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RATIONAL MORAVA E-THEORY AND DSo

NEIL P. STRICKLAND AND PAUL R. TURNER

1. INTRODUCTION

The extended-power spectrum DSO has two coproducts and two products, whieh interact in an intrieate
way. Given an H 00 ring speetrum E, the resulting algebraie structurc on E" DSO gives a framework in whieh
to eneode information about power operations. (However, we will not study power operations in this paper).

Fix a prime p and an integer n > O. We shall take E to be a suitable eompleted and extended version of
E(n). To be more precise, we let W be the Witt ring of IFp '" and eonsider the following graded ring:

The generators Uk have degree 0, and U has degree -2. We take Uo = P and U n = 1 and Uk = 0 for
k > n. There is a map BP" 4 E" sending Vk to Uplt-1Uk. Using this, we define a functor from spectra to
E .. -modules by

E .. (X) =E.. (SB? BP.. (X).

The BP·-module E" is Landweber exact, so this functor is a homology theory, whieh we shall call Morava
E-theory. It is represented by a spectrum which we shall also eall E. It is known (by unpublished work of
Miller and Hopkins) that E is an E oo ring spectrum (but we shaH not use this fact).

In the present work, we discuss the ring L(DSO) obtained from EO(DSO) by making a eertain algebraie
extension and inverting p. Let A be the group (Qp/Zp)n, and A· = Hom(A, Qp/Zp) = Z~ its dual. Write
IIt for the Burnside semiring of A· , in other words the scmiring of isomorphism classes of finite sets with an
action of A·. Write F(IR, L) for the set of functions from IR to L. This has two coproduets and two products,
as folIows:

(1/J .. !)(X, Y) = f(X U Y)

(1/Jof)(X, Y) = f(X x Y)

(j x g){X) = L j(Y)j(Z)
X=YuZ

(/ • g){X) = j(X)g(X)

Our central resuIt is to give an isomorphism of L(DSO) with F (B, L), and show th at this respects aH strueture
in sight.

This result ean be seen as an introduetion (as weIl as teehnieal input) to the more delieate integral analysis
of EO(DSO) and power operations in E-theory as studied by Mike Hopkins, Matthew Ando aod the first
author. The slogan is that in going from L(X) to EO(X) one has to replaee the discrete group A by the
formal group assoeiated to EO(Cp OO

).

In the final section, we show how the same ideas give information about L(Um BGLm(k)) (where k is a
finite field) and EO(Um BU(m)).

The motivation for this paper, as weIl a number of ideas used here, are due to Mike Hopkins.
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2. THE EXTENDED POWER FUNCTOR

We shall work in the category of spectra 8 =8IR.oo defined in [4]. Write h8 for the associaLed homotopy
category, and W for the category of spectra X such that X is homotopy equivalent to a C\V spectrum.
Recall from [4] that there is an extended power funetor Dk : 8 -+ 8 defined by

(where X(k) is the k-fold externat smash power). We also write

D(X) = V Dm(X)
m~O

The basic properties of this functor are mostly stated in [1] ami proved in [4]. It is a continuous fu nctor I

and it preserves W (see [4, prop. VI.5.2 and following remarks]).
There are fairly obvious maps

V Dk(X) A DdY) -+ Dm(X V Y).
k+l=m

These assemble to give two maps

D(X A Y) -+ D(X) A D(Y)

D(X) A D(Y) -+ D(X V Y).

The latter is an isomorphism [1, Theorem 11.1.1].
If X is aspace, then [1, Corollary 1.2.2] states timt

Suppose tImt W is areal vector bundle over X with Thom spectrum X W . Write V for t.he Ek-equivariant
bundle over EEk corresponding to the usual representation of Ek on IRk . Then by [4, Section IX.5], we see
that

Note that the stable pinch map .6.: X -+ X V X gives rise to a map

Dm(X+) D.,.(A\ Dm(X+ V X+) ~ V Dk(X+) A D/(X+)
m=k+l

In particuIar, we have a component

If we let Ek,1 be the evident copy of Ek x EI in :Em , then this can be identified [1, Theorem 11.1.5] with the
transfer associated to the covering
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3. THE CATEOORY OF FINITE SETS

