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An analytic cancellation theorem and

exotic algebraic structures on Cn , n ~ 3

M. G. Zaidenberg

Introduction

Zariski's problem on cancellation (by an affine space) is usually formulated

as follows • :
Let X x An ~ Y X An be an isomorphism 0/ algebraic varieties. Does it

follows that X ~ Y ?

In general, the answer is negative even for surfaces over C [Da], [tDi] .
In an important special case, when Y = Ak , it is known only that the answer is
positive for k :!i: 2 (M. Miyanishi - T. Sugie and T. Fujita, see [Fu 2] or [Km]).

It was C. P. Ramanujam, who in his earlier attempt to prove the latter
result noticed a connection of the problem with the question of existence of
exotic algebraic structures on affine spaces [Ra]. Tbe main theorem in [Ra]
on a characterization of the affine plane implies that the only complex algebraic
structure on R4 is the standard structure of C2. (The proof of this theorem
contains a great deal of tools that are used now in a study of acyelic algebraic
surfaees.) Producing the first example of a topologically contraetible smooth
eomplex algebraic surface X , non-isomorphie to Cl , C. P. Ramanujam remarked
that by the h-eobordism theorem the threefold X x C is diffeomorphic to C3 ,

but it is not isomorphie as algebraie variety to C3 provided that the above version
of the eancellation problem is answered affirmatively. Thus, this does lead to an
exotic complex algebraic structure on R6 •

In 1987-1989 many new examples of aeyelie and contractible algebraie
surfaces were constructed (see for instance, [Gu Mi] , [tDi Pe] , [Su] , [Za 2]).
In thc Appendix to this paper we shall describe two eountable series of examples
in which eaeh surface X carries a family of curves X -Jo C with a generic
fibre C**:= C \ {O, I} . In [za 1] , [Za 3] it is proved that they are the only
examples of acyclic surfaces that are not isomorphie to C2 and support isotrivial
families of curves with the base C (Le. families with pairwise isomorphie

• for the original setting see, for instance, [Ab Ha Ea]
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generic fibres). We shall distinguish these surfaces up to isomorphism and
calculate their logarithmic Kodaira dimensions k(X) . For most of them k(X) =
= 2, so they are of hyperbolic (or log-general) type. FoIIowing [Ra] we use these
surfaces in order to introduce exotic algebraic structures on affine spaces.

Main Theorem. For any n 2: 3 there exists a countable set 0/ comp/ex affine
algebraic structures on R2n which are pairwise biholomorphically nonequivalent.

These structures can be distinguished in an algebraic sense, using the Strong
Cancellation Theorem of Iitaka and Fujita [li Fu] . And by Strong Analytic
Cancellation Theorem 1.10 they differ even in tbe analytic sense. Indeed, by the
Iitaka-Fujita Theorem given an isomorphism X x CD ~ Y X CD the CD can
be cancelled if k(Y) ~ 0 . By Theorem 1.10 below, given a biholomorphism
X x CD ~ Y X CD , where X and Y are quasiprojeetive, the CD can be
cancelIed, giving an isomorphism X ~ Y ü k(Y) = dimeY ,Le. if Y is
of hyperbolie type. The examples of non-cancellation for (Q-aeycIic) smooth
affine surfaces with k = -00 [Da] , [tDi] show that the assumptions of the first
theorem are neeessary, while for the second one this is unknown. I da not know
also, whether there exist two different complex algebraic struetures on R2n whieh
are analytically the same.

Furtherrnare, we show that for an acyclic surface X of hyperbolic type, CR

cannot be isomorphie to (and even cannot injectively dominate) a hypersurface
of X x CD -1 (Theorem 2.4). (In particular, "exotic CD" constructed in such a
way do not contain CO -1 .) This is a generalization of a theorem in [Za 3] on
the absence of simply eonnected curves in acyelic surfaces of general type.

Areport on this paper was done at the 29-th Arbeitstagung in Bonn, 1990. It
was prepared during the author's stay at the Max Planck Institut für Mathematik
at Bonn and as a guest of the SFB-170 'Algebra and Geometry' at the Mathe­
matisches Institut of Göttingen University. I am very thankful to these Institutes
for their hospitality.
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1. An analytic cancellation theorem

Let us first recall some known facts about holomorphic mappings into man·
ifolds of hyperbolic type.

1.1. Definition [11 1]. A nonsingular quasiprojective variety X is called a
11Ulnifold 0/ hyperbolic type iff its logarithmic Kodaira dimension k(X) eoincides
with the dimension dirneX.

L2. Theorem. Let X be a nonsingular quasiprojeetive variety and Y be a
manifold of hyperbolie type. Then

a) [Sa, Theorem 4.1] Y is a volume hyperbolie camplex manifold;

b) [Sa, Proposition 4.2] Every dominant holomorphie mapping X ~ Y is
regular;

c) [Il 1, p. 182, CoroUary] Every dominant holomorphie mapping Y ~ Y
is abiregular automorphism;

d) [Ts] The set Dom(X, Y) of all dominant holomorphie mappings X ~ Y
is finite.

In Corollaries 1.3 - 1.5 below we preserve the assumptions of Theorem 1.2.

1.3. Corollary ( [TI 1, Theorem 6]; [S8, Theorem 5.2] ). The group Aut Y
of biregular automorphisms 0/ Y is finite.

1.4. Corollary. Dom(X, Y) is an open and closed subspace of the spaee
Hol(X, Y) o{all holomorphie mappings X~ Y, endowed with the eompaet-open
topology.

1.5. Corollary. Suppose that there exist mappings 'P E Dom(X, Y) and 1p E
Dom(Y, X). Then both 'P and'ljJ are biregular isomorphisms.

1.6. Definition [Ur]. A eomplex mani[old Y belongs 10 class C iff for any
eonneeted eomplex manifold Z and any holomorphie mapping 'P: Y x Z ~ y
such thatfor some zn E Z the mapping 'P"'o := 'PI Yx {zn }belongs to the group
Aut Y , it follows that 'P7. ='P zo for every z E Z.

Let us recall that for manifolds of dass C the cancellation theorem and the
theorem of the uniqueness of a primary product-decomposition hold [Ur].
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1.7. Corollary. Manifolds of hyperbolie type belong to elass C.

Tbe next simple lemma and its corollary will allow us to distinguish the exotic
complex algebraic structures on affine spaces, constructed in section 2 below, from
the standard ones up to biholomorphisms.

1.8. Lemma. Let X, Y anti Z be conneeted eomplex manifolds, and Y be
volume hyperbolic. Iffor some k :it 0 there exists a dominant holomorphie mapping
(»: X x Ck --+ Y X Z , then dimcX :2: dimcY •

Proof. Consider the dominant holomorphic mapping r.p:= 1r y 0 (» : X x
Ck --+ Y , where 1ry : Y x Z --+ Y is the canonical projection. Let dimcX =
=n , dimeY =m and m =n + r. Suppose that m > n ,i.e. r > 0 . It
is clear that r:5: k .

Let us fix a point Uo= (Xo, zo) E X X CIL such that rank dr.p(uo) =n .
Restricting to a neighborhood of the point Xo we mayassume that X = Bm is
the unit ball in Cm and Xo is the origin.

