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On singular moduli

. Benedict H. Cross

Don B. Zagier

0. The values of the modular function j(T) at imaginary quadratic
arguments T in the upper half plane are known as singular moduli. They

are all algebraic integers. In this paper we will study the prime factor-
izations of the differences of two singular moduli. These differences turn
ou; to be highly divisible numbers. For instance, we will determine the set of
/Sii__v;:ﬁxg the absolute norm of j(T) - 1728 = j(1) - j(i) (and the
multiplicities with which they occur); they turn out to be contained among

the prime divisors of the positive integers of the form d - x? » Where d

is the discriminant of T , and hence smaller than or equal to d , e.g.:

JOLER83 ) | 928 wa238321421921272163

1. Let j(T) denote the elliptic modular function on the upper half
plane H . This is a holomorphic function which is invariant under the
action of the modular group T = PSLZ( Z) and has a Fourier expansion
n

+ c q

(1.1) §() =1+ 744 + 196884 q + 21493760 @2 + ... = L 4 |
q q 020 a

vith q = .2111 and c, €Z for all n.

As a function on H, j(1) enjoys the following remarkable property:



Whenever T lies in an imaginary quadratic extension K = Q(1)

of the rational number field, j(7) 1is an algebraic integer in an

abelian extension of K . If at? + bt + cv-; 0 where a,b, and c
are integers with 8:C.d.(a,b,c) = 1 , and we define d = disc (T) =
b? - 4ac , then j(T) is an integer of degree h = h(d) over @ .
Here h(d) is the class number of primitive binary quadratic forms

of discriminant d , or equivalently , the order of the class group

b+/d
2

of the order Z | ] . The conjugates of j(T) are the h values

j(1') , where T' ranges over all roots of primitive quadratic poly-
nomials of discrimant d . Finally, the field H = K(j(t)) is abelian
over K and "dihedral” over @ ; it is the ring class field of con-
ductor f over K , where d = d.Kf’([3] ).

Now suppose dy and d; are two fundamental discriminants which
are relatively prime, and define D = dydy . Let wy and wy be the
number of roots of unity in the quadratic orders of discriminants d,
and d, respectively, and let hy and hy; denote their class numbers.

Consider the product

(1.2)  d(d,,dp) -g T Gay- 5(11)))4/%‘,2
131, (1]

disc Ti—di

where [Ti] denotes an equivalence class modulo T'. Note t?\a: this is the absolc
norm of the algebraic integer j(T ')- j('rz') of degree hihp , prdvided

that dy,dy <=4 . 1In those cases , J(d,,dz) is an integer which de-

pends only on d; and d2 ; in general, J(d,,dzf is an integer and our

first result is a specific formula for it.



For primes £ with (-%-i) 2 -1 we define

G i (Lap =1,
e() =
@) if (R.d2) = 1.

If n’U !-aii with (ilz) # -1 for all i , we define ¢€(n) -'ﬂ't(li)ai .
i i i

1 ]
Theorem 1.3 J (d,,dz)z =z T] 2f ) .
x,n,n'€Z
nn'>0

x2+4nun' =D

D-x12
4

2
then (—2—) # ~1., Also note that since e(.l.)_;l_) = -1 we could re-

.Note that e@') is yell-defined, for if £ divides

place €(n') in the above formula by -e(n). In fact, one can
replace €(n') by gign(m) (%‘-) = sign(m) (;3) » where m is any
integer prime to DA which is represented by the binary quadratic
form [n',x,-n].
If neither d,,‘-nor . dz equals -4, the sign in 1.3 is always +.
We may rewrite (1.3) in the form

(1.4)  J@gd4)2 =« TT  r( 2 =,
x2< D '
-x2 = D(mod 4)

vhere

(1.5) F@ =TT ofC®D
: : nn'esy
" m,n'>0



An interesting fact about F(m)

is that it is either 1 or the

power of a single prime & . The latter case occurs if £ is the

unique prime dividing m to add exponent with (&)= -1.More precisely, if

m = 22a+1 zZa;

2a, b b
1 ...l'sq' r

1 LA qr

with e(!.)-e(li) - -1, e(qi) = +1 , then
Fla) = z(aﬂ)(b,ﬂ)...(brﬂ) .

In particular, we have

Corollary 1.6 If £ is a rational prime dividing J(cl‘,clz)2 then

(Id-b 21, (%1) #1 , and % divides a positive integer of the form

- 2
D 4x . In particular, £ S% ; if D=1 (mod 8) then £ <§ and
if d;mdy=5 (wod 8) then £ <2 . |
As an illustration of the theorem, we take dl = -67, d2 = -163

(the last two discriminants with class number 1). Then

J(-67,-163) = 5(1—"2—'@-.-7-)

= 2150375372493 ¢ 139« 331 ,

- j(l*—;-'il‘?i) = - 2153353113 4 2183353733292

.2 /
vhile rc9-§-o for Ix|

odd and less than ""1“2 = 104.5.... 1is given
by the following table:
D-x? - D¢ D=2 D—x* £
x| % F(EZ—-) Ix| Z F( 2 ) Ix} T F(P—l;——)
1 2¢3¢5¢7¢13 1 35 23.3.101 1 69 22¢5¢7s11 1
3 2211431 1 37  22.3.199 32 71 253e5072 1
5  22.3.227 32 39 2452447 22 73 243233 1
7 24324151 22 41  2e3e5.7.11 1 75 22.33% 331
9 2050271 1 43  22.3%.7 7 77 2%+3-13 1
11 22.3%.52 32 45 2%.139 139 79  232.5.13 1
13 2737 1 47 23211 2 81 2+5¢109 1
15 2070191 1 49  2e3+5¢71 1 83 2%e¢32.7 7
17 23443 1 51  22.5.13 1 85 22e3¢7¢11 1
19 2%e3e5.11 1 53 22.3 132 3 87 24419 22
21 22.5.131 52 55 2 3. 329 1 89 2+3.5? 1
23 2434433 1 $7 274137 1 - 91 224305011 1
25 2¢32.11¢13 1 S9  22.3.5.31 1 93 2%.71 24
27 22.72.13 13 61 2%.32.52 22 95 2379 1
29 2%.32.5.7 1 63 2014.79 1 97 2+3%7 1
31 203¢5.83 1 65 203%.31 1 99  2%.5.7 1
33 241229 22 67 23.3.67 1 101 22+32.5 5
103 2313 1



. 2
(The large frequency of x with F(P-Ex—-) = |1 is due to the fact that

F(n) = 1 whenever Loﬂd“n for at least two primes £ with (-'%9—3-) - -1,
and (:%99-) = -1 for all 2 < 40.)

The cases of Theorem 1.3 when d‘ = -3 or =4 give formulas for the
norms of j('l')zl3 and (j(r) - 1728). We have tabulated the results for
all known fundamental discriminants with h =1 or h = 3 (and for one
discriminant each with h = 5, 7) at the end of the introduction (Table 1).
They agree with the computations of Berwick [2 ], who in 1928 computed
j‘ for all known discriminants with h$3 and gave the full factorization

of j and j - 1728 in the appropriate quadratic or cubic field.