In this section, we discuss a different picture of DSO, as the classifying space of a category. We would
like to consider the category of all finite sets and bijective maps, but technical difficulties arise because this
is not small. One way ou t is to consider the full subcategory Co consisting of the sets !!. = {O, 1, ... ,H - I}.
Another way, which has some technical advantages, is to consider hereditarily finite sets. We define Vo = 0
and

Vo+l = Vo U power set of Vn

Then C is countable, and is equivalent to the category of all finite sets. It is also closed under products and
coproducts, as defined in axiomatic set theory. Of course, Co is equivalent to C.

Let BC be the nerve of C. This is homotopy equivalent. to Beo = Uk>O BEk, from which it follows easily
that -

DSO = EcoBC+

We define several functors and maps as follows (the last of them being thc diagonal):

U
x
Ö

(T = BU
Il = Bx
8 = Bö.

The map (T is weakly equivalent to a finite covering. 1'0 make this precisc, consider thc category

C' ={(X, Y) IY ~ X E C}.

We will often write a typical object of C' as (Y ~ X). The funetor U: C2 ---t C fadors as

C xC"; C' ~ C

K(X, Y) = (Y ~ X U Y) rr(Y ~ X) = X.

Note that K, is an equivalence and that Hrr: BC' ---t BC is a covering spacc (with 20 sheets over the n'th
component of BC). In fact, B1r is equivalent to the coproduct over k and I of the maps BEk x B~l ---t BEk+/.
We therefore get a stable transfer map (Brr)!: E co BC+ ---t ~co BC+. \Vrite

(j = (BU)! = (BK)-I 0 (B1rf: DSO = 1;00 BC+ -t I;oo BC~ = DSo t\ DSo.

Some of our maps can also be described in terms of the total extended power functor D. If we identify

DSO t\ DSo with D(SO V SO) and write SO ~ SO V SO ~ SO for the pinch and fold maps, we have (T = D(\7)
and e= D(Ö). The first of these claims is easy, and the second is essentially theorem 11.1.5 of [1]' We also
write X =D(-1): DSo ---t DSo. In summary, we have

(T = B(U) = D(\7) ;
{l=B(x):

(j = B(U)! = D(Ö) :
<5 = B(Ö):

DSO /\ DSo ---t DSo
DSO t\ DSo ---t DSo
DSO ---+ DSO t\ DSo
DSO ---t DSO 1\ DSO.

1'he maps (J" and Jl are commutativc, associative products. They both have units, given by the maps
SO ~ (BEo)+ -t DSO and SO ~ (BEd+ ---+ DSO respectively. The maps e and 8 are cocommutative,
coassociative coproducts. The counit for (j is the map DSo ---t SO whose restriction to (BEk )+ is null for
k > 0 and the identi ty for k = O. The counit for <5 is the map DSO -t SO whose restriction to (B ~k ) + is thc
obvious projection.

We next need to analyse various identities satisfied the above maps. In this discussion, the additive
structure of the stable category will not be relevant. Instead, we will consider certain kinds of ring objects
in which the addition is given by a map E t\ E ---t E.
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Definition 3.1. A coring spectrum is a spectrum E equipped with a cocommutative , coassociative, counital
eoproduet 5: E -* E 1\ E. For example , if X is aspace then ~OO(X+) is a coring in an obvious way. If E
and F are coring spectra, we ean make E 1\ F into a eoring spectrum, and it is the product of E and F in
the category of eoring spectra (cf. the ease of eoalgebras).