For an arbitrary affine mapping a: X X Cr --+ Ck - r we shall denote by
ä the embedding onto tbe graph of a (Le. ä := (idx xc' 0:) : X X Cr --+ Ck

).

Let -;(: X x Ck --+ X X er be the natural projection, and u' 0 = 1r'(Uo) .
Since codim Ker dr.p(Uo) =n there exists an affine mapping ()' as above such

that Uo =ö{u'0) and Im dä(u' 0) n Ker dr.p(uo) ={O} • Tberefore the mapping
r.p 0 ()' : X X er --+ Y is a dominant mapping of manifolds of equal dimensions.
Tbis leads to a contradiction with the volume-decreasing property of holomorphic
mappings with respect to thc Eisenman - Kobayashi pseudovolume forms.
Indeed, since by the above assumption r > 0, this form is identically zero on the
manifold X x er, while by Theorem 1.2, a) it is nondegenerate on the manifold
Y of hyperbolic type. Hence r :5: 0 , Le. m :$ n. Q. E. D.

1.9. CoroUary. Let X and Y be volume hyperbolic connected complex
manifolds. 1f for some k aod m tlte manifolds X x Ck and Y x Cm are
biltolomorphically equivalent, tlten dimcX =dimeY • In particular, if
dimcX > 0 , tlten for any natural numbers k and m the manifold X x Ck is not

biholomorphieally equivalent to Cm .

In order to distinguish different exotic complex algebraic structures on R2n

(n > 2) up to biholomorphisms we will use the following Strong Analytic
Cancellation Theorem.
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1.10. Theorem. Let X anti Y be smooth irreducible quasiprojective mani/olds
0/ hyperbolic type. Let for some k and m i2: 0 a biholomorphism cI»: X x Ck -t

Y X Cm be given. Then k =m and there exists a unique biregular isomorplrism
c.p: X -t Y making the following diagram commutative:

x y

In particular, cI» has a triangular form cI»(x,z) == (c.p(x),t/)(x,z)) , wlrere
(x,z) E X X ck andwhere/oreachx E X themapping'l/Jx:==V) I {x} x c k

belongs to the group Aut ck 0/ biregular automorphisms 0/ Ck .

Proof. By Theorem la2, 8) X and Y are volume hyperbolic manifolds.
Hence by Corollary 1.9 dlmcX =dimeY and k =m . Let us consider the
holomorphic mapping c.p:== 7r y o<T> I X x {Ok} : X -t Y . We will show that
c.p is a dominant regular mapping.

Tbe holomorphic mapping f:= 1r y 0 cf>: X x C k
-t Y is dominant, there­

fore dirn Ker df(11o) =k for some Uo =("0 , ZO) E X X Ck . Let" X c X be an
affine chart containing the point Xo . There exists a regular mapping a : X' -t Ck

such that a(Xo) =110 and the graph r(o:) c ~ x Ck is transversal to the subspace

Ker df (110). Let ä::= (idx, , a) :X' ~ X' X C k be the embedding onta

the graph r(O') . It is easily seen that the mapping c.p 1 : == f 0 ä : X' -t Y is
dominant.

Consider a family of mappings c.p t. : == f 0 ä t ,where ä t : == (id x I , tO'),
tEe. By Corollary 1.4 c.p t. =c.p 1 for all tEe, and by Theorem 1.2, b) c.p 1

is regular. Hence c.p == c.po == c.pl is a dominant regular mapping.

The same arguments applied to the mapping 'fJ := 71'x 04>-1 I Y x {O} :
Y -t X show that 'fJ is a dominant regular mapping too. Therefore ep : X -t Y
is a biregular isomorphism (see Corollary 1.5).

By Corollary 1.4 the mapping c.p?, : == f I X x {z}: X -t Y , ZECk,

does not depend on Z. Hence cIJ has a triangular fonn cIJ (x, z) == (ep(x) , 1p(x, z) ).
Since cIJ is a biholomorphism the mapping 'l/Jx : Ck

-t Ck is biholomorphic for
all x E Ck • This completes the proof.
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2. Exotic complex algebraic structures on affine spaces

As follows from the Ramanujam's characterization of the complex affine plane
[Ra], any nonsingular complex algebraic surface, whieh is homeomorphic to C2,

in fact is isomorphie to C2. The situation turns out to be different in higher
dimensions.

2.1. MaID Theorem. For any n :it 3 tltere exists a countable set 0/
complex affine algebraic structures on R2n which are pairwise biltolomorphically
nonequivalent.

Proof. The proof follows an idea of Ramanujam [Ra]. Let {Xk}k E N be
a countable set of pairwise biregularly non-isomorphie smooth complex affine
algebraie surfaces, eaeh of whieh is topologically contractible and has hyperbolie
type, Le. its logarithmic Kodaira dimension equals 2. There are different
construetions of such countable collections of surfaces; see [Sn], [tDi Pe], [Za1],
[Za2] or the Appendix to the present paper. As follows from the h-cobordism
theorem, for eaeh k E N the smooth manifold Xk x R2D - 4 is diffeomorphic
to R2D (see [Ra] , [MiI]) .This allows us to endow the manifold R2n with the
countable set {Xk X Cn - 2} k E N of complex affine algebraic struetures. Ey
Corollary 1.9 eaeh of tbe manifolds {Xk x CD - 2} k E N is not biholomorphically
equivalent to CD . By Theorem 1.10 for k -:F m manifolds Xk X CD - 2 and
Xm x CD - 2 are biholomorphically nonequivalent. This completes the proof.

2.2. Remarks. 1. The first example of a tOPQlogically contraetible smooth
algebraie surface X not isomorphie to C2 was construeted in [Ra] . This surface
is of hyperbolie type [11 2]. It easily follows that X x C is not biregularly
isomorphie to cJ, hence one gets an example of exotic algebraie strueture on C3 .

In fact, X x C is not biholomorphically equivalent to C3 (see Corollary 1.9). Tbe
laUer answers a question, posed to me by 1. Winkelman (1988) (another, more
complicated, proof of this fact was suggested by M. Chinak).

2. There exists a complete list of topologically contraetible surfaces of
logarithmic Kodaira dimension 1 [Gu Mi] . Using these surfaces in the same
way as before one can introduce new complex algebraic struetures on R2D for
n :it 3 . The Strong Cancellation Theorem of Iitaka and Fujita [11 Fu] sHows oße
to distinguish these structures up to biregular isomorphisms. Moduli oi surfaces
lead to moduli of exotic structures. I do not know whether these structures are
different up to biholomorphisms.
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3. Let X = TI 1~1 XI ' Y = TI j~l Y j be two produets of quasiprojective
manifolds of hyperbolie type. Hy Corollary 1.7 and Urata's theorem [Ur] these
decompositions are unique. Therefore, if r.p : X -+ Y is an isomorphism, then
n = m and there exists a permutation (1 E Sn sueh that r.p = n r.p i ' where
r.p I : X I -+ Y "(i) , i =1,...,0 , are isomorphisms.

Thus, one could get additional exotie algebraie structures on affine spaces by
looking at the manifolds X x Ck (k > 0) , where X is a product of topologically
contractible surfaces of hyperbolie type.

