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LIFTING HOMOTOPY T-ALGEBRA MAPS TO STRICT MAPS

NILES JOHNSON AND JUSTIN NOEL

ABSTRACT. The settings for homotopical algebra—categories such as simplicial groups, simplicial
rings, A∞ spaces, E∞ ring spectra, etc.—are oftentimes equivalent to categories of algebras over
some monad or triple T. In such cases, T is acting on a nice simplicial model category in such a
way that the T descends to a monad on the homotopy category and defines a category of homotopy
T-algebras. In this setting there is a forgetful functor from the homotopy category of T-algebras to
the category of homotopy T-algebras.

Under suitable hypotheses we provide an obstruction theory, in the form of a Bousfield-Kan spec-
tral sequence, for lifting a homotopy T-algebra map to a strict map of T-algebras. Once we have a
map of T-algebras to serve as a basepoint, the spectral sequence computes the homotopy groups of
the space of T-algebra maps and the edge homomorphism on π0 is the aforementioned forgetful func-
tor. We discuss a variety of settings in which the required hypotheses are satisfied, including monads
arising from algebraic theories and from operads.

We provide examples in G-spaces, G-spectra, rational E∞-algebras, and A∞-algebras under an
Eilenberg-MacLane commutative ring spectrum. We give explicit calculations showing that the for-
getful functor from the homotopy category of E∞ ring spectra to the category of H∞ ring spectra is
generally neither full nor faithful. We also apply a result of the second named author and Nick Kuhn
to compute the homotopy type of the space E∞(Σ∞+ Coker J,LK(2)R).
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1. INTRODUCTION

In the work of Ando, Hopkins, Rezk, and Strickland on the Witten genus [AHS01, AHS04,
AHR06] the authors first construct a lift of the Witten genus to a multiplicative map of cohomology
theories, then to an H∞ map (i.e., a map preserving power operations), and finally to an E∞ map

MString → tmf .

In each of these steps they are asking that the map commute with more structure and it is natural
to ask if there are general techniques for lifting a map to one that commutes with this structure.

Their construction of an H∞ map makes use of ideas from Ando’s thesis [And92, And95], where
he defines H∞ maps from complex cobordism to Lubin-Tate spectra using a connection to isoge-
nies of Lubin-Tate formal group laws. Thus the result arises from a computation: Since the H∞
condition can be formulated in the stable homotopy category, a map is H∞ if and only if an associ-
ated sequence of cohomological equations hold. The applicability of such techniques is one of the
reasons that the category of H∞ ring spectra is computationally more accessible. Although every
E∞ map forgets to an H∞ map, constructing E∞ maps is much more subtle and requires rather
different techniques.

We develop an obstruction-theoretic spectral sequence to detect when an H∞ map can be lifted
to an E∞ map and other problems of this type. As a consequence of our approach we can also see
how much information is lost under the passage from E∞ to H∞ ring spectra. The first category
can be described as the category of algebras over a monad/triple T in a category of spectra while
the second is the category of such algebras in the homotopy category. Phrased in these terms,
it is expected that a great deal is forgotten in the passage from E∞ to H∞ ring spectra. But to
date, there have been no examples demonstrating this. Since our methods apply more generally
to studying categories of algebras over a monad T (satisfying some hypotheses), we set up our
machinery in the more abstract setting.

In Section 2 we provide a rapid review of the theory of monads and how they naturally encode
algebraic structures. We emphasize the examples coming from algebraic theories and from operads
since they make up the majority of our examples. In Section 3, we recall some conditions which
guarantee the existence of a simplicial model structure on the category of algebras over a monad.
These conditions are often satisfied and cover a broad range of standard examples. Although
most of this material is quite standard and can be skipped by experts, we found it useful to recall
the relevant background. Some crucial technical lemmas in Sections 3.2 and 3.3 will be used to
establish the correct homotopical properties of the simplicial resolution from which we construct
the spectral sequence.

This spectral sequence, which we call the T-algebra spectral sequence, arises as a special case
of Bousfield’s spectral sequence computing the homotopy of the totalization of a cosimplicial space
[Bou89] under a number of assumptions. As shown in Section 4.3, these assumptions hold in
many cases of interest such as categories of algebras over a cofibrant operad in spaces or in R-
module spectra for cofibrant commutative ring spectrum R, G-spaces and G-spectra (provided G
is sufficiently nice), and many algebraic categories such as simplicial groups and rings.

In Section 5 we apply this machinery to compute this spectral sequence in several cases of
interest. The reader interested in applications is encouraged to skip directly to this section. We
include some calculations analyzing the spaces of equivariant maps in G-spaces and G-spectra. In
these examples we explicitly analyze the forgetful functor landing in G-objects in the homotopy
category of spaces and spectra. We then work through a number of examples analyzing spaces
of A∞ and E∞ maps in categories of Eilenberg-MacLane spectra. In particular we provide two
examples arising via unstable rational homotopy theory demonstrating that the forgetful functor
from the homotopy category of E∞ ring spectra to H∞ ring spectra is generally neither full nor
faithful. To the authors’ knowledge, these are the first such examples.
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Finally, we include a result of Nick Kuhn and the second author about the infinite loop space
Coker J to give a non-trivial situation in which H∞ maps and homotopy classes of E∞ maps coin-
cide. Namely maps from Σ∞+ Coker J to any K(2)-local E∞ ring spectrum.

Theorem 1.1. Suppose T is a monad acting on a simplicial category C and X and Y are T-
algebras such that:

(a) T is Quillen (Definition 3.2),
(b) T commutes with geometric realization,
(c) and X is resolvable with replacement X̃ (Definition 3.22).

Let U : CT → C denote the forgetful functor from the category of T-algebras to C . Then there
exists an obstruction-theoretic spectral sequence satisfying:

(1) E0,0
1 = hoC (U X ,UY ).

(2) E0,0
2 = (hoC )hT (U X ,UY ). That is, a homotopy class [ f ] : U X →UY survives to the E2 page

if and only if it is a map of hT-algebras1 in the homotopy category.

(3) Provided a T-algebra map ε : X →Y to serve as a base point, the spectral sequence condi-
tionally converges to the homotopy of the derived mapping space

πsπtC
d(T•U X̃ ,Y ) =⇒ π∗C d

T (X ,Y ).

(4) In this case the differentials dr[ f ] provide obstructions to lifting [ f ] to a map of T-algebras.

(5) The edge homomorphisms

π0C d
T (X ,Y )� E0,0

∞

,→ E0,0
2 = (hoC )hT (U X ,UY )

,→ E0,0
1 = hoC (U X ,UY )

are the corresponding forgetful functors.

(6) The spectral sequence is contravariantly functorial in X ∈ hoCT and covariantly functorial
in Y ∈ hoCT and T satisfying the hypotheses.

This result will be proven in Section 4.1. Note that we do not require any properness assump-
tions on our model category, since we avoid using E2 model structures or Bousfield localizations.

Bousfield has shown that this spectral sequence can still be applied even without the existence
of a base point—a useful generalization since a space of T-algebra maps may well be empty. In
this case there is an obstruction theory (see Remark 4.4) for lifting a map in C to a map of T-
algebras so that one can obtain a base point [Bou89, §5]. The farther one can lift this base point
up the totalization tower, the greater the range in which one can define the spectral sequence and
differentials.

When the relevant mapping spaces in C have the homotopy type of H-spaces, e.g., if C =
Spectra, then one can choose these obstructions to land in the E2 page of the spectral sequence.
This is codified in Theorem 4.5. In practice, the E2 page is significantly smaller than the E1 page
and these obstruction groups can be shown to vanish in some special cases (see Section 5).

Related work. The T-algebra spectral sequence arises by taking a functorial resolution of the
source X . Namely we replace X by the two sided bar construction B(FT ,T,U X ) where U is the
forgetful functor CT →C and FT is its left adjoint. For this approach, one wants general conditions
under which the replacement is cofibrant, weakly equivalent to X , and equipped with a suitable

1Note that the notion of homotopy T-algebra is entirely distinct from the notion of a homotopy algebra in the context
of algebras over operads. If T comes from an operad then our T-algebras are homotopy algebras.
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filtration for obtaining a spectral sequence. A number of special cases of this theory are well
known, and the arguments for spaces and spectra can be found in the literature. Although the
two-sided bar construction has been a standard tool in homotopy theory for decades, we know
of no reference in which its homotopical properties are developed with sufficient breadth for our
purposes. The technical work in Sections 3.2 and 3.3 is concerned with filling this gap.

There are a couple of alternative methods for constructing maps of structured ring spectra.
This work can be considered an extension of the obstruction theory for maps of A∞ simplicial R-
modules and A∞ ring spectra that appears in Rezk’s thesis [Rez96] and his presentation of the
Hopkins-Miller theorem [Rez97]. Indeed the latter work was a significant source of inspiration for
this project. Angeltveit [Ang08] has also constructed an obstruction theory, which appears to be
part of a spectral sequence, for computing maps of A∞ ring spectra.

The Goerss-Hopkins spectral sequence also computes the homotopy of the derived mapping
space between two spectra which are algebras over a suitable operad, such as an E∞ operad
[GH04, GH05]. This spectral sequence uses an E2 model structure which guarantees an algebraic
description of the E2 term and is generally distinct from the T-algebra spectral sequence. In
particular, their edge homomorphism is generally a Hurewicz homomorphism which generally is
distinct from the forgetful functor above. However, in future work, the second author will show
that in special cases such as those considered in Section 5.3 the spectral sequences do agree.

Determining the E2 term of the T-algebra spectral sequence is generally quite difficult. In-
deed, the main results of [AHS04, And95, JN10] could be expressed as partial computations of
d1 : E0,0

1 → E1,0
1 . The difficulties here are generic; there are very few examples where one has

enough knowledge of the power operations to compute the E2 term explicitly.
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authors also greatfully acknowledge partial support from the University of Bonn and the Deutsche
Forschungsgemeinschaft through Graduiertenkolleg 1150, as well as the University of Georgia
through VIGRE II.

Conventions/Terminology. We will say that a category is bicomplete if it has all small colimits
and limits. As we have no need to discuss ‘large’ colimits and limits we will henceforth omit this
adjective.

Let ∆ denote the category of finite non-empty linearly ordered sets with order preserving maps.
We will write sC := C ∆op

for the category of simplicial objects in C . Throughout we will regard
sSet , the category of simplicial sets, as equipped with the Quillen model structure, in which cofi-
brations are monomorphisms, fibrations are Kan fibrations, and weak equivalences are those maps
which induce weak equivalences of topological spaces after geometric realization.

For our purposes, the category Top of topological spaces will be the cartesian closed category
of compactly generated weak Hausdorff spaces. There is a model structure on Top such that
geometric realization sSet →Top is a left Quillen functor and a Quillen equivalence.

We will make the convention that a simplicial category is tensored and cotensored over simpli-
cial sets. This convention is standard when discussing simplicial model categories, but unusual in
enriched category theory.

Definition 1.2. Let G : C →D be a functor, and let D : I →C be a diagram in C .

• G preserves colimits of D if GD →GA is a colimit in D whenever D → A is a colimit in C .
• G reflects colimits of D if D → A is a colimit in C whenever GD →GA is a colimit in D.
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• G creates colimits of D if D has a colimit whenever GD has a colimit and G preserves and
reflects colimits of D.

We say that G preserves, reflects, or creates colimits if it does so for all diagrams. Similar termi-
nology is used for preservation, reflection, or creation of limits.

2. ALGEBRAS OVER A MONAD

This section reviews monads and their categories of algebras, focusing on conditions which
ensure that limits and colimits in the categories of algebras exist and can be computed with infor-
mation from the underlying categories.

In Section 2.1 we begin with a familiar example, focusing on points which are key to the general
theory. A wealth of additional examples can be found in the framework of algebraic theories which
we recall in Section 2.2. In Section 2.3 we extend this discussion to the simplicially enriched
context. Finally we recall some relevant facts about operads from [Rez97] in Section 2.4. In these
last two sections the monads coming from simplicial algebraic theories and from operads will be
introduced and form the lion’s share of our examples.

2.1. Monadicity and categories of algebras. Given a set S we can take the free group FS
on S whose underlying set consists of all finite reduced words whose letters are signed elements
of S. Multiplication is then defined by composing words. We can also take a group G, forget its
group structure, and regard it is as a set X =UG. These constructions are clearly functorial and
participate in an adjunction

Group
U
// Set

F
oo

where U is right adjoint to F. Let T =UF denote the endofunctor of Set given by the composite of
these two functors.

The unit of this adjunction is a natural transformation e : Id→ T given by identifying taking an
element of a set with to its associated word of length one. Using the underlying group structure
on X one can multiply the elements in a word to obtain a structure map

µX : TX → X .