A semiring is the analogue of a ring in which we do not require additive inverses. A Hapf semiring
spectrum is a semiring in the category of coring spectra. Equivalent.ly, it is a speetrum E equipped with
a commutative, associative, eounital coproduct 0: E -* E 1\ E and two commutative, associative, unital
products u, J.-l: E 1\ E -* E. We require that u, J.l and the corresponding unit maps are all maps of eoring
spectra, aod also that the following distributivity diagram commutes:

1Ac .
E 1\ (E 1\ E) --------+-)' E 1\ E

6Alj
EI\EI\EI\E

I Atw;"A I j
EI\EI\EI\E~EI\E-O'--~~E

A Hopj cosemiring spectrum is the dual thing, with one product u aod two eoproduets 0,5 making the dual
diagram eommute. A Hopf coring spectrum is a Hopf cosemiring spectrum E equipped with an antipode
map x: E -* E, making the following diagram commute:

t1 0'

S -----+- E +-- E 1\ E

11 IXA'
S ..-- E -----+- E 1\ E

l 8

Here T} and € are the unit and counit for u and () respectively. Finally, a JIopj ring SpectT1Wl is a Hopf
semiring spectrum equipped with an antipode making t,he appropriate diagram commute.

Given enough [(ünneth isomorphisms, applying a (co)homology theory Lo a Hopf (co) ring spectrull1 gives
a Hopf ring. Ir E is a ring spectrum then 2;00 (000 E)+ is a Hopf ring spectrum, as is

This is (essentially) the usual souree of Hopf rings (see [5]).
We will want to prove that many diagrams involving DSO commute. We have three different techniques

for this.

(1) \Ve ean apply the functor D to a commutative diagram of maps of finite wedges of zero-spheres,
noting that D(V7-:::.1 SO) =D(SO)An. Note also timt a lllap from the k-rold wedge t.o the {-fold wedge
can be represented by a k X { matrix over Z = [SO, SO].

(2) We ean apply the funetor B to a diagram of eategories, which commutes up to natural equivalence.
(3) We can use the Mackey property of transfer maps. Recal! that a finite covering map f: X -* Y

gives rise to a stable transfer map t :y+ ~ X+. Moreover, a puHback square as shown on the left
(where fand g are finite eoverings) gives a commutative square as shown on the right:

v-X

f~ k
W--7Y
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Remark 3.1. We will use ad hoc methods to replace certain maps by equivalent maps which are finite
coverings. For a more systematic approach, we can define a quasi-covering to be a map f: X ----* Y which
behaves on homotopy groups (with any basepoint) as t,hough it were a finite covcring. We also require that
Y be semi-Iocally l-connected, so that honest coverings of Y can be c1assified in the usual way by subgroups
of fundamental groups. It follows that quasi-coverings are precisely maps of the form po g, where p is a
finite covering and 9 is a weak equivalence. Moreover, composites ami homotopy-pullbacks of quasi-coverings
are quasi-coverings. We can definc transfers for quasi-covcrings by f = Eoog-l 0 p!, and then the Mackey
property holds for homotopy pullbacks.

To apply this to spaces of the form BC, it is usefnl to note thc following fact.. Ir A ..L, C ? Bare functors
of groupoids, and 1J is the category of tripIes (A, B, fA ~ gB), then the following square is a homotopy
pu11back:

(A, B, u) I-------+- A

J
B

D(ß)

To see this, first reduce to the case of groups. For any map G ----* H of groups, we can use the fibratioll
EG Xc EH ----* EH / H as a model for the map BG --7 BH. With this model, the claim can be checked
directly.

Theorem 3.1. DSO is a Hopf semiring spectrum with coprodnct 15 and products (T, jJ.

Proof. It is dear that U and X make C into a semiring object in the category of small categories and natural
equivalence dasses of functors. It follows that BC is a semiring object in the homotopy category of unbased
spaces, and thus that DSO =Eoo BC+ is a semiring object. in t.he catcgory of coring spectra. 0

Theorem 3.2. DSo is a Hopf coring spectrum with product (T, coproducts 0,0, and antipode X.

