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Introduction

Let 7 : X — C be a ruled surface over a smooth algebraic curve C, defined
over the complex number field C. Let ¢; € Num(X) and c; € HY(X,Z) = Z
be fixed. For any polarization L, denote the moduli space of rank-2 vec-
tor bundles stable with respect to L in the sense of Mumford-Takemoto by
My (c1,¢2). Stable 2-vector bundles over a ruled surface have been inves-
tigated by many authors; see, for example [T1], [T2], [H-S], [Q1]. Let us
mention that Takemoto [T1] showed that there is no rank-2 vector bundle
stable with respect to every polarization L in case that ¢;.f is odd (f is a
fiber of the ruled surface X). In this paper we shall study algebraic 2-vector
bundles over ruled surfaces, but we adopt another point of view: we shall
study moduli spaces of {algebraic) 2-vector bundles over a ruled surface X,
which are defined independent of any ample divisor (line bundle) on X, by
taking into account the special geometry of a ruled surface (see [B], [B-St1],
[B-St2] and also [Brl], [Br2], [W]).

In section 1 (put for the convenience of the reader) we present (see [B])
two numerical invariants d and r for a 2-vector bundle with fixed Chern
classes ¢, and ¢y and we define the set M(cy, ¢2,d, ) of isomorphism classes
of bundles with fixed invariants ¢;, ¢z, d, r. The integer d is given by the
splitting of the bundle on the general fibre and the integer r is given by
some normalization of the bundle. Recall that the set M(c;, ¢p, d, 7) carries a
natural structure of an algebraic variety (see [B], [B-St1], [B-St2]). In section



2 we study uniform vector bundles and we prove the existence of algebraic
vector bundles given by extensions of line bundles and which are not uniform.
In section 3 the main result gives necessary and sufficient conditions for the
non-emptiness of the space M(ey,co,d,r) and we apply this result to the
moduli space of stable bundles M, (cy, ¢z) in the last section.

1 Moduli spaces of rank-2 vector bundles

In this section we shall recall from ([B], [B-St1], [B-St2]) some basic notions
and facts.

The notations and the terminology are those of Hartshorne’s book [Hal.
Let C be a nonsingular curve of genus g over the complex number field and
let m : X—C be a ruled surface over C. We shall write X = P(£) where £ is
normalized. Let us denote by e the divisor on C corresponding to A% £ and
by e = —deg(e). We fix a point py € C and a fibre fy = 77'(py) of X. Let
Cs be a section of 7 such that Ox(Cp) = Ope)(1).

Any element of Num(X) & H2(X,Z) can be written aCy + bfy with
a, b € Z. We shall denote by O¢(1) the invertible sheaf associated to the
divisor pg on C. If L is an element of Pic(C) we shall write L = O¢ (k) ® Ly,
where Ly € Picy(C) and k = deg(L). We also denote by F(aCy + bfp) =
F® Ox(a) ® m*O¢(b) for any sheaf F on X and any a,b € Z.

Let E be an algebraic rank-2 vector bundle on X with fixed numerical
Chern classes ¢, = (o, 8) € HY(X,Z) X Z X Z, ¢ = v € HY(X,Z) & Z,
where o, 3,7 € Z.

Since the fibres of  are isomorphic to P! we can speak about the generic
splitting type of E and we have E|; & O;(d) @ O;(d) for a general fibre f,
where d < d, d+d = a. The integer d is the first numerical invariant of E.

The second numerical invariant is obtained by the following normaliza-
tion:

—r = inf{l| 3L € Pic(C),deg(L) =1, s.t.H*(X, E(—dCp) ® n*L) # 0}.

We shall denote by M(a, 8,7,d,7) or M{cy,cq,d,7) or M the set of iso-
morphism classes of algebraic rank-2 vector bundles on X with fixed Chern
classes ¢;, cg and invariants d and r.

With these notations we have the following result (see {B]):



Theorem 1 For every vector bundle E € M(cy, ce,d, 1) there exist Ly, Ly €
Pico(C) and Y C X a locally complete intersection of codimension 2 in X,
or the empty set, such that E i3 given by an extension

0—=O0x(dCy + 7 fo)@m* La—E—Ox ((ng +sfo)@m"Li®Iy—0, (1)

where ¢; = (o, 8) € Z X Z, =7€Z d+d =a,d>d, r+s =8,
l(cy,c0,d,7) := v+ a(de — 1) — Bd + 2dr — d%e = deg(Y) > 0.

Remark. By applying theorem 1 we can obtain the canonical extensions
used in [Brl], [Br2].

Indeed, let us suppose first that d > d. From the exact sequence (1) it
follows that

Oc(r) ® Ly = m, E(—dCy)
S0
Ox(rfo) ® n* Ly & 1w E(—dCy)
and
Ox(dCy + 7 fo) @ m* Ly & (m*m, E(—dCy))(dCy).