Besides tabulating the prime factors, Berwick made several con-
jectures on congiuences satisfied by j(1) and j(1) - 1728 . We

vill prove all of these divisiblities;for example:



If d=3 (8) then j(1)®0 wmod 2'°
a

If g=1 (3) then j(1)=1728 mod 3°

We shall also present some refinements and generalizations of
theorem 1.3 in the course of the paper. When dy = dy it is natural
to replace the absolute norm of j(t11) - j(t12), which is equal to zero,
by the discriminant of the integral polynomial satisfied by j(1) .
We vwill give a formula for the discriminant, which, inturn , determines
the index I of the order Z [j] in its 1ntegral closure. This index,
also given in Table 1,
mm-/m example when d = =71 , so h = 7, our
formula gives the value 7%211211322172%23%31%41%47%53259%61%67 , =
number which was found by McKay and Ford by a computer cakulation.([15],p.349). Ir
general, we show all prime facto‘rs £ of the discriminant are less than
or equal to |dl. Finally, we shall prove some results on (i (9,il,)) ,
where ¢m is the m-th modular polynomial ‘, at singulir moduli. -I-‘or
m=1 we have ¢, (x,y) =x -y, so this generaiizes our previous results.

In particular, we will show that any prime dividing ¢,(j (v, J(Tz))

2 2
has residue characteristic £ S d}‘dz = m,‘D 3 more precisely,
. . w?D - x2 .
£ must divide _—l-.—— for some x with |[xl<m /D (see Table 2

for m=2).

The body of this paper is divided into twoparts (§§ 2-4 and §§5-7), 28 V&
r&‘f_‘;ioofs of the above resuits which are of an essentially different
nature. The first method is algebraic, and works at the"finite primes ."
1f relies on the work of Deuring on the endomorphism rings of elliptic
curves, and exploits the connection between the arithmetic of maximal
orders in quaterpion algebras of prime discriminant £ over Q

and the geometry of supersingular elliptic curves in characteristic 2 .

Some of these methods were already used by Deuring in [ 6].



139

3
4
7
8
1"
19
43
67
163
23
i
59
83
107
139
211
283
307
331

379

499
5417
643
883
907

47

n

Table 1.

NV W W W W W W W W WW W W W W W W

0
223

35

235

Nu

2%3

283.5

253.5.1
263.5.23.29

531117

3%11.17.23

21644

Nuomu

2155317

2163323

2173317.29
213335353

217335347
2153311423429.59
217331141745371
2263317.23441471.83
21%3%5%17.23.101
2153%5%11.17%113
215335%11241.89.113
21%3%5%131.137-167
5311223429
11317223¢41+47+53

Factorizations of Zer\an - %

uu

227

27

2%33

233%7

23337.31
2333741119127
7*11%19

wwod_n
2911223443
21944746779
2%7%43.71+103
29311403
29397323.67
2%31919231.139
2931123163271
2933173412592
2939711231447
2933173712463

2%3117%31259.223
2931111243467+71+499.607
2%3219%41:234432307.739

1
1
1
1
1
1
1
1

1
52751121719

31911213%17.23.29

26112133233147

2465913%19447.71

248597617.31.59.71

2473%2917%19%23.59

2%632172617423429¢31 4101312167191
2493295907319231447+107+167+191+239
2493195%13%23429¢31¢47459+61+131+239+263
2483207611213%23429¢4147¢592151¢2514263+311
2%63217611213%17429¢3144324725971+89+199+359
2463397611813317019223441+59+712113+179+311+383+419+479
2493215297647.23431241059471+79+83+89+101+151359+431+503
2503395911213%17%19%1%47+59¢71+109179+239+311+431

24832051078 11319323441+43247%59%61+89¢101°1512167173+271359+419+599

2%3%7%347+67279+331 238321597611917%29%31047¢59¢67279¢83¢1010149¢179+223¢251°439¢479+743
11319223231.43 530119932919523229231241243
7711423231267 7%211211322471323831641%47%53259%61267
. h~1
3 2 7

’ zoAMV\eaml‘unmv =3%b

d, disc(min. poly. of j) = Hnu



dy 9, 2034239

-3 -3 -2123%59

-4 -3 212336

-4 -4 0

-7 -3 -3%s%7

-7 -4  =32973%492

-7 -1 o0

-8 -3  -2125%23%

-8 -4 2137232342

-8 -7 -5%7%13%31.47

-8 -8 0

=11 -3 -21211347329°

“11 -4 -2'27%11.19%432
-11 =7 -7*13%17219241+61.73
-1 -8  -2123693%29279

=11 =11 =2127%41.13%172192
-12 -3 0
-12 -4  2193%11223%47?
-12 -7 -3%5%17%59.83

d, d, oz(j,.jz)

-12 -8  -2195%23.29%47.71

-12 -1 -23%11417241283-107+131

-12 =12 -2'3%5%11217223

-16 -3 293%23%7?

-16 -4 0

-16 -7  -32%2%19231.103

-16 -8  -2197%23.31¢47-79.103.127
-16 -11 -2%7%11%192127.151.167

-16 =12 -273%11%23.71+167-191

-16 =16  -2%3297619223.3%

-19 -3 -2123%1353?

-19 -4 -21232019.672

-19 -7 -32913%19.31297

-19 -8  -212133%29¢31+37+71-103-127+151
-19 -11 -21213%19.292412109-173+193
-19 =12 -2193%29259.107+179.227
=19 -16  -2%32919.31.59279.223

-19 -19  -21232993319.29.31237

Table 2. Factorization of ¢z(j',j2) for 0>d,,d,>-20, h =h, =1



The second method is analytic, and woi-ks at the "infinite primes’ It
is based on the calculation of the AFo'tvxrier coefficients of the res-
triction to the diagoml HcKxHl of an Eisenstein series for the
Hilbert ‘modular group of ‘Q(ﬁﬁ ‘), and was suggested by a paper of
Siegel [18]. Both methods may be viewed as the special case N = 1

of the theory of local heights of Heegerpoints on Xy(N) . The

general case,and its relation to the derivatives of L-series and

to forms of half-integral weight, will be treated in a forthcoming

paper [9].



2, Let W be a complete, discrete valuation ring whose quotient
field has éharacteristic zero and whose _residqe fié}.d is algebraically
closed of charactéristic £>0 . Let 1 be aprime of W, and
normalize the valuation v so that v(m) = 1 . We will adopt the

convention that v(0) = + «

Let E and E' be elliptic curves over W with good reduction
(mod ) . These curves have plane cubic models of the form
2

E: y‘2+a1xy+a3y-x3+a2x + a;x + ag

2 3

+a'x-2+a'x+a'

t,
By 2 4 6

' -
+aixy + a 'y~ x
as in Tate [2d, which will be our basic reference in this sectionm.

The coefficients ai,ai' are elements of W , and the discriminants
A, A’ are elements of Wt . Let j = j(E) and j' = j(E') be the
modular invariants of the two curves; these are independent of the model

chosen, and we have the identity

3 2 3

2,3
TR T, CK{C - C€g C .
(2.1) j -j --ﬁ-—‘l—-~-fl-|-—4l—‘728 N in W.

For each integer =n 21, the set 1Iso,(E,E') of isomorphisms
from E to E' which are defined over the ring W/x® is finite

of order 0,2,4,6,12, or 24 . We define

(2.2) i(n) = —Card( IS;n(E,E'))

The main result of this section is the following



Proposition 2.3, v(j~j') = 2 i(n)
net

Note that this formula refines the well-known result that

v(ji-i') > 0 if and only if the curves E and E' are isomorphic
over the algebraically closed field W/m . For the rest of this
section, we shall assume that an isomorphism exists (mod 7); other-

wise, both sides of (2.3) are equal to zero.

Proof. We first assume that £ > 3 , so v(1728) = 0. Since
1728 A = CZ - ci » at least one of the quantities ¢, cg must
be a unit in W . We may choose models for E and E' with
a, =ay'=0,a =a"=0, and a3 =a3’' =0 in W.. Then
c 4'- -.-2‘3&,‘ and c o= -253336 ; hence one of the coefficients
2,8 is a unit in W .-

Since the curves E and E' are isomorphic (mod 7)) , we can

solve the simultaneous congruences:

“
a ® U
{ 4" "% (mod )

ag = u6.16'

for a vnit u € (w/w)'» . We have i(n) 2 1 if and only if these
congruences can be:solved (mod 7=) .