Proof. First, we need to prove that e and 15 are maps of ring spectra. The diagram for 0 is as folIows:

D(V)
DSO 1\ DSO --------~'" DSO

D(")ADI")t
DSo 1\ DSO 1\ DSO 1\ DSU

Ixtwi"xl t
DSO 1\ DSo 1\ DSO 1\ DSO --------..... DSO 1\ DSO

D(V)AD(V)

This is obtained by applying the functor D to the following commutative diagram of speetra:

SOvSO
(1 1l

"SO

ODl jm
SO V SO V SO V SO e 100)

"'SOvSO
00 1 1

Again, we leave discussion of units and counits to the reader. The antipode diagram is obtained by applying
the funetor D to the following visibly commutative diagram:
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We also need to prove that 0 is a map of ring spectra if we use (T as a product. It is equivalent to say that (T is
a map of eoring spectra if we use 0 as a eoproduct. This was proved as part of the previous theorem. Finally,
we need to eonsider the distributivity diagram. For eonvenienee, we will write BC insLead of Eeo BC+ and
so on. We also write t: BC'), 4 BC'), for the twist map. The diagram ia as follows.

Reeall that 0 =u!. The Mackey property of transfers will tell us that this diagram eommutes, provided that
we ean show that the following diagram ia equivalent to a pullbaek diagram in whieh the vertieal maps are
finite eoverings.

15
BC ----------~'" BC2

U1 llxU
Be2 -W BC4~ BC4~ BC3

The main rectangle of this diagram ia obtained by applying B to the following system of functors.

XUY

1
(X, Y)

X 1-1--~'" (X,X)

(X, Y) I---+- (X U Y, x, }')

(X,YUZ)

1
(X, Y, Z)

We ean replace c2 by C' I and c3 by C X c' to obtain an equivalent diagram of functors.

x

1
(Y ~ X)

X 1-1---~ (X,X)

(Y ~ X) l-------+- (X I Y ~ X)

(Z,X)

1
(Z, Y ~ X)

One ean eheek direetly that this eommutes on the nose, and is a pullbaek diagram of small eategories.
It therefore gives a pullbaek diagram of classifying spaees. The vert,ieal maps are finite eoverings, as re
quired. D

4. RATIONAL MORAVA E-THEOlty

We now want to use the results of Hopkins-Kuhn-Ravenel [2 , 3] to deseribe the strueture in the rational
Morava E-theory of DSo. In the introduetion , we defined thc spectrum E. This eomes equipped with a
map BP 4 E , and tlms a eomplex orientation in E'lCpeo. \Ve ean divide this by 1l to get an orientation in
degree zero, and thus a formal group law F dcfined over t,he ring EO =W[Ul,'" 11ln -l]. By thc Wcierstrass
preparation theorem, there is a unique way to write (pm)p(x) = 9m(x)um(x) with Um invertible and 9m a
monie polynomial of degree pnm whieh reduees to xP"'" mod the maximal ideal. We let Dm be the ring
obtained by adjoining to E a full set of roots for 9m. There is a natural rnap Dm 4 Dm+1l and we write Deo
for the eolimit. We also write Lm = p-l Dm and L = Leo . Thc roots cf gm form a group A(m) = (71/pmt
under the formal surn operation, and we write A = Um A(m) = (Qp/71 p)n. (If we examine the way in whieh
Dm is eonstrueted by sueeessively adjoining roots cf irredueible polynomials , we find that there are actually
no ehoiees involved, and that an isornorphism A(m) = (71/pm)n is built in to the eonstuction). The dual
group is A· = Hom(A, Qp/71p) :::: 7l~. The group r = Aut(A·) ::::: GLn (lZp) aets on L, and the fixed subring
is just p-l E.

Now let G be a finite group. Write

Rep(A·, C) = Hom(A" G)/eonjugaey.
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and
L(BG) = L 08 E(BG).

Theorem 3.3.4 of (2] gives a character isomorphism

7

r: L(BG) ~ F(Rep(A·, CL L)

(where the right hand side ie just the set of functiolls from Rcp(A·, G) to L). Given u E L(BG) and
..\ E Rep(A• ,G) we wri te r(u 1 ..\) =r (u)(..\) E L for the correspond ing character value.

The functorality properties of the character isomorphism are as follows.

