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Introduction.

Recently, Ein and Lazarsfeld ([E-L, 2,3]) obtained the best possible effective
estimate on the base point freeness of adjoint linear series of a non-singular polarized
3-fold. But it still remains a problem to find a reasonable effective estimate on the
very ampleness of them (cf. [E-L, 1,2]).

In this paper, inspired by lectures given by Ein and Reid at Utah University in
November 1992, we shall prove the following theorem concerning with a polarized
Calabi-Yau 3-fold. This is an improvement of our previous result [0, (3.1))].

Main Theorem. Let (X, L) be a polarized Calabi-Yau 3-fold, i.e., X is a non-
singular projective complex 3-fold with Kx = 0 and h'(Ox) = 0, and L is an
ample line bundle on X. Assume that |mL| is free and ®|,,1| is birational for every
m > f, where f is a positive integer. Put R, = H°(Ox(nL)). Then, for every
n > 2f, we have:

(1) Ry.R, = Ruyy,

(2) nL is simply generated, i.e., the graded C-algebra ®i >0 R is generated by

R,. In particular, nL is very ample for every n > 2f.

Let (X,L) = ((3)n(4) c P(1,1,1,1,1,2),0x(1)) be a general complete in-
tersection of hypersurfaces of degree 3 and 4 in the weighted projective space
P(1,1,1,1,1,2). Then, as is observed in {0, (3.7)], (X, L) is a polarized Calabi-
Yau 3-fold which satisfies that |[mL| is free and @,,,,1 is birational for m 2> 1, but
L itself 1s not very ample. So our estimate is best possible for at least f = 1.

On the other hand, we know that for a polarized Calabi-Yau 3-fold (X, L), |mL|
is free for every m > 4 by [E-L, 2,3], and ®|,,,1| is birational for every m > 5 by
(O, (1.1)]. Moreover, &4z, is birational except for a few cases (for detail, see [O,
(1.1)]). Thus we can derive a next effective estimate on the very ampleness (more
strongly, on the simply generatedness) from our main theorem:

Corollary. Let (X, L) be a polarized Calabi-Yau 3-fold. Then,

(1) mL is simply generated for every m > 10,
(2) mL is simply generated for every m > 8 if h°(Ox (L)) > 2.

A pair (X,L) = ((10) c P(1,1,1,2,5),Ox(1)) shows that both of the estimates
on the base point freeness and on the birationality quoted above are best possible for
polarized Calabi-Yau 3-folds. But the author does not know whether the estimate
in the corollary is best possible or not.
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We shall prove our main theorem by making use of the following theorem con-
cerning with curves mainly due to Fujita, Green, and Reid.

Theorem 1 ([F1, Theorem A7}, [G, Theorem (4.e.1)], [R, Lemma 2.5]).
Let C be a non-singular projective curve, and Ly and L, be line bundles on C
such that
(1) |L1| is free and ®|,| is birational, and
(2) either h°(K¢ + Ly — L2) < h%(Ly) — 2 and h®(L;) # 0, or L; = K¢ and
g9(C) > 1. :

Then, the following natural multiplication map is surjective:

HO(Ll) ® HO(LQ) b Ho(Ll + Lg)
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Set up of the proof.

‘Let (X, L) be a polarized Calabi-Yau 3-fold and f be an integer in the main
theorem. Let s,t € H®(Ox(fL)) be general elements. Put S := div(s) and C :=
div(t|s). Then, C is a smooth curve with K¢ = 2fL¢, where L¢ is the restriction of
L to C. Note that 57| and @ | define birational morphisms on C. In particular,

C # P'. We need the following lemmas in order to prove our main theorem.
Lemma 2 ([O, (0.2), (0.3)]).

(1) h°(Ox(mL)) = 2(m® —m)L® + mh®(Ox(L)) > 1 and R (Ox(mL)) =0 for
everym > 1 andt > 1.

(2) h(Ox(mL)) =0 forevery m € Z and i = 1,2.

(3) h}(Os(mLs)) =0 and the following natural restriction maps are surjective
for every m € Z:

rs: H'(Ox(mL)) — H°(Os(mLs)),

re : H*(Os(mLs)) — HY(Oc(mLc)).

Lemma 3. The following natural multiplication map is surjective for every r > 0:
H((2f +1)Lc) ® H*(fLc) — HY((3f +)Lo).

Proof. If r = 0, the assertion directly follows from Theorem 1 because 2fLc = K.
In what follows, we assume that » > 0. We shall apply Theorem 1 to the pair
L, := fLc and Ly := (2f + r)Le. In order to do this, since A%((2f + r)L¢) =
R* (K¢ +rLg) # 0, it is enough to check the next inequality (§):



€)) h*(K¢ + Ly — Ly) < h%(L,) — 2.