Alternatively we could construct this map by applying U to the counit

ε : FU → Id

of this adjunction. In particular, we have such a map for anything in the image of T and obtain a
natural transformation

µT : T2 → T.
The (large) category of endofunctors of Set admits a monoidal structure under composition and we
can see that (T, e,µT ) is an associative monoid in this category, in other words, T is a monad on
Set .

In the case of X = UG we see that the map µX is compatible with this structure in the sense
that the two double composites of straight arrows in (2.1) are equal and each composite of a curved
arrow followed by a straight arrow is the identity morphism.

(2.1) TTX
µT

//

TµX

// TX
µX

//

eTX

}}

X

eX

~~

An object X ∈ Set with a map µX : TX → X satisfying these identities is called a T-algebra in Set .
We obtain a category Set T of T-algebras in Set by restricting to those set maps which commute
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with the structure morphisms. To be explicit, the morphisms between two T-algebras (X ,µX ) and
(Y ,µY ) are those maps f : X →Y such that the following diagram commutes:

TX
T f
//

µX

��

TY

µY

��

X
f
// Y

or, alternatively,

(2.2) Set T (X ,Y )= eq
[
Set (X ,Y )

(µY ◦T f )∗
//

µ∗X
// Set (TX ,Y )

]
.

The category of T-algebras in Set admits an obvious forgetful functor to Set and we saw above
that the forgetful functor U : Group → Set factors through Set T . It is not difficult to see that the
latter functor defines an equivalence of categories. Indeed, if G is a group then we can see that
some of the maps in (2.1) can be realized by applying U to following diagram of groups:

(2.3) FTG
µT

//

FµUG

// FG //

e

~~

G.

The map on the right exhibits G as the coequalizer of the two straight arrows on the left. Moreover,
the map e exhibits this coequalizer as a reflexive coequalizer. In this sense we see that every
group has a functorial resolution by free groups. The forgetful functor from Set T to Set admits
a left adjoint FT which factors T as T = UFT . Similarly, we see that every T-algebra admits a
functorial resolution by free T-algebras. After forgetting down to Set these coequalizer diagrams
become split coequalizer diagrams [Bor94b, Lemma 4.3.3], i.e., diagrams of the form (2.1). Split
coequalizer diagrams have the useful property that they are preserved by all functors [Bor94c,
Prop. 2.10.2].

Using these functorial resolutions and that a morphism of groups is an isomorphism if and
only if it induces an isomorphism between the underlying sets we can see that the lifted functor
U : Group → Set T is essentially surjective. By applying the functorial resolution again and (2.2)
we obtain an equivalence of categories Group → Set T .

These arguments are completely general:

Theorem 2.4. Barr-Beck/Monadicity Any functor U : D → C , which admits a left adjoint F, lifts
to a functor to the category of T =UF-algebras in C . Moreover this functor is an equivalence of
categories if and only if

(a) U reflects isomorphisms, i.e., a map f in D is an isomorphism if and only if U f is.
(b) If U takes a pair of arrows of the form (2.3), where G is assumed to be a T-algebra, to a

split coequalizer, then the pair of arrows in (2.3) admits a coequalizer which is preserved
by U .

Proof. This version of the Barr-Beck theorem is a slight variation of [Bor94b, 4.4.4]. Here we as-
sume the existence of a left adjoint and have a slightly weaker assumption in Item b, but Borceux’s
proof applies directly. �

Theorem 2.4 can be used to identify many categories as categories of algebras over a monad.
Since we want CT to have an ample supply of colimits and limits for constructing model struc-
tures we postpone introducing these examples for the moment so that we can record when such
constructions exist.
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Proposition 2.5. [Bor94b, 4.3.1, 4.3.2] Suppose T is a monad acting on C , then
(1) The forgetful functor U : CT →C creates all limits.
(2) The forgetful functor U : CT →C creates all colimits which commute with T in C .

Proposition 2.6. [EKMM97, Prop. II.7.4] Suppose C is cocomplete and T commutes with reflex-
ive coequalizers, then CT is cocomplete and the forgetful functor reflects all reflexive coequalizers.

Proof. Let α : colimTX i → T colim X i be the map induced by applying T to the maps X i → colim X i.
Since T commutes with reflexive coequalizers, every colimit in CT can be calculated via the fol-
lowing formula in C :

(2.7) coeq
[
T colimTX i

T colimµXi
//

µ◦α
// T colim X i

]
TeXi

xx

�

Alternatively, if we suppose that C is bicomplete and T preserves κ-filtered colimits for some
regular cardinal κ then CT is bicomplete by [Bor94b, 4.3.6]. We often want T, or equivalently U ,
to preserve both filtered colimits and reflexive coequalizers (for some examples where this does not
hold see [Bor94b, §4.6]). In such a case we can apply the following useful form of the Barr-Beck
theorem provided we restrict to locally presentable categories [Bor94b, §5.2].

Proposition 2.8. Suppose U : D →C is a functor between two locally presentable categories such
that

(a) U preserves limits,
(b) U reflects κ-filtered colimits for some regular cardinal κ,
(c) and U preserves and reflects reflexive coequalizers,

then U admits a left adjoint F, D is equivalent to the category of T = UF-algebras in C , and T
commutes with reflexive coequalizers and κ-filtered colimits.

Proof. Since C and D are locally presentable the first two conditions guarantee that U admits
a left adjoint F [Bor94b, 5.5.7]. The third condition is stronger than the two conditions of the
monadicity theorem, and thus we have D ' CT . The last two conditions guarantee that T = UF
commutes with the stated colimits. �

The above theorems illustrate the importance of reflexive coequalizers and filtered colimits in
CT . These are particular examples of sifted colimits, which are colimits indexed over I such that
the diagonal map I → I ×I is final. Sifted colimits can also be characterized as those colimits
which commute with finite products in Set . One of the main results of [ARV10, 2.1] is that if C is
finitely cocomplete then T commutes with all (κ-)sifted colimits if and only if T commutes with all
reflexive coequalizers and (κ-)filtered colimits.

2.2. Algebraic theories. Monads which commute with sifted colimits arise naturally in the
study of algebraic theories in the sense of Lawvere [Law63]. Recall that an algebraic theory is
a category T equipped with a product preserving functor i : FinSet op → T which is essentially
surjective. If we label finite sets by their cardinality, this condition is equivalent to saying that
every object of T is isomorphic to i(1)n for some natural number n. If C is a category with finite
products, a T -model in C is a product preserving functor A : T →C . The collection of T -models
in C forms a category CT where the morphisms are natural transformations.

We should think of T as encoding the operations on an object of CT . For example, suppose k is a
commutative ring and define a theory T as the subcategory of the opposite category of k-algebras
whose nth object i(n) is the free k-algebra k〈x1, · · · , xn〉.
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Note that for each k-algebra A, we obtain a T -model in Set by

i(n) 7→ k-Alg (k〈x1, · · · , xn〉, A)∼= An.

Conversely, if A ∈ Set T we can identify A with the set A(i(1)) equipped with the operations en-
coded by the functor A. For example, consider the maps in

T (i(2), i(1))∼= k-Alg (k〈x1〉,k〈x1, x2〉)
which send x1 to x1 + x2 and x1 · x2 respectively. These two maps define respective natural opera-
tions

(−)+ (−) : A(i(1))2 → A(i(1))

(−) · (−) : A(i(1))2 → A(i(1)).

The first map is commutative since x1 + x2 = x2 + x1, while the latter generally is not. By combin-
ing maps in T we can see that the latter operation will distribute over the former. All of these
operations and their relations coming from T show that A(i(1)) is a k-algebra.

Example 2.9.
(1) If T =FinSet op and i is the identity functor then CT is the category of theories in C .
(2) Let TG p be the category whose objects are indexed by natural numbers and whose mor-

phisms are
TG p(m,n)=Group (F{n},F{m}),

where F{m} is the free group on m elements. If we let i be the functor which takes a
finite set X to the element of T labeled by |X | then Set TG p is equivalent to the category of
groups.

(3) Let G be a group and let TG be the theory defined as in (2) but with

TG(m,n)=G-Set (F{n},F{m}),

where F{m} is the free G-set on m elements, then Set TG is equivalent to the category of
G-sets.

(4) Let TAb be the theory defined as in (2) but with

TAb(m,n)=AbGroup (F{n},F{m}),

where F{m} is the free abelian group on m elements, then Set TAb is equivalent to the
category of abelian groups.

(5) Let k be a commutative ring and TAssk be the theory defined as in (2) but with

TAssk (m,n)=AssAlg k(F{n},F{m}),

where F{m} is the free associative k-algebra on m elements, then Set TAssk
is equivalent to

the category of associative k-algebras.
(6) Let TComm be the theory defined as in (2) but with

TComm(m,n)=CommAlg (F{n},F{m}),

where F{m} is the free commutative ring on m elements, then Set TComm is equivalent to
the category of commutative rings.

(7) Let k be a commutative ring and TLiek be the theory defined as in (2) but with

TLiek (m,n)=Liek(F{n},F{m}),

where F{m} is the free Lie algebra over k on m elements, then Set TLiek
is equivalent to the

category of Lie algebras over k.
(8) Let TC∞ be the theory defined as in (2) but with TC∞ (m,n)=C∞(Rm,Rn), the set of smooth

maps from Rm to Rn, then Set TC∞ is equivalent to the category of C∞-rings [Dub81, MR91].
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The list in Example 2.9 is far from comprehensive and is limited only by the authors’ imagina-
tion and the readers’ patience.

If T is a theory, we obtain T -models T {m} in Set by setting T {m}(−)=T (m,−), which we can
think of as the free objects on a set of m-elements. This construction lifts to a (covariant!) functor
T {−} : FinSet → Set T . Since Set is the closure of FinSet under sifted colimits, and sifted colimits
commute with products in Set we see that we can canonically prolong this to a functor from Set .
This functor admits a forgetful right adjoint given by evaluating at i(1).

Just as in Section 2.1, we can compose these adjoints to obtain a monad T = UT {−} on Set .
Since Set T is locally presentable and UT {−} preserves sifted colimits we can apply Proposition 2.8
and see that Set T is equivalent to the category of T =UT {−} algebras in Set . More explicitly, we
have

(2.10) TX =
∫ n∈FinSet

X n ×T (n,1).

Remark 2.11. We can apply the discussion of limits and colimits in Section 2.1 to analyze these
constructions in Set T . For example, since Set is complete, Set T is complete and the forgetful func-
tor creates all limits. By applying (2.10) we see that since sifted colimits commute with products
in sets and all colimits commute with coends, T commutes with sifted colimits. Hence the forgetful
functor reflects all sifted colimits. The remaining colimits can be constructed via (2.7).

2.3. Simplicial categories of T-algebras. The theory of T-algebra limits and colimits from
Section 2.2 admits a straightforward extension to the enriched context. For general background
on enriched categories and functors between them the reader is encouraged to consult [Bor94a,
§6.2] or [Kel05].

Since we are interested in studying the space of maps between two T-algebras we give this
extension in the case that C is a simplicial category. To obtain categorical information analogous
to the previous section we will replace all of our categories with simplicial categories, all of our
functors with simplicial functors, and all of our natural transformations with simplicial natural
transformations. Note that one can regard any topological category as a simplicial category via
the symmetric monoidal functor Sing.

Recall that we require a simplicially enriched category C to have a tensor bifunctor

⊗ : C × sSet →C .

This is related to the simplicial mapping functor C (−,−) and the simplicial cotensor (−)− via the
following adjunction isomorphisms

sSet (K ,C (C,D))∼=C (C⊗K ,D)∼=C (C,DK ).

Proposition 2.12. Suppose that
(a) C is a bicomplete simplicial category.
(b) T is a simplicial monad acting on C .
(c) T commutes with either

(i) reflexive coequalizers or
(ii) filtered colimits.

Then CT is a bicomplete simplicial category such that
(1) The forgetful functor CT →C creates limits and cotensors
(2) The simplicial tensor is constructed as follows:

(2.13) X ⊗T V = coeq
[
FT (TX ⊗V )

FT (µ⊗V )
//

µ◦α
// FT (X ⊗V )

]
FT (e⊗V )

xx
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Here α : FT (TX ⊗V )→ FT (X ⊗V ) is adjoint to the assembly map TX ⊗V → T(X ⊗V ).

Proof. First we check that CT is bicomplete: By Proposition 2.5 CT is complete. Under Hypoth-
esis c.i we can apply Proposition 2.6 to see that CT is cocomplete. When Hypothesis c.ii holds,
cocompleteness follows from [Bor94b, Prop. 4.3.6].