Proposition 4.1. Given f: G ---* Hand u E L(BH) we have

r(f· u, ..\) = r(u, f 0..\)

Write "(g for the inner automorphism x H g-l xg of G. Given a sllbgroup H ::; G and u E L(BH) we have

r(tr7I(uL..\) = Lr(u, "(g 0..\)
gH

where the sum runs over those cosets 9 H such that the image of "(gO ..\: A· ---* G actually lies in 1I.

Proof. The first statement is dear from the construction of r, ami the second is proposition 3.ß.1 of [2]. 0

More generally, for any groupoid 9 such that Auto (X) is finite for aB X, we can define Rep(A· ,9) to be
the set of isomorphism c1asses of funetors A· ---* 9, where A· is regarded as a category with one object in
the usual way. It turns out that L C9E E(B9) is not a convenient object to study; instead we perform a mild
(if somewhat ad hoc) completion and define

L(B9) = rr L 0E E(B:F) .
.:FE'foQ

In particular 1 we have

L(DSO) = L(BC) = rr L(BEk).
k~O

Because this definition uses the splitting DSo = VDkSO 1 the group L(DSO) is not obviously the result of
applying a functor defined on all spectra to DSO. However, all the spectra we consider have such splittings
and aB maps we consider behave in a sensible way, so this does not cause a problem. We leave the details to
the reader. We also define

LV (DSO) = EB HOIllL(L(BEkL L).
k

It is easy to deduce from the character isomorphism for finite groups that

L(BC) = F(Rcp(A" CL L)

Let IBm be the set ofisomorphism classes of A·-sets of order m, and put IR = Urn>O Iffim. This is a semiring,
with addition given by disjoint union of A· -sets, and multiplication by cartesian product. It is easy to see
that m: ~ Rep (A • ,C), and similarly thai IBm ::: Rep (A· , Ern). It follows that

L(BEk) = F(~ 1 L)

L(DSO) = F(B, L).

Similarly,

Oually, we have
LV (DSO) = L~.

The right hand side is the semiring ring of IR, which is a free module over L with one generator (X] for each
isomorphism dass of finite A·-sets X. In particular, we write [m] for the generator corresponding to a set
of order m with trivial action. A similar argument gives

LV (DSO /\ DSo) = L [IR x ~ = LV (DS°) 0 L LV (DS° ).



8 NEIL P. STRICKLAND AND PAUL R. TURNER

Our various structure maps induce maps of LV (DSO), named as folIows:

*: LV (DSO) 0L LV (DSO) --+ LV (DSO)

o : LV (DSO) 0L LV (DSO) ---7 LV (DSO)
1/;x : LV (DSO) --+ LV (DSO) 01. LV (DSO

)

1/;.: LV(DSO) --+ LV (DSO) 0L LV(DSO
)

induced by er
induced by Jl
induced by 0
induced by 8

We know by Theorem 3.1, DSo is a Hopf semiring spectrum, and by the above that LV (DSO /\ DSO) =
LV (DSO) 01 LV (DSO). It follows that we can apply LV (-) to make LV (DSO) into a Hopf semiring using *,0
and 1/;•. We next name the dual maps of L(DSO):

7jJ~: L(DSO) --+ L(DSO)0LL(DSO)
1/;0: L(DSO) --+ L(DSO)0LL(DSO)
x: L(DSO)0LL(DSO) --+ L(DSO)

.: L(DSO)0LL(DSO) --+ L(DSO)

induced by er
induced by J-l

induced by ()
induced by 8

Since, by Theorem 3.2, DSO is a Hopf coring spectrum we can apply L(-) to make L(DSO) into a Hopf ring
(in a suitable sense involving the completed tensor product) using x,. and 7jJ~.

Theorenl 4,2. With our identification L(DSO) = F(IR, L), we have

(t/J./)(X, Y)
(1/;o/)(X, Y)

(I x g)(X)

(I • g)(X)
(xl)(X)

f(X U Y)
f(X x Y)

L I(Y)g(Z)
X=l'uZ
I(X)g(X)
(-l)lx/A'lf(X)

(In the third form ula, the sum runs over A· -equivari ant parti tions of X).