Agsume that i(n) 21 . If s, is a unit, we may normalize
a,- 'a,."- 1 and choose ('6"6') so that v(a, - ag') is maximal.
Then



2 if ag = a.' =0 (mod ™,
i(n) = { []
1 if ag K0, a,#0(mod ).

Hence, v(j-j') = v(ag —aéz ) = viag ~ ag") + v(ag + 86') =§ i(a)
as claimed.
1f ag is a unit, we may normalize ag = a,' and modify (a,,a,')

by a cube root of unity so that v(a, - a4') is maximal. When i(n)3 1.,

3 if a = a.&' =0 (mod ) s
i(n) -{ n
1 if  a,#0 a, #0  (od 7).

Hence v(j -j') = v(a3 - a4'~3) =v(a, - a,") +v(a, 4Caz)+v(a4-§2al").
vhere { is a primitive cube roof of unity in W* . Hence V (j-j') = Ji(n)
as claimed.

Now assume £ = 3 . The proof then splits into several cases; we will
treat the case when b, = bz' 2 0 (mod 3) , which is most useful in our
applications, and leave the others to the reader. Changing models, we
may assume a, = ay' =0, a =a3' =0, a3 = 33' =0 in W . The quantities
a, and  a 4' must then be units in W* , and we may. change models to

insure a, =~ “4' = { and v(aﬁ— ag') is wmaximal. Then
v(i=i") = v(3%ag? - 36'2 )) = 6v(3) + v(ag = a.") + viag+ ag’) .

The curves E and E' are isomorphic (mod ") if and only if



the simultaneous congruences

3r=0

ut =1 (mod =)

U a'! ma +r+r1
6

can be solved for e(wlln)* and r ¢ W/ . If i(n) 1 then

6 if 3=0 (mod %) ,

2 if 340, 4 malx0 (mod 1) ,
i = 6

1 if 340, 23,%0, a;#0 (mod W) .

Hence v(j - j') = Ji(n) as claimed.
" Finally, assume £ = 2 .. Again the proof breaks into several cases;

we will only treat tiu case when a; = a,'s 0 (mod 2) here. Changing

2
ag ™ ag" = 0. Then aj; and a3' are units; we may change models to insure

wmodels, we may assume that a'-ai'-o,az-a =0, and

- ' - - ] .
that 13 13 1 and v(aa 34) is maximal. Then

2,
v(j-j!) - v(212(.43 - ‘;3 )) = 12v(2)+v(al‘-az)+v(a4—;,z)+v(.l.-¢ a)) .

The -curves E and E' are isomorphic (modx ®) if and only if

the simultaneous congruences



| X

28 = 0

3r = 82

uwd e 1o+ 2t (modn™)
ul’al,' =a -8+ 3r2

t2+t = ra; + r3

*
can be solved for u€(W/m™) and r,s,t in W/A" . If i(n) 2 1, then

12 if 2m=0 | (mod ™),

3 if 2#0, a,‘-a;.-o (mod "),
i(n) =

1 if 240, a, $0, a; $0  (mod ).
Hence v(j - j') = X i(n) as claimed.

Corollary 2.4, If (2 -~ 1) divides 12 and the curves E and E'

both have supersingular reduction (mod 7) , then v(j -j') 2 12/(8 - 1)

Proof.In this case, there is 2 single supersingular invariant
in characteristic £ , so E® E' over W/n . But then

v - 3" 2i(1) = 12/(2-1) .

We are now in a position to prove Berwick's congruences
[2, pg 66-67) for the moduli j = j(1) of an imaginary quadratic

argument of discriminant 4 Put 0 = Zr]} and K = Q(1) = Q(vd).



- {2a -~

Corollary 2.5. 1) If d<-4 and (%)-1 then

R(j) N(j - 1728) # 0 (mod 1)

(2) 1f (%) =21 and 2< 12 we have:
j=o0 (mod 2%) L =2
j = 1728 (mod 3°%) L =3
j=zo (mod 53) L =5
j = 1728 (mod 72) g =7
j”3(j-1728)”2§o (mod 11) L = 11.

Proof 1) If (%) = 1 then the elliptic curve E with invariant j
has ordinary reduction (mod 7) for all primes dividing ¢ in K(j) .
Furthermore, by Deuring's theory [5], End“ ,“(E) = Endw(B) is the ring
0 of complex multiplications. When d< -4 we have 0F = <+i> ; hence

j#0 (mod x) and j£ 1728 (mod u).

2) 1f (-:-) = ~1 then E bhas supersingular reduction (mod x) for all
primes dividing £ in K(j) [5]. When & =3, j'= 1728 is the unique
supersingular invariant; when ¢ =5, j' =0 is the unique supersingular
invariant; when 12 - 7, j'= 1728 1is the unique supersingular invariant;
and vhen ¢ = 11, j' = 0, 1728 are the unique supersingular invariants. This
gives the congruences for 1# 2, using (2.4).

When t= 2, j = 0 is the unique supersingular invariant, so (2.4)
gives j=0(2'2), using the fact that i(1) = 12 in (2.3) . To obtain the

full congruence, we will show that i(2) = 3. The ring End“/'(l-:) is



- 13 -

isomorphic to Hurwitz's order Z[i,j ’k’lﬁ%lﬂ_‘.] in Hamilton's quaternions,

and the subring l:-:nd“hla (E) has index 4 and contains ZEndw'(E) Gross .

2

unless all elements in that

The elements of order 6 in Endw/'(E) have the form J3i2jsk , and

one of these will be contained in End, I;,

ring have even reduced trace. But Endw“, (E) contains 0, which has

elements of odd trace. Hence i(2)=3 and j=0 (mod 22%).

We now present a refinement of Deuring's lifting theorem [5]. Let

Eo be an elliptic curve over the ring H/ln, and let a, denote an

endomorphism of Eo. Assume that the subring

Z(a.] < End W/mn (Eq) has rank 2 as a Z-module 8nd is inte-
grally closed in its quotient field. Another way to express this

o (.3 L L v
is to associate to the endomorphism a,  its $race t = G5+C, and norm n=a a

6 0

(:%E%i viewed as multiplication by fixed integers in Endw m (Eo).
Our assumption is then that the integer d = tz - 4n is a fundamental
negative discriminant.

On the tangent space Lie(Ea) » @ induces multiplication by an

Clearly, a necessary condition for lifting Eo with the endomorphism

a, to ‘W is the existence of an element w ¢ W which satisfies:

element w which satisfies the quadratic equatijon xz ~tx+n=20,

vz-'tw-bn-o .

usw  (mod @),

as the induced action of the lifted endomorphism on the tangent

space will give rise to such an element.

Proposition 2.7, Suppose a w exists vwhich satisfies (2.6). Then

there is an elliptic curve B over W and an endomorphism a of

E such that



a) (E,a) = (EO' ap) wod n“v;

b) o induces multiplication by w on Lie (E) ,

1f (E',a') is any other lifting, there is a commutative diagram

E ——— E

P, b

'______> E'

of morphismsover W .

Proof. Let & be the characteristic of W/n . By the deformation
theory of Serre and Tate [16] , it suffices to construct a lifting

A L
of the f-divisible group E, of E, , together with an endomorphism

lifting G,.