If d = d then, by applying 7, to the short exact sequence

0—=0x(rfo) @ m* L= E(—dCy)—Ox (sfo) @ 7Ly ® Iy —0
it follows the exact sequence

020c(r) @ Ly—=m, E(—dCy)—0c(s) ® L) ® Oc(—Z,)—0,

where Z; is an effective divisor on C' with the support 7(Y). With the
notation Z = n~!(Z;), by applying 7* (7 is a flat morphism) we obtain the
following commutative diagram with exact rows

0 — Ox(rfo) ® 7Ly —— E(—dCy) — Ox(sfo) @ 7*L1 @ Iy —0
Y id 7 P

0 — Ox(rfo) ®n*Ly — m*m E(—-dCy) — Ox(sfo)@m Ly @Iz —0



From the injectivity of ¢ we obtain the injectivity of ¢. Because of
Ox(sfo)@n*L) ® Iycz = Coker v = Coker ¢
we conclude.

Recall that a set M of vector bundles on a C—scheme X is called bounded
if there exists an algebraic C-scheme T and a vector bundle V on 7' x X such
that every E € M is isomorphic with V, = V|, x for some closed point ¢ € T'.

It is well-known (see [K]) that a bounded set of vector bundles has a
quotient structure of algebraic variety. For the next result see [B]:

Theorem 2 The set M(cy,co,d, 1) is bounded.

2 Uniform bundles
In this section we shall use the notations from section 1.

Definition 3 A 2-vector bundle F is called an uniform bundle if the splitting
type is preserved on all fibres of X.

Theorem 1 allows us to give a criterion for uniformness.

Lemma 4 Let f be a fibre of X and let us suppose that Iynscp = Of(—n).
Then E|; 2 Of(d+n) @ Os(d" — n).

Proof: We suppose that E|; = Of(a) @ O¢(a’), where @ > o' Then we have
a surjective morphism

E|;=0;d)e Iy ® 0y
in virtue of theorem 1. On the other hand, the restriction of the sequence
0=y —=0Ox—=0y—0
to f gives a surjective morphism
Iy @ O~ Iynpcy = Op(—n).

So, we obtain another surjective morphism
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Of(a) D O;(a')—)@,(d’ —n).

By using the inequalities @ > @' , d > d > d —n and the equality a +a =
d+d =aitfollows that a =d —nand a=d +n.

Corollary 5 E is an uniform bundle if and only if the set Y (from extension
(1)) is empty.

By means of corollary 5 the uniform bundles are given by extensions of line
bundles. It is naturally to ask if the converse is true. Unfortunately, this
question has a negative answer, as we shall see.

Proposition 6 On the rational ruled surface F, with ¢ > 1 there exist non-
uniform bundles given by extensions of line bundles.

For the proof we need some preparations.
Let E be a 2-vector bundle given by an extension

0=+ Fo>E-G-0, (2)

where F = Ox(aCy + 7 fo) ® ':T*L; , G =0x(aCo+5 fo)®n* Ly, (L, Ly €
Pico(C)) are line bundles on X. By means of theorem 1, E sits also in a
canonical extension (1). If a > a then E is obviously uniform. So, we shall
suppose that a < a'.

Lemma 7 With the above notations we have d < o'

Proof: Indeed, by the restriction of the sequence (2) to a general fibre f we
obtain a surjective morphism

Of(d) &%) Q,e(d’)——)@;(u').

If d > a, then it follows that d = a' which contradicts the inequalities
a<a,d>d (a+d =d+d).

Lemma 8 Ifd =a then E is uniform.

Proof: Let f be a fibre of X such that the splitting type of E; is different
from the generic splitting type of E. According to lemma 4
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E|; 2 Os(d+n)® Os(d —n),

where n > 0.
By the restriction of (2) to f we obtain a surjective morphism

Os(d+n) ® Os(d — n)=0;(d).
Because of d +n > d it follows d — n = d, contradiction.

Lemma 9 Let us suppose that g = 0 (i.e. X is rational). Ifd = a then
Ex2FadG.

Proof: Let us observe that we can suppose, without loss of generality, that

a=0,r =0 (by tensoring the sequences (1) and (2) with Ox(—aCo—7" fo)).
The sequences (1) and (2) become:

0

Ox(aCo + Bfo)

v

(1) 0— Ox(dCo + 7 fo) . E—Ox(dCo+sfo)® Iy — 0

Ox

with a > 0.
The computation of c(E) in (1') implies

deg(Y) =dd'e —ds—dr.

Now, d = o and we deduce, by means of lemma 8, that deg(Y) = 0 and
d =0, 50 s =0 (we supposed & > 0).