2.3. Dur next goal is to show the non-existence of a regular embedding
of CD -1 into Hexotie CDJ S " constructed above. It is known [Za 3] that a
smooth aeyclic complex algebraie surface lll Y of hyperbolie type does not contain
simply connected curvesJ Le. there are no injeetive regular mappings C -7 Y.
(MoreoverJ from a theorem of Nishino and Suzuki [Ni Suz] it follows that there are
no injective proper holomorphie mappings C -7 Y .) This fact has the following
generalization to higher dimensions:

2.4. Theorem. Let Y be a nonsingular acyclic complex algebraic surface of
hyperbolic type. Then for any natural k there are no injective regular mappings
Ck -+ Y X Ck - 1 •

2.5. Remark. It is known (see the addition to [Za 3]) that any acyclic surface
Z of logarithmic Kodaira dimension 1 contains smooth simply connected curves
(hut it does not contain singular or reducible simply connected curves). Therefore
Z x Ck contains submanifolds isomorphie to Ck - 1.

Theorem 2.4 can be easily deduced from the following more general:

2.6. Theorem. Let Y be a surface satisfying the assumptions of Theorem
2.4. Let X be a nonsingular irreducible simply connected quasiprojective variety
ofpositive dimension k .
a) If ~: X -+ Y X Ck-1 is an injective regular mapping, then the mapping
f:= 7r y 0 (f) : X -+ Y is dominant.
b) Furthermore, if X =Z X Ck-Z J then the mappingr.p : = f I Z x {O} : Z -7 Y

is dominan~ and ~ has a triangular form ~(z, v) = (r.p(z), t,b(z, v)) , where
(z, v) E Z X ck-Z and where tP z := VJ 1 {z} X C k

-
2

: C k
-

2
-+ C k

-
1 is

an injective regular mapping for each z E Z.

• As usual, acyclicity of Y roeans that aU reduced homology groups of Y
witb coefficients in Z vanish.
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Proof of a). Suppose that the mapping fis not dominant. Then its image is
contained in some irreducible closed algebraie eurve A in Y . Tbe aeyclic surface
Y is affine [Fu 1, (2.5)] , hence the curve A is affine too. Let v : B ---+ A be
the normalization and S : U ---+ B be the universal covering map. Since X is
simply connected there exist covering mappings Cv : X ---+ B (v 0 f y = f) and
fh : X -+ U (h 0 f 6 = f v). If A is a hyperbolic curve, then U must be the unit
disc and hence the bounded holomorphie funetion Ih : X -+ U is constant. This
is impossible, since the constancy of funder the assumptions on the dimensions
contradiets the injectivity of cI». Tbe case when B = C· := C \ {O} can also be
excluded, since in tbis case the non-constant regular function fv : X -+ C· on
the simply conneeted variety X would have a logarithm, - whieh is impossible.
Therefore, B = C .

Let us show that the normalization mapping v : C -+ A is injeetive. This
will lead to a contradietion with Theorem 9.1 in [Za 3] , quoted above, whieh
in particular states that an acyclic surface Y of hyperbolic type does not contain
simply conneeted curves.

Suppose that v is not injective, Le. V(Zl) = V(Z2) = ao E A for some Zl ,

z2 E C ,where zl '# z2 . Let ZI = Iv-1 (ZI) , g = 1("C' - l 0 Q> : X -+ C k - 1

and 771 =g I ZJ , i =1, 2 . Since f 1 Zr =v(Zi) =Bo and Q> is injeetive, the
mappings 771 would also be injective. These regular mappings are equidimensional
and therefore dominant, hence the interseetion of their images is nonempty, Le.
771 (Xl) =772 (X2) for same XI E Zr . Finally, this implies that <l> (Xl) =<l> (X2) , which
contradiets the assumption of injectivity of Q>. This completes the proof of a) .

Proof of b) . It follows from a) that k :t 2 and for k =2 that the mapping
r.p = f is dominant. We shall now consider the case when k > 2. Suppose
that the mapping r.p is not dominant, and therefore its image is contained in an
irreducible curve A in Y . First consider the case when r.p is non-constant. Let D
be a generic curve in the surface Z and L be an arbitrary affine line passing throw
the origin in Ck - 2 . Consider the surface D x LeX =Z X Ck - 2 . Since Y is
a surface of general type, it is clear that the restriction f ID xL: D xL -j. Y
is degenerate. Therefore its image is contained in an irreducible curve, which
coincides with the zariski closure of the curve f(D x {O}) =cp(D) and henee
with the curve A (recall that r.p ID is non-constant). The genericity of D and
L implies that f(X) CA. Therefore, I would be adegenerate mapping in
contradietion with what has been proven in a) .

Now consider the case, when cp is constant. Let r.p( Z) = {yo} C Y and let
E be a generic closed algebraic curve in Y, whieh does not pass through the point
Yo • Since I is dominant (as was proved in a) ) and E is generic, there exists a
curve D C r-1(E) such that the restlietion f ID : D -+ E is dominant.
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Let S be the "developable surface" in X containing the curve D, Le. the
image of the regular mapping

Consider the mapping f 0 A: D x C ---7 Y. Since Y is of hyperbolic type,
this mapping must be degenerate and its image has to be contained in a closed
irreducible curve in Y , which evidently must ci>incide with E . But then Yo =
=.p(cl) =red, 0) E E , contradicting to the choice of the curve E .

Thus, the mapping 'P is dominant. Tbe proof of the other statements in b)
follows that of the analogues statements of Theorem 1.10 . Q. E. D.
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APPENDIX

Two constructions of smooth topologically .

contractible affine surfaces of hyperbolic type

A 1. Generalities on acyclic surfaces

All surfaces here assumed to be quasiprojective, nonsingular and irreducible.
The next theorem will be the most useful in the constructions below. It actually
was established in [Ra] and supplemented in [Fu 1] (see also [Gu 1] , [Gu 2] ) .

ALl. Theorem (Ramanujam • Fujita). Consider a surface X = V \ D)
where Visa nonsingular projective surface and D is a curve in V . The surface
X is acyclic iff the following two conditio1ts are fulfilled:

1) V and D are c01J1Jected and simply connected;

2) The embedding I: D c-+ V induces the isomorphism

i : H (D;Z) --. H (VjZ).
* 2 2

In addition:

A 1.2. Lemma (Fujita [Fu 1, (2.5)]) • Any nonsingular acyclic surface is
affine.

The following theorem had been conjectured first by A. Van de Yen [VdV] .

~ 1.3. Rationality Theorem (Gurjar • Shastri [Gu Sha]). Any nonsillgular
acyclic surface is rational.

Let e(X) be the Euler characteristic of the surface X ,R(X) =H°(X, Ox) the
algebra of regular functions on X and R·(X) its group of invertible elements.
Recall the following:

A 1.4. Definition [Za 3] • A nonsingular affine surface X is called simple
iff the following two conditions are fulfilled:

1') e(X) = 1 ;
2') R(X) is UFD (a unique factorization domain) and R·(X) = C .
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The next theorem gives an inner characterlzation of acyclicity.

