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Unstable Atomicity and Loop Spéces on Lie Groups

J.R. Hubbuck

1. A (k-1)-connected space X with Hk(X,Zp) Y Zp has been
defined to be p—atomic if any map f: X =+ X which induces an
isomorphism f_: Hk(x,zp) - Hk(x,zp) must induce an isomorphism
f,.: H*(X,Zp) - H*(%,Zp). We describe such X as being C.P.
p-atomic (Cohen, P;ferson) and consider some variants of the
definition. C.P. p-atomicity is an indecomposability condition
on a space implying for example that the space has no non
trivial meod p homotopy retracts.

We define a space X to be weakly p-atomic 1f any map
f: X 2 X is either a mod p homotopy equivalence or for each n,
fo: ﬁn(x,zp) - ﬁn(x;zp) is nilpotent under composition. If X

L4

is a (k-1)-connected CW complex of finite type, Hk(x,zé) ~ ZP
k > 1 and X is either an H-space or a co-H-space (in particular,
a suspension), then X 1s C.P. p-atomic i1f and only if it is
weakly p—-atomic (see comment 2 following Proposition 5.1).

The spaces considered satisfy a stronger condition. A
gspace X is defined to be p-atomic if any map f: X 5 X is either
a mod p homotopy equivalence or f: H*(X,Zp) - H*(X,Zp) is
nilpotent. Not every weakly p-atomic space 1s p-atomic, for
example, BSU 1is weakly 2-~atomic but 1s not 2-atomic (see comment
2 following Lemma 3.3).

A p-atomic spaée X is defined to be p-atomic of degree t 1f

whenever f,: H,(X,z) » H,(X,Z,) is nilpotent, (£,)° = 0 but

there exists some such f with (f*)t_1 = 0, t > 0, The author
does not know 1f every p-atomic space 1s p-atomic of finlte

degree. The significance of the degree t will become apparent

below,



We consider the 2-atomicity of (G where G is a l-connected

simple Lie group.

Theorem 1.1

(a) NG is 2-atomic of degree 1 when G = Sp(m),Gz,F4,E7 or Ea.

(b) QES is 2-atomic of degree 3.

(c) QSU(n) is 2-atomic of degree t, where 271 o< 2%,

The spinor groups are not mentioned in Theorem 1.1 because
NSpin(7) and NSpin(8) decompose as products at the prime 2 in a
non trivial manner; 1t has not been determined 1f QSpin(g) is
2-atomic for gq 2 9f

For the exceptional Lie groups, we prove a more precise
result than Theorem 1.1. Let QG be 2-atomic of degree t. We
consider the homomorphism of Abelian groups

«: [0G,0G] -+ Alg.Hom, {H*(NG,2,),H*(AG,Z,))

Ay

where in [0NG,NG] loop multiplication induces the group structure

and Alg.HomA {H*(QG,Zz),H*(OG,Zz)} has the corresponding
2

Abelian group addition derived from the Hopf algebra H*(OG,ZQ).

In addition (f+g).h = £.h + g.h in [NG,NG] and «(f.g) =

x(g).x{f) where . denotes composition. Let n: NG - QG be
defined by n(x) = xn = (J..{((x)x)...) for n e Z and let Z be the
subgroup of [NG,NG] generated by 1. If n is ocdd, n is a mod 2

homotopy equivalence and if n is even, «(n) is nilpotent (in

reduced cohomology).' In particular a(gt) = 0 and x(Z) ~ 2
2

where s < t. If f ¢ [0G,NG], then 2°f = 2°.f and so 2° is the

S

exponent of the Abelian group «(G) = Image «. We will show

that s = t and «x(G) >~ Z £ when G 'is an exceptional Lie group.
2

We set L(G) = R.Alg.HomA {H*(OG,Zz),H*(OG,Zz)}, the group
. 2



of those ring homomorphisms over the Steenrod algebra (acting

unstably)} which arise as ring homomorphisms of H*(NG,Z y) to

(2
itself. More explicitly let

R.Alg.Hom.(H*(OG,Zz),H*(QG,ZZ)}

= (Alg.Hom.{H*(NG,2Z

)),H*(QG,Z(Z))}} Q 22

(2
which is a subgroup of Alg.Hom.{H*(nG,Zz),H*(nG,Zz)} as

H*(QG,ZZ) = H*(OG,Z(Z)) 2 22 and let f(G) be those homomorphisms
defined over the Steenrod algebra. There is an inclusion of
groups

«(G) © L(G) c Alg.Hom, (H*(0G,Z,),H*(NG,Z,)}.

By

The theorem which follows determines f(G) and shows that

x(G) = L(G).

Theorem 1.2

LAY E ] =
(a) Z(G) =~ 22 generated by 1* when G G2,F4,E7.or EB'

(b) I(EG) & ZB generated by 1*.

It is also true that x(Sp{m)) = I{Sp(m}) = 22

generated by 1* but this will not be proved in this paper. For

SU(n) the situation has not been resolved; I(SU(n)) 1is a finite

Abelian group of exponent 2t where 2t-1 < n < 2t and the
subgroup generated by 1* is isomorphic to 2 My For small
2
values of n one can check that «(SU(n)) = L(SU(n)) =~ 2 £
2

A different generalization of atomicity at p has been given
in {3]. Let G be a compact, simply connected Lie group and
assume that no Spin(g) factor with q > 6 occurs when G is

expressed as a product of simple Lie groups.

Theorem 1.3 Let £f: NG -+ OG induce an isomorphism

b HZ(QG'ZZ) - H2(QG,22). Then £ is a mod 2 homotopy

equivalencé.