The morphism x = ¢ is non-zero, otherwise Oy (aCy + Bfo) C Ox
(which is a contradiction) so x is the multiplication by a A € C* and the
assertion follows.



In this moment, we are able to give the counter-example announced in
Proposition 6.
Proof of Proposition 6 : Let G be Ox(2C) and let F be Ox. Then:

dim H{G ) =e+1#£0.

For E given by an extension ¢ € Ext' (G, Qx), keeping the notations from
section 1, we have d < 2 (lemma 7) , d > d,d+d =2andr+s=0.
There are only two possibilities:
(@) d=2,d =0, which implies E = Oy & Ox(2C,) (lemma 9).
(b) d =d =1 and, in this case, in the canonical extension (1) of E, we have

deg(Y)=dde—ds—dr=e¢>1.

By applying corollary 5, all vector bundles given by non-zero extensions from
Ext!(G, Ox) are non-uniform.

3 Non-emptiness of moduli spaces

For a rank-2 vector bundle E, we shall denote by dg and rg the invariants
of F, when confusions may appear.

Theorem 10 M(cy, ¢z, d, ) is non-empty if and only if | := l(cy1, ¢2,d,7) > 0
and one of the following conditions holds:

(I) 2d> « or,

(IN2d=«, B-2r<g+l

Proof : We observe that if M # @ then, by means of the theorem 1, the
elements of M sit between 2-vector bundles given by extensions of type (1).
So, we conclude that M # @ if and only if in the extensions of type (1) there
are 2-vector bundles with dg = d and rg = 7.

It is obvious that all the vector bundles given by an extension of type (1)
have dg = d so we shall look for bundles with rp = r.

We shall fix Ly, Ly € Picg(C) and Y C X a locally complete intersection
(or the empty set) and we shall denote

Nl = O,\(dJCQ + Sfo) ®T|"L1

N2 = O}((dC{} + 'T'fo) ® ?T'Lg
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and [ = deg(Y').

Consider the spectral sequence of terms

EY = H?(X, Exti(Iy @ Ny, Np))
which converges to
Ext?*(Iy @ Ny, Ny).
We have
Ext®(Iy @ Ny, No) 2 No @ N7!and Ext'(Iy ® Ny, Ny) < Oy
But H?(X, N, ® N;') = 0 so the exact sequence of lower terms becomes
0— HY(X, Ny ® NI )—Ext! (Iy @ Ny, No)—H(Y, Oy)—0.

Now, by a result due to Serre (sce [O-S-S], Chap.1, 5, [Se]), any element
belonging to the group Extl(fy ® Ny, Ny) which has an invertible image in
H®(Y, Oy) defines an extension of the desired form with E a 2-vector bundle.

We put the sequence (1) under the equivalent form

0-2O0x—EB(—dCy) ® m* L' 5 0x((d — d)Co + (s — 1) fo) ® 7 (L) @ Iy =0
3)

where L =L, ®@ L;!, L' = Og(-r)® L3 and deg(L") = —r.

From the definition, it follows r < rp for every bundle £ given by an
extension (1). We distinguish three cases:
(I)d > d. In this case we shall prove that M is non-empty if and only if
[ > 0. To do this we prove that all vector bundles from extension (1) have
T =T.

We verify that for all L' € Pic(C) with deg(L') < 0 we have

HYE(—-dCy) @ m*(L" ® L')) = 0,
which is true because H(L') = 0 and
HO(O)(((C[' - d)C(] + (S - T)fg) & 7T*(L1 ® L2_1 ® L’) ® Iy) =0.

(II) a°. d=d,r > s. Then M is non-empty if and only if { > 0. The proof
runs like in the first case with the remark deg(Oc(s—7)® L ®L;'® L") < 0.
(II) v*. d = d,r < s. Then M is non-empty if and only if I > 0 and
f-2r<g+1L

Let us see first that the natural isomorphism
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M(2d,8,v,d,r)—M(0,5,1,0,7)
E—)E(-—(lCo)

allows us to suppose d = d = 0.
In this case, the sequence (3) becomes

05O0x—2E®@Ox(—rfo) @' Ly'2O0x((s —= 1) fo) ® * (L) ® Ly") ® Iyy—0.

The definition of the second invariant implies that r; = r if and only if
F :=7m.FE® Oc¢(—rpy) ® Ly' is normalised. E belong to an extension

0=0c—E = L0 (4)

where L = O¢((s —1)po) ® L1 ® L' @ Oc(—2;) with Z; an effective divisor
on C with support 7(Y) and card(Y) < deg(Z,) <1 = deg(Y).

According to a result of Nagata ([N] or [Ha) Ex.V.2.5) , if E' is normalised
, then

—deg(E'y =1 — s +deg(Z1) > —g

which proves "=>".

For "<=" we choose Y reduced, obtained by intersection between Cy and
! distinct fibres of X. In this case, Z; = n(Y), Y € Z = 7~ (Z)).

