bi-commutative Hopf algebra.

2m
Lemma 2.3 Let w € H (OG,Z(2») with m > O.

an integer rand classes W i g 0 1 such that
2 2

P = 2
r

w + 2
r

-
1

w2 + 2 r -2w4 + ... + w
2r

E PH*(OG,Z(2))'

where Dk = H* (OG , Z ( 2 ) ) . H* (OG , Z ( 2 ) }. ... . H* ( OG , Z ( 2) ) ,

k factors. If w 1s decomposable in H*(OG,Q), then p = o.

Proof In the notations whlch follow, subscrlpts denote the

filtrations in which elements lie in

o = D;m c D;~l c ... c D~m = H
2m

(OG'Z(2)' Let

~*: H*(OG'Z(2)} ~ H*(OG,Z(2)} be the homomorphlsm induced from

the loop squaring map on OG. So ~*(w) = 2w + 2v
2

+ v 2 for some

Then

classes v 2 and v.

Suppose in general that 1*(u)· = 2u + 2v + x, s > 1.s

~*(U+AVS) = 2(U+AV
S

) + 2V
S

+
1

+ v 2s + x tor some classes v
S

+
1

.and

v
2s

where ~ = (l_2 s - 1 )-1 and so by repeating this step we can

write ~* (u+z s ) =' 2 (U+Z s ) + z2s + x tor some Zs and z2s·

know that ~*(w) = 2w + Z2' where %2 = 2v2 + v 2 and so

Now we

l*(2w) = 2w + 2Z 2 . So there exists w
2

with

~*(2W+W2) = 2(2W+W2 ) + z4' The step can be repeated after

multiplying by 2. Since D2m = 0, we obtain ~*(p) = p for somes

p as in the statement of the lemma. Then by Proposition 2.1(c}

of [9], P i5 primitive in H*(OG~Z(2}}.

If w 19 decomp09able in H*(OG,Q}, then so 1s p. But

PH*(OG,Q} ~ QH*(OG,Q) i9 an isomorphlsm and so p = o.

We can now complete the proof of Proposition 2.2(b).

After finite iteration, it can be assumed that f*x
i

= 0 mod 2,
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1 ~ 1 ~ r. As Inductive hypo~hes1s we assume that

f*: rH 2i (OG,Z2) ~ rH 21 (OG,Z2)' 1 ~ i < m is trivial. To

- 2mcomplete the proof, we show that if WEH (OG,Z2)' then

f*w = O. It 1s sufficient to consider w with representative

W E H2m (OG,Z(2» which 1s decomposable in H*(OG,Q). By Lemma

This

2.3, there exists an equation

r r-l r-22 w = -2 w - 2 w-
2 4

2m
- w

2r
in H (OG,Z(2»'

i
The induction hypothesis implies that f*w i = 0 mod 2

2
.

2
r r+l -Therefore f*(2 w) = 0 mod 2 and so f*w = O.

completes the proof of Proposition 2.2.

We record a corollary of the method of proof of Proposition

2.2(b). The set {x
1

,x
2

' ... ,xr } 1s as described before the

statement of Proposition 2.2 and as usual xi 1s the mod 2

reduction of Xi'

Corollary 2.4 If f*x
i

= 0, 1 ~ 1 ~ r, then

f*: R*{OG,Z2) ~ H*{OG,Z2) i8 trivial.

Corollary 2.5 Let f: OG ~ nG be a map. Then

f*: R*(OG,Z2) ~ R*(nG'Z2) i9 n1lpotent if and only if

f*: R2n (OG,Z2). ~ y2n(nG'Z2) 1s nilpotent for each n.

We requ1re a lemma concerning algebra morphisms of the Hopf

algebra H*(OSU(n),Z2) for n ~ 3. For further information on

the Hopf algebra structure, the reader 19 referred to [10].

Lemma 2.6 Let f: nSU(n) ~ nSU(n) be a map with n > 2. Then

f*: N(SU(n»2 9 Z2 ~ N(SU(n»2 A Z2 i9 an isomorphism if and

only if f*: N(SU(n»4 9 Z2 ~ N(SU(n)}4 9 Z2 1s an isomorphism.
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Then

determined by

25 +1
but x

2
= 0 mod 2.