Corollaryvy 1.4 (Proposition 2.1 of [3])

{a) Let g: G -+ G induce an isomorphism g,: HS(G,ZZ) - HS(G’ZZ)'
Then g is a mod 2 homotopy equivalence.

(b) Let h: BG - BG induce an isomorphism

h,: H4(BG,22) - H4(BG,22). Then h 1s a mod 2 homotopy
equivalence.
Corollary 1.4 contains little that is new. However it

demonstrates that one cannot expect that Theorems 1.1 and 1.3
will extend to odd primes except for a comparatively small
number of Lie groups; at odd primes 'most' Lie groups decompose
as products. Results on the indecomposability of BG at each
prime, where G has the Lie multiplication, can be found in [11].

The more subtle questions associated with OG'being stably
2-atomic when G is a simple Lie group [6,14,5] will not be
considered in this paper although some of the calculations will
be used 1n a subsequent note establishing 2-atomicity in certain
cases.

Five sections follow this introduction. The next section
is purely algebraic; Corollary 2.5 shows that being 2-atomic or
weakly 2-atomic are equivalent conditions on 0G. In section 3
complex K-theory is used to evaluate certain secondary
cohomology operatiéns and to define an unstable operation for
complexes without homology 2-torsion derived from the exterior

' power operator 22

in K-theory. Theorems 1.1 and 1.2 are proved
in sections 4 and 5 and the proof of Theorem 1.3 is completed in
section 6.

The flirst draft of this note was wriltten at the Max Planck

Institute for Mathematics in Bonn and was revised at the
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2. The algebra H*(nG,z(z))

Let M be a finite dimensional strictly positively graded

free 2 -module, where 2(2) is the ring of integers localized

(2)
at the prime 2, and let ¢t: M + M be a graded homomorphism

inducing an isomorphism t: M & 22 - M 8 22. The following

lemma is used repeatedly.

Lemma 2.1 For each v 2 1, there exists n(v) such that

r=t""V). M@z 4 M@z _ is the identity.
2V 2V

Proof Let M = EMi, 1 €1 € «x. The set of isomorphisms

si: Mi 2 22 - Mi 2 22 form a finite group, of exponent B8(1i)

t8(1)8(2)...3(0()

say. So s = is the identity homomorphism on

v-1
Me 22. It follows that r = 52 is the identity on M & Z v
2
Let G be a compact l-connected Lie group. We recall that
H*(G,Z) 1s torsion free and 1s concentrated in even degrees

[21. Alsc H*(0NG,Q) is a polynomial algebra on r = rank(G)

generators. We define N(G) = {QH*(OG,Z(z))}/Torsion, the free

part of the indecomposable quotlent module of H'(OG,Z(z)).
Then N = N(G) is a free 2(2)-module and a map f£f: QG =+ NG induces

a homomorphism f*: N - N.

Let (x ,xé} be a basils for N and choose

1 1
1,X2,...

representative classes {xl,xz,...,xr} in H*(NG,2Z Then

(2))

considering H*(OG,Z(Z)) as a subring of H*(NG,Q) under

coefficient inclusion, {xl,x ..,xr} 1s a set of polynomial

2"
generators of H*(NG,Q).

Proposition 2.2

{({a) Let £f*: N @ 22 - N @ 22 be an isomorphism. Then



£*>: H‘(QG,Zz) - H*(QG,ZZ) is an isomorphism.
{(b) Let £*: N @ Z2 4+ N @ 22 be trivial. Then

f£*: ﬁ*(nG,Zz) -5 E*(QG,Zz) is nilpotent.

Proof Each element of Hzm(QG,Z )} can be expressed uniquely

(2)
as a polynomial in {xl,xz,...,xr} with coefficients in Q. As
Hzm(OG,Z(2)) is finite dimensional, there exists k = k(m) such
that for any w € Hzm(nG,z(z)), zk-lw'is a polynomial in
{xl,xz,...,xr} with coefficients in 2(2).

To prove (a), it is sufficient to show that for each n,

some lterate of f£*: Hzn(nG,Zz) -+ Hzn(nG,Z is an isomorphism,

5)
As N2 2 22 = HZ(QG,ZQ), f* 1s an isomorphism for n = 1. We

assume that f* is an isomorphism in dimensions less than 2m.

Setting N = ZHzi(nG,Z 1 <£3i<m in Lemma 2.1, after

(2))'

iteration we can assume that f*: ZH21(QG,Z k) -+ £H21(QG,Z k)’
2 2

1 £ 1 <m, is the identity homomorphism. Let W € Hzm(nG,Zz)

have representative w ¢ Hzm(nG,Z(z)) which 1s decomposable as a

class in H*(0G,Q). Let w = p(xl,xz,...,xr) where
2k-1p(x1,x2,...,xr) is a polynomial with 2(2) coefficients. If
k
* =
dim x1 < 2m, then £ x1 xi + 2 zi and so
f*w = p(f*xl,f*xz,...,f*xr) = p(xl,xz,...,xr) + 2w' where

w' € Hzm(nG,Z - Thus f*w = w. So to show that

(2)!
2m 2m ,
f*: H (nG,Zz) -+ H (QG,Zz) is an isomorphism, we need Jjust

consider f*ES where X € Hzm(nG,Z(2)). We apply Lemma 2.1 with
M=Nand v = 1. So f*x = x_ + d + 2y where d_can be
s s s ] ]

chosen to be decomposable in H*(NG,Q). Thus f*as =-ES and
(f*)z'}_:s = Es' This completes the proof of (a).