Since K¢ + Ly — Ly = (f — r)L¢, we can calculate h°(K¢c + Ly — L) from the
exact sequences 0 — Ox(—rL) — Ox((f = r)L) — Os((f —r)Ls) — 0, and
0— Os(—rLs) - Os((f - r)Ls) —_— Oc((f - r)Lc) — 0 as follows:

R°(Kc + Ly — Ly)
U=PLU=0 L3 4+ (f - )R(Ox(L)  f>r
=h(Ox((f -n)L))={ 1 f=r
0 f<r.
On the other hand, from the exact sequences

0 — Ox — Ox(fL) — Os(fLs) — 0, and 0 — Og5 — Og(fLs) —
Oc(fLc) — 0, we have:

K(Lr) = R(Ox(fD) ~ 2= 2L 0 4+ pro(ox(my) -2

If r > f, then h°(K¢ + L1 — L) < 1. But, since ®|L,| is birational and since
S 2 P!, we have h%(L;) > 3. Thus (§) holds if r > f. We shall treat the case when
0 < r < f. Note that f > 2. In this case, the difference between h°(L,) — 2 and
h°(K¢ + Ly — L) is calculated as follows:

R%(L1) — 2 — h°(K¢ + Ly — L,)

e R R R )

— 3f(f _r)6+ (1‘3 _'r)LS -I-ThO(OX(L)) —4

> #La + h%(Ox(L)) - 4.

If f> 3, we have LLLZUL3 4 pO(Ox(L)) =4 > 132141 -4 > 0 and (f)
holds. Assume that f = 2. Then we have r = 1 and h%(L;) — 2 — R%(K¢ +
Ly — Ly) = L* + R°(Ox(L)) — 4. We shall show that L? + h®(Ox(L)) — 4 > 0,
under the assumption that 2L is free and @31 is birational, by arguing contra-
diction. Assume that L? + h°(Ox(L)) < 3. Then, since L* > 1 and since
R%(Ox(L)) = 1, the pair (L* h°(Ox(L))) is one of the following 3 candidates:
(1,1),(2,1),(1,2). If (L, A°(Ox(L))) = (1,2), then (X, L) is isomorphic to (X =
(6)n(6) c P(1,1,2,2,3,3),0x(1)) by [F2] or [O, (5.1)]. But, in this case, as is
easily seen by writing down the equation of X, we have deg®;1| = 4, which contra-
dicts our assumption that @5, is birational. If (L?, h*(Ox(L))) = (1,1) or (2,1),
then we have h%(Ox(2L)) = L* + 2h°(Ox (L)) = 3 or 4. Thus $,; is a map from
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X to P? or P?, which again contradicts our assumption that ®|21) is birational.
Q.E.D. of Lemma 3.
Proof of the Main Theorem (1).

By lemma 3 and lemma 2 (3), we can get the following 3 exact sequences:

H°((2f +r)Ls) ® H*(fLs) = H°((2f + r)Lc) ® H°(fLc) — 0,

0 — H°((2f + r)Ls) — H°((3f +r)Ls) = H*((3f +r)Lc) — 0,

H*((2f +7)Lc) ® H(fLc) =5 H*((3f +r)Lc) — 0,

where m¢ is the natural multiplication map. Then, by an easy diagram chasing,
we see that the next natural multiplication map is surjective for r > 0:

mg: HU((Qf + T)Ls) ® Ho(ng) — HO((3f + T')Ls) .

In fact, for z € H°((3f + r)Ls), put y = rc(z). Then, there exists an element
z € H((2f +7)Lc)® HY(fL¢) such that y = m¢(z). Take w € H°((2f +7)Ls)®
H®(fLg) such that z = r¢(w). Since re(z—ms(z)) = re(z)—mere(w) = 0, there
is an element v € H°((2f+r)Ls) such that z—mg(z) = v.t. Thusz = mg(z+v®t)
and mg 1s surjective. Now, by the surjection mg and by lemma 2 (3), we can see, in
‘the same way as before, that the following natural multiplication map is surjective
for every r 2 0O:

mx : H'(Ox(fL)) ® H*(Ox((2f +r)L)) — H*(Ox((3f +r)L)).
Hence Rf.Rn = Rp+ s for every n > 2f. Q.E.D. of the Main Theorem (1).
Proof of the Main Theorem (2).

Let n be an integer such that n > 2f. By dividing n by f, we can write n as
n = qf + r where ¢ and r are integers which satisfy that ¢ > 2and 0 <r < f - 1.
In order to prove (2), it is enough to show that Rin = R(x—1)n.Rn for every k > 2.
Since k > 2 and ¢ > 2, we have:

kn—3(f+r)=(kg—4)f+f+(k-3r=>2f-r20.
Thus, we can applying the main theorem (1) to the pair (kn, f + r), and get:

Rin = Rin—(s4n)-Bisar) -
Since k > 2 and ¢ > 2, we have:

{kn—(f+r)}—-(g-2)f-3f={(k-1)g-2}f+(k-1)r 20.
Thus, by applying the main theorem (1) repeatedly to the pairs



(kn=(f+r), )(kn =(f+r)=fF, fhy-y(bn = (f + 1) — (¢ — 2)f, f), we have:

Rn—(s+r)

= Rin—(f+r)-s-Rs

= Rin—(j+r)-s-5-Ry-Ry

= Rin—(f+r)-G-0 - R}

= Rin—(s4n-(4-)f-1-R-BY”
= Rg—1)n-R} .

Thus Rin = Rx—1)n-R} ' .Rpy,. But, since Ry ".Rppr C Rygot)gfir =
Rgeyr = Rp, we have Rgn C Rg—1yn-Rn. Thus we get the desired equality
Rin = Rx—1)n-Rn . Q.E.D. of the Main Theorem (2).
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