Proof The .-product is induced by the ordinary diagonal map 8, so it is t,he ordinary product in L(BC).
The character map is a ring homomorphism , which implies that, (f. g){X) = f(X)g(X). Next, let X and
Y be A· -sets, of order k and I respectively. Let PX: A~ --+ C be t,he functor c1assifying X, and similarly py.
It is easy to see that

PXxY =(A· (px,pv\ C2 .l:t C)

It now follows from the naturality properties of T that (7jJ.J) (X, Y) = f(XUY) and (7jJo/)(X, Y) = f(X x Y).
Finally, we need to show that (I x g)(X) = Lx=yuz f(Y)g(Z). We may assume for simplicity that fand 9
are ((homogenealls" of degrees k and I, 80 that f(U) = 0 llnless IUI = k, and similarly for g. It is clear from
the defini tions that f x 9 is homogeneous of degree k+I. Suppose that 1X I= k +I, so by choosing a bij ection
X ~ {I, ... , k +/} we obtain a map PX : A· --+ Lk+l. The cosets g(Lk x.EI ) biject with partitions X = Y U Z
via Y = {g(l), ... ,g(k)}. This partition is A· -equivariant iff "'(g 0 PX (A·) ::; Lk X LI. Recalling that the
x-product comes from the t,ransfer map, and using the formula given abovc for transferred characters, wc
see that (f x g)(X) = Lx=yuz f(Y)g(Z) as claimed.

Now define

[O](X) {~
if X = 0
otherwise

[l](X) = 1

[-l](X) (_l)IX/A·1
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It is eIear from our previous formulae that [0] and [1] are the units for x and • respectively. We claim that
[-1] x [1] = [0]. To see this, write X as a disjoint union of transitive A·-sets , say X =UiEI Xi. Then any
decomposition X = Y U Z has Y = UiEJ Xj for some J ~ J. It follows that

([-1] x [1])(X) = I)_1)IJI.
Jf;.I

It is easy to see that this ia 1 if I = 0 and 0 otherwise. The Hopf ring distributivity law now teils us that

T/t(f) '= [0] • f = L([-I] • t) x ([I] • 1") = L([-I]. 1') x /"

This is the eharaeteristie property of the antipode in a Hopf algebra, proving t,hat x( f) = [-1] • f. This in
turn implies the last formula in the theorem. D

Write TI... for the set of lattiecs (in other words, subgroups of finite index) in A"'. Given a lat1,ice M, we write
XM for the A"'-set A$ IM, and XM =[XM] E L~. Any finite A"'-set X ean be decomposed uniquely as the
disj oi nt un ion of its orbi ts under the action of A·, each of which is isomorph ie 1,0 X M for a uniq \Je lat tiee M
(whieh is the stabiliser of any point in the orbit). It follows easily that wi th the product [X] * [V] = [X U Y] ,
the ring L[1ßj is just the polynomial ring L[XM I M E IL].

Corollary 4.3. We ean identify LV (DSO) with L[BL in such a way that

[X] * [V]
[X] 0 [Y] =

1/Jx[X] =

1/J.[X]

[XUY]
[X x Y]

L [Y]®[Z]
X=YuZ

[X]®[X]

The units for * and 0 are [0] and [1] respectively,

Proo/. This follows from the previous theorem by duality. D

5. RING SCHEMES

\Ve first give a general discussion of ring sehemes, being deliberately vague about eompleteness and
eontinuity. We 8hall be more preeise when we diseuss speeifie examples. Let H be a Hopf ring over L , and
A an L-algebra. Then A 0L H is a Hüpf ring over A. \Ve write

R(A) = {x E A0L H ITj;(x) = x0x, t(x) = I}

This is sometimes ealled the set of grouplike elements in A 0L H. 11, is a semiring, with addition given by
the *-product and multiplieation by the o-produet. It ean also be deseribed as

R(A) = HOffiL-Algebra.tl(H V
, A)

where H V = HomL(H, L). Thus R is a represen1,able rundor from L-algebras 1,0 semirings, or in other words
a semiring scheme over L.