To prove (b), we first establish a lemma using the

techniques of [9]. This relies upon H*{(0OG,2Z )) being a free

(2



2(2)-modu1e of finite type and H*(QG,Q) being a connected,

bi-associative, bi-commutative Hopf algebra.

Lemma 2.3 Let w & H2™(nG,z )) with m > 0.  Then there exists

(2

an integer r and classes w i E D i such that
2 2

p=2%w+ 2", ¢ 27, 4 L+ w e PHY(NG,Z
2

B*(nG,z

(2))!
where D = E*(nG,z(z)).ﬁ*(nG,z(z)). (2)),

k factors. If w is decomposable in H*(N1G,Q), then p = 0.

Proof In the notations which follow, subscripts denote the

filtrations in which elements lie in

_ ~2m 2m 2m _ ..2m
0 = Ds c Ds—l C ... C D1 = H (nG,Z(z)). Let
2*: H*(QG,Z(Z)) - H*(OG,Z(Z)) be the homomorphism induced from
the loop squaring map on 0OG. So 2*(w) = 2w + 2v2 + v2 for some
classes v, and v.
Suppose in general that 2*{(u) = 2u + 2vs + x, 8 > 1. Then
* =
2 (u+XVS) 2(u+XVs) + 2vs+1 + v2s + x for some classes vs+1‘and
V,g Where x = (1-2°"1)7! ana so by repeating this step we can
* =
write 2 (u+zs) 2(u+zs) + Z,g + x for some zg and Zygt Now we
know that 2*(w) = 2w + Z,, where z, = 2v2 + v? and so
2*(2w) = 2w + 222. So there exists w2 with

g*(2w+w2) = 2(2w+w2) + z The step can be repeated after

4
multiplying by 2. Since Dim = 0, we obtain 2*(p) = p for some
p as in the statement of the lemma. Then by Proposition 2.1(c)
of [9], p is primitive in H*(QG,Z(Z)).

If w is decomposable in H*knG,Q), then so is p. But

PH* (NG,Q) - QH*(NG,Q) is an isomorphism and so p = 0.
We can now complete the proof of Proposition 2.2(b).

After finite iteration, it can be assumed that f*xi = 0 mod 2,



1 <41i<r. As inductive hypothesis we assume that

£*: H?'(n6,z,) + sH?1(06,2,), 1 < 1 < m is trivial. To
complete the proof, we show that if w e Hzm(nG,Zz), then

f*w = 0. It is sufficient to consider W with representative

W E Hzm(QG,Z )) which 1s decomposable in H*{0G,Q). By Lemma

(2
2.3, there exists an equation

r r-lw r--2w 2m

2°w = =2 2 2 4 " - w2r in H (QG,Z(z)).
21
The induction hypothesis implies that f*w i = 0 mod 2
2
r r+1 = _
Therefore £*(2 " w) = 0 mod 2 and so f*w = 0. This

completes the proof of Proposition 2.2.
We record a corollary of the method of proof of Proposition

2.2{(b). The set {xl,x ,xr} is as described before the

2,--.

statement of Proposition 2.2 and as usual x, is the mod 2

i

reduction of xi.

Corollary 2.4 If f*§i =0, 1<1i<r, then

£*: ﬁ*(QG,Zz) - H*(ﬁG,Zz)-is trivial.

Corollary 2.5 Let £f: NG -4 NG be a map. Then

£ ﬁ*(nG,Zz) -+ H*(QG.ZQ) is nilpotent if and only if
£*: Hzn(ne,zzy - ﬁzn(nG,zz) is nilpotent for each n.

We require a lemma concerning algebra morphisms of the Hopf
algebra H*(nSU(n),zz) for n 2 3. For further information on

the Hopf algebra structure, the reader is referred to (10].

Lemma 2.6 Let f£: QASU(n) - OSU(n) be a map with n > 2, Then
£*>: N(SU(n))2 e 22 - N(SU(n))2 a Z2 is an isomorphism if and

only if f£=*>: N(SU(n))4 e 22 - N(SU(n))4 @ Z, is an isomorphism.

2



i0

Proof Let x. € H2(QSU(n),Z

2 (2)) be a generator and

X, € H4(QSU(n),Z(2)) be chosen sc that
p(x,) = x,81 + x.,9%X, + 18x, . Let s be determined by

4 4 272 4 s S+l
2% <n -1« 25+1. Then xg 2 0 mod 2 but xg = 0 mod 2.

25
An elementary coalgebra calculation shows that X, = 0 mod 2 and
2s+1 -1 2s+1 s
X, = 0 mod 4. Let w = 2 xz + X, Then
_ 2s+2
w £ PH (nsuv{n).,2,.) >~ QH (QsU(n),2.) = 0. Therefore
2 2s+2 2
2-2x25+1 v 2752 & HS(asU(n).Z,. )
2 4 A

Now if f*x2 = 0 mod 2, 1t follows that f*x4 = exg mod 2 as

(2)). 1f f*x4 = exg mod 2, 1t follows

-2 2s+1
that f*x2 = 0 mod 2 as 2 xz g H*(QSU(n),Z

2° X, # H*(OSU(n),Z

(2))- This

establishes the lemma.