The hom spaces of CT are defined by taking the equalizer, in sSet , of the diagram in (2.2). The
fact that U creates cotensors appears in [EKMM97, §VII Prop. 2.10] In order for the adjunctions
to hold the tensor must be defined by (2.13) and we see that cotensors are created via U . �

Note that if T commutes with reflexive coequalizers we can compute the simplicial tensor in C .
Algebraic theories are extended similarly to the simplicial context: Regarding the category of

finite sets as a simplicial category with discrete mapping objects, a simplicial algebraic theory is
just a product preserving functor FinSet op → T to a simplicial category T which is essentially
surjective as an ordinary functor. Similarly, a T-model in a simplicial category C with finite
products is just a product preserving simplicial functor T →C .

Example 2.14. Each of the examples listed in Example 2.9 naturally defines a simplicial theory.
The T -models in simplicial sets are respectively equivalent to the categories of simplicial groups,
simplicial abelian groups, etc.

Since all limits and colimits in sSet are computed level-wise, and sifted colimits commute with
products in Set , we see that sifted colimits commute with products in sSet . It follows that our
discussion of limits and colimits in Remark 2.11 extends to this context:

Proposition 2.15. Let T be a monad associated to a simplicial algebraic theory. Then the category
sSet T of simplicial T-algebras satisfies the conditions of Proposition 2.12 and hence is a bicomplete
simplicial category with tensor defined by (2.13).

2.4. Monads from operads. A symmetric sequence in sSet is a sequence

C = {C(n)}n≥0

of spaces such that C[n] has a right action by Σn. A map of symmetric sequences is a levelwise
equivariant map.

An operad is a symmetric sequence such that for each partition of n with k parts, i1+·· ·+ ik = n,
there is a structure map

C(k)×C(i1)×·· ·×C(ik)−→ C(n).

( f , g1, . . . , gn) 7−→ f {g1, . . . , gk}

These structure maps satisfy the following axioms [May72]:
(a) For g ∈ C(n), 1{g}= g.
(b) For f ∈ C(k), f {1, . . . ,1}= f .
(c) For f ∈ C(k), g j ∈ C(i j), and h j,l ∈ C(m j,l),

f {g{h1,1, . . . ,h1,i1 }, . . . , f {g{hk,1, . . . ,hk,ik }}= ( f {g1, . . . , gk}){h1,1, . . . ,hk,ik }

(d) For f and g as above and σ ∈Σk,

( fσ){g1, . . . , gk}= f {gσ(1), . . . , gσ(k)}

(e) For f and g as above and σ j ∈Σi j ,

f {g1σ1, . . . , gkσk}= ( f {g1, . . . , gk})◦ (σ1 ×·· ·×σk).

Given our emphasis on monads, it will be helpful to have an alternative definition which we
now summarize—additional details are found in [Rez97, §11]. For the remainder of this section
we assume that C is simplicial symmetric monoidal category with tensor ⊗ such that:
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(a) ⊗ distributes over coproducts in C and
(b) there is a symmetric monoidal functor F : sSet →C , such that the tensor of a space K and

an object X of C is defined by FK ⊗ X .

Now given a symmetric sequence C, we have an associated functor TC : C → C defined on
objects by

TC(X )= ∐
n≥0

C(n)⊗Σn X⊗n.

A map of symmetric sequences yields a natural transformation of functors, and this construction
yields a functor from symmetric sequences to endofunctors of C .

There is an external product, which we again denote by ⊗:

(C⊗D)(n)= ∐
i+ j=n

C(i)×D( j)×Σi×Σ j Σn

Since the symmetric monoidal structure on C distributes over coproducts we see:

TC ×TD ∼= TC⊗D .

Now we define the circle product by:

(C ◦D)(n)= C(n)×Σn D⊗n.

We can now check that the construction C 7→ FC defines a monoidal functor from symmetric
sequences under the circle product to endofunctors under composition. Now we obtain our alter-
native definition: an operad O is a symmetric sequence which is a monoid for the circle product;
the associated endofunctor is then a monad.

Proposition 2.16. Suppose that C is a symmetric monoidal bicomplete simplicial category C

such that:

(a) There is a symmetric monoidal functor

i : sSet →C

defining the simplicial tensor.
(b) The monoidal product in C commutes with either

(i) reflexive coequalizers or
(ii) filtered colimits.

Then for any operad O of simplicial sets, the category of O-algebras in C is a bicomplete simplicial
category.

Proof. Let TO be the monad associated to the operad O . Suppose that I indexes either a reflexive
coequalizer or filtered colimit diagram (depending on which part of hypothesis b holds). Since
colimits commute with coproducts, we see that TO commutes with colimits over I:

TO colim
I

X i =
∐
n≥0

O(n)⊗ (colim
I

X i)⊗n

∼=
∐
n≥0

O(n)⊗colim
I

(X⊗n
i )

∼= colim
I

∐
n≥0

O(n)⊗ (X⊗n
i )

= colim
I

TO X i.

Hence by Proposition 2.12, TO has a bicomplete category of algebras.
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Similarly, we obtain natural maps ηK ,X via the following composite

K ⊗TO X = K ⊗ ∐
n≥0

O(n)⊗ X⊗n

∼=
∐
n≥0

K ⊗ (O(n)⊗ X⊗n)−→ ∐
n≥0

Kn ⊗ (O(n)⊗ X⊗n)

∼=
∐
n≥0

(O(n)⊗ (K ⊗ X )⊗n)

=TO (K ⊗ X ).

Pullback along these maps defines a morphism of simplicial mapping spaces given on k-simplices
by

C (∆k ⊗ X ,Y )
TO−−→C (TO (∆k ⊗ X ),TOY )

η∗
∆k ,X−−−−→C (∆k ⊗TO X ,TOY ).

This map clearly preserves simplicial units. Compatibility with composition is verified by the
commutative diagram in Fig. 2.17 where we let d : ∆k →∆k ×∆k denote the diagonal map.

C (∆k ⊗Y , Z)×C (∆k ⊗ X ,Y )

1×(∆k⊗1)

��

TO

((

C (∆k ⊗TO (Y ),TO Z)×C (∆k ⊗TO (X ),TOY )

1×(∆k⊗1)

��

C (TO (∆k ⊗Y ),TO Z)×C (TO (∆k ⊗ X ),TOY )

1×TO (∆k⊗1)

��

η∗×η∗
55

C (∆k ⊗Y , Z)×C ((∆k ×∆k)⊗ X ,∆k ⊗Y )

◦

��

TO

((

C (∆k ⊗TOY ,TO Z)×C ((∆k ×∆k)⊗TO X ,∆k ⊗TOY )

◦

��

C (TO (∆k ⊗Y ),TO Z)×C (TO ((∆k ×∆k)⊗ X ),TO (∆k ⊗Y ))

◦

��

C ((∆k ×∆k)⊗ X , Z)

d∗

��

TO

((

C ((∆k ×∆k)⊗ (TO X ),TO Z)

d∗

��

C (TO ((∆k ×∆k)⊗ X ),TO Z)

d∗

��

η∗

55

C (∆k ⊗ X , Z)

TO

((

C (∆k ⊗TO (X ),TO Z)

C (TO (∆k ⊗ X ),TO Z)

η∗

55

FIGURE 2.17. Diagram to verify compatibility of TO with composition.
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To verify that the structure maps for TO are simplicial natural transformations, one checks
that the following diagrams commute where e and µT are the unit and multiplication map for our
monad TO and f ∈C (∆k ⊗ X ,Y ):

C (TO (∆k ⊗ X ),TOY )

η∗
��

C (∆k ⊗ X ,Y )
e

))

TO

55

C (∆k ⊗ (TO X ),TOY )

e∗
��

C (∆k ⊗ X ,TOY )

∆k ⊗T2
O X

η
//

µT

��

TO (∆k ⊗TO X )
η
// T2

O (∆k ⊗ X )

µT

��

T2
O f

// T2
OY

µT

��

∆k ⊗TO X
η

// TO (∆k ⊗ X )
TO f

// TOY

�

The hypotheses concerning colimits for this proposition hold whenever the symmetric monoidal
structure comes from a closed symmetric monoidal structure and hence distributes over colimits.
For example, simplicial sets, simplicial abelian groups, and simplicial R-modules all satisfy the
conditions of Proposition 2.16 with their cartesian symmetric monoidal structure. The categories
of pointed compactly generated spaces or pointed simplicial sets, each equipped with the smash
product, satisfy these conditions. Any of the closed symmetric monoidal categories of spectra
satisfy the hypotheses.

3. MODEL STRUCTURES

In Section 3.1 we recall conditions that guarantee that the category of T-algebras has a suitable
homotopy theory. After establishing the existence of a model structure, we construct functorial
simplicial resolutions of algebras in Section 3.2 which serve as input into our spectral sequences.

Here, we choose to work in the context of simplicial model categories. A disadvantage of this
approach is that some of our assumptions—most notably the existence of colimits and the stan-
dard issues concerning cofibrancy and fibrancy—should not be strictly necessary (see for example
[Lur12, §6.2]).

An advantage of this approach is that the theory is well-developed, well-understood, and rela-
tively straightforward to apply to many categories of interest. A great deal of the material for this
section can be found in the appendices of [Lur09].

3.1. Model structure on CT . Now we would like to identify our simplicial structure on CT as
part of a simplicial model structure [Qui67]. These model categories satisfy the following equiva-
lent form of Quillen’s corner axiom.

Axiom. SM7 Given any cofibration f : X → Y in sSet and fibration g : K → L in M , the induced
morphism

(3.1) AL −→ AK ×BK BL

is a fibration which is a weak equivalence if either f or g is.

Definition 3.2. A monad T acting on a category C is Quillen if
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(a) C is a simplicial model category.
(b) T is a simplicial monad acting on C .
(c) CT has a simplicial model structure such that the forgetful functor U : CT → C is a sim-

plicial right Quillen functor.
(d) A map f of T-algebras is a weak equivalence if and only if U f is a weak equivalence.

A convenient way to show that T is Quillen is to assume we have a simplicial model structure
on C and induce a model structure on CT via FT . We can do this if C is cofibrantly generated
and T satisfies some mild hypotheses. In this case C has sets of generating cofibrations I and
acyclic cofibrations J which are used to detect fibrations and acyclic fibrations. These sets of maps
satisfy smallness hypotheses which are used to apply Quillen’s small object argument and prove
the lifting axioms. In the interest of being self-contained we recall some of the relevant definitions
and results from [Hov99, §2.1].

Definition 3.3. Let f : A → B and g : C → D be maps in C . We say that f has the left lifting
property (LLP) with respect to g or equivalently that g has the right lifting property (RLP) with
respect to f if for any maps A → C and B → D making the square below commute, there is a lift of
f indicated by the dashed arrow commuting with the other maps in the diagram.

A

f
��

// C

g
��

B //

??

D

Definition 3.4. Let I be a class of maps in C .
• A map is I-injective if it has the RLP with respect to every map in I. The class of I-injective

maps is denoted I-inj.
• A map is I-projective if it has the LLP with respect to every map in I. The class of I-

projective maps is denoted I-proj.
• A map is an I-cofibration if it has the LLP with respect to every map in I-inj. The class of

I-cofibrations is (I-inj)-proj and denoted I-cof.
• A map is an I-fibration if it has the RLP with respect to every map in I-proj. The class of

I-fibrations is (I-proj)-inj and denoted I-fib.

Recall that for a set of maps I in a category C a relative I-cell complex is a transfinite compo-
sition of pushouts of elements of I. We say that an object is an I-cell complex if the map from the
initial object to it is a relative I-cell complex. If I is the set of generating cofibrations then we just
say that the object is a cell complex.

Definition 3.5. Let I be a collection of morphisms in a cocomplete category C and κ a cardinal.
We say that A ∈ C is κ-small relative to I if, for all κ-filtered ordinals λ and all λ-sequences X i
such that each map Xβ→ Xβ+1 ∈ I for β+1<λ, the map of sets

colim
β<λ

C (A, Xβ)→C (A,colim
β<λ

Xβ)

is an isomorphism.
We say that A is small relative to I if it is κ-small relative I for some κ.

Definition 3.6. A model category C is cofibrantly generated provided there are sets of maps I
(called the generating cofibrations) and J (called the generating trivial cofibrations) such that

• The domains of the maps of I are small relative to I-cell.
• The domains of the maps of J are small relative to J-cell.
• The class of fibrations is J-inj.
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• The class of trivial fibrations is I-inj.

With this terminology available, we can now state conditions under which the maps in I and J
generate a model structure.