A 1.5. Theorem. A nonsingular surface is acyclic if and only if it is simple.

Proof. Hy [Fu, (2.5) - (2.9)] , condition 2') is equivalent to condition 2)
of Theorem A 1.1. For an acyclic surface X , condition I') is fulfiHed and, by
Fujita's Lemma A 1.2 , X is affine. Tbe 'only if part follows immediately frorn
these remarks.

Let us further assume that X is simple. Since X is affine and therefore Stein,
84(X; Z) =H3(X; Z) =0 and H2(X; Z) is a free group. Hence by I')
bt (X) = b2(X) • Now the acyclicity of X follows from the equality Ht (X; Z) =
=0, which is proven in Lemma 2.2 in [Gu Mi] . Q. E. D.

A 1.6. Rational trees on rational surfaces

Let V be a nonsingular cornpletion of an acyclie surface X = V \ D . Then,
by the Gurjar - Shastrl Theorem A 1.3 , V is a rational surface, and by the
Ramanujam - Fujita Theorem A 1.1, the curve Dis sirnply connected. In partie·
ular, aH its irreducible components are rational curves. Resolving singularities of
D one can assurne D to be of simple normal crossing type (or an SNC-curve for
short). In the latter case the pair (V, D) is called an SNC-completion 0/ X . The
weighted dual graph * rn of D is a tree, and we will call D itself a rational tree.
An SNC-completion (V, D) of X is called minimIlI if the graph rn does not
contain linear or end (-I)-vertices, Le. vertices of weight -1 and a valency not
exceeding 2. A minimal completion always exists, but it could be non-unique.

The next theorem gives a useful characterization of Cl as an acyclic surface.

A 1.7. Rarnanujam's Theorem [Ra] . Let (V, D) be a minimal SNC­
eompletion 01 a nonsingular aeyelie surfaee X . Then X is isomorphie to C2 if
and only if the graph rn is linear.

All possible dual graphs (weighted linear chains) of minimal SNC·completions
of C2 are descrlbed in [Ra] and, in more detail, in [Mo] .

* Le. the graph, whose vertices correspond to the irreducible components of
D , wedges correspond to intersection points of these components and the weight
of avertex is the self-intersection index of the corresponding component
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A 1.8. 'Cutting cycle' constructlon

Let W be a nonsingular rational projective surface and B be a connected
SNC-eurve in W with rational irreducible components {Bi} I • 1,...,m .

Let fJ be a eyc1e of the dual graph r B of B and [Ba, Ba ] be a wedge in 5,
whieh eorresponds to the intersection point zo of the curves BO' , Bß . Choose a
eoordinate ehart (x ,y) at zo such that locally BO' = {x = 0 } , Bß = {y = 0 }.

Consider the meromorphie funetion f :=~ , where n , m are eoprime
natural numbers. Let 7r D , m : V --+ W be the minimal resolution of the point
ZO of indetenninaey of the funetion r . Tben ID, m := 7r o , m-I (zo) is a linear
ehain of rational eurves. By the same symbol /D , m we will denote its dual graph.
Let v be the last eurve gluing by 1rD , m-1 , and let I n:m' I n:~ be the linear
branehes of the graph I D ,m at the vertex v .

Consider further the eurve D := '1ro, m-1(B) 8 v in V . Tbe graph r o is
obtained from the graph r B by ehanging the wedge [Ba , Bß ] by the union of

d · .. b h ' "two ISjOlnt rane es 'n m' In m :
I ,

0--0

Definition [tDi Pe] . The above procedure 01 changing the pair (W, B) by
the pair (V, D) is called cutting a cycle.

A 1.9. Tbe graphs 1D, m

In tbe following we need the description of the graph ID , m . Consider the
continued fraction development ~ = [qo,ql' .... ,qt,] (here qt > 1 if t > 0). If
t =2k is even, then ID, m is the following graph:

o

-1

sO
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Here by k we denote the weighted linear chain of length k of the fonn :

-2 -2 -2 -2

0----<0>----0--- ".--0

If t =2k + 1 is odd, the graph ID, m has the following fonn:

i 4 -1 ~q
-2-q -1

i 4-1 -...:- ... +: -1~

-l-q::lk+l -2-qß -2-q

--<0')00000---- 4 - 1 - . --00--. 42 - 1 r 0'

It is clear that 'n:m =,;",n and vice versa. The vertex B~ (B;)
of the weighted graph r Ji has the weight

B ~ 2 =B tl' 2 - [':: ] - a(rn) (B; 2 =B ß 2 - [~ ] - "(0) ) ,

where

(k) '= {l, k>l
" . 0, k = 1

Furthennare, for the divisors B: ' B ßwe have:

B: =mv + ..., B ß =nv + ... .

A 1.10. Construction of acyclic surfaces by cutting cycles

Let the pair (W, B) as in A 1.8 in addition has the following properties:

i) B is connected and the components {Bi}'. l,...,m of B generate Pie W ;

11) m =p + k ,where p =rank Pie W and k =bl(B) =bl(rB) .

Choose k different wedges [B r ,B Rl 'i = 1,..., k, of r B on k basic
I I

cycles (,1 '00" (,k respectively and numerical ata {(ni , mt)} laI,..., k , consisting
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of the pairs of relatively prime natural numbers. Cuuing cyc1es in the chosen
wedges according to this numerical data we get a new pair (V, D) , where V is
a smooth rational surface with a rational tree D , and the birational morphism
7r := TI 71'" n m : V -+ W such that 1l"(D) =B . Let Zh ••• , Zk be the double

I' I

points of the curve B , which correspond to the chosen wedges of rB and VI,

..., Vk be (-I)-eurves, which are the last ones gluing by 71'"-1 over these points
respectively. Then D =B' U E , where B' is the proper pre-image of Band E
consists of the components of the exceptionallocus of 7r-

1, exc1uding Vi , •••, Vk .

Let PicW be freely generated by the c1asses of irreducible curves CI,
..., Cp .Tben PicV is freely generated by tbe classes of the curves

( C ~ , ... , C ~ , vI' ... , v k ) and tbe components of E . Denote by S the

m x m matrix of an expansion of the system of vectors (B ~ , .. .', B~) by

the system (c ~ ,...,C ~ , vI' ... , v k) module the subgroup of PicW gener­

ated by the components of E . The 'vl-line' of S contains two nonzero entries
s· = m . , s· = n· only (see A 1.9) .

I,r l I I,R I 1

By Theorem A 1.4 the surface X := V \ D is acyclic iff the matrix S
is unimodular. In particular cases, considered in section A 3 below we have
CI =BI , I =1, •••, p, and the condition equivalent to the above one is the
unimodularity of the k x k submatrix T of S of the expansion of the system

(B~1 , ... , B~) by the system (v 1 , .•. , vk ) modulo the subgroup of PicW,

generated by (C ~ ,...,C~) and the components of E .

A 2. Absolutely minimal completions

A 2.1. Definition [Za 1] • Let V be a nonsingular projective surface and
D be an SNC-curve in V . The pair (V, D) will be called absolutely minimal
iff the following holtis: if (V', 0') is an other SNC-pair and <p : V I ---7 Visa
birational mapping such that the restrietion <p I V' \ D ' is an isomorphism 0/
V' \ D ' onto V \ D , then<p is actually a morpltism.