2
s

that x 4 = 0 mod 2 andAn elementary coalgebra calculation shows

2 5 +1 -1 2 5 +1 2 9

x 2 ~ 0 mod 4. Let w = 2 x 2 + x 4 .

2
Let x 2 E H (OSU(n) ,Z(2)) be a generator and

4
x 4 EH (osu(n),z(2)) be chosen so that

~(x4) = X4Q1 + X29X 2 + lQx4 · Let 5 be

2S~ n - 1 < 2 s +1 . Then x;S = 0 mod 2

Proof

Therefore

2Now if f*x
2

= 0 mod 2, it follows that f*x
4

= EX
2

mod 2 as

s
2- 1

X: t H*(OSU{n),Z(2)). If f*x 4 = EX~ mod 2, it follows

-2 2 5 + 1
that f*x

2
= 0 mod 2 as 2 x

2
t H*(OSU(n),z(2)). This

establlshes the lemma.

Comments 1 . In section 6 a generalization of Lemma 2.6 will be

used. Let G = SU(01) x SU(02) x ... x SU(n ) and f: OG -+ OGs

induce an isomorphi5m f*: N(G)2 " Z2 -+ N(G)2 Q Z2' Then

f*: N(G)4 " Z2 -+ N(G)4 eil Z2 1s an isomorphism. This can be

proved using the same technique as in the proof cf Lemma 2.6.

It can be assumed that in dimension 2, f* 15 the identity. If

f* mod 2 i5 not an isomorphism in dimension 4, there exists

w4 D xi 1 ) + x~2) + ... + xi t ) with f*w
4

mod 2 equal to a

polynomial in 2 dimensional elements in H
4 (nG'Z2) and where x~i)

arises from SU(m1 ), ml S m2 S ...

determined by 2 5 S m
t

- 1 < 2 5 +1 .

9+1 5+1
w = 2-2{(X~1))2 + ... +(X~t))2 }

Let s be

One considers f*w where

2. Us1ng Corollary 2.5, Lemma 2.6 and known results on

spherical classes 1n OSU(n) and nSp(m), it can now be deduced



that these spaces are 2-atamic, c.f. [4]. We will use a

11

different proof to abtain tighter control and because the

argument used may have some independent interest.
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3. An unstable secondary cohomologv operation

All spaces in this sect10n are assumed to have the hamotapy

type of cannected CW-complexes of finite type and to have no

2-torsion in integral homology. The main objective is to

define an operator

~4k: H4k (X,Z2) ~ H8k (X:Z 2 )/{Imag e sq4k + Image sq2},

which satisfies two properties: ~4k 1s natural and coincides

wlth the secondary operation associated with the Adern relation

sql(sq4k) + sq4k(sql) + sq2(sq4k-l) = 0 on H4k(r2cpoo'Z2)'

We use complex K-theory and first recall [7,8] how to

deflne the secondary operation

4k 4k-2 2q 2q+4k 4k8 4k : Ker Sq n Ker Sq c H (X,Z2) ~ H (X,Z2)/Image Sq

by such methods assoclated wlth sql(sq4k) + sq4k(sql) +

sq2 sql(sq4k-2) = O.

. 2q
An element of H (X,Z2) will be denoted by x 2q and a

2qrepresentative class in H (X,Z(2» by x 2q , A representative

o
for x 2q in K (X,Z(2»2q will be u 2q where

o 0 2q
K (X,Z(2»2q/K (X,Z(2»2q+l = H (X,Z(2»' as X has no homology

2-torsion. We write x 2q ~ x 2q ' u 2q ~ x 2q and u 2q ~ X2q to

describe this situation and for notati9nal convenience assume

o
that K (X)2q+4k+l = O. Theorem 6.5 of [1] implies that

So (3" 1 )

2 ~ q-l q-2k+l q-2k
~ (U 2q ) = 2 2q+2 V 2q+2+···+2 V2Q+4k-2+2 v 2q+4k

o -for classes v 2i € K (X,Z(2»2i where if V2q+21 ~ x 2q+2i '

21-
Sq X2q = X2q+2i .

Let X
2Q

E Ker Sq4Q n Ker sq4k-2 Thus

V2q+4k-2 = 2U2q+4k-2 + V 2q+ 4k and v 2q+ 4k = 2V 2q+ 4k .