Theorem 3.7. [Hov99, 2.1.19] Suppose C is a bicomplete category with a subcategory W and
distinguished sets I and J of maps, then there is a cofibrantly generated model structure on C

with I (resp. J) the generating (trivial) cofibrations, and W the weak equivalences if and only if
the following conditions are satisfied:

(a) The subcategory W satisfies the two out of three property and is closed under retracts.
(b) The domains of I are small relative to I-cell.
(c) The domains of J are small relative to J-cell.
(d) I-inj⊂ (W ∩ J-inj).
(e) Either (W ∩ I-cof)⊂ J-cof, or (W ∩ J-inj)⊂ I-inj.
(f) J-cell⊂ (W ∩ I-cof).

Suppose that C is a model category and a functor

U : D →C

admits a left adjoint. Then we say that U right induces a model structure on D if D admits a
model structure such that a map f is a fibration (resp. weak equivalence) if and only if U f is a
fibration (resp. weak equivalence).

Theorem 3.8. [Sch07, App. A] Suppose that C is a cofibrantly generated simplicial model cat-
egory with generating (acyclic) cofibrations I (resp. J) and T = UFT is a monad on C satisfying
Proposition 2.12.

If the domains of FT I (resp. FT J) are small relative to FT I-cells (resp. FT J-cells) and applying
U to any FT J-cell complex yields a weak equivalence in C then U right induces a cofibrantly
generated simplicial model category structure on CT .

Proof. For the model category structure we apply Theorem 3.7. By Proposition 2.12 we know that
CT is a bicomplete category. Since we want U to right induce the model structure we set the weak
equivalences to be those maps in CT which project to weak equivalences in C . We set FT I and
FT J to be the generating cofibrations and acyclic cofibrations.

Property a is satisfied in CT because it is satisfied in C . While properties b and c are satisfied
by assumption. By applying the adjunction we see the classes FT I-inj and FT J-inj are precisely
those maps in CT that map to I-inj and J-inj respectively under U . Consequently, Property d and
the second condition in property e hold in CT because they hold in C .

To verify property f we note that by assumption FT J-cell⊂W . To see that every FT J-cell is in
FT I-cof we must show that each such map has the LLP with respect to FT I-inj. By property d we
know these maps are FT J-inj so each map in FT J has the LLP with respect to these maps, which
we can use to inductively construct lifts in cellular pushout diagrams of the following form, where
f is in FT I-inj: ∐

FT A i

��

// Xα

��

// Y

f
��∐

FTBi //

55

Xα+1 //

==

Z
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This and transfinite induction can then be used to prove we get a lift in the general cellular
diagram:

X−1

��

// Y

��

colimβ<λ Xβ
//

::

Z

as desired.
All that remains is to check Axiom (SM7) which is immediate since cotensors, fibrations, and

weak equivalences are calculated in C , which we assumed satisfied this axiom. �

Remark 3.9. In practice, checking the smallness conditions is relatively easy and most of the
work required to apply Theorem 3.8 involves checking that applying U to a FT J-cell diagram
yields a weak equivalence. Assuming these smallness conditions, this can be verified (see [Sch99,
Lem. B2]) by showing the following two properties are satisfied.

(1) There is a ‘fibrant replacement’ functor Q : CT →CT and a natural transformation Id→Q
such that for all X ∈CT , the natural map U X →UQX is a fibrant replacement.

(2) If U X is fibrant then applying U to the canonical factorization X → X∆1 → X∂∆1 ∼= X × X
of the diagonal yields a weak equivalence followed by a fibration.

The second property follows from the fact that U preserves cotensors and C is a simplicial model
category. For the first property one can sometimes show that the fibrant replacement functor C

lifts to an endomorphism of CT . This is automatic if every object is fibrant in C which is true in
topological spaces as well as several model categories of spectra. Since the two fibrant replacement
functors Ex∞ and Sing∗|− | on simplicial sets are product preserving we can use either of them as
fibrant replacement functors for simplicial T-algebras to obtain the following proposition.

Proposition 3.10. [Sch01, Thm. 3.1] Each of the monads coming from an algebraic theory on
simplicial sets (such as those in Example 2.14) is Quillen.

Proposition 3.11. Suppose that the forgetful functor U : CT →C is a Quillen right adjoint. Then
the monad T induces a monad hT on hoC such that the forgetful functor ho(CT ) → hoC factors
through ho(C )hT .

Proof. Quillen adjoints induce adjoints between the homotopy categories and consequently a monad
action on hoC given by the composite. The right adjoint between the homotopy categories always
lands in the category of algebras over this monad. �

3.2. Simplicial resolutions. To construct a spectral sequence computing the homotopy groups
of the space CT (X ,Y ) we would like to resolve X , by which we mean we replace X by a simplicial
object X• of CT such that CT (|X•|,Y )'C d

T (X ,Y ).
If T is a monad acting on C , then applying T levelwise to simplicial objects in C yields a monad,

which we also denote by T, on sC .

Definition 3.12. Suppose X is a T-algebra in C . The bar resolution (also called the cotriple
resolution) of X is the simplicial T-algebra

B•X = B•(FT ,T,U X )= B•(FTU ,FTU , X )

defined as follows:
(a) Bn X = (FTU)n+1X .
(b) The ith face map

di : (FTU)n+1X → (FTU)n X , 0≤ i ≤ n
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is obtained by applying the counit in position i+1:

(FTU)i FTU (FTU)n−i X → (FTU)i Id (FTU)n−i X .

(c) The ith degeneracy map

si : (FTU)n+1X → (FTU)n+2X , 0≤ i ≤ n

is obtained by applying the unit between positions i and i+1:

FT (UFT )i Id (UFT )n−iU X → FT (UFT )i UFT (UFT )n−iU X .

It is straightforward to check the simplicial identities from the monad structure on T =UFT and
the T-algebra structure on X .

Note that the counit FTU X → X extends to a map of simplicial T-algebras

(3.13) ε : B•X → X

where we regard the target as a constant simplicial object. By applying U to (3.13) and observing
UBn X = Tn+1(U X ), we obtain a map in sC

ε : T•+1U X →U X .

We also have a simplicial map

e : U X → T•+1U X

by iterating the unit map U X → TU X .

Definition 3.14. Let C be a cocomplete simplicial category. If X• is a simplicial object in C , the
geometric realization of X• is the following coequalizer:

|X•|C =
∫ [n]∈∆

Xn ⊗∆n

= coeq

( ∐
[k]→[n]

Xn ⊗∆k â∐
[n]

Xn ⊗∆n

)

where the two maps in the coequalizer diagram are given by applying X• and ∆• respectively to
each morphism [k]→ [n].

For a simplicial T-algebra X , there are two relevant geometric realizations. One is realization
in the category of T-algebras, and another is realization in the underlying category. We would like
to have conditions under which these two notions coincide, i.e., under which U commutes with
geometric realizations.

Remark 3.15. One such condition appears in [EKMM97, p. 197]: If T is given by a coend for-
mula, then U preserves geometric realizations. More precisely, if T is given by a formula such as
the one in (2.10), we will show that T commutes with geometric realization and then apply Propo-
sition 3.16 to see that U commutes with geometric realizations. To show that T commutes with
geometric realization we use the fact that geometric realization commutes with finite products and
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Fubini’s theorem for iterated coends as follows:

T|U X•|C =
∫ j∈FinSet

|U X•|| j|C
⊗T ( j,1)

∼=
∫ j∈FinSet

|U X | j|
• |C ⊗T ( j,1)

=
∫ j∈FinSet (∫ n∈∆

X j
n ⊗∆n)

)| j|
⊗T ( j,1)

∼=
∫ ∆ (∫ j∈FinSet

X | j|
n ⊗T ( j,1)

)
⊗∆n)

= |TX•|C .

Note that the commutation of products with geometric realization plays a key role in the above
result. This is easy to verify in the case where C is simplicial sets, since the geometric realization
of a bisimplicial set is isomorphic its diagonal. The result is non-trivial but true in the case of
compactly generated weak Hausdorff spaces. From these cases one can deduce that the smash
product on simplicial objects in pointed simplicial sets, compactly generated pointed spaces, or
categories of spectra built from these categories also commutes with geometric realization. As a
consequence similarly defined monads will also commute with geometric realization.

Proposition 3.16. Let X• be a simplicial object in CT . If the conditions of Proposition 2.12 are
satisfied, so CT is a bicomplete simplicial category, and T commutes with geometric realization,
then |U X•|C is a T-algebra and |X•|CT

∼= |U X•|C in CT . So U commutes with geometric realization.

Proof. Beginning with the canonical presentation of a simplicial T-algebra

FT TU X•
//

// FTU X• //

e

{{

X•,

we now take the geometric realization in the category of T-algebras and apply U to obtain

U |FT TU X•|CT

∼=
��

//

// U |FTU X•|CT

∼=
��

//

e

yy

U |X•|CT

T|TU X•|C
∼=
��

//

// T|U X•|C
∼=
��

//

e

yy

U |X•|CT

∼=
��

|TTU X•|C
//

// |TU X•|C //

e

yy

|U X•|C .

�

We can interpret the following result as saying that the bar resolution is indeed a resolution.

Proposition 3.17. Suppose that T is a Quillen monad acting on C which commutes with geomet-
ric realization. Then

ε : BX := |B•X |CT → X

is a weak equivalence of T-algebras.

Proof. This follows from Proposition 3.16 and the following well known lemma. �
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Lemma 3.18. [May72, 9.8] Let X ∈CT . The maps e and ε on realization

U X e−→ |T•+1U X |C ε−→U X

exhibit U X as a strong deformation retract of |T•+1U X |C in C .

3.3. Reedy model structure. To construct our spectral sequence using the bar resolution of X
we require that this resolution is homotopically well behaved, that is we will require it to be
a Reedy cofibrant simplicial diagram. To show that this diagram is Reedy we will use a trick
(Proposition 3.21) which makes use of a closely related almost simplicial diagram.

Let∆0 be the subcategory of∆with the same objects but whose morphisms are those morphisms
of linearly ordered sets which preserve the minimal element. The restriction morphism

C ∆op →C ∆
op
0

takes a simplicial object and forgets the d0 face maps, which are induced by the injections missing
the minimal element, while retaining all of the other structure. So one can think of a ∆op shaped
diagram as an almost simplicial diagram, simply lacking the d0 face maps.

Definition 3.19. Let X• be in C ∆op
(resp. C ∆

op
0 ). The nth latching object of X• is

Ln(X•)= colim
[n]→[k]

Xk,

where the colimit is indexed over the non-identity surjections in ∆ (this is equal to the set of
non-identity surjections in ∆0).

Definition 3.20. Suppose that C is a model category then the Reedy model structure on C ∆op

(resp. C ∆
op
0 ) is determined by

(a) f : X• → Y• is a (Reedy) weak equivalence if fn : Xn → Yn is a weak equivalence in C for
all n ≥ 0.

(b) f : X• →Y• is a (Reedy) cofibration if the induced map

Xn
∐

Ln X•
LnY• →Yn

is a cofibration in C for all n ≥ 0.

To show the bar resolution is Reedy cofibrant in particular cases we will use the following trick:

Proposition 3.21. Suppose C and D are model category and L : D → C is a left Quillen functor.
Let X• be a simplicial diagram in C and let RX• ∈C ∆

op
0 denote its restriction. Suppose that there

exists a Reedy cofibrant Y• ∈D∆
op
0 such that LY• ∼= RX•, then X• is Reedy cofibrant.

Proof. By definition X• is Reedy cofibrant if for each non-negative n the latching map

Ln X• → Xn

is a cofibration. Note that the latching object and map depend only on the restriction of X• to the
subcategory ∆op

surj, where ∆surj consists of all objects [n] but only surjective maps [n+m] → [n] for
m ≥ 0, in particular it only depends on the restriction to ∆op

0 so it suffices to show RX• is Reedy
cofibrant. Since L is a Quillen left adjoint it commutes with colimits and preserves cofibrations
so it takes the Reedy cofibrant Y• to the Reedy cofibrant diagram LY•. Since being cofibrant is
invariant under isomorphism the result follows. �

For a T-algebra X ∈CT , we have an ∆op
0 -shaped diagram

T•U X : ∆op
0 →C

where
(T•U X )[n]= TnU X
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and the maps (T•U X )(si) and (T•U X )(di) are defined as in the bar construction.

Definition 3.22. Suppose that T is a Quillen monad acting on C . A T-algebra X is resolvable if
it is weakly equivalent as T-algebras to a T-algebra X̃ (called its replacement) such that T•U X̃ is
Reedy cofibrant in C ∆

op
0 .