Comments 1. In gection 6 a generalization of Lemma 2.6 will be

used. Let G = SU(nl) X SU(nz) X .. X SU(ns) and £: NG 4 OG
induce an isomorphism £*: N(G)2 7] 22 - N(G)2 a8 22. Then
f*. N(G)4 "] 22 -+ N(G)4 *] Z2 1s an isomorphism. This can be

proved using the same technique as in the proof of Lemma 2.6.
It can be assumed that in dimension 2, £* is the identity. If

f* mod 2 is not an isomorphism in dimension 4, there exists

_o(1) L (2)
4 T Xy T X, 4

polynemial in 2 dimensional elements in H4(OG,22) and where x

w

+ ... + xit) with f*w, mod 2 equal to a

(1)
4
arises from SU(mi), m, < m, £ ... & my . Let 3 be
determined by 2% ¢ mt -1 < 2S+1. One considers f*w where

1 1

S+
w=2"2(x{t)?

S+ s S
+...+(xét))2 b o+ 2_1{(xi1))2 +...+(xit))2 }.

2. Using Corollary 2.5, Lemma 2.6 and known results on

spherical classes in NSU(n) and QSp(m), 1t can now be deduced



that these spaces are 2-atomic, c.f. [4]. We will use a
different proof to obtain tighter control and because the

argument used may have some independent interest.

11
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5. An unstable secondary cohomology operation

All spaces in this section are assumed to have the homotopy
type of connected CW-complexes of finite type and to have no
2-torsion in integral homology. The main objective is to

define an operator

E4k: H4k(x,22) - Hak(x,zz)/{Image Sq4k + Image qu},
which satisfies two properties: E4k i1s natural and coincides
with the secondary operation associated with the Adem relation

4k-1

Sq1(3q4k) + Sq4k(8q1) + qu(Sq ) = 0 on H4k(:209m,z

2)'
We use complex K-theory and first recall [7,8] how to

define the secondary operation

8,,: Ker sq*® n ker sq**7% ¢ w¥Y(x,z,) + W2V (x,2,) /Inage sq**
1 4k 4k 1

by such methods associated with Sq (Sq ) + Sq (Sq”) +

qusql(Sq4k_2) = 0.

An element of qu(x,zz) will be denoted by §2q and a
representative class in qu(x,z(z)) by xzq. A representative
for x2q in Ko(x,z{z))2q will be uzq where

0 0 _ 29
K (X,Z{z))zq/K (X,Z(,z))zq_'_1 H (X,Z{z)), as X has no homology
2-torsion. We write x, -+ X, , u,_ = x,_ and u,_ -+ X,_ to

29 2q’ “2q 2q 2q 2q
describe this situation and for notational convenience assume

0
that K (1‘!)2(14.‘,’],:4_1 = 0. Theorem 6.5 of [1] implies that

2 = g-1 g-2k+1 g-2k A

v, 2qu2q+2 Vogez*e 2 Voqra-2+2 Voqrak
0 -

for classes v,, € K (X,z(z))21 where if v2q+2i ? Xoqe2i’ > (3.1)
sq?l%, =%

T Xag 2q+21° )

Let §2q e Ker sq*? n ker sq**"2.  Thus
= 1 = "
Voqrak-2 = 2Yagrak-2 * Vagrak 29 Vagrak T Vagears SO (3:1)
can be rewritten,
2 = o4 g-2k+2 g-2k+1
Y (qu) 2 u2q + + 2 u2q+4k—2 + 2 u2q+4k'
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The operator 8 K is defined by B4k(x2q) = where

X2q+4k'

u2q+4k - x2q+4k' It is necegsary to check that e4k(x2q) is
k

well defined modulo the image of Sq4 ; the indeterminacy arises

4

from different choices for qu representing x2q' _ Then 84k is

additive, stable and 1f £: ¥ -+ X is a map of spaces of the type
* ks *ag
being considered, f [94k(x2q)] c B4k(f xzq).
The definition of

k 2gq+4k

Ker Sq4 C qu(x,zz) -+ H / {Image Sq4k + Image qu}

Pax’
assoclated with the Adem relation Sql(Sq4k) + Sq4k(Sq1) +

Sq2(8q4k-1) = 0 1s gimilar but a little more subtle. Let

£ Xer Sq4k. Again we consider {(3.1). If

= 0 as sq%sq®"?% = 0.  so .

qu

— 2
Vograk-2 ~ Fageak-2 ST Fogigr-2

there exists w such that u +

2q+4k 2q+4k-2 -~ Vag+ak-2

_ Ag+2k-1
2q+ak-2) = 2 Yog+dk-2°

Wogq+dk

satisfies wz(u So (3.1) can be

rewritten

2 q g-2k+1 g-2k+1
P (uzq) = 2 u2q + ... + 2 u2q+4k—2 + 2

- 2q+2k—1

Yog+4k

where wz(u u We define

2q+4k-2) 2g+4k-2°

x2q+4k. One checks that
k

¢4k(§2q) is well defined modulo the image of Sq4 . again arising

from different choices of x,_, and modulo the image of qu,

2q
arising from different choices of u (if Sq4k_4§ = 0)
2g+4k-2 2gq )

Again ¢4k 1s additive and stable and if £f: ¥ 4 X is a map of

PakFagq) = Foqiar WDETE Unoik

spaces f*[¢4k§2q] c ¢4k(f*§2q).