This means that an absolutely minimal completion (V, D) of a given surface

X :=V \ D

is dominated by any other of its SNC-completions. In particular, if an absolutely
minimal completion exists it is unique.
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A 2.2. Definition [Za 1] • A weighted graph r will be called absolutely
minimal iff the weight 0/ any 0/ its at most linear (i.e. linear or end) vertices does
not exceed -2 .

It is clear that r is absolutely minimal iff it is minimal and has no linear or
end vertex of a non-negative weight.

A 2.3. Proposition. Let D be an SNC-curve with rational components in a
nonsingular projective surface V . The pair (V, D) is absolutely minimal if and
only i/ the dual graph r o is absolutely minimal.

Proof. Assume that r o is not absolutely minimal. Let v be an at most
linear vertex of r o of weight n :i!: -1 . After n + 1 successive blowing ups in an
incidental wedge, v will be an at most linear (-I)-vertex. Then the contraction of v
gives a Dew SNC-pair (V', 0') , and the composition of the above transformations
is abirational mapping 7r : V -+ V' , which induces an isomorphism V \ D
-+ V I \ D' . Tbe inverse <p := 1t' -1 : V I -+ V is not amorphism, and henee
the pair (V, D) is not absolutely minimal.

Tbe converse follows from Lemma 4 of [GI] . Q.E.D.

A 2.4. Theorem. Let X be an acyclic surface 0/ hyperbolic type. Then X
has a unique minimal SNC-completion (V, D) , and this completion is absolutely
minimal.

PIVOf. We shall prove that any minimal SNC-completion of X is in fact
absolutely minimal, which suffices. Suppose that there exists a minimal SNC­
completion (V, D) of X which is not absolutely minimal. Then by A 2.3 the
graph r o must have an at most linear vertex v of a non-negative weight n.
After n successive blowing ups in an incidental wedge one can assume that
n =O. By Theorem A 1.3 the surface V is rational and so, applying the Riemann­
Roch Theorem, we conelude that tbe curve v varies in a linear pencil, which
defines a morphism 7r : V -+ pt with a rational generic fibre F . Since F·D =
=v·D :s 2 , the generic fibre r =F \ D of the restrietion 7r IX : X -+ plis
isomorphie either to C (if v is an end vertex) or to C· =C \ {O} (if v is a linear
one). By the weil known inequality [11 1, Theorem 4] we have:

- - 1
k(X) :5; k(r) + dirn P :5; 1.

This contradicts to the assumption that X is of hyperbolic type. Q.E.D.

A 2.5. Remark. If an acyclic surface X has an absolutely minimal completion
(V, D) , then the dass of combinatorial equivalence of the graph r o is an invariant
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of the isomorphism type of X . This will be used further in order to distinguish
such surfaces up to isomorphism.

A 3. Constructions of examples

A 3.1. Tbc surfaces XT

Consider the quadric Q =pI X pI as a completion of Cl with coordinates
(x, y) by a pair of projective lines Co := { y =oo} and Cl := { x =oo} . Denote
by CO , Cl , 10 , h the generators of the quadric Q , given in affine coordinates by
the equations y = 0 , y = 1 , x = 0 , x = 1 respectively. Let B be the union of six
rational curves Co , Cl , CO , Cl , 10 , h in Q . Fix four intersection points ZIJ =
= (~j) and numerical data {(OIJ , mlJH , i, j =0, 1, such that the matrix

T ( ~~~.- 0

o

o
o

"00
o

"01
o

is unimodular. Applying the cutting cycle procedure to the pair (Q, B) in four
given points according to this numerical data, we obtain an SNC-pair
(VT, DT) , which satisfies to the conditions of A. 1.10. Therefore the surface
XT := VT \ D-r is acyclic.

A 3.2. Lemma. The dual graph rT 0/ the curve DT is absolutely minimal
anti Jws the following form:

17



1

Imlo,nlO

,
I mOl ,nm

I

Imll,n11

A 3.3. The surfaces Xo

I mo~',non

"I mOl ,nm

"ImlO,n 10

"'m 11 ,n 11

Let It , es , where s is an odd natural number, be the curves in the quadric
Q , given in affine coordinates by equations x = 1 , r = r respectively. Let
1f' : W ~ Q be the minimal resolution of singularities of the curve ds := Co U
U· el U It U es and Bs := 7t'-t(ds) .

Let ZO , Zt be two points of intersection of the curves It, es . Fix numerical
data {(nJ , mi)} , i =0, 1 , such that the matrix

is unimodular. Set () := (5, T) . Applying the cutting cyde procedure to the pair
(W, Bs) over the points ZO , Zt according to this numerical data, we obtain a pair
(V() , DO) , which satisfies the conditions of A 1.10. So, we get the second
series of acyclic surfaces X(} := V() \ DO . We omit calculations, which lead to
the following lemma.

A 3.4. Lemma. Let r (} be the minimization 01 the dual graph 01 the curve
DO' Then

a) r 0 is a linear graph iffs =1 and (ni, mi) =(1, 1) lor J=0 or for i =1 .

b) In the case, when s =1 and (ni, MV =I (1, 1) for I =0, 1, the graph r0
is absolutely minimal and has the following form:
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-2

o

ci In the case, when s =27+1 > 1, r 0 is absolutely minimal and has the
following form:

-2

r---_ -3

o

-1

-2
0

a -2 -7-1

,
-1CA

~ .

b

I'1

A 3.5. Remarks. 1. As follows from Ramanujam's Theorem A 1.7 , in case
a), and only in this case, the surface Xe is isomorphie to C2 .

2. There is a countable set of pairwise non-isomorphie surfaces XT (or Xe)
since there is such a set of pairwise non-equivalent graphs rT (or re) (see A
2.5) . The complete description of all isomorphisms on the set {XT, Xo} is given
in [Za 1] , [Za 2] . lt turned out that two surfaces from this· set are isomorphie
iff the corresponding dual graphs are combinatorially equivalent. In general, this
is not true for arbitrary acyclic surfaces.

3. lt is worth mentioning that the surface in Ramanujam's original example

[Ra] is isomorphie to X(}' ,where 0' = (5' , 1") := (3 , (~ ~». but their

constructions are different.

4. Tbe canonical projeetion Q =pt X pt -.. pt onto the first factor induces
families of eurves XT -.. C , Xo -.. C with generie fibers isomorphie to C·· :=
=C \ {O; 1}. As follows from [Za 1] , [Za 2], they are tbe only isotrivial
families of eurves, Le. families with isomorphie generie fibres, with the base C
on aeyclie surfaces non-isomorphie to C2 . Furthennore, in [Za 1] , [Za 2] the
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list of isotrivial polynomials on C2, which partially had been obtained in [Za 4],
[Ka] , was completed.

A 4. Contractibility of the surfaces XT , Xo

A 4.1. Proposition. Each 0/ the sur/aces XT , Xo ' constructed in A 3, is
topologically contractible.

We precede the proof with some general remarks.