When E, is ordinary over W/n , we may take E to be the
canonical lifting. This is the unique curve reducing to E, where
£ is the direet produet of a group of multiplicative type with an
étale group. Since Endw(E) = End"/",,(E,) = Endw,“(E,) » we clearly

have an endomorphism lifting a.

A
When E, is supersingular over W/m , we may lift E, to a
Lubin-Tate group £ of height 2 over W with endomorphism ofx] = wx + ... .

The uniquenuof this lifting shows that it is algebraic.



3. We now turn to the algebraic proof of (1.3). We shall assume
that dy = -p is prime , which facilitates some of the computations,
but the method works quite generally. (See Dorman [7] for the details.) For

d2 ve take an arbitrary negative fundamental discriminant prime to p.

Let T = @ » 80 © =Z[1] is the ring of integers in
K= Q(/~P). Let j = j(1) ; then H = K(j) is the Hilbert class
field of K. If v is a finite place of H, we let Ay denote the
completion of the maximal unramified extension of the ring of

'V - integers in H , and let W, denote the extension of A, ob-
tained by adjoining a fixed element w which satisfies an integral
quadratic equation of discriminant dy . This extension will be

non~trivial if and only if the residual characteristic £ of A,

divides d, We let e denote the ramification index of Wy/A,.

Define the algebraic integer a= ‘a(t,d;) by:

L3 o 4
3.1) a = 1 (i-i(x)) /“‘"2
[;2] . 2
disc Tz- (‘2
This lies in H , and vhen d,#-4 even lies in the subfield Q(j) .

| Our aim i; to calculate the valuation of a at each finite place v
of H » using the methods of § 2 . To do this, let E be an elliptic
curve over W = W, with mltiplication' by 6 and invariant j(E) = j.
This existence of such a curve with good reduction is guaranteed by a
theorem of Serre and Tate [ 17 ]; it is unique up to W-isomorphism as

the residue field is algebraically closed. Similarly, for each T,



of discriminant d; » let E' denote an elliptic curve over W with

multiplication by Z[w] and invariant j' = j(‘lz) ~then by (2.3)

we have
4 ) 1 '
(3.2) ordy(a) - Z ] 5 #1so,, 5 (EE")
ew,v, [1,) n21 2 win
. disc‘rz"d2

We are therefore reduced to counting isomorphisms f:E-=E' (modn™).
Such an isomorphism gives rise to an endomorphism wg = £l wef  of

E(mod ") which belongs to the set

s, = {a € Endy, nE | Tr(a)) = Tr(w), N@) =N, o =w on Lie(E)} .

I-\lrthermore,propoiition (2.6) insures that every element -aé of Sh is of the

form wy for some isomorphism f£:E + E' (mod ™) to a curve E' with

complex multiplication by Z [w]. Indeed, the pair (E,a,) can be lifted

to (F,a) over W and since F has multplication by Z[a]l=Z[w] .it is
isomorphic to ene of the curves E' via a map f:F-:,.-bB' with

a= f-low- f . Reducing this map (mod ") shows that o= Ve 3 (2.6)
also gives the uniqueness of E' over W as well as the uniqueness of

f up to a Wautomorphism of " E' . Hence,

(3.3) ord (a) = 2 s

We now turn to a computation of the set Su + Recall that £ is the

residual characteristic of v .
Lemma 3.4 If (-;;’)-1 » then ordv(a) =0,

Proof. In this case, E has ordinary reduction (mod ¥) and Endy o E =0

for all n21 [5], .Since this ring contains no elements of discriminant

~d, #5=0 forall n21,
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Now suppose that (-3—) #1 ; then E has supersingular reduction (mod 7m)
and Eﬂdw/ll': is isomorphic to a maximal order in the quaternion algebra B
over § which is ramified at 2 and «» [ 5 ). Our first task is a
convenient description of this order, as well as its subrings End

w/wnE
for n21 .

Since (-l‘!,’-) ¥ 1, the field ®(j) has a unique embedding into the

field QL of f-adic numbers [ g ]. 1f v, is the place of H = K(3j)

1
which corresponds to the two equivalent extensions of this embedding,

there is a unique element ¢ in @g= Gal(H/K) such that ordv(B) = ordv‘(Bo)
for all B € H*. Let a be a fractional ideal in K whose class corresponds tc
o under the Artin isomoxrphism. The algebra B is given by the subring
{la,B] = (_:B g) } of the 2x2 matrices over K ; let 2! denote

the inverse different of 6 and A a fixed solution of the congruences

22 s -1 (mod 9)..

From how on we write dz--q » 920,

Lemma 3.5  Agsume L*pq.‘l‘hen e=1 and

- -1 ,n-L
1 End. o E={[a,B]:a€ED V,8€0 2" 3 , a=AB wmod O
2) The number of elements of S, is equal to w;/2  times the number of

solutions (x,h) of the equation x% + 42%.1 Ni=pq , vhere x is an
integer and } is an ideal of U in the class of az , the solutions (x,b)

vith x® 0 (mod P) being counted twice.

Proof.1) When 3~1 the ring End,, B contains End.E = {[a,0] a€ 0}

as vell as the O-span of the Frobenius endomorphism F -(g A)-[o.t]

since the reduced curve descends to the prime field of £
elements. Since End" h! is a maximal order in B , it must be isomorphic

to {[a,B) |a € v“. g € D". a = A8 mod 0} . The calculation of !nd"h',



then follows from the observation that ;Lkl-‘ is an endomorphism of
E(mod %) if and only if k 2 n-1 .

When 2 is arbitrary, F.'ndw /“an is isomorphic to the ring
calculated above. Since Homw(Eca,E) is isomorphic to 2 as a left
0 = End (E) module [ 3 ] , we have a°End, o n E = Endy o E%2-a in

B ..A short calculation yields the desired result.

2) 1f [a,B] is an endomorphism of E(mod @) with trace=Tr(w. and

norm=N (‘) then a = ——-—2‘/(__ Vith X an integer and
2‘0"‘1 / 2 P
= i a a.
B fF with Y €

Let b=(y) a/3i ; them I is an integral ideal in the class of az

and x2+422071 Nh=pq . Conversely if (x,}t) solves this equation with
b. in the class of 32, and Y is any generator of the principal ideal

ba/a , we may obtain an element [a,B] of B with trace= Tr(i) and

nomm=N (v} by reversing the above definitions. To determine whether or
not [a,B] 1lies in Endw/“n E we must test the congruence o&AB modﬂp .
This will hold for v, /2 .choices of the generator y if x#0 (mod p),
and for v choices if .x=0 (nod p) . To see this, note that for
any choice of generator we have -uzn -2,62 mod €

P.
to the congruence x’ = _4£2n—'1y7‘wd 7/=p), which follows from the fact that

For this is equivalent

Y'uyY= My=b (mwod /7 ).

Finally, to count the elements of sn » we must determiae which
endomorphisms [a,8)] induce multiplication by w on Lie(E) . 1If
{a,8] has this property, then the dual endomorphism [a,B]"= [a,-B]
induces multiplication by W # w (mod ¥) . Hence we may count elements

of s, by taking exactly one half of the solution (x,b) .