( 3 . 1 )

can be rewritten,

2 2Qu q-2k+2 q-2k+l
~ (U2q ) = 2q + ... + 2 U2q+4k-2 + 2 U2q+4k "
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The operator 8 4k 15 def1ned by 8 4k (X
2Q

) = X2q+4k , where

U 2q+4k ~ x 2q+4k . It 15 necessary to check that 8 4k (X2Q ) 15

weIl defined modulo the image af Sq4k the indeterminacy arises

fram different choices for x 2q representing x 2q , . Then 8 4k 1s

additive, stable and 1f f: Y ~ X 1s a map of spaces of the type

being considered, f*[8 4k (X
2Q

)] C 8 4k (f*x
2Q

).

The definition of

4k 2Q 2q+4k 4k 2
~4k: Ker Sq c H (X,Z2) ~ H /{Irnage Sq + Image Sq }

associated with the Adern relation sq1(sq4k) + sq4k(sq1) +

Sq2(Sq4k-1) ~ 0 19 sim1Iar but a 11ttle more subtIe. Let

x 2q E Ker Sq4k Again we consider (3.1). If

2- 2 4k-2
V2q+4k-2 ~ X2q+4k-2' Sq X2q+4k-2 = 0 as Sq Sq = O. So

there exists w2q+4k such that U2q+4k-2 = V2q+4k-2 + w2q+4k

2 q+2k-1
satisfies ~ (U2Q+4k-2) = 2 U2q+4k-2' So (3.1) can be

rewritten

2 q q-2k+1 + 2q-2k+1
~ (U2q ) = 2 U 2q + ... + 2 U2q+4k-2 u 2q+4k

2 q+2k-1
where ~ (u2q+4k-2) ~ 2 U2q+4k-2' We define

~4k(X2q) = x 2q+4k where u 2q+4k ~ X2q+4k . One checks that

~4k(X2q) is weIl defined module the image of Sq4k, again arising

2fram different chaices of x 2q , and module the 1mage of Sq ,

4k-4-
arising fram different choices of U2q+4k-2 (if Sq x 2q = 0).

Again ~4k 19 additive and stable and if f: Y ~ X 1s a map of

spaces f*[~4kX2q] c ~4k(f*X2q)'

We can. modify the definitions of both 8 4k and ~4k to obtain

an unstable operator by following a similar procedure using the

2 2
exterior power A in place of ~. We will just use (4k

corresponding to ~4k' To utilize the notations above, this is

2most easily def1ned si~ply by replacing ~ (u4k ) by
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If X is a

suspension, $4k and (4k are identical, but in general (4k i8

neither additive nor stable; it 15 natural.

The remainder of this section is concerned with evaluating

these operations. -2q-1 -First we consider $4Q(X
2

) where X
2

18 the

2 cogenerator of H (CP ,Z2)' If ~ is the reduced Hopf bundle,

~ E K( CPOO,Z(2»2' ( ~ X2 and ~2(~) = 2~ + (2 and so

~2((2Q-l) = t 4q- 2 mod 2. But

~2(t4q-2} = 24q-2t4q-2 + (4q_2)24q-lt4q-l mod K( CPco'Z(2»aQ_l'

and so ~2((4Q-2 _ (2q_l)(4q -l) = 2 4q-2((4q -2 _ (2q_l)(4q -l)

mod K( CPco'Z(2})aQ_l' So in the notation used in deflnlng $4q-

~2(~2q-l) = 22q-lr:2q-l + ... " + u
aq

-
4

+ u
aq

:
2

mod K( Cpoo,Z(2) )aq-1

where u
aq

-
4

= t 4q- 2 - (2q_l)(4Q -1, u
aq

-
2

= (2q_l)(4q-l ~ x~q-l.

Therefore $4q(X~q-l) = x~q-l and the 1ndeterm1nacy i5 zero.

s
Let t = 2 s - 1 + u where 0 ~ u < 25

. Then sq2UX~ -1 = x;
1n H*( Cpco,Z2) uslng Sq2X2 = x~ and the Cartan formula.