We can modify the definitions of both 8 and b4y to obtain

4k

an unstable operator by following a similar procedure using the
exterior power xz in place of wz. We will just use E4k

corresponding to ¢ To utilize the notations above, this is

4k’
most easily defined simply by replacing mz(u4k) by
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2 2 _ .2
Y (u4k) - u4k = —-2X (u4k) iIn the definition of ¢4k' If X is a

suspension, and E4k are identical, but in general E4k is

b4k

neither additive nor stable; it i1s natural.
' The remainder of this section is concerned with evaluating

these operations. First we consider ¢4q(§§q-l) where Ez is the

generator of H2(CPm,22). If § is the reduced Hopf bundle,

L e K(CP®,zZ E + X, and w2(¥) = 2t + E% and so

p2 (297l = g4972 pog 2. But

p2(£49-2) o ,4d-2;4q-2 4q-1.49-1 |4 vicp® 7

4g-2 _

3 + (4g-2)2

1y = 249724972 | (pq-1)gt9Y

and so w2 (E (2g-1)g %9~

mod K(CP®,Z So in the notation used in defining ®4q -

(2))8g-1"

2,.2g-1, _ ,.2g-1_2g-1 ) _ 0
W (E } = 2 3 + ...+ qu-4 + qu—z mod K{(CP,

4q-1

2(2) 8g-1

- rd4g-2 _ - = (D 4g9-1 =49-1
where ug. _, =t (2q-1)¢ Uga_p = (29-1)E - X, T

8g-

=2g-1

Therefore ¢4q(x xiq-1

5 ) = Xy and the indeterminacy is zero.

s
Let t = 2° - 1 + u where 0 < u < 2°. Then Sq2u§§ - i;
2

%. = %° and the Cartan formula.

= o0
in H*(CP ,22) using Sqg 2 2

Lemma 3.1 (a) In H*(CP™,Z,), %, = Sa°"¢ _o

2 2 28 2
(b) In H*(chPm,Zz). (ig) = quuE 13

29 23—1

Lemma 3.1 implies that zTcP® is 2-atomic of degree 1 for
all r 2 0and 1 £ n £ w; of course it i1s only when n = 2% -1
that this does not follow from the action of the Steenrod

algebra.

Recall that H*(SU,Zz) = A(X ...) and

3’5" Fan-1-

H*(Sp,2Z,) = A(X

3,x7,...,x4n_1,...),

primitive generators.

exterior algebras on
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Lemma 3.2 (a) In H*(SU,Z,), ¢ X = [x +d] where d is

25 251 25741
a decomposable element in the image of qu.

(b) In H*(Sp,Z,), ® _X __. = X .
2 oS pS-1 oS+l _,

Proof The inclusion i: ZCP® 5 SU induces a homomorphism

i*: H*(SU,Zz) - H*(ZCPm,Zz) which restricts to an isomorphism
i*: PH*(SU,Z,) - H*(3CP”,Z,). This determines the action of
the Steenrod algebra and of LA by Lemma 3.1 and naturality.

The inclusion j: Sp < SU induces isomorphisms

L pH‘B'l(su,zz) - PH45-1(Sp,22). As Sq° is zero on H*(Sp,Z,)
it follows that ¢ _X = X in H*(sSp.Z,). By
2s 25_1 2s+1_1 2
considering the definitions of ¢ s and B s on H*(Sp,zz), it is
2 2

clear that 8 and ¢ coincide.

s s

2 2

- _ 2u —

Comments 1. One can write x2t+1 = Sg ¢23¢23_1...¢4x3 in

H'(SU,ZZ), where for example one chooses the primitive class 215

to represent ¢8¢4§ In H*(Sp,zz), there is no ambiguity in

3
_ 21 oed =
writing Xopr1 Sg 925925_1...84x3 where t = 1 mod 2.
2. The operator B8 s rather than ¢ s has been evaluated in
2 2

H*(Sp,zz) because in the next section we will pass to loop

spaces and the indeterminacy of ¢ s is there too large.

2
3. Lemma 3.2 and comment l.above imply that Sp and Sp(n) are
2-atomic of degree 1. They imply also that SU is weakly

2-atomic.

Lemma 3.3 The operator E s induces an isomorphism
2

s s+1

£ : Q% (BSU,Z.) - QH® (BSU,Z.), s 2 2.
23 2 2
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Proof The inclusion k: £2CP° 5 BSU giving
k*. H*(BSU,ZZ) - H*(EZCPm,Zz) induces an isomorphism

k*: QH*(BSU,Z,) - ﬁ*(zchm,zz).

/Xos o1, We may write

- =
Commgnts 1. If H (BSU,ZZ) 22[34,x6 8

- 2u
X =8Sg % _b __
2t+2 23 25 1

for H*(SU,Zz) above.

...E4§4 provided that this is interpreted as

2. It follows that BSU(n) is 2-atomic and BSU is weakly
2-atomic. By considering the power maps gsz BSU -+ BSU one sees
that BSU is not 2-atomic.

Finally in this section, we give a calculation illustrating
difficulties associated with Cartan formulae. Some detalls

about H*(DG,ZZ) for G = 62 and F4 can be found in section 5.

Lemma 3.4 Let G be the exceptional Lie group G2 or F and

4!
§2 £ H2(nG,22) the generator. Then

=2, _ =2 = 8 .
84(x2) = ¢4(x2) =2y € H (nG,Zz) s 22 which is

indecomposable; 54(§§) = 0.

(2))2 with | = X, and

w2(E) = 2 + £2.  So w2(E?) = 4E2 + 4% + 4. Now £t 5 2z

Procof We can choose £ & K(NG,2Z

8

where z_ = Z_. So E4 = 2u_ + u Then

8 8 8

2,.2. _ .2 3

10°

mod K(0G,2Z Therefore

8 (2))10'

-2 - 2 3 4, _ .6 3_..4
84(x2) = 2z Also y (452—652) = 2 (4E2 652) mod K(QG,Z

8"’ (2))10

2,.2 2 3 4 -
giving vy (Ez) 4£2 + 2(252—352) + 14u8 mod K(QG’Z(z))lo' Thus

¢4(§§) = 28 and 54(§§) = 0. In all cases the indeterminacy is

zZero.
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4. The atomicity of NSU(n) and QSp{(m)

In the notation of section 2, N(SU(n))21 oY 2(2),

1 i< n-1, generated by xéi say, and is zero otherwise.
i

Let x i £ H2 (QSU(n),Za) represent x'

2 2

e We choose

XZt € Hzt(OSU(n),Zz) corresponding to xét where 2t = 2i + 2u,

2u < 2% such that X, , = quui .
2t 21

Proposition 4.1 Let £: ASU(n) = OSU(n) be a map.