Proposition 3.23. Let T be a Quillen monad acting on C and X be a resolvable T-algebra with
replacement X̃ . Then the bar resolution B• X̃ is a Reedy cofibrant simplicial T-algebra.

Proof. By assumption T•U X̃ is Reedy cofibrant in C ∆
op
0 . We obtain the conclusion by applying the

left Quillen functor FT : C →CT levelwise to this diagram and using Proposition 3.21. �

The remainder of this section is devoted to proving various technical results which will assist
in determining when a T-algebra is resolvable.

3.3.1. Monads on diagrams of simplicial sets.

Lemma 3.24. Let C = sSet I be the category of simplicial I -shaped diagrams equipped with
the injective model structure, i.e., a natural transformation of diagrams is a weak equivalence
(resp. cofibration) if and only if it is levelwise a weak equivalence (resp. cofibration). Then any
diagram X• : ∆op

0 →C is Reedy cofibrant.

Proof. We will show that ∆0 is Eilenberg-Zilber [BR12, Definition 4.1], i.e., ∆0 satisfies:
(EZ1) For all surjections σ : [n+m]→ [n] in ∆0, the set of sections

Γ(σ)= {τ ∈∆0
∣∣στ= id[n]}

is nonempty.
(EZ2) For any two distinct surjections σ1,σ2 : [n+m] → [n], the sets of sections Γ(σ1) and Γ(σ2)

are distinct.
By [BR12, 4.2], every Eilenberg-Zilber Reedy category is elegant ([BR12, Definition 3.5]) and by
[BR12, 3.15] the injective and Reedy model structures on diagrams in elegant categories are the
same. In particular, the object X• will be Reedy cofibrant because the cofibrations in the injective
model structure are the levelwise cofibrations and every simplicial set is cofibrant.

To verify (EZ1), we note that if σ is a surjection in ∆0, it is also a surjection in ∆ and therefore
has a section τ ∈∆. Define

τ′(i)=
{

0 if i = 0
τ(i) if i > 0

The map τ′ is certainly order-preserving because 0 is minimal and τ is order-preserving. It is also
a section of σ because σ(0)= 0 and σ(τ(i))= i for i > 0. Moreover, τ′(0)= 0 so τ′ ∈∆0.

To verify (EZ2), suppose that σ1 and σ2 are two distinct surjections of ∆0. Then there is a
minimal j such that σ1( j) 6=σ2( j). Note that j must be positive. Without loss of generality, we may
assume σ1( j) < σ2( j). Define τ2 by letting τ2(i) be the minimal element of σ−1

2 (i) for each i; this
defines an order preserving section of σ2 with τ2(0) = 0, so τ2 ∈ ∆0. By minimality of j, we must
have σ1(i)=σ2(i) for i < j, and hence τ2(σ2( j))= j. Therefore

(σ1τ2)(σ2( j))=σ1( j) 6=σ2( j),

so τ2 is not a section of σ1. �

Proposition 3.25. Suppose that T is a Quillen monad acting on sSet I , equipped with its injective
model structure. Then any T-algebra is resolvable.

Proof. This is an immediate application of Lemma 3.24. �
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3.3.2. Cellular monads.

Proposition 3.26. Let C be a cofibrantly generated model category and let X• ∈ C ∆
op
0 be an

objectwise cellular diagram such that each degeneracy si is a subcellular inclusion. Then the
latching maps of X• are cellular inclusions, and therefore X• is Reedy cofibrant.

Proof. The proof of [EKMM97, X.2.5], paragraph 2, demonstrates the analogue of this statement
in the context of cellular spectra, and is general enough to hold for any cellular simplicial object
whose degeneracies are subcell inclusions. By good fortune, their argument relies only on simpli-
cial face maps dk for k positive, and hence applies to C ∆

op
0 . �

Proposition 3.27. Let T be a Quillen monad acting on a cofibrantly generated model category
C . Suppose that for any cellular object M, TM is cellular and the natural unit map M → TM is
a cellular inclusion. If X is a T-algebra and is weakly equivalent as a T-algebra to some X̃ such
that U X̃ is cellular, then X is resolvable with replacement X̃ .

Proof. This is an immediate application of Proposition 3.26. �

3.3.3. Monads whose unit maps are inclusions of summands.

Proposition 3.28. Let X• ∈C ∆
op
0 be a diagram in a pointed model category C such that X0 is cofi-

brant and each degeneracy si is a cofibration and the inclusion of a summand. Then the latching
maps of X• are cofibrations and summand inclusions, and therefore X• is Reedy cofibrant.

Proof. In this case Xn splits as a coproduct of the union of the degenerate simplices Ln X• and
the non-degenerate simplices X ′

n. As a coproduct of cofibrant objects the degenerate simplices are
cofibrant and Xn is cofibrant because there is a chain of degeneracies

;→ X0 → X1 →···→ Xn

which are all cofibrations. As a retract of a cofibrant object X ′
n is cofibrant.

Now the latching map is a coproduct of the identity map and the map from the initial object to
the non-degenerate part of Xn and hence is a cofibration. �

Proposition 3.29. Let T be a Quillen monad acting on a pointed category C . Suppose that for
any cofibrant object M the natural unit map M → TM is a cofibration and inclusion of a summand.
If X is a T-algebra and is weakly equivalent as a T-algebra to some X̃ such that U X̃ is cofibrant,
then X is resolvable with replacement X̃ .

Proof. This is an immediate application of Proposition 3.28. �

4. THE SPECTRAL SEQUENCE AND EXAMPLES

4.1. Proof of Theorem 1.1. Now we recall and prove the central theorem of this paper:

Theorem. Suppose T is a monad acting on a simplicial category C and X and Y are T-algebras
such that:

(a) T is Quillen,
(b) T is commutes with geometric realization,
(c) and X is resolvable with replacement X̃ .

Then there exists an obstruction-theoretic spectral sequence satisfying:

(1) E0,0
1 = hoC (U X ,UY ).

(2) E0,0
2 = (hoC )hT (X ,Y ). That is, a homotopy class [ f ] : U X →UY survives to the E2 page if

and only if it is a map of hT-algebras in the homotopy category.
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(3) Provided a T-algebra map ε : X →Y to serve as a base point, the spectral sequence condi-
tionally converges to the homotopy of the derived mapping space

πsπt(C d(T•U X̃ ,UY ),ε) =⇒ π∗(C d
T (X ,Y ),ε).

(4) In this case the differentials dr[ f ] provide obstructions to lifting [ f ] to a map of T-algebras.

(5) The edge homomorphisms

π0C d
T (X ,Y )� E0,0

∞

,→ E0,0
2 = (hoC )hT (U X ,UY )

,→ E0,0
1 = hoC (U X ,UY )

are the corresponding forgetful functors.

(6) The spectral sequence is contravariantly functorial in X ∈ hoCT and covariantly functorial
in Y ∈ hoCT and T satisfying the hypotheses.

Proof. First, in order for the theorem to make sense there needs to be a derived mapping space of
T-algebras. This follows from the assumption that T is Quillen.

The conclusions of the theorem only depend on the weak equivalence classes of X and Y , so
without loss of generality we assume Y is a fibrant T-algebra and that X = X̃ is a T-algebra such
that T•U X is a Reedy cofibrant diagram in C ∆

op
0 . By Proposition 3.23 the bar resolution B•X is

a Reedy cofibrant simplicial T-algebra. Since Y is fibrant and C is a simplicial model category,
applying the mapping space functor CT (−,Y ) to a Reedy cofibrant simplicial T-algebra yields a
Reedy fibrant cosimplicial space. In particular, CT (B•X ,Y ) is Reedy fibrant.

Applying [Bou89], the totalization tower for this cosimplicial space arising from the skeletal
filtration on |B•X | yields an obstruction theoretic spectral sequence computing the homotopy of
the totalization

Tot(CT (B•X ,Y ))∼=CT (|B•X |,Y ).
This spectral sequence conditionally converges provided there exists a base point at which to take
homotopy groups. (A list of obstructions to determining such a base point is also provided by the
construction; see Remark 4.4.)

Now since B•X is Reedy cofibrant and CT is a simplicial model category, |B•X | is a cofibrant
T-algebra. Since T commutes with geometric realization, Proposition 3.17 shows that the aug-
mentation map

|B•X |→ X
is a weak equivalence of T-algebras. It follows that CT (|B•X |,Y ) is a model for C d

T (X ,Y ) and
this gives the target of the spectral sequence in (3). Conclusion (4) follows immediately from the
convergence of the spectral sequence.

The E0,0
1 term of Bousfield’s spectral sequence is the set

π0CT (B0X ,Y )=π0CT (FTU X ,Y )∼=π0C (U X ,UY ).

To prove (1) we will show the right-hand side can be identified with morphisms in the homotopy
category. Since C is a simplicial model category this follows if U X is cofibrant and UY is fibrant.
These follow from the hypotheses that X is resolvable and that T is Quillen: Because TnU X is
Reedy cofibrant, the zeroth latching map shows that U X is cofibrant. Since T is Quillen, U is a
right Quillen functor and therefore UY is fibrant because Y is fibrant.

The edge homomorphism
π0C d

T (X ,Y )→ E0,0
1

is induced by restricting along the inclusion

sk0|B•X | = FTU X →|B•X |
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which by adjunction gives the second half of (5). The first half follows from the identification of
the E0,0

2 term in (2).
To prove (2) recall that the E0,0

2 term of Bousfield’s spectral sequence is defined to be the equal-
izer of the two face maps

π0CT (B0X ,Y )âπ0CT (B1X ,Y ).

We again use the adjunction and the fact that T•U X is Reedy cofibrant to see that the diagram
above is isomorphic to

hoC (U X ,UY )â hoC (TU X ,UY ),

whose equalizer is, by definition, (hoC )hT (U X ,UY ) (see (2.2) and Proposition 3.11). In other
words, a map lifts to E0,0

2 precisely if it is a homotopy T-algebra map.
Provided a base point ε for the spectral sequence, or even a point that lifts to Tot2 (see Re-

mark 4.4), the E1 page of this spectral sequence is given by applying πt to the spaces CT (Bs X ,Y )
and normalizing as in [Bou89, §2]. The E2 term can be identified with the cohomotopy of this
graded cosimplicial object which is typically denoted as follows:

Es,t
2 =πsπt(CT (B•X ,Y ),ε).

By adjunction we have

CT (Bn X ,Y )=C (FT TnU X ,Y )∼=C (TnU X ,UY ).

As in the previous steps, the right-hand side is a model for the derived mapping space since UY is
fibrant and T•U X is Reedy cofibrant. This completes the proof of (3).

To see that the spectral sequence is functorial with respect to maps in hoCT it suffices to see
that it is functorial with respect to maps in Y , where Y is assumed to be fibrant, and X such that
T•U X is Reedy cofibrant. The former is obvious and the latter follows from the naturality of the
bar construction.

To check functoriality in T we suppose that we have the following diagram of adjunctions:

C

FT1

%%

FT2
//
CT2

U3

yy

U2

oo

CT1

FT3

99

U1

ee

where FT2 = FT3 FT1 and UT2 =U1U3. We assume that all of the adjunctions are simplicial Quillen
adjunctions and their associated monads satisfy the hypotheses of the theorem. Moreover we
suppose that X has Reedy cofibrant resolutions with respect to T1 and T2 simultaneously. To
obtain a map between the spectral sequences corresponding to the map of mapping spaces:

CT2 (X ,Y )
U3−−→CT1 (U3X ,U3Y )

we apply U3 to the T2 bar construction for X and our assumption that T3 and hence U3 commutes
with geometric realizations we see

U3B(FT2 ,T2,U2X )=U3B(FT3 FT1 ,U1U3FT3 FT1 ,U1U3X )

= B(T3FT1 ,U1T3FT1 ,U1U3X )

← B(FT1 ,U1FT1 ,U1U3X )

where the last map is induced by the unit map IdCT2
→ T3. �

We highlight two immediate corollaries of Theorem 1.1.
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Corollary 4.1. The forgetful functor taking a non-empty ho(CT )(X ,Y ) to (hoC )hT (X ,Y ) is surjec-
tive if and only if the differential dr on E0,0

r is trivial for all r ≥ 2.

Corollary 4.2. Suppose the portion of the spectral sequence computing π0CT (X ,Y ) converges,
i.e., there exists a base point and the associated lim1 term vanishes. Then the forgetful functor
taking ho(CT )(X ,Y ) to (hoC )hT (X ,Y ) is injective if and only if Et,t

∞ = 0 for t > 0.

Remark 4.3. As stated in Bousfield every entry in the spectral sequence above should consist of
based sets. We have chosen to omit the distinguished point [ε] in E0,0

1 and E0,0
2 to simplify the

statement of Theorem 1.1.