A 4.2. Since tbe surfaces XT , Xo are acydic, it is enough to show that they
are simply connected. This is done for the surfaces XT in Lemma A 4.6 below.
In the case of the surfaces Xo the proof is something more delicate, see [Za 1]
, and will be omitted.

A 4.3. Let H be an irreducible curve in a smooth surface X and X o E X\H
be a distinguished point. Then there is a naturally defined dass of conjugate
elements [Am E Ker (7rt(X \ H , xo) --.. 7l"t(X , xo) ) , called vanishing [oops 0/
H . For a pair of irreducible curves H' , H", intersecting transversely in smooth
points, their vanishing loops can be chosen commuting. If X = V \ D , where D
is a curve in a smooth complete surface V , and H is smooth and intersects with
D transversely, then one has the exact sequence

1 --.. N --.. 7r (X \ H) ~ 'Tr (X) --.. 1
1 1

where N is generated by vanishing loops of H [Fu 1, (4.18)] .

A 4.4. Lemma [Fu 1, (7.18)] . Let a pair (V , D) be obtained /rom an SNC­
pair (W ,B) by applying the cutting cycle procedure over a point zo o/intersection
0/ two components BI , B2 o/B according to the numerical data (n , m). Let H =
v be the last gluing curve over zo. Then lor suitably chosen commuting vanishing
loops Ai := An! , I = 1 , 2, the relation [AU] = [Al]D[A2]m holds.

I

Tbe next lemma follows immediately from A 4.3 and A 4.4 .

A 4.5. Lemma. Let X = V \ D be an acyclic surlace, obtained by cutting
cycles construction as in A 1.10. Let under the notations 01 A 1.10 Y: = X \ v
=V \ 1r-

1(B) = W \ B , where v := Ui~l Vi' Then 'Trt(X) =1rt(Y) / N,
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where N is anormal subgroup of 1q(Y) generated by the elements of the form

[A B
r

, ] m, [A B., ] D, , where the vanishing loops [A B
r

, ], [A n.,] com­

mute, i =1,..., k .

For the surfaces XT , as was mentioned in A 4.2 , Proposition A 4.1 follows
from tbe next lemma.

A 4.6. Lemma. For any unimodular matrix T as in A 3.1 the surface XT
is simply connected

Proot Let Y := Q \ d be the complement of the union d of six generators of
the quadric (see A 3.1) . Then 1rl(Y) =F2 x F2 , where F2 is a free group with
two generators, has the following system of four generators:

a := [,X ] , b. := [,X ], i,j = 0,1 ,
l li J Cj

where [81 , bj] = 1 for any i , j = 0, 1 . By Lemma A 4.5 the group 1rt (XT)
has the following corepresentation:

1r (X
T

) = [a ,8 ,b ,b lab = 1, amUb nU
= 1, i,j = 0,1].

1 0101 ij i j

Raising both sides of tbe latter equation to the power 01-1 , j we get :

m 11 n 01
=8

1

Furtber, raising these equations to tbe powers mURot , mloDoo respectively, we
come to a consequence:

, or
detT

a = 1
o

Since T is a unimodular matrix, ao =1 . In the same way one can show that
81 =bo =bl = 1 , Le. 1rl (XT) =1 . Q.E.D•.

A 5. Logarithmic Kodaira dimensions of the surfaces XT , X(}

Here we sha11 show that most of the surfaces XT , Xo constructed above are
of hyperbolic type. This will be done in two ways. Tbe simplest one is based
on the following facts.
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A 5.1. Theorem ofMlyaolshl..Sugle..Fujlta (see [Fu 2]). Let X be an aeyelie
surfaee. Then k(X) = -00 i/ and only i/X is isomorphie to cl .

A 5.2. Theorem ( [Fu 1, (8.70)] ; see also [Gu MI]). There exists no aeye/ie
surfaee X with k(X) = 0 .

The complete list of acyclic surfaces with k(X) = 1 was obtained in
[Gu MI, § 3] . To fonnulate this result (in a particular case of topologically
contracted surfaces) we need the following nation.

A 5.3. Definition. Let (W, B) be an SNC·pair. Fix a smooth point bEB.
Let v be the exceptional curve of the blowing up 1r : V ~ W at band D := B' =
7r-t (B) e v. The procedure o[ replacing the pair (W, B) by the pair (V, D) is
ealled a half-point attachment at the point b [Fu 1] .

Bya k-iteraled half-point altachment we mean the [ollowing extension of this
procedure: blow up in a point b =bt , then once more in a point ~ E Et \ B' ,
where Et is the gluing curve, anti so on k times; put D := 1r-

t (B) e v, where
7r : V ~ W is the composition 01 these k blowing ups anti v = Ek is the last
gluing curve.

A 5.4. Theorem [Gu MI, Theorem 3] . Any topologically contracted surlaee
X with k(X) = 1 can be obtained in the following way. Let W = E(l) be the
Hirzebruch surface (which is a blowing up of p2 in a point). Let the SNC-euTVe
B in W be the union of two disjoint sections Ho anti Hl o[ the natural projeetion
E(l) ~ pt with Ho2 = -1 and H1 2 = 1, anti three distinguished /ibres Fo, Ft,
F00 • Let Zl be the intersection points 0/ the curves F, and HL I = 0, 1. Fix
a natural number k and numerical data (mi, nl) , I =0, 1, such that ßi < mj

and mont + ml00 - rnoml = ::t1. Then X := V \ D, where an SNC-pair (V,
D) is obtained from the pair (W, B) by the k-iterated half-point attachment at
a point 0/ the fibre Foo anti the eutting cycles procedure over the points zo , ZI

according to the given numerical data.

A 5.5. Corollary. Let (Vmln , Dmln) be a minimal SNC-completion 0/ a
surface X as above. Then the dual graph of Dmin is absolutely minimal and has
the following form:
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i/ k > 1, anti

i/ k = 1 (here 8, b s -2) .

The next theorem is the main result of this section.

A 5.6. Theorem. There exists a coulltable set 0/ pairwise non-isomorphie
sur/aces XT (XO) 0/ hyperbolic type.

Proof. It is easily seen that most of the dual graphs rT , rB (see A
3.2, A 3.4) are not equivalent to any of the above graphs, and are pairwise
non-equivalent. So, the corresponding surfaces XT , Xo ' whieh by A 4.1 are
topologically contraetible, are pairwise non-isomorphie and are not isomorphie to
any of contractible surfaces of logarithmic Kodaira dimension less than 2 (see
remark A 2.5). Hence they are of hyperbolie type. Q. E. D.

Another approach to the direct calculation of logarithmie Kodaira dimensions
of the surfaees XT ,Xo is based on the following facts.

A 5.7. Kawamata's Theorem [Kaw] . Let (V, D) be an SNC-completioll 0/
a surface X = V \ D with k(X) ~ 0 . COllsider the Zaris/d decompositioll
K + D = H + N, where K := Kv is the canonical divisor and H = (K + D)+ ,
N = (K + D)-. Then
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t) k(X) = 0 iff H =0 ;

ll) k(X) = 1 iff H # 0 and H2 =0 ;

llt) k(X) = 2 iff H2 > 0 .

A 5.8. Since H aod N are orthogonal we have:

H2 = (K + D)2 - N2 = K(K + D) + D(K + D) - N2 .