(a) If £*: N(SU(n)), ® Z, =+ N(SU(n)}, &8 Z, is an isomorphism,
2 2

2

then £ is a mod 2 homotopy equivalence.

2

(b) If £*: N(SU(n))2 ] 22 2
(f*)t: ﬁ*(QSU(n),Z2) - ﬁ*(nSU(n),Zz) is trivial where

2t 1 ¢ n ¢ 2t

" N(SU(n})2 @ Z_ is trivial, then

Proof The inclusion QSU(n) <4 QSU = BU induces a homotopy
equivalence of (2n-2) skeletons and BU = cP® x BsU. Therefore
"we can use Lemma 3.3 to evaluate cohomology operations in
H*(nSUkn),Zz) through the appropriate range. By Lemma 2.6,
£*. N(SU(n))zk 2 22 - N(SU(n))2k aQ 22 is an isomorphism when

k =1 if and only 1f it 1s an isomorphism when k = 2 whenever

n> 2. Using Lemma 3.3 it follows that f*: N(SU(n)) @ Z. -

2

N(SU(n)) @ Z, is either trivial or an isomorphism for all n.

2
Thus by Proposition 2.2, f*: H*(0SU(n),Z,) -+ H*(aSU(n),Z,) is
either an isomorphism or is nilpotent. Part (a) now follows
from Whitehead's theorenm. For part (b), we have f*§2 = 0.

0 for 2s < 2u+1

Assume as inductive hypotheses that (f*)u§25

*y = X x
where 1 $ u < %, But £ x2u+1 kp(xz,x4,...,x

} and so
2u+1_2

){u+1)§
2

(£* = 0. The choice of X ensures that

u+1 21
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(f*)(u+1)§28 = 0 for 2s < 2u+2‘ It follows that

(f*)t: A*(nsuU(n),2Z,) -+ H*(QSU(n),2Z2,) is trivial by Corocllary
2 2

2.4. This completes the proof of Proposition 4.1.

To complete the proof of Theorem 1.1{(c) one considers

gt'lz NsSU(n) - NSU(n). Taking Chern classes {cl,cz,....cn_l}
in place of {xz,x4,...,x2(n_1)}, ¢(ck) = zck-i e ci where
- - = 2 = _ .
co = 1. So g*(c21+1) = (czi) and 2 (Ci) = 0 otherwise.
t-1= — 2ttt
Therefore (2%*) c -1 = (cl) = 0. Therefore OSU(n) 1is

2

2-atomic of degree t.
In the symplectlic case N(Sp(m))4i_2 L 2(2) for 1 £ 1i < m

and is zero otherwise.

Proposition 4.2 NSp(m) is 2-atomic of degree 1.

Proof The suspension homomorphism o: ﬁ*(Sp(m),Z(z)) -

*_.

H 1(QSp(m),Z(2)) induces an isomorphism o: QH*(Sp(m),Z(z)) -

PHt_l(OSp(m).Z(z)) > N(Sp(m)). Thus we can choose primitive

classes {xz,xe,...,x4m_2} to represent a baslis of N(Sp{(m)). By
- _ 2u —

Lemma 3.2(b), Koy = Sq 328828_1...84x2 with zero indeterminacy,

where t = 1 mod 2. The result follows again applving

Proposition 2.2 and Corollary 2.4.
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5. The atomicity of the exceptional Lie groups

The sources of the information listed below are [2,15] and
particularly [12] combined with elementary Hopf algebra
calculations. Notatlions are explained at the end of the list.

{a) GZ: N(G)Zi ~ 2(2) for 1 = 1 and 5 and is zero otherwise.

2 —
] =
In H (QGz,Zz), Sg za xlo.

(b) F4: N(G)2i ~ 2(2) for 1 = 1,5,7 and 11 and is zero

) 2= - 4— —

x = =
otherwise. In H (OF4,22), Sg 28 xlo, Sq xlo x14 and
sq®%,, = %
qd X, 22°

(c) Es: N(Es)21 X Z(z) for 1 = 1,4,5,7,8 and 11 and 1s zero
2— - 4— -
* = =
otherwise. In H (QEG’ZZ)’ Sg xa X1o’ Sg xlo x14,
8= - 4= -6 2— _- —
Sg Xia Koo Sq Xg X, = 0, Sg X6 XgX19"
{d) E7: N(E.?)21 ¥ 2(2) for 1 =1,5,7,9,11,13 and 17 and is zero
4— - 8— -
* .
otherwise. In H (QET'ZZ)' Sq xlo = x14, Sq xlo = xla,
8— _ = 4— - 16— _ =
Sq x14 = x22' Sq x22 = x26' Sq xla = xa4 and
2— _ =8
Sq Rig = %y # 0.
{e) Ea: N(EB)21 ~ 2(2) for 1 =1,7,11,13,17,19,23 and 29 and is
8— - 4— -
* = =
zero otherwise. In H (QEB’Z2)' Sq xl4 x22, Sq x22 x26,
4= - 8= - 2— -8 2— =
Sq Ry, = Xggr SA Xyg T Kyge SA XK, = Xy 2 0, Sqz5, = Xy,
2 =
and Sq Zgg = Xgg°
We choose classes x2i € HZi(OG,Z(z)) to represent a basis
of N(G) as before. With two exceptions, for Hopf algebraic
reasons, we can choose 321 to be primitive in H*(nG,z(z)). The
exceptions are xa and»x16 in H*(OEG,Z(z)); these are chosen so
I - x
that Xy Xg and X6 generate a sub-Hopf algebra of H (QES'Z(z))'
- _ =2 =2 —— - = - =2 =2
[9]. Then ¢(x8) = X, 2 X, and ¢(x16) Xg ] Xg + xzx8 2 x2
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=2 —-2= —4 - - - - -4 _
+ x2 & x2xB + x2 [+ x8 + x8 a x2 + ex2 1) x2, we choose £ = 0.