. Now consider the case when 2| q. Lesma (3.5) gives the endomorphism
‘ring of E over AAVI!.“A,, -y and W is a quadratic ramified extension of

A, . Ve therefore find End, o E = {la,B)|a€ VAR e a/a, a= AB(mod Cfp)}

vith m = [-'-'-2?—!- « The elements ag of thi¢ ring of trace=Tr(w) and

norm = X (w) give solutions (x,b) of the equation x2+lo!.2n—‘

INL=pq as
in (3.5). Clearly such solutions canexist only when m= 1, so n§2 .
Since ag induces multiplication by an element of W/m on Lie(E) , and
the reduction of w (mod 'nz) does not lie in the residue field, we see

that Sn is empty for n 22 . Since w=sw (mod #) we have the equality:

Sy = {no € Endw/ﬁE : Tr(ay) = Tr(vw) and WN(oy) =N (w)}. Hence

Lemmz 3.6 Assume £|q. Then e=2 and S, 1is empty for n22 . The

number of elements in 8, is v, /2 times the number of solutions of

the equation x2+6£mh- PqQ , where x jis an integer and 1 an ideal

of 0 in the class of a?, the solutions (x,h) with x=0 (mod p)

being counted twice.
Finally, we turn to the case where 2=p . A computation similar

n-2 ry

to (3.5) givevsv the result: En%/'n E={[a,Bl] :a€E®,BED /a

Let a, = [a,8] be an element of trace = Tr() and norm =IN (v) and
write. a .-_T_rﬂﬁzil_"i ‘. 8 -1@:' with y an integer and Yy € a/a,
Letting x - py and b = (y) -i-/lp we find a solution to the equation

x2+ 4;‘ Xh=pq . Hence n=1 . Conversely, any solution with b

integral in the class of a2

gives exactly v' elements u‘o with
the correct trace and norm, as this is the number of choices for the
generator Y . Again, exactly half of these elements will lie in S‘ »

as vivw (mod %) , so we have



Leoma 3.7 Assume £ =p .Then e =1 and § is empty for n22.

The number of elements in 8, is w,/2  times the nugber of solutions
(x,1) of the equation x2+4plNh- pq» where x js an integer (divisible

by p) and iy is an ideal of O in the class of 2.

We may combine the last three .lemmas as follows. For m21 we let
raz(m) denote the number of ideals of © in the class of a2 of norm equal

to m . For an integer x , we define

2 if x = 0(mod p)
§(x) = 1 - otherwise

Proposition 3.8 Assume (%) #1 .LlLet v be a finite place dividing £
and a the idealdefined before (3.5). Then

1 -x?
ord (a) = — 3 os(x) r_, (RIZX,
v znezz ngi a? " em

Next note that by (1.2) and (3.1) we have the relation:
(3.9) J(-p,-q) =N, (o) .
Furthermore, the sum ) T2 (m) is equal to the number R(m) of

ideals of ©® of norm am , as the class group of Q(v/~p) has odd

order. Hence we have

Proposition 3.9 If A is a prime of © of characteristic £ , then

2
ord, J-p,- =3 I I 6 rELHH
x€X n21

It is an exercise to derive theorem 7.3 from this proposition, using the

identity R(m) = ) (-g) afforded by Dirichlet's factorization of the
aim
n>0

zeta-function of K,



4. To express the results in the previous section neatly, and to
find appropriate generalizations, it is convenient to introduce the

modular polynomials. For each negative discriminant .d , We

define
2
(4.1) £, (x) = 'r' TT (x - j(1))2/v(a/E) .
f ld 1]
discT = d/f

This "polynomial" has integral coefficients and degree

- 2h(d/£2) . .

Wdl) X WT R the HBurwitz class number. The first few
examples are

£ .00 = x'3 H) =3,

£,00 = (x - 1728)'/2 H(4) -.;_ ,

£_3(x) = x + 3375, H(7) =1,

f_.s(x) = x -~ 8000 , H(8) =1 ,

f__"(x) = x + 32768 , B(11) = 1,

£, = x3x - 540000 . m12) = 4 .

12 3
In the last section, we factored « = f (:11) in the integers of

the field Q(J ). Note that when (4, d ) 1, the value J(d',dz) is
equal to the resultanc of the polynomxals f d (x) and f dz(x) .

For m21, let on(x,y) be the polynomial in Z[x,y] defined
by

4.2) ¢, Gl = TT  Giz)- 500
det y=m
mod SL (z)



Here the product is taken over the equivalence classes of 2X 2~ integral
matrices of determinant m , modulo the left action of sx.z(z) . The
polynomial ¢yu(x,y) is often referred to as the "modular'equation of level
n", althougli the usual definition takes the product only over the primitive
classes Yy in order to obtain an irreducible curve in IP‘XIP' which is a
model for xo(n) - The fact that ¢, (x,y) has integral coefficients is

well~known . We have

¢1(x77) =X =Yy

4,43, 2 2 3

6,3 = x>+ y3 = 2y 2433160y + yP0 - 293453 PyD) + 3%5%027(xy)

+ 283755 (xey) - 2123959 ,

for the tabulation of $s» ¢, and ¢, see [44 ].

The polynomial Qm(x,y) , when restricted to the diagqnal, is related
to the polynomials f4(x) by Kronecker's identity

(4.3) ¢ (x,x) = ¢ l—ur £e2 ,
" :

t2< 4m

(x),

which holds whenever m is not a perfect square. Taking the degrees of
both sides of (4.3) gives the famous Kronecker-Hurwitz
class number relation

“.8) § max(d,d) = §  HGwt?) ,
m=dd t2<4n

d>0 tez

which is the weight 2 case of the Eichler-Selberg ~trace formula on
PSLz( Z) . The identity (4.3) can be extended to hold for all m, provided
ve replace the term (x~y) which divides ¢'m(x.y) when m is a square,
by '2rT O x2/3(x - 1728)1/2 in the limit. Similarly, (4.4)

t" <4

holds for all m if we take the sum over tz S 4m and define

BO) = T(-D --p .



Now suppose j = j( ‘;—!',:) is a singular modulus of discrimant -p ,
and that m21 is not the norm of an element ﬂgﬁi in 6 . Then

the value ¢ (j,j) is non-zero; by (3.8) and (4.3) we have the formula

2, 2
o s hiw? 2 plém—t )—x
(4.5) Ordv(¢m(_'|,_])4£ ) = - _i. { _;. 2 i' 5(x) t.az( (bm-1") )}

= 3 g-n
ngﬂ kZZI. §(r) ry(n) lr32( zk)

where . T, (n) counts representations of n as i}:‘_EF_'_ (i.e. as the norm of
an ideal in the principal class) and we define rh(O)-&- for any .class 1}
We can generalize (4.5) as follows. Let b be an ideal of 0 and m2Z 1 an
integer which is -not the norm of an -ideal in the class of - b . Then the element

(4.6) B = ;.3 y*¥

is a non-zero algebraic integer, and the following result gives its

valuation at places v of H-'.

Theorem 4.7 1f (-l’f) =1 then ord (B) =0 . If (-;4)#1 and we define

a asonpage 17, then

d - wmp=n
ord_(8) ngo k§‘ §(n) rh__l(n) That (—-5“—)

The case vhen m =1 and b is not principal is particularly
. (*]
interesting, as (4.7) gives the prime factorization of (j-] l') . Taking

the norm of this quantity to X and then the product over all classes



b# 1 gives the discriminant of the monic polynomial of degree h satis-
fied by j . From this, we can obtain a formula for the index I of the
order Z[j] in the ring of intesers of Q(J) ,as the field discriminant

is equal to (-p) 2 (8sl.

Corollary 4.8, For any rational prime £ we have

ord (I) =

K(n);r, (n) R(P_-ll_) .
. nat k21 gk

In particular, if £ -divides - I then £ <p and (%) = -1.