Remark 4.4. There are, in fact, a variety of obstruction sequences whose vanishing can give a
lift of ε through the totalization tower. For additional details see [Bou89, §§2.4, 2.5, 5.2]. Let X•
be a cosimplicial object in a simplicial category D.

(1) The rth spectral sequence page Ep,q
r is defined if there is an element εr−1 ∈Tot r−1 D(X•,Y )

which lifts to Tot2r−2 D(X•,Y ), and the page depends naturally on εr−1.
(2) Let εp ∈ Tot p D(X•,Y ), and let εk be the projection of εp to Tot k D(X•,Y ), where p/2 ≤ k ≤

p. Then there is an obstruction element lying in Ep+1,p
p−k+1 which vanishes if and only if εk

lifts to Tot p+1 D(X•,Y ).
If Whitehead products vanish in each D(Xs,Y ) (such as, e.g., when the mapping spaces of D are

H-spaces), then the range in which the obstruction classes are defined can be extended as follows:
(1′) The rth spectral sequence page Ep,q

r is defined if there is an element εr−2 ∈Tot r−2 D(X•,Y )
which lifts to Tot2r−3 D(X•,Y ), and the page depends naturally on εr−2.

(2′) Let εp ∈Tot p D(X•,Y ), and let εk be the projection of εp to Tot k D(X•,Y ), where (p−1)/2≤
k ≤ p. Then there is an obstruction element lying in Ep+1,p

p−k+1 which vanishes if and only if

εk lifts to Tot p+1 D(X•,Y ).

Taking p = 1 and k = 0 in (2′) from Remark 4.4, we obtain the following useful refinement of
Theorem 1.1:

Theorem 4.5. [Compare [GH05, Cor. 2.4.15]] Suppose T is a monad acting on a simplicial category
C and X and Y are T-algebras satisfying the conditions of Theorem 1.1. Moreover suppose that
the derived mapping spaces C d(TnU X̃ ,UY ) have the homotopy type of H-spaces. Then the T-
algebra spectral sequence of Theorem 1.1 exists, its E2 term is always defined, and there is a
series of successively defined obstructions to realizing a map

[ f ] ∈ E0,0
2 = (hoC )hT (U X ,UY )

in the groups
πs+1πs(C d(T•U X̃ ,UY ), f )

for s ≥ 1. In particular, if these groups are all zero, then the map induced by the forgetful functor

ho(CT )(X ,Y )→ (hoC )T (U X ,UY )

is surjective. If, in addition
πsπs(C d(T•U X̃ ,UY ), f )= 0

for all s ≥ 1, then this map is a bijection.

We will primarily make use of this theorem in the following form:

Corollary 4.6. Suppose T is a monad on Spectra and X ,Y ∈ SpectraT satisfy the hypotheses of
Theorem 1.1. Then the T-algebra spectral sequence of Theorem 1.1 exists, its E2 term is always
defined, and there is a series of successively defined obstructions to realizing a map

[ f ] ∈ E0,0
2 = (hoSpectra)hT (U X ,UY )
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in the groups

πs+1πs(Spectrad(T•U X̃ ,UY ), f )

for s ≥ 1. In particular, if these groups are all zero, then the map induced by the forgetful functor

ho(SpectraT )(X ,Y )→ (hoSpectra)T (U X ,UY )

is surjective. If, in addition

πsπs(Spectrad(T•U X̃ ,UY ), f )= 0

for all s ≥ 1, then this map is a bijection.

4.2. Observations on E1. Provided all of the terms in Es,t
1 for t > 0 are abelian groups, for ex-

ample if the mapping spaces C (TnU X ,UY ) have the homotopy type of H-spaces, then we can
avoid using the normalized cocomplex in [Bou89] and instead use Moore cochains. We then have
a reinterpretation of the terms in Es,t

1 , via the tensor-cotensor adjunction:

Es,t
1 =πt

(
C (TsU X ,UY ),ε

)∼=π0
(
C (TsU X ,UY St

),ε
)
.

This displays Es,t
1 as a set of homotopy classes of lifts in the diagram below, with homotopies

fiberwise over ε:

UY St

��

TsU X ε
//

::

UY

Thus the other terms in the spectral sequence are the elements of

hoC↓UY (TsU X ,UY St
)

where U X is an object over UY by the map ε : U X →UY .

hoC↓UY

(
T2U X ,UY S1

)
hoC↓UY

(
T2U X ,UY S2

)

hoC
(
TU X ,UY

)
hoC↓UY

(
TU X ,UY S1

)

hoC
(
U X ,UY

)
hoC↓UY

(
U X ,UY S1

)
t− s

-1 0 1

s

0

1

2

FIGURE 4.7. Low-degree terms on the E1 page of the spectral sequence, inter-
preted as homotopy classes of lifts.

4.3. Examples. This section will be devoted to examples satisfying the hypotheses of Theorem 1.1.
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4.3.1. Simplicial algebraic theories.

Theorem 4.8. Let T be a monad on sSet associated to any algebraic theory as in Section 2.2, then
the T-algebra spectral sequence of Theorem 1.1 can be applied to any X ,Y ∈ sSet T .

Proof. By Proposition 3.10 we see that T is Quillen. Remark 3.15 shows that T commutes with
geometric realizations. Finally Proposition 3.25 shows that any X is resolvable. �

4.3.2. G-actions.
For the following result one can use any of the standard cofibrantly generated models for the
category of spectra which is enriched in spaces and such that the tensor product of a cellular space
with a cellular spectrum is naturally a cellular spectrum.

Proposition 4.9. Let G be a topological group admitting a cellular structure such that the unit is
the inclusion of a sub-complex. Let TX =G+∧ X be the monad on based spaces/spectra whose al-
gebras are G-spaces/spectra. Then the T-algebra spectral sequence of Theorem 1.1 can be applied
to any X ,Y in these categories.

Proof. It is well known and straightforward to show using Theorem 3.8 that T is Quillen. Since
geometric realization commutes with smash products in either of these categories we see that T
commutes with geometric realization. Since the unit transformation applied to cellular spectra
gives an inclusion of subcomplexes by Proposition 3.27 we see that every X is resolvable. �

In the case of G-spaces or G-spectra the T-algebra spectral sequence of Theorem 1.1 takes a
familiar form. The bar resolution applied to X is the standard cofibrant replacement EG+∧X → X
in the naive model structure. The skeletal filtration on the bar resolution corresponds to the bar
filtration on EG and our spectral sequence computing the homotopy groups of the space of G-maps
between X and Y becomes the homotopy fixed point spectral sequences computing the homotopy
groups of F(X ,Y )hG where F(X ,Y ) is the corresponding G-space of maps.

Remark 4.10. As expected, the homotopy G-spaces/spectra (i.e., the homotopy T-algebras for T
as above) will correspond to those spaces/spectra which admit a G-action in the homotopy category.
Morphisms of homotopy G-spaces/spectra are maps in the homotopy category which commute with
the G-action. In particular, any G-map which is non-equivariantly null-homotopic is necessarily
trivial in the category of homotopy G-spaces (see Section 5.1).

4.3.3. Algebras over operads.

Proposition 4.11. Suppose T is a monad arising from a cofibrant admissible operad (see [BM03])
acting on a symmetric monoidal simplicial model category (C ,⊗, I). In addition suppose that geo-
metric realization commutes with the symmetric monoidal structure on C .

Moreover if one of the following conditions holds:
(a) The underlying category C is sSet I and is endowed with the injective model structure.
(b) For every T-algebra Y which is cellular in C , the unit map Y → TY is a cellular inclusion
(c) For every T-algebra Y which is cofibrant in C , the unit map Y → TY is the cofibrant

inclusion of a summand and C is pointed.
Then the T-algebra spectral sequence of Theorem 1.1 can be applied to any X ,Y ∈CT .

Proof. Essentially the definition of admissibility is that Theorem 3.8 can be applied to show that
T is Quillen. Remark 3.15 and the assumption that geometric realization commutes with the
monoidal structure shows that T commutes with geometric realization.

Since our operad is cofibrant we can replace any T-algebra by one which is cellular or cofi-
brant in C by [BM03, Thm. 3.5 (b)]. Finally by the remaining hypothesis we can apply either
Proposition 3.25, Proposition 3.27, or Proposition 3.29 to see that any T-algebra is resolvable. �
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Lemma 4.12. Suppose that O is an operad such that O(0)=O(1)=∗. Then WO(1)=∗.

Proof. Using the construction of WO given in [BM06], we observe that all of the maps in the
sequential colimit

WO(n)= colim
(
O(n)=W0(H,O)(n)→W1(H,O)(n)→···)

are isomorphisms when n = 1 (H is the unit interval here). To see this, one observes that the
right-hand (and therefore left-hand) vertical maps in the pushout [BM06, (13)] are isomorphisms
for n = 1:

For trees G with a single input edge, the objects O(G) and O−(G) are equal (all vertices of G
are univalent, and if O(1) = ∗ then O c(G) = O(G) for any subset of univalent vertices c). As an
aside, note that this implies the vertical arrows in the pushout diagram at the end of [BM06, §3]
are isomorphisms for n = 1, and hence F∗(O)(1)=O(1)=∗.

Moreover, this implies (H⊗O)−(G)= H(G)⊗O−(G). Therefore the vertical maps in [BM06, (13)]
are isomorphisms and W(H,O)(1)=W0(H,O)(1)=O(1). �

Proposition 4.13. Suppose T is a monad arising from an admissible operad WO (see [BM03])
acting on a symmetric monoidal simplicial model category (C ,⊗, I). Here WO is the Boardman-
Vogt (see [BM06]) cofibrant replacement of an operad O , such that O(0) = O(1) = ∗. In addition
suppose that geometric realization commutes with the symmetric monoidal structure on C and
that C is pointed. Then the T-algebra spectral sequence of Theorem 1.1 can be applied to any
X ,Y ∈CT .

Proof. We will apply Proposition 4.11 using the hypothesis that the unit map is the inclusion of
a summand. As shown in [BM06] the Boardman-Vogt construction yields a functorial cofibrant
replacement of our operad. Moreover by construction, (WO)(1) = ∗ so the unit map X → TX is
always the inclusion of a summand.

Since WO is cofibrant, we can assume a given T-algebra is cofibrant in C by [BM03, Thm. 3.5
(b)]. Since C is a symmetric monoidal model category it is straightforward to apply the pushout-
product axiom and induction on n to see that X⊗n is cofibrant. Finally since our cofibrant operad
is Σ-cofibrant we see that WO(n)⊗ X⊗n is a retract of a cellular complex built with free Σn-cells.
It follows that WO(n)⊗Σn X⊗n is cofibrant which in turn implies TX is cofibrant. �

Corollary 4.14. If C is the category of R-modules for a commutative cofibrant ring spectrum
R and T is the monad associated to the Boardman-Vogt replacement of either the associative or
the commutative operad (so it is an A∞ or E∞ operad) then the T-algebra spectral sequence of
Theorem 1.1 can be applied to any X ,Y ∈CT .

5. COMPUTATIONS

5.1. G-actions. The next two examples provide, respectively, an example of a non-trivial G-map
which is trivial as a homotopy G-map and an example of a homotopy G-map (necessarily non-
trivial) which does not lift to a G-map.

Example 5.1. Regard R as a C2-space via the sign action. Then applying one point compactifica-
tion to the inclusion

{0}→R

yields an essential map
eσ : S0 → Sσ

of pointed C2-spaces.
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Taking the trivial map as our base point of TopC2
(S0,Sσ) and applying the spectral sequence of

Theorem 1.1 we have 2:
Es,t

2 = Hs(C2;πtSσ) =⇒ πt−s(Sσ)hC2 .

As noted in Remark 4.10, eσ must represent the trivial map in the category of homotopy C2-spaces.
The spectral sequence confirms this since E0,0

2 = (π0Sσ)C2 = 0. In fact, since the homotopy groups
of S1 are concentrated in degree 1, this spectral sequence is concentrated on the line t = 1 and
necessarily collapses at E2. The only non-zero contribution is from E1,1

2 = Z/2 which detects the
map eσ above.

Example 5.2. Let C2 act on KU via complex conjugation. The C2-action on π∗KU is trivial
precisely on those homotopy groups generated by even powers of the Bott map. In particular, if we
regard S4 as having a trivial C2 action we obtain a non-trivial map

β2 : S4 → KU

in the category of homotopy C2-spectra.
The spectral sequence of Theorem 1.1 computing the homotopy groups of the space of C2-

equivariant maps from S0 to KU is (the connective cover) of the homotopy fixed point spectral
sequence. After 2-completion this spectral sequence converges to the homotopy of KO and there is
a well-known differential d3(β2)= η3 in this spectral sequence forced by the relation η4 = 0 ∈ π∗S.
Since the T-algebra spectral sequence computing π∗SpectraC2

(S4,KU) is just a shift of this spec-

tral sequence we see that the element β2 ∈ E0,0
2 supports a d3 and does not lift to a map of C2-

spectra.