Lemma 3.1 co -t
(a) In H*(CP ,Z2)' x 2

2 co -t 2u
(b) In H* (1: CP ,Z2)' (x 2 ) = Sq "( r: -1·· ."(,(X2 )·

2
8

2
9

Lemma 3.1 1mplies that 1: r Cpn 15 2-atomic of degree 1 for

all r ~ 0 and 1 ~ n ~ co; of course it 1s only when n = 2 9
- 1

that th1s does not follow from the action of the Steenrod

algebra.

Recall that H*(SU,Z2) = ~(X3'X5"'.'X2n-l"") and

H*(Sp,Z2) = A(X3'X7' ... 'X4n_l' ... )' exterior algebras on

primitive generators.
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Lemma 3.2 (a) In H*(SU,Z2)' ~ x = [x +1 +0] where d 1s
2

s
2

s
-1 2

s
-1

2a decomposable element in the image of 5q .

Proof The inclusion i: !Cpoo
~ SU induces a homomorphism

00i*: H*(SU,Z2) ~ H*(!CP ,Z2) wh1ch restrlcts to an isomorphism

i*: PH*(SU,Z2) ~ H*(! Cpoo,Z2)' This determines the action of

the Steenrod algebra and of ~4k by Lemma 3.1 and naturality,

The inclusion j: Sp ~ SU induces isomorphisms

4s-1 45-1 2
j*: PH (5U,Z2) ~ PH (SP,Z2)' As Sq is zero on H*(SP,Z2)

Byit follows that ~ SX S = X
2S

+ 1 _
1

in H*(5p,ZZ)'
2 2-1

consider1ng the definitions of ~ and 8 on H*(Sp,Zz)' It is
2

S
2

8

clear that 8 and ~ s coincide.
2

9
2

1 .Comment9 Zu
One can write XZt+ 1 = Sq ~ ~ -1" '~4x3 in

2
9

2
9

H*(SU,Z2)' where for example one chooses the primitive class x
15

to represent ~8~4X3. In H*(Sp,ZZ)' there 15 no amblgulty in

- 2u
wr1t1ng x2t+ 1 = Sq 82s82s-1' .. 8'X3 where t = 1 mod 2.

2. The operator 8 rather than ~ has been evaluated in
2

9
2

9

H*(5p,Z2) because in the next sect10n we will pass to loop

space9 and the Indetermlnacy of ~ 19 there too large.
2 5

3. Lemma 3.2 and comment 1 above imply tha~ Sp and Sp(n) are

2-atomlc of degree 1. They Imply also that SU 19 weakly

2-atomic.

Lemma 3.3 The operator tinduces an isomorphism
2

s

~ s
2
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2 00Proof The inclusion k: Z CP ~ BSU giving

2 00k*: H*{BSU,Z2) ~ H*{t CP ,Z2) induces an 1somorphism

k*: QH*{BSU,Z2) ~ H*(t 2CpOO,Z2).

Comments

2u
x 2t+2 = Sq ~ ( -1 ... ~4x4 provided that this is interpreted as

2
s

2
5

for H*{SU,Z2) above.

2. It fellows that BSU(n) i8 2-atomic and BSU 1s weakly

2-atomic. 5Sy considering the power maps ~ : BSU ~ asu one sees

that BSU 15 not 2-atemlc.

Finally in this 5ect1on, we give a calculation illustrating

difficulties assoclated with Cartan formulae. Same details

about H*(nG,Z2) for G = G2 and F 4 can be found in section 5.

Lemma 3.4 Let G be the exceptional Lie greup G2 er F 4 , and

x 2 E H2 {OG,Z2) the generato~. Then

-2 -2 - 88 4 (x2 ) = ~4{x2) = za E H (OG,Z2) ~ Z2 whlch 15

-2indecomposable; ~4(x2) = O.

Proof We can choose ~ E K{OG,Z(2))2 with ~ ~ x 2 and

~2(t) = 2( + (2. So ~2((2) = 4(2 + 4(3 + (4 0 Now (4 ~ 2z
8

Then

~2«(~) = 4(~ + 4(; + 2ua mod K(OG,Z(2))10. Therefore

-2 2 3 4 6 3 4
8 4 (x2 ) = zso Also ~ (4(2-6(2) = 2 (4(2-6 (2) mod K(OG,Z(2})10

giving ~2(t~) = 4t~ + 2(2t;-3t~) + 14US mod K(OG'Z(2))10. Thus

In all cases the 1ndeterminacy 15

zero.
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4. The atomicity of nSU(n) and OSp(m)

In the notation of section 2, N(5U(n))2i ~ Z(2)'

1 ~ i ~ n - 1, generated by x2i say, and 15 zero otherwise.