Theorem 5.1. The semiring seheme assoeiated to the Hopf ring L(DSO) is given by R(A) = F(IL, A)
(eonsidered as a ring under pointwise operations).

Proof. To be precise, the functor we eonsider sends A to the set of grouplike elements in F(lH\ AL which is
a kind of eompleted tensor product F(Iffi, L)0 LA. This ean also be described as

R(A) = HOffiL_Alg(Lv (DSOL A) = HOmL-Alg(L[XM IM E ILL A)

Given an L-algebra map /: L[XM IM E L] -+ A, we define a map J': IL -+ A by f'(M) = f(xM)' Sending
/ to J' gives a bijection R(A) -+ F(IL , A). Suppose f, 9 E R(A). The addition in HOmL_Alg(LV (DSOL A) is
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indueed from ljJ x whieh is dual t,o the X- produet in the Hopf ring L (DSO). We see, then, that t,he sum of f
and 9 in R(A) is the homomorphism h: LV(DSO) = L[IB) -+ A defined by

h([X]) = L f([Y])g([Z])
x=yuZ

If X = XM we can only take Y = 0 or Y = XM, and [0) = 1. Tt follows that h'(Af) = f'(M) + g'(ML in
other words that the addition operation on R(A) ~ F(IL, A) is the obvious one. Similarly, the produet of f
and 9 in R(A) is the homomorphism k: LV (DSO) = L[~ ---+ A defined by k([X]) = j([X])g([X]). It is Ums
immed iate that k' is the pointwise product f' g', as requ ired. 0

Theorem 5.2. The sem iring scheme associated to the Hopf semiring LV (DSO) is j ust the constant scheme
~. In other words R(A) =B provided that A has no nontrivial idempotents.

Proof. To be precise, the runctor which we consider sends A to the set of grouplikc elements in A f!h
LV (DSO) = A[B]. This can also be described as the set of homomorphisms f: F(JE, L) ---+ A which factor
through F(S, L) for same finite subset S C lBJ or as the set of homomorphisms which are eontinuous
when we give Land A the discrete topology, and F(Iffi, L) the produet topology. Consider an element
a = Lx ax[X] E A[~J so that ax = 0 for almost all X E JE. Then

c(a) =Lax
X

t/J.(X) =L ax[X] (9 [XJ
X

a 0 a = L axay[X] 0 [Y]
x,)'

It follows that a is grouplike iff the elements ax are idempotents with ax a}' = 0 whenever X i= Y, and
Lx ax = 1. In particular, if A has IlO nontrivial idempotents then ax = 1 for one X and Gy = 0 for all
Y i= X. Thus a f-t X gives a natural bijection R(A) ~ IHl, as claimcd. 0

6. PRIMITIVES AND INDECOMPOSABLES

Consider the Hopf ring L(DSO) = F(Iffi, L) (with coproduct ljJ.. and products x, .). The augmentation
map ( is the counit for t/J. J which sends f E F(I!E, L) to 1(0). Define ex E F(IE,L) by ex (Y) = 1 if Y ~ X
and 0 otherwise. Using these funetions as a basis, we see that f is decomposable iff /(0) = 0 and /(XM ) = 0
for alliattices M. It follows that we have an identification

Ind(L(DSO)) =F(IL, L)

The indecomposables in any Hopf ring form a ring under the seeond procluct. In the present case, this is
just pointwise multiplication.

We next consider thc space Prim(L(DSO)) of primitives. As in any Hopf ring, this is a module over the
ring of indecomposables. The unit for the first product is just e0. The primitives in L(DSO) are therefore
the funetions j: IR ---7 L such that

or equivalently

f(X U Y) = f(X)e0 (Y) + e0 (X)/(Y)

or equivalently, f(X) = 0 unless X is nonempty and transitive (ie X = XM for some M). Now define
cE L(DSO) by c(XM ) = 1 for all M and c(X) =0 if X is empty or intransitive. Clearly, Prim(L(DSO)) is
the free module over Ind(L(DSO)) on one generator c:

Prim(L(DSO)) = Ind(L(DSo))c
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Wc next eonsider the Hopf ring LV (DSo) = L[Iffi] = L[XM I M E lLL with coproduct 7/J. and produets
*,0. The augmentation is the counit for t/J" which sends [X] to 1 for all X, so that [X] - 1 E 1= ker(c).
Moreover, it ia easy to see (using 1 = [0)) that

[X UY] -1 = ([X] -1) + ([Y] -1) (mod J2)

([X] - 1) 0 ([Y] - 1) = [X x Y] - 1
From this we conclude that Ind(LV (DSO)) is the [ree module over L on the generators XM - 1, and also
(after making some obvious definitions for tensor products of scmirings) that as semirings

Ind(LV (DSO)) = L[ILJ = L 0N Iffi.

On the other hand, because 1f. ([X)) = [X] 0 [X], we sec using the obvious bases that Prim (L v (DS°)) = O.
Let r+ be the monoid of injective endomorphisms of A·, and r thc subgroup of automorphisms. There is

an obvious action of r+ on lL. It turns out that there is also a natural action of r+ on L. These fit together
to give an action of r+ on Ind(LV(DSO)) = L[IL]. This arises topologically from the Neo structurc of E.
This will be discussed in detail in future work.

Note that although the coproduct we use in L(DSO) is dual to the *-produet in LV (DS°), t.he primitives
in L(DSO) are not directly dual to the indecomposables in LV (DSO). The reason is that the definition
of pri mi tives invol ves a unit as weil as a eoproduct. The unitin L(D SO) = F (Iffi, L) is e0 = [0], but the
element of L(DSO) dual to the augmentation on LV (DSO) is the eonstant fnnction 1 = (1]. The dual of the
indecomposables in LV (DSO) is naturally identi fied wi th

Prim'(L(DSO)) = {f E F(Iffi, L) IJ(X U Y) = J(X) + j(Y)}

Note that
([1] x f)(X) = E J(Y)

}'5 X

One ean check easily that the map f t-t [1] x f is an isomorphism Prim(L(DSO)) ~ Prim'(L(DSO)). If we
let R = spec(LV(DSJ)) be the ring scheme eorresponding to t,he Hopf ring L(DSO), then Prim(L(DSO))
aod Prim'(L(DSO)) are the tangent spaees of R at 0 and 1. For any eommutativc algebraic group (such as
the additive group of R), there is of course a eanonical isomorphisrn between the tangent spaces at any two
points.

7. GENERALISATIONS

Instead of C, we ean eonsider the category V of fini te-dimensional vector spaces over a fin ite field k, so
that.

BV = Il BGLm(k).
m~O

We replace the disjoint union by the direct surn and the product by the tensor produet. The evident
analogues of theorems 3.1 and 3.2 hold, exeept that we do not have an antipode map. We strongly suspect
that an antipode map exists , but we do not have a eonstruction as yet. The proofs for V are mueh the same
as for C, exeept that C' must be replaced by the following category:

V' = {(U; V, W) I V, W:5 U I V n W =0 and V + W = U}

In this ease, Rep (A• 1 V) is thc aemiring Rt (A.) of isornorphisrn classes of fini te-di mensional representations
of A· over k. Again, evident analogues of theorem 4.2 and corollary 4.3 hold.

Suppose that k has characteristie not equal to p. Thon a11 sllch representations are completely reducible
and split over k as a direct surn of one-dimensional representations. These one-dimensional representations

bijeet with the group C of eontinuous homomorphisrns A· ----* "k x
. Using these ideas one ean show tImt

Rt (A.) is a free Abelian monoid with the orbi t set C/ Gal (1./ k) as a basis.
As a different generalisation, we ean consider the topologieal category U of finite-dimensional eomplex

Hilbert spaces, so that

EU = Il BU(m).
m~O
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In this case, we need to use a Becker-Gottlieb type transfer. For aversion which works when the base is
infinite (which we need), see chapter IV of (4]. We again get analogues of theorems 3.1 and 3.2. However, we
cannot use generalised character theory to study E" BU because the groups involved are not finite. There is
a description in terms of divisors on the formal group associated to E , as discussed in (6].
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