5.2. Methodology for calculating the E2-term. To obtain a computationally useful, i.e. alge-
braic, description of the E2 term from Theorem 1.1 we would like to verify the following:

(1) There is a functor
π∗ : hoC →D.

(2) The associated Hurewicz map

π∗C (X ,Y )→D(π∗X ,π∗Y St
)

is an isomorphism for general X and Y .
(3) There is a natural isomorphism π∗TX ∼= Tal gπ∗X for a monad Tal g.
(4) The category of algebras DTa l g is closed under finite limits and has enough projectives (see

[Qui69]).
(5) π∗Y St

for t ≥ 1 is naturally an abelian group object in the category of Tal g-algebras over
π∗Y .

When these conditions are satisfied, we can apply the Hurewicz homomorphism levelwise to the
cosimplicial space defining the T-algebra spectral sequence and obtain an analogous cosimplicial
graded object in the (computationally accessible) category D. The associated E2 term is the coho-
motopy of this graded object as in [Bou89]. The E0,0

2 term is always DTal g (π∗X ,π∗Y ) which, for
well-chosen D, gives a purely algebraic description of the homotopy T-algebra maps. The remain-
ing terms will be cotriple cohomology groups as in [Qui69, II.5.(2)].

When the category of algebras DTal g has enough projectives and is closed under finite limits
we can apply [Qui70, §1] to see that the category sTal g,π∗Y of simplicial T-algebras over π∗Y
and its subcategory of abelian group objects admit model structures satisfying the conditions of

2Normally instability, e.g., actions of the fundamental group, prevents getting such a simple description of the E2 term,
however in this case Sσ is non-equivariantly an Eilenberg-MacLane space for Z and so the second half of the refinements
in Remark 4.4 apply.
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[Qui69, II.5.(1),(2),(4)]. We can use this to identify the remaining groups on the E2 page with
André-Quillen cohomology groups. More explicitly we obtain:

Es,t
2

∼= Hs
AQ,π∗Y (π∗X ;π∗Y St

)

for t > 0 by [Qui69, II.5.Theorem 5]. The cohomology groups on the right are the associated André-
Quillen cohomology groups of our Tal g-algebra π∗X viewed as an algebra over π∗Y via a choice of
an element in E0,0

2 [Qui69, II.5].

5.3. Algebras over an operad in spectra. For one example of applying the methodology in
Section 5.2, let k be a field and let T be the monad

X 7→ TX = ∨
n≥0

Kn ⊗ X∧Hkn

on Hk-module spectra associated to the A∞ operad. In Section 5.5 we will verify the conditions
above where

Tal gπ∗X ∼=
⊕
n≥0

(π∗X )⊗kn

is the monad on graded k-modules whose algebras are graded associative k-algebras.
In the category of objects over π∗Y , the abelian group objects are the square zero extensions of

π∗Y such as π∗Y St ∼=π∗Y ⊕π∗Σ−tY and hence condition (5) is satisfied. The category of simplicial
associative algebras is one of the classical examples studied in [Qui70] and satisfies the conditions
necessary to define the associated cohomology groups.

So we obtain a spectral sequence

Es,t
2 ⇒πt−s A∞Hk-Alg (X ,Y )

such that
E0,0

2 = k-Alg (π∗X ,π∗Y )

and
Es,t

2 = Hs
AQ,π∗Y (π∗X ,π∗Y St

) for t > 0,

where the cohomology groups are calculated in the category of graded associative k-algebras over
π∗Y . For s = 0 these can be identified with the derivations of π∗X into π∗+tY and for s > 0 these
are the s+1st Hochschild cohomology groups

HHs+1(π∗X ;π∗+tY )∼=Exts+1
π∗X⊗k(π∗X )op (π∗X ,π∗+tY )

of π∗X with coefficients in π∗+tY [Qui70, Prop. 3.6].
As shown in Section 5.5, we obtain a similar result where T is the monad on Hk-modules whose

algebras are the E∞-algebras in this category. Here Tal g is the monad on graded k-modules whose
algebras are Dyer-Lashof algebras [BMMS86]. If k is a field of characteristic 0 these are just the
graded commutative k-algebras.

Example 5.3. In the category of Hk-modules, consider the A∞-algebras Hk ∧Σ∞+ ΩSU(n+ 1).
The homotopy of these algebras is a polynomial algebra R = Rn on generators {xi}1≤i≤n where the
|xi| = 2i. To compute the A∞ self-maps we apply our spectral sequence and the discussion above
to compute

E0,0
2

∼= k-Alg (R,R)∼=
∏

1≤i≤n
(R)2i

E0,t
2

∼= Der(R;Σ−tR)∼=
∏

1≤i≤n
(R)2i+t

Es,t
2

∼=Exts+1
R⊗kRop (R,Σ−tR) for s > 0
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In particular, these groups are zero for t odd, hence E2i = E2i+1. The Hochschild cohomology
groups can be calculated by first pulling back the R ⊗k Rop action to an R ⊗k R action via the
isomorphism defined by

xi ⊗1 7→ xi ⊗1, 1⊗ xi 7→ xi ⊗1−1⊗ xi.
Since the second copy of R acts trivially on the source we obtain an (R ⊗k R)-free resolution of R
by tensoring the Koszul resolution of k by right R modules, on the left with R:

(Λk[σx1, · · · ,σxn]⊗k R → k)
R⊗k−−−−−→ (R⊗kΛk[σx1, · · · ,σxn]⊗k R → R)

Here σxi has bidegree (1,2i) and d(σxi = xi). Using this resolution we see that

Ext∗R⊗kRop (R,R)∼= (Λ[σx1, · · · ,σxn])∗⊗R.

So the Hochschild cohomology groups vanish above cohomological degree n so our spectral se-
quence is concentrated on the first n−1 lines and must collapse at En for n ≥ 2. In particular, if
n = 1 then the spectral sequence collapses at E2 onto the 0-line.

Hence there are no obstructions to lifting a map of k-algebras

H∗ΩSU(n+1)→ H∗ΩSU(n+1)

to a map of A∞-algebras if n ≤ 3 and such a map is homotopically unique if n ≤ 2. For n = 1 this
result is expected since ΩSU(2)∼=ΩΣS2 is stably a free A∞-algebra.

The previous computation did not depend on the A∞ algebra Hk∧Σ+ΩSU(n+1) so much as the
fact that its ring of homotopy groups is polynomial on generators in even degrees. In particular,
if V is an A∞-algebra in Hk-modules with no more than three such polynomial generators (e.g.,
V = HRn, n ≤ 3), then any morphism of k-algebras

π∗V → Rn

lifts to an A∞ map
V → Hk∧ΩSU(n+1).

This proves the following result:

Proposition 5.4. For n ≤ 3, there is a unique Hk-algebra V up to homotopy such that π∗V is
polynomial algebra on n generators in even degrees. In particular, all such algebras admit a
commutative Hk-algebra structure.

Example 5.5. If we allow n to go to infinity in the previous example then ΩSU ' BU is an infinite
loop space and consequently Hk∧Σ∞+ ΩSU is an E∞-algebra in Hk-modules.

When the characteristic of k is zero, the results in Section 5.5 enable us to compute the space
of E∞ self maps. We have the following identification of the E2-term, where

R = H∗(ΩSU)∼= k[xi]i≥1

and k-CAlg is the category of commutative k-algebras:

E0,0
2

∼= k-CAlg (R,R)∼=
∏
i≥1

(R)2i

E0,t
2

∼= Der(R,Σ−tR)∼=
∏
i≥1

(R)2i+t

Es,t
2

∼= Hs
AQ,R(R;Σ−tR) t > 0

Since R is a polynomial algebra, it is smooth and all higher André-Quillen cohomology groups
vanish [Qui70]. As a consequence we see the spectral sequence collapses at E2 onto the 0 line.
Hence every map of homology rings lifts to a homotopically unique map of E∞-algebras in Hk-
modules.
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Alternatively one could deduce the conclusion from the previous example in a more direct fash-
ion. There is a map CP∞ → BU which maps the reduced homology of CP∞ isomorphically onto
indecomposable generators for the homology of BU . Since BU is a based E∞ space this canonically
extends to a map of E∞-algebras

TCP∞ →Σ∞
+ BU .

Localizing rationally this map is an equivalence and as a consequence ΩSU ' BU is rationally a
free E∞ spectrum. By the following example the spectral sequence of Theorem 1.1 always collapses
at the E2 term onto the 0 line when the source is such a spectrum. We see that Hk∧ΩSU is
equivalent to a free E∞-algebra in Hk-modules so the spectral sequence in Example 5.5 collapses.

Since rational localization is smashing, the extension functor from E∞ algebras to E∞ algebras
in HQ modules is an equivalence for every rational E∞ ring spectrum. From this we obtain for
any rational E∞ ring spectra X and Y

E∞(X ,Y )' E∞HQ-Alg (HQ∧ X ,Y )' E∞HQ-Alg (X ,Y ).

So there is no difference homotopically between the space of E∞ maps between two rational E∞
rings and the space of E∞-algebra maps in HQ-modules.

Example 5.6. If X = TM is a free E∞ ring spectrum then the unit map X → TM is a map of
E∞ ring spectra and defines a section of the bar resolution. Consequently the spectral sequence
of Theorem 1.1 computing the homotopy of E∞(X ,Y ) collapses at E2 onto the 0 line. So in this
case the edge homomorphism π0E∞(X ,Y ) → H∞(X ,Y ) is an isomorphism. Moreover there is a
homotopy equivalence E∞(X ,Y )' Spectra(M,Y ).

Example 5.7. We will now construct infinitely many E∞ maps that all induce the same H∞-map.
For a space X , recall that the cotensor HQX is an E∞ ring spectrum satisfying π∗HQX ∼= H−∗(X ).
Now to calculate the homotopy groups of E∞(HQS2

,HQS3
) we apply the spectral sequence from

Theorem 1.1 and the identification of the E2-term above. As a base point we will take a ‘trivial’
map ε of E∞-rings induced by a map S3 →∗→ S2.

To calculate the E2 term we have

E0,0
2

∼=Q-CAlg
(
π∗HQS2

,π∗HQS3
)∼= Ind−3

(
π∗HQS2

)
= 0= ε.

For t > 0 we use the map ε above to regard π∗HQS2
as a commutative algebra over π∗HQS3

and
obtain

Es,t
2

∼= Hs
AQ

(
π∗HQS2

;π∗+tHQS3
)∼=Q-CAlg d

π∗HQS3

(
π∗HQS2

,π∗HQS3 ⊕Σs
Qπ∗+tHQS3

)
where the right-hand side is the derived homomorphisms of simplicial commutative Q-algebras
over the constant simplicial algebra π∗HQS3

into the square-zero extension of this algebra by the
sth suspension of π∗+t(HQS3

in simplicial π∗HQS3
-modules. To calculate these derived homomor-

phisms we first construct a cofibrant replacement of the source.
We construct a cofibrant replacement of the exterior algebra π∗HQS2

via a homotopy pushout
diagram of cellular algebras. Let e−2 denote a generator of a one-dimensional Q-module in di-
mension −2 and T(e−2) the free simplicial commutative Q-algebra on this module. A non-zero
map

e−2 →π−2HQS2

canonically extends to a map of simplicial commutative Q-algebras

T(e−2)→π∗HQS2
.

Both of these algebras are constant and the kernel of this surjective map is (e2
−2). We can similarly

construct a map
T( f−4)→ T(e−4)
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which surjects onto this kernel. Let C( f−4) denote a cone on the one dimensional Q-module in
degree -4, which sits in a factorization of the 0 map

Q{ f−4}→ C( f−4)→ 0

by a cofibration followed by an acyclic fibration in simplicial graded Q-modules. Since f−4 7→ 0 ∈
π∗HQS2

we obtain a map of simplicial Q-modules C( f−4)→π∗HQS2
.

We now obtain a homotopy pushout diagram

T( f−4)
e2
−2

//

��

T(e−2)

��

T(C f−4) // T(C f−4)⊗T( f−4) T(e−2)

Now we have an induced map from this pushout to π∗HQS2
which is a quasi-isomorphism.