2
i

Let x . EH (OSU(n),Z2) represent x'i'
2~ 2

2t ix2t € H (05U(n)'Z2) correspond1ng to X2t where 2t = 2 + 2u,

i2u < 2 such that x 2t = 2u­
Sq x l'

2

Proposition 4.1 Let f: OSU(n) ~ nSU(n) be a map.

(a) If f*: N(SU(n))2 Q Z2 ~ N(SU(n))2 9 Z2 is an isomorphism,

then f i5 a mod 2 homotopy equ1valence.

(b) If f*: N(SU(n»2 Q Z2 ~ N(SU(n)2 Q Z2 is trivial, then

(f*)t: R*(nSU(n)'Z2) ~ H*(nSU(n)'Z2) is trivial where

2 t - 1 < n ~ 2 t .

Proof The inclusion nSU(n) ~ nsu = BU induces a homotopy

equivalence of (2n-2) skeletons and SU = Cpoo x BSU. Therefore

we can use Lemma 3.3 to evaluate cohomology operations in

H*(nSU(n),Z2) through the appropriate range. By Lemma 2.6,

n > 2.

f*: N(SU(n)2k Q Z2 ~ N(SU(n»2k Q 2 2 1s an isomorphism when

k = 1 if and only if it is an isomorphism when k = 2 whenever

Us1ng Lemma 3.3 it follows that f*: N(SU(n» Q 2
2

~

N(SU(n» 9 Z2 is either trivial or an isomorphism for all n.

Thus by Proposition 2.2, f*: R*(nSU(n)'Z2) ~ H*(oSU(n)'Z2) 1s

either an isomorphism er is nilpetent. Part (a) now follows

fram Whitehead's theorem. Fer part (b), we have r*x2 = O.

Assume as inductive hypothese5 that (f*)UX2s = 0 for 25 < 2U+1

where 1 ~ u < t. But f*X
2U

+1 = P(X2 ,X4 ,·· .'X
2u

+1_
2

) and so

(f*){U+l)x = O. The choice cf x
2i

ensures that
2u +1



It follows that(f*}(U+1)X
2S

= 0 for 25 < 2u +2.

(f*)t: H*(OSU(n)'Z2) ~ H*(OSU(n},Z2) is trivial by Carollary

2.4. This complete5 the proof of Proposition 4.1.

Ta complete the proof cf Theorem 1.1(c) one considers

18

in place of {X 2 ,X 4 '·· "X2 (n-l)}' ~(ck) = rCk _ i 9 ci where

2Co = 1. So 1*(c 1+1) = (c i) and 1*(C i ) = 0 otherwise.
2 2

t-l- _ 2 t - 1
Therefore (1*) C t-l = (cl) ~ O. Therefore OSU(n) i9

2

2-atom1c of degree t.

In the symplect1c case N(Sp(m»4i_2 ~ Z(2) for 1 ~ i ~ m

and 1s zero otherwise.

Proposition 4.2 OSp(m) 1s 2-atomic of degree 1.

Proof The suspension homomorphlsm 0: H*(Sp·(m),z(2» ~

*-1H (osp(m),z(2» induces an isomorphism 0: QH*(Sp(m),z(2» ~

*-1
PR (OSp(m),Z(2» ~ N(5p(m». Thus we can choose primitive

classes {x
2

,x
S

, ... ,X4m- 2 } to represent a basis of N(Sp(m». By

2u -Lemma 3.2(b), X2t = Sq ~ 8 _1 ... 84X2 with zero indeterminacy,
2 8 28

where t E 1 mod 2. The result follows again applylng

Proposition 2.2 and Corollary 2.4.
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5. The atomicity of the exceptional Lie groups

The sources of the information listed below are [2,15] and

particularly [12] combined w1th elementary Hopf algebra

calculations. Notations are explained at the end of the list.

(a) G2 : N(G}2i ~ Z(2} for 1 ~ 1 and 5 and is zero otherwise.