We now sketch the proof of (4.7), again using the methods of § 2.
We will assure for gimplicity that (%’) = -1 and that £ does not divide
m. Let W be the completion of the maximal unramified extension of the ring
of v-integers of H, and let E be an elliptic curve over W with

miltiplication by © and invariant j as in § 3. By (3.5) we have
-1 si,n-1 —
(4.9) End, o E = {la,Bl:0€D ', BED 2" a/a, asAB mod ap}

Let h be an ideal of € which is prime to £ and in the class of
0 .By [ ] we have How“(EckE)u b asan 6 = Endw(z)-nodule. Hence

Homy, n®",E) = End, ;E - b inside 5, . Hence
(4.10) Honw/"n(xqm) - {la,Bl:a€ D" ‘b, BED '2"7'E 3/a, am 2B mod o)
1f 9=[x,8] has degree m , then Ba +LINB =m Nb .

On the other hand, by the definition of '.0. and the results in
§2, ve have



Ot
Card(nonw n(E ,E) )
(4.11)  ord (B) -————5' ' LA degree m_
Y Aut (1) nzzn 2
n-1{

1f n-—L and B =

-p /~p
we have

correspond to an isogeny of degree =m

(4.12) Hee 228D - mp

vhere £ = (¥)/b and 2 = (6)a/ha are integral ideals of @ in

the classes of o-'

and Ooaz respectively. Conversely, given a solution
to (4.12)we retrieve either 2'(!'2-)2 or 2w’ elements {a,B) of
degree m in Hom" = (EO,E) by choosing generators for the principal
ideals hg and Bwad . The second case occurs when Ncg= 0(p).

This completes our sketch of the proof of (4.7).



5. The inalytic approach to the Theorems of this paper consists of
two parts: first, to give an expression for loglj (1") - j('tz)l as an
infinite sum 6&& VWPSLZ( z) (or, rather, as ; lingit of such sums)
which for imaginary quadratic arguments can vbe rewritten as a sum over
rational integers, and secondly, to sh.ow that cerﬁain combinations of
these infinite sums equal finite sums of logarithmé of rational numbers.
We carfj out th:e first part in 'this section.

For s€& with Re(s)>0 let Qs-l be the Legendre function of

the second kind, defined by

Qs__'(f-) - I (t + /tT -1 cosh v)-s‘dv (t>1)
]
or
1+e, | Ts)? s _
Q.1 G0 = 2T (2s) (1 = t)” F(s,s;2s;1-t) 0<t<1)

([1], 3.2 (36); F = hypergeometric function), and define for

’j'“j"ivj €EH  (§ =1,2)

2 2 2
(ug=uy)4vy + v )
»

2v1v2

vhere d denotes hyperbolic distance. This is not defined at T,=1,

since 8' has a singularity 1¢:g|1"---‘t2|2 along the diagonal. Because

8 (1,,T,) = -2Qs_1(cosh a(r,,7,)) = -2Q__

d(‘r,,‘tz) - d(Y'ri,y'tz) for any Y € PSLZ( R), the function G, defined

by the absolutely cbnvctgmt series

6 (1,,1,) = J g (X ,vyr,)) | (T = PSL, @Z))
A M L 2

is I~invariant in each varisble separately. The function G, is called

the automorphic Green's function or resolvent kernsl and is studied in




various places, e.g. [13] (note that our function is 4&n times Hejhal's).
The properties we need are:

a) Gs bi‘s teal—analytic on (I‘\u)2 ~ (diagonal) but has a
. . 2
singularity logl't‘ ‘[zl +0(1) as T,* Ty
b) Ast = g(s - l)(:s » where Aj (j=1,2) is the hyperbolic
Laplace operator ivz (——3-2-— + —33—— 3
P P G ey )
¢) For T, fixed and v, = Im(‘tl) large (larger thgn pax In-(Y‘l"z)).

Gs has a Fourier development of the form

1 ,
4w 1-s 2 ' ~27inu
cs('r1,'rz) 3733 E(1,,8)v - lnrnzalr‘n(‘tz,s)v1 K‘__;_ (2n|n|v‘)e 1,

where the seres Comveavaes with tx,lnu.d{q’ vopid iy . )
(here E(1,8) is the Eisenstein series .

E(t,8) = )

Im(‘y‘[)s - .1.. ‘ vs
yEr\T 2

c,d€z|cT+d |?® (
(c,d)=1

K, -4 is a K~Bessel function, and the Fn('tz,s) are meromorphic in s
and holomorphic for BRe(s) >% . The Fourier expansion of E(T1,s) is
g or
o o8 1-s , _2m - P (amjm|w)é
E(1,8) = v + @(s)v +m mz*o Inl 01_2.(1::) v Ks_% 1% |m|

- T@T(s~2)C(2s-1) . AL
w(s) T(s)z(2s ’ og(m) ‘ d},,d,

Hence G'(‘r‘,'rz) can be meromorphically continued in s , the only pole in
Re(s) >3 being a simple one at s = 1 with constant residue -12.

Using these properties, we can now prove

Proposition 5.1 For 11,1

2 two points of H not equivalent under ' wve

have the identity




lozl.i(T,) - j‘(‘fz‘)lz - ;tn‘! (G (1,,1,) + 4nE(Ty,8) + 41«5(12‘.8)- lmw(S))- 24

Proof. The limit exists by what was said above, since all four terms in
the limit are meromorphic functions with simple poles at s = 1 , the
residuesbeing -12,12,12, and -12 , respectively. We consider T, as

fixed and both sides of the asserted identity as functions of T Both

y -
are TI-invariant. .The function on the left is continuous in T except
for a singularity 103[11—12|2 + 0(1) as T T, by a), the function on
the right has the same property. Both functions are harmonic; this is clear
for the function on the left and follows for the function on the right by b),
since }i?(‘.;sﬁrtz) + lmE(‘r‘,s)) is the limit of eigenfunctions of A'

with eigenvalue s(s - 1) and %_y;x (lmE('rz,s) - 4mp(s)) - 24 1is constant

(and hence harmonic) with respect to T Therefore it suffices to show that

the two functions differ by eo(1) as v, = Im(‘r‘) + o, We have

1

-27iTy

log|j(1,) - §(1)|* = 10g]e ~2mvy

+ 0(1) |2 = 4uv, + O(e =),

while, by ¢) amt the ‘R'NJA k‘h[lt)z E e'x,

}i?(c-hl’fz) + ATE(T),8) + 4TE(Ty,8) - mp(s))
| o %i?(z('rz.ﬂ(l 4* th? v:-')) + 4T }i?(z(r‘.s) - w(s))

o § ol 7He (r,,n) 2RIRlvy S2miny,
nsn

= 12(log v

[ 42+ (bmv, - 12 log v, + 0(e 2™1yy 4+ (e 2™y

Thus the functions agree within0Ce~2™1) s v, +» and the Proposition is

proved.