We can now map out of this pushout diagram into the square zero extension π∗HQS3⊕π∗+tHQS3

and obtain a long exact sequence. Note since

Q-CAlg d
B(TM,B⊕Σs

QN)∼= B -Mod (B⊗M,Σs
QN)

this is a long exact sequence of Ext groups.
From this long exact sequence we now obtain the following E2-term:

ε Q{ιc}

Q{[ι, ι]} Q{[ι, ι]c}

t− s
-1 0 1 2 3

s

0

1

FIGURE 5.8. T-algebra spectral sequence for E∞ maps HQS2 → HQS3
.

All other entries are trivial so the spectral sequence collapses at E2. The Q in E1,1
2 detects an

infinite family of E∞ maps which, because they land in positive filtration, induce the same H∞
map ε. It can be shown that this infinite family is generated by the morphism of E∞ rings induced
by the Hopf map S3 → S2.

In the previous example, the spectral sequence vanished above the 1-line guaranteeing collapse
of the spectral sequence and an algebraic description of the space of E∞-maps. This is because the
map Q→ π∗HQS2

is a local complete intersection morphism and hence the higher André-Quillen
cohomology groups vanish. We will say a morphism of A → B of graded commutative rings is a local
complete intersection, resp. smooth, resp. étale, if the relative cotangent complex LB/A [Qui70] has
projective dimension ≤ 1, resp. 0, resp. is 0.

Proposition 5.9. Suppose f : k → R and k → S are morphisms of rational E∞-rings. Suppose the
spectral sequence of Theorem 1.1 computing the space of E∞-ring maps under k between R and S
has a well-defined E2-term (e.g., there is a map to serve as the base point). Then if the morphism
f on homotopy groups is

(1) a local complete intersection then the spectral sequence collapses at the E2 page onto the
0 and 1 lines and every H∞ map can be realized by an E∞-map, although possibly non-
uniquely.
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(2) smooth then the spectral sequence collapses at the E2 page onto the 0 line and every H∞
map can be realized, uniquely up to homotopy, by an E∞-map.

(3) étale then the spectral sequence collapses at the E2 page and Es,t
2 = 0 if t > 0. As a conse-

quence, the mapping space is homotopically discrete and every H∞ map can be realized,
up to a contractible space of choices, by an E∞-map.

Proof. All of the results follow from the vanishing of the relevant André-Quillen cohomology
groups [Qui70, Thm. 5.4] and our identification of E0,0

2 with the set of H∞ maps. �

Example 5.10. We now construct examples of H∞ ring maps that do not lift to E∞ ring maps.
The argument below does not make explicit use of the spectral sequence beyond the identification
of the H∞ maps, although it does have consequences for the behavior of the spectral sequence.

Let M be the Heisenberg 3-manifold: the quotient of the group of uni-upper triangular 3×3 real
matrices by the subgroup with all integer entries. Since M is a quotient of a contractible group by
a discrete subgroup it is a K(π,1). The commutator subgroup of π is free abelian of rank one and
π fits into the short exact sequence of groups

1→Z→π→Z×Z→ 1.

In particular M is a nilpotent space.
Applying the classifying space functor to the above exact sequence we see that up to homotopy,

M can also be realized as the total space of an S1 bundle over the torus T2. This S1 bundle is
classified by the generator of Z∼= H2(T2;Z)∼= [T2,BS1].

A computation with the Serre spectral sequence shows π∗HQM is generated by exterior classes
x and y in degree -1, polynomial classes α and β in degree -2, and satisfy

xy=α2 =β2 =αβ= xα= yβ= xβ+ yα= 0

As a consequence we see:

(5.11) H∞(HQM ,HQS2
)∼= E0,0

2
∼= Ind−2(π∗HQM)=Q{α,β}.

There are also Massey product relations α ∈ 〈x, x, y〉 and β ∈ 〈y, y, x〉 with no indeterminacy.
Any map from HQM to HQS2

sends x and y to zero for degree reasons. Now α and β are Massey
products in x and y and Massey products in HQ∗M correspond to Toda brackets in HQM . Since
E∞ maps preserve Toda brackets, they must also send α and β to zero. So α and β must support
differentials and correspond to H∞-maps which do not lift to E∞ maps.

5.4. Coker J and maps of E∞ ring spectra. The following example is a joint result of the second
author and Nick Kuhn.

For this example we will need to recall the definitions of some classical infinite loop spaces/connective
spectra (cf. [HS78, p.271]). Let SL1S0 = GL1S0〈0〉 denote the 1-component of QS0. At an odd
prime p let q be an integer generating (Z/p2)×, the choice does not matter. Define J to be the fiber
of the map

BU⊗ ψq /ψ1

−−−−→ BU⊗

where BU⊗ is the 1-component of p-local K-theory and ψq is the qth Adams operation. The d-
invariant defines a map S0 → KU which restricts to a map SL1S0 D−→ BU⊗ which in turn lifts to a
map SL1S0 D−→ J. Let Coker J be the fiber of this last map.

At the prime 2 there are several possible definitions of J and consequently several possible
definitions of Coker J. A perfectly reasonable approach is to set J to be the fiber of the map

(5.12) BO⊗ ψ3/ψ1

−−−−→ BO⊗.
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However this introduces some homotopy groups in low degrees that are not in the image of D.
To rectify this there are variations where one replaces one or both copies of BO by either its 1
or 2-connected cover. Rather than go through all the variations we note that all possible choices
will yield the same definition of J after taking 1-connected covers. So we define J to be the 1-
connected cover of the fiber of the map in (5.12). We then set Coker J to be the fiber of the map
SL1S0〈1〉 D−→ J.

It is a non-trivial fact that all spaces and maps in sight are infinite loop maps [May77, HS78].
We will follow tradition and denote their associated spectra with lower case letters.

Example 5.13. Let X =Σ∞+ Coker J be the suspension spectrum of the infinite loop space Coker J
and R any E∞ ring spectrum.

The T-algebra spectral sequence of Theorem 1.1 computing the homotopy of E∞(X ,LK(2)R)
collapses at the E2 page onto the 0-line. So in this case the edge homomorphism

π0E∞(X ,LK(2)R)→ H∞(X ,LK(2)R)

is an isomorphism. Moreover there is a homotopy equivalence of spaces

E∞(X ,LK(2)R)'Ω∞LK(2)R.

This result follows from the previous example and the following result.

Theorem 5.1. [Kuhn-Noel] There is a K(2)-equivalence of E∞ ring spectra

TS0 'Σ∞
+ Coker J

where T is the monad whose algebras are E∞ ring spectra.

Proof. A consequence of the main result of [Kuh06, Thm. 2.21], for any spectrum X there is a
natural map of E∞ ring spectra

(5.14) TX → LK(2)Σ
∞
+ Ω

∞X

which is an equivalence if πi X = 0 for i ≤ 2, torsion for i = 3, and K(1)∗Ω∞X is trivial.
First we consider the p-local case for an odd prime p. In this case the D-invariant

SL1S0 D−→ J

is at least 2p−1 connected, hence Coker J is at least 2p−1> 3-connected.
To see that K(1)∗Coker J is trivial consider the defining fibration sequence of infinite loop

spaces

(5.15) Coker J → SL1S0 D−→ J.

By [HS78, Thm. 2.5] the D is a K(1)-equivalence. Applying the K(1)-Serre spectral sequence for
this fibration, we see that the local coefficient system is trivial, the edge homomorphism is an
isomorphism, and the spectral sequence collapses forcing Coker J to be K(1)-acyclic. Hence (5.14)
is an equivalence for X = coker j.

Delooping (5.15) we obtain an exact triangle

coker j → sl1S0 d−→ j.

Since j is K(2)-acyclic we have a K(2)-equivalence coker j → sl1S0. There is also a homotopy equiv-
alence SL1S0 'QS0

0 between the 1 and 0 components of QS0. Although this is not a map of infinite
loop spaces, applying the Bousfield-Kuhn functor φ2 to this equivalence does yield an equivalence
LK(2)sl1S0 ' LK(2)S0〈0〉.

Since Eilenberg-MacLane spectra are K(n)-acyclic [RW80], the defining exact triangle for the
0-connected cover

S0〈0〉→ S0 → HZ
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shows that LK(2)S0〈0〉 ' LK(2)S0. Finally we use naturality of the spectral sequence

H∗(Σn;K(2)∗(X )⊗K(2)∗ n) =⇒ K(2)∗((EΣn)+∧Σn X n)

to see the functor T preserves K(2)-equivalences.
Assembling these results, we obtain a zig-zag of equivalences of E∞ ring spectra in the K(2)-

local category
TS0 ← T(S0〈0〉)← Tsl1S0 ← T coker j →Σ∞

+ Coker J.
At the prime 2 our defining fibration sequence is

Coker J → SL1S0〈1〉 D−→ J.

Here D is 3-connected so Coker J is sufficiently connected. Again the map D is a K(1)-equivalence
and consequently Coker J is K(1)-acyclic. The rest of the argument proceeds as before to obtain a
zig-zag of K(2)-local equivalences of E∞ ring spectra

TS0 ← T(S0〈1〉)← T(sl1S0〈1〉)← T coker j →Σ∞
+ Coker J.

�

5.5. Computational lemmas. One of the key steps to obtaining a calculational description of the
E2 term is condition (3) from Section 5.2. That is we need to find a monad Tal g such that there is
a natural isomorphism

π∗T ∼= Tal gπ∗.
In the examples below the category of Tal g-algebras will be equivalent to graded associative or
commutative k-algebras which fit into the classical work [Qui69, Qui70] of Quillen so they will
always satisfy condition (4) which guarantees a definition of Andrè-Quillen cohomology groups
which agrees with the cotriple cohomology groups.

If R is a cofibrant commutative S-algebra (see [EKMM97]) then we consider this question when
T is a monad on R-module spectra whose category of algebras is equivalent to the category of A∞
or E∞ algebras in the category of R-modules.

In both of these examples we see that our monad takes the form

TM = ∨
n≥0

Kn ⊗Σn M∧R .

In the E∞ case Kn is equivariantly contractible while in the A∞ case it is equivariantly weakly
equivalent to Σn. To determine π∗TM as a functor of π∗M we will use a sequence of spectral
sequence arguments that will require increasingly strong assumptions. These assumptions are
clearly satisfied in the examples coming from Eilenberg-MacLane spectra in Section 5.3.

Lemma 5.16. If M and N are R-modules such that either π∗M or π∗N is flat as a π∗R module
then

π∗(M∧R N)∼=π∗M⊗π∗R π∗N

Proof. The Tor spectral sequence of [EKMM97, IV.4.1] collapses. �

Lemma 5.17. If M and N are R-modules such that π∗M is projective as a π∗R module then

πt
(
R -Mod (M, N)

)∼=π∗R -Mod (π∗M,π∗+tN).

Proof. The Ext spectral sequence of [EKMM97, IV.4.1] collapses. �

From these lemmas we easily deduce the following proposition which shows that condition (2)
from Section 5.2 is satisfied.

Proposition 5.18. If M and N are R-module spectra and π∗R is a graded field then

πt
(
R -Mod (M, N)

)∼=π∗R -Mod (π∗M,π∗+tN).
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We can also chain together the above lemmas to see

Proposition 5.19. If X is an R-module spectrum, π∗R is a graded field, and T is the monad on
R-module spectra whose category of algebras is the category of A∞ algebras in R-module spectra
then there is a natural isomorphism

π∗TM ∼= Tal gπ∗M := ⊕
n≥0

(π∗M)⊗π∗R n.

Here Tal g is the monad on π∗R-modules whose algebras are the associative algebras in that cate-
gory.

We now see that condition (3) from Section 5.2 is satisfied in the case of A∞-algebras in R-
module spectra where π∗R is a graded field.

For the E∞ case we need the following:

Lemma 5.20. If EΣn is a contractible Σn-CW-complex and M is an R-module such that n! is a
unit in π0R then

π∗EΣn ⊗Σn M∧R n ∼=π∗(M∧R n)/Σn.

Proof. The homotopy orbit spectral sequence

Hs(Σn;πt(M∧R n) =⇒ πs+t((EΣn)+∧Σn M∧R )

collapses by a standard transfer argument since n! acts invertibly on the coefficients. �

We now see that condition (3) from Section 5.2 is satisfied in the case of rational E∞-algebras
from the following:

Proposition 5.21. If X is an R-module spectrum, π∗R is a graded field, π0R is a field of charac-
teristic 0, and T is the monad on R-module spectra whose category of algebras is the category of
E∞ algebras in R-module spectra then there is a natural isomorphism

π∗TM ∼= Tal gπ∗M := ⊕
n≥0

(π∗M)⊗π∗R n/Σn.

Here Tal g is the monad on π∗R-modules whose algebras are the commutative algebras in that
category.
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