2-
In H*(OG 2 ,ZZ}' Sq za = x 10 ·

otherwise,

~ Z(2} for 1 = 1,5,7 and 11 and 1s zero

2- 4-
In H*(OF 4 ,Z2}' Sq za = x 10 ' Sq x 10 = x 14 and

otherw1se.

otherwise.

zero otherwise.

Z(2} for 1 = l,4,5,7,S and 11 and 1s zero

2- 4-
In H*(OE S ,Z2}' Sq xe ~ x 10 ' Sq x 10 = x 14 '

s- 4- -6 2-Sq x 14 ~ x 22 ' Sq X s ~ x 2 ~ 0, Sq x 16 ~ x Sx 10 .

2(2) for 1 = 1,5,7,9,11,13 and 17 and 15 zero

4- S-
In H*{OE7 ,Z2}' Sq x 10 ~ x 14 , Sq x 10 ~·xlS'

S- 4- 16-Sq x 14 = x 22 ' Sq x 22 = x 26 ' Sq x 18 = x 34 and

2- -8Sq x
14

= x
2

~ o.

(e) ES: N(E 8 )2i ~ Z(2) for 1 = 1,7,11,13,17,19,23 and 29 and 1s

8- 4-In H*{OE a ,Z2)' Sq x 14 = x 22 ' Sq x 22 = x 26 '

4- 8- 2- -8 2-
Sq X 34 = x 3e ' Sq x 38 ~ x 46 ' Sq x 14 = x 2 ~ 0, Sq z32 = x 34

2-
and Sq zS6 = x SS '

21
We chocse classes x Z1 E H (OG,Z{2}) to represent a basis

cf N(G) as befare. With two. exceptions, for Hopf algebraic

reasons, we can choase x 21 to be primitive in H*(OG'Z{2}). The

exceptions are Xs and x 16 in H*(OE 6 ,Z{2}); these are chosen so

that x 2 , xe and X16 generate a sub-Hopf algebra of H*(OE S 'Z(2»'

- - -2 -2 - - -2-2[9]. Then ~(X8) = x 2 9 Xz and ~(X16) = xe Q xe + X2Xa Q x 2
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= 0 mod 2 and z32

In H*(OG,Z(2)) with G

16
In H*(OE S ,Z(2))' x 2

-1 4
and z56 = 2 x 14 ·

4 -1 4= G2 or F4 , x 2 = 0 mod 2 and Zs ~ 2 x 2 .

-1 16 4
= 2 x 2 ' h 14 ~ 0 mod 2

Proposition 5.1 Then G is 2-atomic

of degree 1.

Proof Assume first that f: OG ~ OG 1s given Inducing the

2 2identity homomorphism f*: H (OG,Z2) ~ H (OG,Z2)' We check that

f*X21 = x2i for each i. If G = G2 or F 4 , 1t fellows that

f*zS = zs and so 1n these cases f*x10 ~ X10 and when G = F4 ,

Therefore f: OG ~ OG with G = G2

or F 4 1s a homotopy equivalence us1ng Proposition 2.2(a).

If G = E
7

, 1t is suffic1ent to check that r*x10 = X10 .

- -5 2- 12= EX 10 + ox2 . . But Sq x 10 = 0 as PH (OE 7 ,Z2) = 0 and

2-5 -6Sq X
2

2 X
2

~ 0 and so 0 = O. 6- 2 4- -sAs Sq x 10 ~ Sq Sq x
10

2 X
2

~ 0,

f*X10 = x 10'

equivalence.

Hence f: OE7 ~ OE 7 i8 a mod 2 homotopy

proof for ES'

= Es' It 15 suff1cIent to show that f*X14 = x14 .

-7 4- 18
EX 14 + OX 2 · But Sq x 14 E PH (OEs ,Z2) = 0 and

2- -SBut Sq x 14 = x 2 and so

When G

Now f*x14 =

4-7 -9Sq x 2 = x 2 ~ 0, so f*X 14 ~ EX14 .

f*X14 = X14 which completes the

Now suppose that f*: N(G)2 Q 2 2 ~ N(G)2 Q Z2 is

trivial. One can argue as above and establish that f*X
21

= O.