We remark that the Proposition extends immediately to give a
formula for the logarithm of the absolute value of the quantity
¢m(j(‘r]). 5(12)) defined in (4.2). 1Indeed, applying the ot®  Hecke
operator "l‘m with respect to T, (i.e. replacing 1, by YT, »
where Yy runs over a set of representatives modulo sx.z(z) of matices
of determinant m , and summing), and noting that E(1,s8) is an

eigenfunction of T, with eigenvalue nso1_2, (m), we find
. . 2 . ('
103|QE(J(T1).J(T2))| - %3? ( cs(r,.Tz) + 470, (m)E(T,,8)

+ 4m®s_, (WE(T,,8) - lo'uo'(u)tp(s))- 240, (@)

(5.2)
= Lm(6(r,,T)) + 410, @[ E(T,,8) + E(T,,8) = @(s)]) - 240, (m)
-12 J dlog %2 ’
dim
vhere

A1) = o ) g4(1 21220y
s T1° T 2 a,b,c,d €Z l’c‘rzﬂl
ad~bc = n

We apply the Proposition to compute logiJ (d',dz) Iz " where (as in
Section 1) d‘ and d, are coprime negative fundamental discriminants
and J(d,,d,) is defined by (1.2). Let K. be Q(Jé;), hj - h(dj) the
class number of Kj » and vy (= 2,4 or 6) the number units of Kj :

then
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, : 2 2 2 P . 2
IOg]J(d',dz)] - v, ;2 i~ {h llozIJ(r,) - j(r)|
1772

vhere the sum is over the h‘h2 pairs of points TeT, € 'K

(I = PSL,(@)) of discriminant d,,d Let T ST be the stabilizer

2° j

of Tj 3+ then

22 Z G (1,,¥1,) = z ; z v 8, (TyHYTy)

“1¥2 1), In ) erw [t )t )enn YET \1'/1‘
disc T. .d
j

= ; EE: " ; N g‘(Y'T' ,YZTZ) s

l-rjl, [tzl ErNH (vyY,) € r\(r/rtixr/ra)
disc Tj"dj

where we have written Y = y' Y, with y‘,yze I' well-defined up to

right multiplication by elements of I‘_r .I‘,r and up to simultaneous left
1 2
multiplication by an element of T . The set of YjT; as ['rj] ranges

over 3 get of representatives for TI'-equivalence classes of T € H

with discriminant dj and Yj over 'I‘T.\I' is simply the set of all
’ J

points in H with discriminant dj . Bence

22 ) G (1,1)) = Za 8,(1,,1,) .
v, " [t,1,1[1,] (1,,7,)EM\H?
disc 'rj-dj

The pOints Tj € B of discriminant dj are in 1=1 correspondence

2
jx

+ bjxy + cjyz of discriminant bz- - lu.cj = d. , the correspondence

3
bzl: /_3 is the root of Qj(‘[.j) = 0 with positive
3

vith the positive definite binary quadratic forms Q.i (x,y) = a

being that Tj -



)

imaginary part. Under this correspondence we have g ‘(‘r' .Tzl_- 't-ZQ'_.1 (%
where D=dd, andn =2a.c, +2a.c¢c, - b.d

19, 162 * 2a,¢y = b.b, . Hence

2 2
= = G (1,,1,)) = -2 Z p(n) Q__,¢
Vyw, s 1772 75 sl‘/ﬁ'
n=D (mod 2)
where

E l 2 = = . .

p(n) 2 #{ (Q,st) € ¢/ | A(Qj) dj ’ BA(Qx'QZ) -n} ;
here € ~Z3 is the set of all integral binary quadratic forms with
the usual action of T', A :  —> Z the discriminant function, and

BB the associated bilinear form
BA([a',bi,c'],[a ,bz,czl) = b'bz 2a, <y - 2a,c, ;

the factor arises because two forms Q, ,Q2 satisfying the conditions

1
2
given (with cl,.d2 <0, n»0). are either both positive definite
both negative definite and we want only the first case. The three
conditions A(Ql) =dg, A(Qz) -:Zdz , BA(Q' ,Qz) = -n are equivalent to
A(EQ1 + an) d‘£2 2ufn + d,n°

i.e. (Q1 ,Qz) yield a representation of the indefinite binary qudratic
form [d‘ ,-2n,d2] by the ternary quadratic form A . Since the auto-
morphism group of (Q,A) is {1} x I', p(n) is simply the number of

inequivalent representations of [cl1 ,-Zn,dz] by A . On the other



hand, we have

-5/2

E('rj,:) - %1 |2 | C(Zs)-'

ol

" vhere Aj is the ideal class of Kj corresponding to [‘tj] € T\X
and CK A the corresponding zeta—function (the sum of N(a)-s
for all integral ideals a € Aj). The sum of the CK A over all

s 9dde

ideal classes Aj is the Dedekind zeta-function 7, (s) . Hence we

X

have proved:

Proposition 5.3. Let l(l,I(2 be two imaginary quadratic fields with

coprime discriminants cli,c'l2 and 'J(d’,dz) the number defined by (1.2).

Then

2 . . =/2
log lJ(d1,d2)| - 3‘? [ =2 25 p(n)Q 1(.75-) *C(ZS) ( |9-11 CKI(S)

n>
nsD(mod 2)
d s/
of 2 v T)M(s TN )
eupfee] % e o -y TOIEH 00 )] - 2
2 1 .
mn-d'dz,h; --J hJ( or 31f ds--lo or -3 and h(xj)

othervise) snd p(n) is the number of inequivalent representatjons of the
binary gquadratic form [d’,-Zn,dZ] by the form A = b? - 4ac on
¢ = {[a,b,c) | a,b,c €2} .

Using (5.2) instead of Proposition 5.1 we can give a similar formula

for ) log{_(T,,T )|2 instead of 1log|J(d,,d )I2 , the argument
m 12 1°°2
[1,1,17,]



. n
of G _, now being =5 for some n>w/D , ns wD(mod 2) . The

details are left to the reader.

6. The formula for logl.l(cl".dz)l2 obtained in section 5 is not
yet very useful because p(n) is expressed as the number of orbits
of an infinite set by an infinite group. In this section we will give

an expression for p(n) as a finite sum.

Proposition 6.1. Let d,,dz,n and p(n) (a>/D , 0 ® D(mod 2)) be as

in the last proposition..Then

p(n) = )',z €@ ,
dln ;D

vhere €(d) for integers d>0 such that p is congruent to a square

modulo 4d is defined as in Section 1 (namely as the multiplicative

function which for primes £ equals whichever of (-:L) and (-g-z-) is

non-zero) .

Proof. Let K = Q(/D), real quadratic field of discriminant D , and let
X be the genus character of K corresponding to the decomposition

D= d‘° dz .We recall that X is a character from the narrow ideal group

to 31 with X(g) =1 if p is an inert prime ideal and X(p) = e(Np)
otherwise; because X corresponds to a decomposition of D into negative

factors, wve have X(a)= ~1 if a is a principal ideal generated by an

/D
3 GOK :

2 ‘
(») has norm 1'7.'-n and is primitive (not divisible by a natural number >1)

element of negative norm. Let u = then the pﬁncipal ideal

because the coefficient of VD in 2u is 1 , and one easily deduces that



')‘.: e = J x@ .
d.lnl.-n_ Al

Let L = Q(/a_;.fd—z-) ; then L/K is the unramified quadratic extension

corresponding to the character Y , 80

I x@ =x A2
ala

for any integral ideal a of K , where T /K(ﬂ)- is the number of integral
ideals A of L with N, /K(ﬂ) = 3 . .Therefore the identity to be proved is

n-/D

6.2) p(n) = (@), ==

"Lk
i.e, we would like to establish a correspondence between the representations
of [d1r2n.d2] by A and the ideals A of L with norm ().

