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Introduction.
Recently, Ein and Lazarsfeld ([E-L, 2,3]) obtained the best possible effective

estimate on the base point freeness of adjoint linear series of a non-singular polarized
3-fold. But it still remains a problem to find a reasonable effective estimate on the
very ampleness of them (cf. [E-L, 1,2]).

In this paper, inspired by lectures given by Ein and Reid at Utah University in
November 1992, we shall prove the following theorem coneerning with a polarized
Calabi-Yau 3-fold. This is an improvement of our previoua result [0, (3.1)].

Main Theorem. Let (X, L) be a polarized Calabi-Yau 3-fold, i.e., X is a nOD­

singular projective complex 3-fold with K x = 0 and h1(Ox) = 0, and L is an
ample line bundle on X. Assume that ImLI is Iree and ~lmLl is birational for every
m ;::: I, where 1 is a positive integer. Put Rn = HO(Ox(nL)). Tben, for every
n ;::: 2/, we have:

(1) Rf.Rn = Rn+f ,
(2) nL is simply generated, i.e., tbe graded C-algebra EI1k;::oRkn is generated by

Rn. In particular, nL is very ample for every n ;::: 2/.

Let (X,L) = «3) n (4) C P(1,1,1,1,1,2),Ox(1)) be a general complete in­
terseetion of hypersurfaees of degree 3 and 4 in the weighted projective apace
P(l, 1, 1,1, 1,2). Then, as is observed in [0, (3.7)], (X, L) is a polarized Calabi­
Yau 3-fold whieh satisfies that ImLI is free and ~lmLI ia birational for m ;::: 1, but
L itself ia not very ample. So our estimate is best possible for at least 1 = 1.

On the other hand, we know that for a polarized Calabi-Yau 3-fold (X, L), ImLI
is free for every m ;::: 4 by [E-L, 2,3], and 4f»lmLI ia birational for every m ;::: 5 by
(0, (1.1)]. Moreover, 4f»14LI is birational except for a few cases (for detail, see [0,
(1.1)]). Thus we ean derive a next effeetive estimate on the very ampleness (more
strongly, on the simply generatedness) from our main theorem:

Corollary. Let (X,L) be a polarized Calabi-Yau 3-fold. Tben,

(1) mL is simply generated for every m ;::: 10,
(2) mL is simply generated for every m ;::: 8 if hO(Ox(L)) ;::: 2.

A pair (X, L) = «10) C P(l, 1, 1,2,5),0x(l)) shows that both of the estimates
on the base point freeness and on the birationality quoted above are best possible for
polarized Calabi-Yau 3-folds. But the author does not know whether the estimate
in the corollary ia best possible or not.
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We shall prove our main theorem by making use of the following theorem con­
cerning with curves mainly due to Fujita, Green, and Reid.

Theorem 1 ([Fl, Theorem A 7], [G, Theorem (4.e.l)], [R, Lemma 2.5]).
Let C be a non-singular projective curve, and L 1 and L 2 be line bundles on C

such that

(1) IL1 1 is free and ~ILll is birational, and
(2) either hOCKe + L1 - L2 ) :::; hO(L1) - 2 and hO(L2 ) 'I 0, or L2 = Ke and

g(C) ~ 1.

Then, the' following natural multiplicatioD map is surjective:

The author would like to express his thanks to Professor Dr. 's L. Ein and R.
Lazarsfeld for their encouragernent, to Professor Dr. H. Clemens for informing rum
the nice workshop at Utah, and to Professor Dr. F. Hirzebruch for offering him an
opportunity to visit Max-Planck-Institut für Mathematik. Trus article was written
up during his stay in tbe institute.

Set up of the proof.

'Let (X, L) be a polarized Calabi-Yau 3-fold and f be an integer in the main
theorem. Let s, t E HO(Ox(fL» be general elements. Put S := div(s) and C :=
div(tls). Then, Cis a smooth curve with Ke = 2fLe, where Le is the restriction of
L to C. Note that ~lfLI and <PIKel define birational morphisms on C. In particular,
C ~ p1. We need the following lemmas in order to prove our main theorem.

Lemma 2 ([0, (0.2), (0.3)]).

(1) hO(Ox(mL» = i(m3 - m)L3 +mhO(Ox(L» ~ 1 and hi(Ox(mL» = 0 for
eve.ry m ~ 1 and i ~ 1.

(2) hi(Ox(mL» = 0 for every mEZ and i = 1,2.
(3) h1(Os(mLs» = 0 and tbe following natural restrietion maps are surjective

for every mEZ:

Lemma 3. The following natural multiplication map is surjective for every r ~ 0:

Proof. If r = 0, the assertion directly follows frorn Theorem 1 because 2fL e = K e .
In what follows, we assume that r > 0. We shall apply Theorem 1 ta the pair
L) := fLe and L2 := (2f + r)Le. In order to da this, since hO((2f + r)Le) =
hOCKe + r Le ) 'I 0, it is enaugh to check the next inequality (ü):
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Since K e +LI - L 2 = (/ - r)Le , we can calculate hO(Ke +LI - L2 ) from the
exact sequences 0 -+ Ox(-rL) -+ Ox((/ - r)L) --+ Os«/ - r)Ls) --+ 0, and
o--+ Os(-rLs) --. 05«/ - r)Ls) -+ Oe«/ - r)Le) --+ 0 as follows:

hOCKe +LI - L2 )

{

<[-r)3;<f-r)L3 + (/ _ r)hO(Ox(L»

= hO(Ox«/ - r)L» = 1

o

/>r
/=r
/ < r.