As a variant, cons1der g = 1 + f: OG ~ OG.

so g*x2i = x2I 1n all cases. But If x2t is a lowest

dimensional element with f*x2t = w2t ~ 0, g*x2t = x 2t + w2t '



which is a contradiction. So f*x2i = 0 in all cases and by

Corollary 2.4, f*: H*(OG,Z2) ~ H*(OG,Z2) is trivial.

21

Cornments 1. The proof of Proposition 5.1 establishes Theorem

1.2(a) as weIl as Theorem 1.1(a). The only properties of

f: OG ~ OG used 1n the proof are that f* E !(G).

2. Let X be as in the final sentence of paragraph 2 of the

introduction. One can establish the equivalence of definitions

mentioned there using an argument similar to that of the final

part of the proof of Proposition 5.1. The key fact i5 that 1f

2n 2nf*: H (X,Z) ~ H (X,Z) i5 not nilpotent, there exists W ~ 0
p p

in H2n (X,Z ) such that (ft)*w = w. Alternatively ane can use
p

results from [16] for suitable X.

Proposition 5.2 OE S 1s 2-atomic of degree 3.

Proof Let f : OES ~ OE6 ·satisfy f*x = x 2 ·2

f*x - + -4 which implies by (c) above= Xs EX 2 ,
S

2i = 10,14 and 22. For dimensional reasons

We show first that

that f*x = x for
. 21 u

- - -4f*x
S

= OX
S

+ €X2 "

So 0 = 1.

Let f*x16
-2 YX2X14

-3- -4- -S= CCX16 + axs + + ox
2

x
10 + 8X

2
Xa + {.X2 '

Apply1ng 2 deduce that f* (X
S
X

1
'
0

) -2-Sq , we = cxxSx 10 + ....X2x 14 +

-4- -4- As f*(XSX10 ) - -4- it follows thatox 2x 10 + 8x2x 10 · = (xS+Ex 2 )x10 ,

1 , 0 and 0 8. Therefore f*X
16

- + a
16

wherecx = .... = € :: + ::J x
16

0'16 15 decomposable. So by Proposition 2 "2 , f*: H* (OE s ' Z2) ~

H*(OE S ,Z2) 19 an lsomorph1sm and f 1s a mod 2 homotopy

equ1valence.

In a s1milar manner it follows that 1f r*x
2

= 0, then

-4f*XS = €X 2 ' f*x 2i = 0 for 21 = 10,14,22 and in the expression

for f*x 16 above, ~ = 0, ~ = 0 and € = 0 + 8. Thus

2- 2--S(f*) x 2i = 0, 21 • 16 and (f*) x 16 = Bex
2

. So by Corollary



2.4, (f*)3: H*(OE S ,Z2) ~ H*(OE S ,Z2) 1s zero.

Conversely we consider the loop power maps on OE S '

22

Then

1*(X21 )

2*(X16 )

- -4= 0 for i = 2,10,14 and 22, l*(Xa} ~ x 2 and

:: x~. So (l*)2(X16 ) ~ X~ ~ 0, which establishes

Then Hopf algebraic

Proposition 5.2 and Theorem l.l(b).

The proof of Theorem 1.2(b) involves further calculations

2and the fact that x 10 = 0 mod 2.

considerations imply that

4- - -6 -1 2
(Cl) Sq x 16 ~ x ax 2 + z20' where %20 ~ 2 x 10 and

8­Sq x 16
-3

:c X +a

B = E.

- -4As in the proof of Proposition 5.2, let f*xa :: x a + EX2 and

- -2 -3- -4- -Sso f*X 16 = x 16 + ßXa + ÖX 2X 10 + 8X 2Xa + ~X2' where E = 0 + 8.

Applying sq4 we deduce that E = 8 and 0 ~ O. So

2 -4- -S ef*X16 :: x I6 + ßXe + EX
2

XS + ~X2' Applying 5q , it follows that

-4 - -2 -4-So if f*xs = xe + x 2 ' then f*x16 = x16 + xe + x 2x e

where l: 0 1 . In all f*x2i
- otherwise.:: or cases :: x

2i

5imilar computations show that if f*x -4 then= x
2

,
8

f*X16
-2 + ~x8 and if f*x 0 then f*x16

-8 where ~ 0:: X ::I = ~x2 = or8 2 8

1; ~*X22 motor the other generators.