4_ -
4’ %o T 0 mod 2 and 28 2 "X

16 -1_16 4

x2 = 0 mod 2 and 232 = 2 x2 ’ x14

In H*(NG,Z )) with G = G

(2 2

In H*(QE = 0 mod 2

g 22y

_ a—1_4
and 256 = 2 x14.

Proposition 5.1 Let G = G2,F4,E7 or EB. Then G is 2-atomic

of degree 1.

Proof Assume first that f: QG -+ NG 1s given inducing the

identity homomorphism f£*: Hz(QG,Zz) - HZ(OG,ZZ). We check that
*yx = x =

£ x21 x21 for each i. If G 62 or F4, it follows that

f*z8 = zg and so in these cases f*xlo = X35 and when G = F4,
* 5z = r *xy = ke . -

f xl4 x14 and £ x22 xzz. Therefore £: OG = NG with G G2

or F4 is a homotopy equivalence using Proposition 2.2(a).

If G = 37, it is sufficient to check that f£*x = X, ..

10 10
Now f£*X = gX + 8%2 - But Sq2§ = 0 as Ple(nE Z.) = 0 and
10 10 2° 10 7'72
2=5 -6 _ 6= 2. 4— L =8
Sq X, X, * 0 and so & = 0. As Sq X409 = Sq " S8q %50 X, = 0,
x5 =% B
f X0 X0 Hence f£: nE7 - nE7 is a mod 2 homotopy
equivalence.
When G = Eg, it is sufficient to show that f*§14 = §14.
-  _ .= =7 4— 18 =
Now f*xl4 = exX,, + 6x2. But Sg X4 € PH (QEB,Za) 0 and
4=7 =9 - 2— _ =8
Sgq X, = X, = 0, so f*x14 EXyy- But Sg X4 = %, and so
*x3F =
£ X4 Xia which completes the proof for EB‘
Now suppose that f£*: N(G)2 a 22 - N(G)2 a 22 is
trivial. One can argue as above and establish that f*§2i = Q.
As a variant, consider g = 1 + £: QG 4 NG. Then g*§2 = §2 and
x5 =% b7
SO g¥*H, X4 in all cases. But if Xop is a lowest
»yr =I- x = x w
dimensional element with f Koy Wop ® 0, g*x2t Kpp + Wops
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which is a contradiction. So f*izi = 0 in all cases and by

Corollary 2.4, f*: H*(QG,ZZ) - H*(QG,ZZ) i1s trivial.

Comments 1. The proof of Proposition 5.1 establishes Theorem
l1.2({a} as well as Theorem 1.1(a). The only properties of

f: 0G - NG used in the proof are that f* e L(G).

2. Let X be as 1n the final seﬁtence of paragraph 2 of the
introduction. One can establish the equivalence of definitions
mentioned there using an argument similar to that of the final
part of the proof of Proposition 5.1. The key fact is that if

£x . Hzn(x,zp) 4 g2n

(X,Zp) is not nilpotent, there exists w = 0
in Hzn(x,zp) such that (ft)*ﬁ = W. Alternatively one can use

results from [16] for suitable X.

Proposition 5.2 OE6 is 2-atomic of degree 3.

Proof Let f: AE, + NE_ satisfy f*iz = 22. We show first that

— — —4 : b

* = =

f Xgq Xg + EX, which implies by (c)} above that ffx21 X, for
4

2i = 10,14 and 22. For dimensional reasons f*xX, = &X, + eiz.

8 8
g and Sq4§g =0. Sos

l
[

But Sq4§8 = X

— — -2 —_ —
]
Let f X1 = %Xy * BXg + YR X,
Applying qu. we deduce that f*(iailb) = aisilo + ¥X
4

—_ - = = —_4 -
2x10. As f*(xaxlo) = (x8+ex2)xlo,
x =1, ¥ =0and € = & + 9. Therefore f"x16 = X8
316 is decomposable. So by Proposition 2.2, f£*: H*(QEG,ZZ) -

H*(QEG,ZZ) 1s an isomorphism and £ is a mod 2 homotopy

—3— —d— -8
+ 8RR g+ BX Ky + LX,.

2—
2X14

—d -
6x2x10 + B8x it follows that

+ 316 where

equivalence.

In a similar manner it follows that if f*ﬁz = 0, then

f*§8 = EE;, f*x,, = 0 for 2i = 10,14,22 and in the expression

for f*§16 above, x = 0, ¥ =0 and € = & + 8. Thus

= Beia. So by Corecllary

o
»”
(£*) 7%, 6 2

b -
§ = 0, 21 = 16 and (f*) x1
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2.4, (£%)°: H*(AEg.Z,) = H*(0E.,Z,) is zero.