On the other hand, from the exact. sequences
o-+ Ox --+ Ox(/L) --+ Os(/Ls) --+ 0, and 0 --+ Os --+ Os(/Ls) --+

Oe(/L e ) --+ 0, we have:

If r ~ /, then hOCKe + LI - L2 ) ::; 1. But, since eplL11 is birational and since
S'f. pI, we have hO(L1 ) ~ 3. Thus (#) holds if r ~ /. We shall treat the case when
o< r < /. Note that / ~ 2. In this case, the difference between hO(L1 ) - 2 and
hOCKe + LI - L2 ) is calculated as folIows:

hO(L1 ) - 2 - hOCKe + LI - L2 )

= /3 - / L3 + /HO(Ox(L» _ 2 _ 2 _ (f - r)3 - (/ - r) L3 - (f _ r)hO(Ox(L»
6 6

= 3/(/ - r) + (r
3

- r) L3 +rhO(Ox(L» _ 4
6

~ tU2- 1) L3 + hO(Ox(L» - 4.

H / ~ 3, we have [<[2-
1)L3 + hO(Ox(L» - 4 ~ !.3.2.1 + 1 - 4 ~ 0 and (~)

holds. Assume that f = 2. Then we have r = 1 and hO(L1 ) - 2 - hO(Ke +
LI - L2 ) = L3 + hO(Ox(L») - 4. We shall show that L3 + hO(Ox(L» - 4 ;::: 0,
under the assumption that 2L is free and <l'12LI is birational, by arguing contra­
diction. Assume that L 3 + hO(Ox(L» ::; 3. Then, since L 3

;::: 1 and sinee
hO(Ox(L)) ;::: 1, the pair (L 3

, hO(Ox(L»)) is one of the following 3 candidates:
(1,1), (2, 1), (1, 2). If (L 3

, hO(Ox(L)) = (1,2), then (X, L) is isomorphie to (X =
(6) n (6) C P(l, 1,2,2,3,3), Ox(l» by [F2] or [0, (5.1)]. But, in this ease, as is
easily seen by writing down the equation of X, we have degcPI2LI = 4, which contra­
dicts our assumption that <l'12LI is birational. H (L3

, hO(Ox(L)) = (1,1) or (2,1),
then we have hO(Ox(2L) = L3 + 2hO(Ox(L» = 3 or 4. Thus <P12LI is a map from
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X to p2 or p3, which again contradicts our assumption that epl2LI is birational.
Q.E.D. of Lemma 3.

Proof of the Main Theorem (I).

By lemma 3 and lemma 2 (3), we can get the following 3 exact sequences:

where mc is the natural multiplication map. Then, by an easy diagram chasing,
we see that the next natural multiplication map is surjective for r ;::: 0:

ms : HO«2f +r)Ls) ~ HO(fLs) -+ HO«3f + r)Ls).

In fact, for x E HO«3/ + r)Ls ), put y = rc(x). Then, there exists an element
z E HO«2j +r)Lc)®HO(/Lc) such that y = mc(z). Take w E HO«2j +r)Ls)®
HO(fLs) such that z = rc(w). Since rc(x-ms(z)) = rc(x)-mcrc(w) = 0, there
is an element v E HO«2/+r)Ls) such that x-ms(z) = v.t. Thus x = ms(z+v®t)
and ms is surjective. Now, by the surjection ms and by lemma 2 (3), we can see, in
,the same way 8S before, that the following natural multiplication map is surjective
for every r ;::: 0:

mx : HO(Ox(fL)) ~ HO(Ox«2! + r)L)) -+ HO(Ox«3j + r)L)).

Hence Rf.Rn = Rn+f for every n ;::: 2/. Q.E.D. of the Main Theorem (1).

Proof of the Main Theorem (2).

Let n be an integer such that n ;::: 2/. Hy dividing n by /, we can write n as
n = q/ + r where q and r are integers which satisfy that q ;::: 2 and 0 ~ r ~ / - 1.
In order to prove (2), it is enough to show that Rkn = R(k-l)n.Rn for every k ;::: 2.
Since k ;::: 2 and q ~ 2, we have:

kn - 3(/ + r) = (kq - 4)/ +/ + (k - 3)r ;::: / - r ;::: 0 .

Thus, we can applying the main theorem (1) to the pair (kn, / + r), and get:

Rkn = Rkn-(f+r).R(f+r) .

Since k ;::: 2 and q ;::: 2, we have:

{kn - (f + r)} - (q - 2)/ - 3/ = {(k - l)q - 2} f + (k - l)r ~ O.

Thus, by applying the main theorem (1) repeatedly to the pairs
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(kn - (I + r), I), (kn - (I + r) - I, I), ... ,(kn - (I + r) - (q - 2)/, I), we have:

Rkn-(/+r)

= Rkn-(/+r)-/.R/

= Rkn-(/+r)-/-/.R/.R/

R R
q-~

= kn-(/+r)-(q-2)/' /

=Rkn-(/+r)-(q-2)/-/.R/.R~-~

R Rq-l= (k-l)n' / .

Thus R kn = R(k_l)n.Rj-l .R/+r . But, since R~-l.R/+r C R/(q-l)+/+r =
R/q+r = Rn, we have Rkn C R(k-l)n.Rn. Thus we get the desired equality
Rkn = R(k-l)n.Rn. Q.E.D. of the Main Theorem (2).
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