We have the following short exact sequence

0—)Iz—)fy—)[ycz—)0 (5)

and Zy = p1r+ ... +p , Z = fi + ...+ fi, where f; are distinct fibres,
0, = Ofl D..8 Of‘ , chz = Oh(—l) S ... Oj,(—l) .
So, the sequence (5) becomes

0—)Iz—>fy—)oh (-—1) G...P (9;‘(—1)—>0.

Tensoring by Ky ® N;' @ N; and taking the long cohomology sequence
we obtain an injective map:

H Ky @N;'@N QIz;)—H (Kxy ®N;'® N, @ Iy).

By dualizing, it follows that the natural map



Ext'(Iy ® Ny, Ny) & Ext'(I; ® Ny, Np) 2 Ext'(L, O¢)

is surjective, which shows that all bundles in (4) are coming from (1) by
applying m,.

According to [Ha] (Ex. V.2.5), there is a non-empty open set V C
Ext' (L, O¢) (don’t forget the condition s —r < g +1!) such that all ¢ € V
define normalised vector bundles on C.

Now, in Ext!(Iy ® Ny, N,) the set of vector bundles is a non-empty open
set U. It is clear that = (V)NU # @ (being open sets in Zariski topology),
so we conclude.

4 Moduli of stable bundles

There is an interesting relation between the moduli spaces M (¢, ¢, d, ) and
the Qin’s sets E¢(cy,c2) (see [Q1], [Q2] for precised definitions).

As in the proof of theorem 10, case (/) we conclude that if ¢ is a normal-
ized class reprezenting a non-empty wall of type (¢, ¢2) such that le(c1, c2) >
0 then, for (2d — «,2r — B) = ¢, E¢(c1,¢2) and M(ey,co,d, 1) are coinci-
dent modulo a factor of Picy(C) (Qin workes with first Chern class ¢; as an
element in Pic(X)).

This is a consequence of the following facts:

(@) l(er, ) = Uer, c0,d,7)

(b) condition (% < 0 implies 2d > «

(c) in the case 2d > « the bundles L, Ly and the set Y from the sequence
(1) are uniquely determined by E.

(d) if l{c1,co,d,7) > 0O then in the sequence (1) the bundles are given
only by non-trivial extensions.

In fact it is not hard to see that A (cy,co,d,7) # @ iff E¢{ci,c2) # 0 so,
by means of theorem 10, E¢(cy,c2) 5 @ if l¢(¢1,¢2) > 0. But we have even
more:

Corollary 11 Let X be a ruled surface different from P! x P! and let C
be a chamber of type (¢1,¢z) different from Cp. Then the moduli space
Me(er,c0) # 0.

Proof: From theorem 1.3.3 in [Q2] it follows that
Me(ey, e2) = (Me,(e1,¢2) — IZIE(—c)(Claf—'z)) IEIEC(% ca) ,
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where C; is the chamber lying above € and sharing with C a non-empty
common wall W and ¢ runs over all normalised classes representing W. By
the above considerations, it follows that E¢(ci,co) # 0 if i{cy, ¢o,d,7) > 0. Tt
remains the case l{c), ¢z, d,7) = 0 and it will be sufficient to prove that

hY(X, No @ N{1) i= dim HY(X, Na® N[') > 0

(see the proof of Theorem 10).
We have

N2 ® Nl_l = O)\’((d - dr)CO + (7‘ - S)fo) @ 7T*(L2 Y Ll_l) ,

whered—d =2d—a=vandr—s=2r—fF=v. But ( =uCy+vfyisa
normalized class and this implies that « > 0 and v < 0 (see [Q1]).

Because H%(X, N, ® N7') = 0, the Riemann-Roch Theorem gives the
equality:

x = (X, Na@ N[ —hY (X, No®@NTY) = 1~g+(1/2)((u+1) (20 —ue) +u(2—2g)).

But ¢% < 0 gives u(2v — ue) < 0; it follows 20 — ue < 0.
If g > 1, then obviously x < 0. If g =0, then e > 0 and

x=14+v+ (u/2)(2(v+1) —e(u+1)).

If e > 1, then x < 0. For e = 0 we get X = P' x P!, which we excluded.
Thus, in all cases x < 0; it follows R'(X, N, ® N') > 0 and the proof is
over.
Remark Let us suppose that X = P! x P! and that C is a chamber of
type (c1,cz) lying below a non-empty wall defined by a normalized class
¢ = uCy + vfy with v < —2. Then the same conclusion as in the above
corollary holds.

Indeed, in this case we have x = (1+v)(1 +u). Since v < —1, then again
x <0.
Acknowledgements. The second named author expresses his gratitude to the
Max-Planck-Institut fiir Mathematik Bonn for its hospitality during the final
stage of this work.
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