5)

Conversely we consider the loop power maps on NE Then

=0 for 1 = 2,10,14 and 22, 2*(¥g) = x4

2
- 32 xy 2= - =8 .
xle) xa. So (2%*) (xls) x2 2 0, which establishes

Proposition 5.2 and Theorem 1.1l(b).

6"

(=
2 (x21) and

2% (

The proof of Theorem 1.2(b) involves further calculations

and the fact that x?o = 0 mod 2. Then Hopf algebraic
considerations imply that
4— = =6 - -1_2
1 =
{c') Sg X6 xsx2 + Z,0" where 220 = 2 %50 and
8— =3 —2—4 - =8
Sg x16 xB + xBx2 + x8x2.
As in the proof of Proposition 5.2, let £*¥X, = X, + EE; and
- - -2 =3= —4— -8
* - =
so f x16 X6 + Bxa + 6x2x10 + 8x2x8 + sz, where ¢ & + B8,
Applying Sq4 we deduce that € = 8 and &8 = 0. So
- - =2 —4— =8 . 8
*
b X16 = X156 + Bx8 + EX,Xg + sz. Applying Sq , 1t follows that
B =ec. So if £*X_, = X, + Xo, then £*E . = X . + X + X%
: 8 8 2 16 16 8 278
=8 - = _ = s = = =8
+ sz where ( Q or 1, and if f*x8 = Xg then £ X6 = X4 + sz
where { = 0 or 1. In all cases f*§2i = §21 otherwise.
Similar computations show that if f*ia = Eg, then
= =2 =8 = - =8
* = x *x -
f X, 6 Xg + sz and if £ x8 = 0 then £ Xig = sz where [ 0 or
1; f*x,, = 0 for the other generators.

22

Considering the power maps on OE one checks that

6'
f*§21 = ;*(EZi) for all 1 where 0 < r < 8 in each case described

above and (Q)‘(ﬁzi) = (0*)(X Suppose that

21
f*§21 = (g*)(EZI) for all i where 0 < s < 8 and let t satisfy
t >0, s+t =28. Then (f+§)*(§21) = 0 for all i and so by
Corollary 2.4, (f+t)*: H*(nEs,zz) -+ H*(DEG,ZZ) is trivial.
Therefore on H*(OEG,Zz), £* = (f+8)* = (f + (t+r))*

= ((f+t) + r)* = (g;g)* = r*, This completes the proof of

Theorem 1.2(b).
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6., The proof of Theorem 1.3

Let G = G({(SU) x G(Sp) «x G(Gz) X ooa X G(EB) where G(SU) is
a product of special unitary groups
SU(nl) X SU(nz) X ... X SU(nS), etc, and the exceptional Lie
groups are ordered by increasing rank. Let £: NG 4 G induce
an isomorphism f*: N(G), 8 Z2, = N(G)2 9 Z, which as usual we can

2 2 2

assume to be the identity. We choose elements in H*(QG,Z )

(2)
to represent a basis of
N(G) = N(SU(nl)) ] N(SU(nz)) 8 ... 8 N(ES) as was done
previously. Then f£*: N(G)21 "] Z2 - N(G)2i a 22 can be
represented by a matrix Azi which we must show 1s non singular,
if it is not trivial, and then by iteration we can assume that
it is the identity matrix.

The arguments of Proposition 4.2, Proposition 5.1 and
Proposition 5.2, and in the unitary case Comment 1 following

Lemma 2.6 together with Proposition 4.1 ensure that fH' the

composition

i b p
NG(H) — NG y OG y NG(H)

Induces an isomorphism fﬁ: N(G(H)), & Z, =+ N(G(H)), & Z where

2 2’

H is SU,Sp,...,or E i is the inclusion and p the projection.

g8
It follows that, after iteratlon, each A21 has identity sub-
matrices symmetrically positioned about the main diagonal. So
to show that each A21 i1s non singular it is sufficient to show
that it 1s triangular.

Now N(G)4 = N(G(SU))4 and using Lemma 3.3 and the comments
which follow, one deduces that the restriction of f*,

f*: N(G(SU})), Q ;2

is the standard inclusion; in dimensions 8 and 16 one uses in

» N(G), @ 2,

addition that 8 and 16 dimensional indecomposable elements of
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H*(QES,Zz) are not in the image of qu. Similarly when H is

Sp, G, or F the restriction of £*

2 4’

£%: N(G(H)), @ Z, + N(G), @ Z,
is the inclusion. '

Let H = E;.  Then N(G)g = N(G(SU)), @ N(G(Eg)),.

Therefore AB is a triangular matrix and so non singular. So we

*® .
can assume that f£*: N(G(EG))zi 2 22 - N(G)21 a 22 is an

inclusion except possibly when 2i = 16.

If H = E7, N(G)10 = N(G(SU))10 @ N(G(Sp))10 ] N(G(G2))10
@ N(G(F4))10 e N(G{Es))lo
and so Alo is triangular and therefore non singular. Therefore

we can assume that the restriction f£*: N(G(E7))* ] Z2

- N(G), ®© 22 is the inclusion. A similar argument applies for

H = E8 considering first N(G(Ea))14 and the conclusion is that

£*: N(G(Ea)), Q@ Z, - N(G(Ea)), e 22 is the standard inclusion.

2

Finally N(G)16 = N(G(SU))16 ] N(G(Es))16 and so AIS is

" triangular and

£*. N(G(Es))* 2 Z, 9 N(G), @ 22 is the inclusion.

2

Thus f*: N(G), @ Z, -+ N(G,) 8 Z, is the identity and the

2 2
theorem follows from Proposition 2.2{(a).
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