Considering the power maps on nE s ' one checks that

f*X21 :: ~*(X2i) foi all i where 0 Sr< 8 in each case described

above and (~)*(X2i) :: (Q*)(X2i ). Suppose that

f*X2i = (~*)(X2i) for all i where 0 S s < 8 and let t satisfy

t > 0, s + t = 8. Then (f+!)*(X2i ) :: 0 for all i and so by

Coro11ary 2.4, (f+1)~: ~*(nES'Z2) ~ R*(nE S 'Z2) 1s trivial.

Therefore on H*(nE6 ,Z2)' f* :: (f+~)* = (f + (!+~»*

I

= ((f+1) + ~)* = (Q+~)* = ~*.

Theorem 1. 2 (b) .

Th1s completes the proof of
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6. The proof of Theorem 1.3

Let G = G(SU) x G(Sp) x G(G 2 } x ... x G(E a} where G(SU) is

a product of special unitary graups

SU(n
1

) x Su(n2 ) x ... x SU(ns )' etc, and the exceptional Lie

groups are ordered by increasing rank. Let f: OG ~ OG induce

an isomorphism f*: N{G)2 9 Z2 ~ N(G)2 ~ Z2 which as usual we can

assume to be the identity.

to represent a basis of

We chaose elements in H*(OG,Z(2»

N(G) = N(SU(n1 )} S N(SU(n2 » $ ••• $ N(E a ) as was done

prev1ously. Then f·: N(G)2i 9 Z2 ~ N(G)2i Q Z2 can be

represented by a matrix A2i which we must show is non singular,

if it 1s not trivial, and then by iteration we can assume that

it 18 the identity matrix.

The arguments of Proposition 4.2, Proposition 5.1 and

Proposition 5.2, and in the unitary case Comment 1 following

Lemma 2.6 together with Proposition 4.1 ensure that f H, the

composltlon

i f p
OG(H) ~ OG ~ OG ~ OG(H)

induces an isomorphism f H: N(G(H». Q Z2 ~ N(G(H». Q Z2' where

H 1s SU,Sp, ... ,or Es, i 18 the inclusion and p the projection.

It fellows that, after iteration, each A 2i has identlty sub­

matrices symmetrically positianed about the main diagonal. So

to show that each A2i i5 non singular it 19 sufficlent to show

that 1t 1s triangular.

Now N(G)4 = N(G(5U»4 and using Lemma 3.3 and the comments

which follow, one deduces that the restrlctlon af f*,

f*: N(G(SU»* Q ~2 ~ N(G). Q Z2

1s the standard 1nclusian; in dimensions Sand 16 one uses in

addition that 8 and 16 dimensional indecomposable elements of
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2H*(nE s ,Z2) are not in the image of Sq. Similarly when H is

Sp, G
2

or F
4

, the restrietion of f*

f*: N(G(H))* Q Z2 ~ N(G). 9 2 2

i5 the Inclusion.

Let H = ES. Then N(G)S = N(G(5U))a m N(G(Es))s'

Therefore Aa i8 a triangular matrix and so non singular.

can assume that f*: N(G(E 6 ))2i 9 Z2 ~ N(G)2i Q 2
2

15 an

incluslon except possibly when 21 = 16,

So we

If H = E7 , N(G)10 = N(G(SU))10 S N(G(SP))10 ~ N(G(G 2 ))lO

$ N(G(F 4 ))lO e N(G(E6 ))lO

and so A10 1s triangular and therefore non singular. Therefore

we can assume that the restrietion f*: N(G(E7 )). Q Z2

~ N(G). 9 2 2 1s the lncluslon. A slmilar argument app11es for

H = Es considerlng first N(G(E S ))14 and the concluslon 15 that

f*: N(G(E S ))* 9 Z2 ~ N(G(Es ))* 9 Z2 1s the standard incluslon.

F1nally N(G)16 = N(G(SU))16 $ N(G(E 6 ))l6 and so Al6 is

triangular and

.f*: ~(G(E6))* 9 2 2 ~ N(G)* Q 2 2 19 the inclusian.

Thus f*: N(G). 9 Z2 ~ N(G.) Q Z2 1s the identity and the

theorem follows fram Proposition 2.2(a).
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