Here D(K + D) =-2 if Dis a rational tree, - indeed, in this case 7raCD) = 0 .
The following simple lemma allows one to calculate K(K + D) in our examples.

A 5.9. Lemma. a) The value 0/ K(K + D) does not change under blowing
down 0/ a (-1)-vertex E 0/ the graph r n i/ Eisa linear vertex, it increases by
1 i/ E is an end vertex and increases by 2 i/ E is an isolated vertex.

b) Let v be a component 0/ a curve D' and D := D' e v. Then

K(K + D) =K(K + D') + v2 + 2 .

In particular, after deleting a (-l)-component v 0/ 0' the value 0/
K(K + 0') increases by 1 .

A 5.10. Corollary. Let a pair (V, D) be obtained {rom an SNC-pair (W, B)
as a result 0/ cutting 0/ k cyeles. Then

Kv(Kv + D) = Kw(Kw + B) + k .

In partieular, for the minimal completion (V T , ß.r) 0/ the surface XT we

have KT(KT + DT) = 0, where KT := K v .
T

Indeed, the pair (V T , Ih) is obtained from the pair (Q, d) by cutting four
cycles (see A 3.1) , and KtJ(KtJ + d) =-2(eo + el) =--4 .

A 5.11. Remark. In the same way one can easily check, that
K 8 min (K 8 min + D nmin) = 0 for the minimal SNC-completion (V 8 min , D (J win )

of the surface "0, if this surface is not isomorphie to C2 (see [Za1]) .

A 5.12. Corollary. Let (V, D) be a minimal SNC-completion 0/ a surfaee

X =XT or X =Xo ' where Xe is not isomorphie to C2
• Then H2 =-2 - N2

.

Therefore X is 0/ hyperbolic type iff N2 < -2 .

Ta calculate the value of N2 we make use of so called theory 0/ peeling
(see [Fu 1] , [Mi Tsu]) , which in some cases aHows one to find the Zariski
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decomposition K + D = H + N explicitly. We recall some necessary notions
and facts.

A 5.13. Let D be an SNC-curve with rational components in a smooth
complete surface V . A twig L of D is an extremal linear branch of the dual
graph ro , Le. a linear branch [Dl ,•••, DJJ of the fonn

where Dl is an end vertex r o, called a tip 0/ L , and Dk + 1 is a branching point
of f o . L is called an admissible twig iff Dj 2 s: -2 for every i = 1,..., k , or
equivalently, iff L is minimal and its bilinear fonn is negative definite. For an
admissible twig L the bark 0/ L is defined to be the effective Q-divisor

Bk (L) := L: i~l aj D 1 ' uniquely determined by the equations

{
-1, i = 1

D.Bk(L)=D.(K+D)= 0 ·-2 k'
1 1 , 1 - , ... ,

Let ML := (D1 Dj)iJ a 1~ k be the interseetion matrix of L , d(L) :=
=dei (-ML) , L := [D 2 , ... , D k ] and d(L) := d(E) . The rational number

d(L)
e(L) := d(L)

is called the inductance 0/ L [Fu 1, (3.5)] .

A 5.14. Lemma [Fu 1, (6.16)]. (Bk (L) )2 =--e (L) .

A 5.15. Lemma. 1) IfL = 18'h , where a and bare relatively prime natural

numbers, then d(L) = a anti d(L) = b ' ,where 0 < b' < a and
h'

bb' =-1 (mod a) , and so e(L) := " .

2)

e(, ' ) + e(, ") =
8,h A,h

1
1- ­

ab

Proof. First we shall show that 2) is an easy consequence of 1) . Indeed, in
view of 1) , 2) is equivalent to the equality

a b' 1 "b + --;- = 1- ab ' or aa + bb = ab - 1 .
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Let t := ab - aa' - bb' . Then t =l(mod a) and t =l(mod b) by the
definition of a' , b', and hence t == 1(mocl ab) since a and bare relatively
prime. Thus, t = abs + 1 , where s E Z, s S; 0 . lf s ~ -1 , then t s 1 ­
- ab or 2ab:s:: aa' + bb' . This contradicts to the inequalities aa'::s:; ab and
bb' ::s; ab . Therefore s = 0 , Le. t = 1 and 2) folIows.

Tbe proof of 1) consists of two steps. First of aU we make the following
remarks. One can consider a cutting cycle procedure over a given normal
intersection point Zo of the curves Co and Cl in tenns of dual graphs as a sequence
of successive blowing ups of wedges of weighted linear graphs, such that at each
step the corresponding graph has only one (-1~vertex. Tbe latter condition
means that the next blowing up is always done at one of two wedges of the
preceding graph, incidental to its unique (-l)-vertex. In fact, such a sequence
can be arbitrary; for example, its starting steps could look like the following:

At the same time this sequence is uniquely detennined by the rational number
~ , where a and b are defined by the conditions CO· =bv + ... t Cl· =av +
000 (here v is the last gluing (-l)-curve), and the resulting graph coincides with
the graph ,a,b (see A 1.9).

Let L = ,'a,b = [D1 '000' Dkl and al := - D i ' a i 2:: 2 , i = 1, ... , k
Denote by rn 1 ' n 2 ,.·.1 ' where nl :it: 2 , the following continued fraction:

E (0;1) .

h'
Claim. ra 1' a 2 , ... , a k 1 = ft

The proofofthe claim will be done by induction on the number n of blowing
ups, Le. the number of vertexes of the graph ,a,b' For n = 2 the claim is
evidently true. Let D > 2 . Assume first that a1 > 2 . Tben ,a,b is the result
of blowing up of the graph

-ak -a2 -al + 1 -1

e----o- --0 0 0 Qo--o ~

Co Dk D2 D1 D -1 D -2 D Cl-m
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at the wedge [Dl , D_tl . Assurne that before the last blowing up one has the
following expansions:

k

c: = L PID i
l=-m

k

and c: = L q,D
i

l=-m

By the inductive hypothesis we have:

I

ra - 1, a , ... , a 1= P -I
1 2 k q_1

ano
pi

r 1- _1a
2

, ... , a
k

- ql

For the multiplicities b , a of the (-l)-vertex Do:= v of the graph I'a,b in the
divisors CO·, Cl· respectively we have: b =P-l + PI and 8 =q-l + ql . Set

fa , a , ... , a 1
1 2 k

where (po , qo) =1 . To complete the induction we must show that a =qo and
b =Po , or equivalently, that Po =P-l + PI and qo =q-l + ql .

From the definitions of the above continued fractions it follows that

qo-,
Po

,
PI= a - - =

1 ql

Q-l + 1-,-
P-t

and therefore

I I I

P -1 = Ql = Po' q -1 = qo = Po

Hence the equality qo ='1-1 + ql holds.

Rewrite the congruencies PI P ~ =-1 (mod q i )

form:
= -1, 0, 1 in the

I I •
xp =yq -1, O<x <q,O<y <p ,1=0,1,-1. (*)

i i i i i i i i

Using the equalities above, the last two equations can be rewritten in the following
form:

(i = 1)
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(i = -1) x p' = y (q - p') - 1
-1 0 -1 0 0

Let (Xo, Yo) be the least natural solution of the first equation. It is easily seen
that the pairs

(Xl, Yt) := (yo , 8tYo - Xo) , (1..1, Y-t) := (Xo -Yo , Yo)

satisfy respeetively the sec(md and third equations. Since y 0< p ~

q1 = P ~1 we have Xl <q1 and y -1 <p~1' It follows that (Xl , yt> ,
(x....l , Y-l) are the least positive solutions of the above equations, and henee

Xo = Po ,xl = Yo = P1 and x_1 = Xo - Yo =P-l' Therefore
Po =P-l + Pt , and we are done.

Consider further the case, when 81 = ... = 8n _ 2 = 2 , 8n -1 > 2 and hence
8-1 =n (see A 1.9) . In this case the graph ra,b has the following form:

-8
n

_
1

-2
~ 0-

D
n

_
1

D
n

_
2

-2 -1 -n

.~ 0 0 0 -0

Blowing down successively the vertexes Do , Dt , ..., Dn _ 2 we get the
following graph:

-Bk -8 n - 1 +1 -1
0----0- -~ 0 0-- ... ---0

Co Dk D O - 1 D -1 D -2 Cl

By the inductive hypothesis we have:

P ~1 = fa - 1,8 , ... , a 1
q-l 0-1 0 k

Let

f2, ... , 2, a , ... , 8 1
......-.....--. 0-1 k

0-3

I f 1Po .- 2, ... ,2,8 , ... , a
qo ......-.....--. 0-1 k

0-2
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As before, to prove our assertion it is enough to check that Po = P-I + PI (=b)
and qo = <1-1 + ql (=8) . From the above developments one gets the following
equalities:

I I I
P -1 = (n -l)p 0 - (n - 2)qo ' q -1 = qo - Po

I I
P = 2p - q

1 0 0

I
q =P

1 0

As a consequence, the equality qo = q-l + ql holds. Furthennore, the last two
equations of (*) can be rewritten now as follows:

(i = 1) (2X - Y ) P I = x q - 1
1 1 0 1 0

(i = -1) [(n - l)x + Y ] p' = [(n - 2)x + Y ] q - 1
-1 -1 0 -1 -1 0

If (Xo , Yo) is the least positive solution of the first equation of (*) , then it can
be easily checked that the pairs

(Xl, YI) := (yo , 2yo - Xo) , (LI , Y-I) := (Xo -Yo , (n - l)yo - (n - 2)XO)

satisfy respectively the second and third equations. Hence X-I + Xl = "0, Le.

P-I + PI = Po· Q.E.D.

Now we return to the proof of the equality e \ "I a:h) := :' in 1) , or

equivalently, of the equalities d(L) = 8 and d(L) = b ,where L =1 A.'h (indeed,

(d(L) ) d(L)) = 1 , see [Fu 1, (3.6)]). By the Euclidean algorithm', from the

equality :' = raI' a 2 , ... , Bk 1' which just has been proved, one gets:

{

a = 8 1 b' - Tl

b'= 8 2 T I - T 2

T
k

_
2

= a
k

T
k

_
1

or

h' r
1=8 --~

1" "

h' r rO=--+a ~-~
" 2" "

°_ rk_2 + rk_l- --,,- a k -,,-

Here rk -1' =1 and 0 < rl < rl-l , i = 1, ..., k - 1 . Rewrite this system
as the equation Ax = e ,where A:= -ML, e := (1,0, ... ,0) and

( h' ~ rk_I) C' . h' _ CifL~x o := R'''' ''') -,,- . By rarner s mle we have. Il - ci L . Q.E.D.
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Remark. In [Za 1] another proof of Lemma A 5.15 is given.

A 5.16. Theorem (see [Fu 1, (6.20) - (6.24))) . Let X =V \ D , where D
is a rational tree in a nonsingular projective surface V . Assume that X is affine,
k(X) ~ 0, the dual graph r o has at least two branching points and that there
is no -l-curve E in V, such that E ct D , ED = 1 = EL o tor some twig 4
o{ D . Then N := (K + D) - = Bk(D) , where Bk(D) := EL Bk(L) and the swn
is taken over aU twigs o{ D .

A 5.17. Lemma. Let X =XT or X =Xe ' where Xe ':f:. c 2
• Let (V, D)

be the minimal SNC-completion o{X . Then the assumptions o{ Theorem A 5.12
are fulfiUed and hence N = Bk(D) .

Proof. Since X ':f:. C 2 by the Theorem of Miyanishi - Sugie - Fujita A
5.1, we have that k(X) ~ 0 . By Fujita's Lemma A 1.2, X is affine. In view
of Lemmas A 3.2 and A 3.4 it is easily seen that the dual graph r o has at least
two branching points.

Assume that for X = XT , (V, D) = (VT, D-r) there exists a (-l)-curve E
ct llT such that EeD-r = Ee(supp Bk<DT)) = 1 . Tben Ee(f{t' + el') = 0 , ­
indeed, the branching points eo' , el' of ro da not belang to supp Bk(DT) .
Since the morphism 'ifT: VT -+ Q (the inverse to the cutting cyc1es procedure) is
an isomorphism in a neighborhood of the curve e~ U e ~ (see A 3.1), we have:
'ifT(E) e (co + Cl) =O. Tbis means that 1f"T(E) is a point in Q and therefore
E should coincide with one of the curves vij , I, j = 0, 1 . Thus EeDT = 2 ,
- a contradietion.

The proof in the casc, when X =Xo ' where Xo ':f:. C 2
, is based on a more

detailed analysis (see [Za 1, (5.1.13))) and will be ommited here. Q.E.D.

A 5.18. Theorem. Let T be an unimodular matrix as in A 3.1 , such that
mij > 1 , DU > 1 tor aU i, j =0, 1. rhen the surface XT is o{ hyperbolic type.

Proo/. Under our assumptions the graphs 'm ij' n' ,I'm .." n" ( i, j = 0, 1)
, lij IJ' ~

are non-empty and coincide with twigs of the graph rT (see A 3.2) . From Lem-
mas A 5.14 , A 5.15 and A 5.17 it follows, that

_ (Bk(n )) 2 = L (Bk (I' I )) 2
T lJ =0,1 m ij' n ij
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+ L.. (Bk(' 11 )) 2 = L ..
IJ=O,l m lJ , nlj IJ=O,l

1
- 4 < -2

(indeed, ml, J DI, J ;a: 6 since ml, J' Ilj, J are relatively prime and greater than 1 ).
Now the assertion follows from Corollary A 5.12 . Q.E.D.

More careful analysis leads to the following conc1usion.

A 5.19. Theorem ([Za 1, (5.12)] ; [Za2]) .

a) k (X T) = 1 iff" either mn = DU =1 , i = 0, 1, or mU =l1ij = 1 , i =
0, 1, j = 1 - i. In other cases k (X T ) = 2 .

b) k (X g ) :::; 1 iffB =(1 , T ) and the matrix T has a row, which is equal
to (1, 1) , (1, 2) or (2, 1) .

Theorem A 5.6 follows from Theorem A 5.18, Lemmas A 3.2 , A 3.4 and
Remark A 2.5 .
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