‘There is a one-to-one correspondence between positive definite binary
quadratic forms Qj of discriminant d.‘i and triples (aj ,uj,Bj) modulo
the action of K; , where aj is a fractional ideal of Kj. (a.,B.) an

]
oriented Z -bagis of aj (i.e. one with Im(aj?;» 0) and K; acts by
l s« Lad . o H i i s s

(aJ, J'Bj) (laJ oA ,ABj) 3 this correspondence associates to (aJ. J,BJ)
the quadratic form Qj(x ) = N(ajx +Bjy)/N(aj) . The action of SLz(l) on
quadratic forms corresponds to the action of SLZ(Z) on oriented bases:
a b S P .
G a° (aj,nj,Bj) - (aj,aaj-mbsj, ca + dBj). 1f ‘Q‘ - [‘1"’1":1] and
and d

Q- [.2’ 2,c2] are forms of discriminant d, 2

corresponding to
(t, LA .B') and - (lz.az,Bz)‘ , and BA(Q1 .Qz) = -n , then (denoting conjugation
in L/X or Kj/Q by ') we have:



“LIK‘“IBZ -a, B,) = (a,8, ~ a,8,)(a,"8," - a,'B,")

N(a,IN(B,) + N(a,)N(B,) - 3(a,B,"+a,'B,) (a,B,"+a,"B,)

1 ' - ' ' - '
+5(a,8,' = a,'8,)(a,8, a,'8,)

1 1 :
N(a,) N(a,)(a;c,va)c, - 5 bb) - 5vd,d))

a=/D
N(a‘) N(az) 2

Hence

p(n) = #{(Q,,Q,) € Qzll' | Q; positive definite, disc Q;= 45, QA(Q‘.QZ)'-n}
- #{((2,,0,,8,),(3,,0,,8,)) mod Ky xK; xSL,@&) | § @ B;708,)

= u Na,) N(az) Y,

where aj,aj,Bj (3 = 1,2) are as above, SLZW) acts simultaneously on

(GI’BZ) and (02,52) , and p = n;ﬁ € GK . Write aa, for the set of

Z-linear combinations of elements V1V2 (vanj) and p for the element

aBy — 0,8, of L. Then p € a,a, and Nyép)-u(ai) N(a,) » . Conversely,

any element p of 2a.,3, with N(p) = N(al)N(az)u has the form a'BZ - 028‘

172
for some oriented bases (a‘ ,B‘) and (u.z,Bz) of a' and az . Indeed,
choose an arbitrary oriented basis (c:1 ’Bl) of a, ; then p € aa, implies

p= u‘Bz - azB‘ with some txz.B2 € az and the fact that the coefficient of
/D in N(p)lu(ai)n(az) is -% implies that (az,Bz) is an oriented basis
of a, (it would be :b;- if luz +l§2 had index N in a, and +%— ii
the basis were unoriented). The same argument shows that p determines
(02,82) uniquely given (a‘,B‘) ; since all oriented bases of a, differ
by elements of SLza) » the choice of p uniquely determines both oriented

bases (aj,Bj) up to the simultaneous action of SLza). Hence



p(n) = # {(a,,az.a) | a. a fracnonal ideal of KJ, p€a 132

L/K(p) N(i‘)ﬂ(az) Y] } /K*xK; »

o yk ; T s
vhere x,xlz acts by (a',az.p) -+ (A'a‘,lzaz,xl)\zp) (Aj EKj) « The
freedom of choosing 11 and kz means that we can fix the choice of a,
and a, within their ideal classes; then we still have the freedom of

changing Aj by a unit of KJ. . Hence

(6.3) op(n) = #{p€a,a,/Uy ~Uy, | N (P) =N(2))N(2) v }

[31126(:[
{ﬂz] € sz

vhere C, and “K. denote the class and unit groups of K; (3=1,2),

aj (3=1 ,2{ is any (fractional) ideal of Kj in the class [aj] » and 2,2,
denotes the set of Z-linear combinations of elements 6162 with Gj €aj

(it is clear that the summand depends only on the classes of a, and az) .
Let CL and UL denote the class and unit groups of the biquadratic field L
the strict ideal class group and group of totally positive

and c; and u;

units of K. Then we have the exact sequence
N + . N+
0= {41} —Ug wly —sU Uy ~sCy xCy —C; =g L{213 —0 .

This isproved bya ndard argument using elementary class field theory and
the analytic class number formulas for K‘ . Kz , K and L as in Hasse [11]
(esp. §26); we omit theproof and the definition of the map n;-oc xc‘ ’
vhich depends on genmera theory. Using the exact sequence, we can establish a
1:1 correspondence between the triples “‘1]'[‘2] »P) c'ounted in (6.3) and
the integral idealg A of L withnorm (y), establishing (6.2). Indeed,
because d, and d, are coprime we have OL & 0K10z0x2 , 80 a‘az. is a

(fractional) ideal of L and A =p 'a

132 for p as in (6.3) is an integral
ideal with llL /‘(‘l) = () . Conversely, let A be an integral ideal with
norm (u) . Since u has positive norm, the ideal class [A] is in the

kernel of ll. K’ CL-oC; » 80 the exactness of the sequence at CL implies



the existence of ideals a,, 2, with A~a1a2 » and the exactness at (:K;t(:Kz
+ '3 - + | R . ’
and llx -.:mphes that there are exactly Q = [UK'NL /K(UL)] (=1 or 2) choices

for ([a,],[a,]) . From A~a.,a, we have A laa = (p) for some p€EL, and

12 172

then N(A) =(y) implies that N x

Since "L/K(p) and y are totally positive, eeu; . Among the Q choices

of (la,],[2,]) , exactly onme will correspond to € €N, (U)) . We make this

(D)INa‘Naz = gy for some unit € of K .

choice; then p can be modified by a unit of UL to achieve e¢=1, i.e.

NL/K(D)/N(a‘)N(aZ) = u , the choice of p now being unique up to an element

of “K,‘“x, (exactness at UL) . This completes the proof.



7. The result we want to prove, Theorem 1.3, can be written

- log IJ(d‘.dz)lz = Z.o Z. €(n) logn

x2 ¢D : 'x’ -D
x2 D (mod 4) 4
(7.%) = Z _2__.. X(n) log N(n) ,
pved! n|(u)d
V%0
Tr(») =1
where again we have written D for d,-dz and x for the

corresponding genus character on K=QWD) and c.l' = (/D) is the different of K;
the second line follows from the first on setting = 52'-'7‘? and noticing that
the correspondence a -an(g) gives a bijection between the ideal divisors of the

primitive integral ideal (/D) and the positive divisors of P—f—- , with

X(:) = &n) . PFormula (7.1) is very reminiscent of the formulas

0k CK(-kﬂ) - 2 , § N(n) (k=2,4)
Ue.d . alag
Tr(v)-

of Siegel ([18], see also [21] or [4] ), the only difference being that h]@),".1
is replaced by X(a) log N(g) . Siegel's formulas came from restricting to the

diagonal z=2z' the Hecke-Eisenstein series

(m,
&] GCK l'(lln,n)f 0,0

(mz'rn)k(m z -l»n')k

(z, 2' eg)
of weight k on SLZ( )  and identifying the resulting modular form of weight
2k on SI.za) with a multiple of Ezk(z) . Thus the term Ng)k-‘ corresponds
to & bolomorphic Eisenstein series of weight k on SL,(0;), 8o one can expect
the analogous formula with. X(n) log N(g) to be related to the function

% '(z,z) , s 0 ° wvhere

E.(l- z2') = z"x' 1 "(zo")



8 _,8
.23 - ;,X(a) N(a) '*22 T 7
[:ecx . (m,n)ea? /0" (mz+n) (m'z'+n') jmzen | |m'z"+n' | &

(m,n)#(0,0)

(z=x+iy, z'= x'+iy'e H)

is the non-holomorphic Eisenstein series of weight 1 on SLZ(OK) introduced
by Hecke [12]. Hecke's purp&se w&s to produce a holomorphic Eisenstein series
of weight 1 by introducing the factor ysy's/lmi+nlzslm'z'+n"zs (Re(s) > 0)
into the non-convergent Eisenstein series and then letting s -0 ("Hecke's trick").
By computing the constant term of the limit, he thought he had shown that the
function obtained at s=0 was different from zero, but as is well-known (cf.
Schoeneberg’s corrections on p. 949 of Hecke's "Uerke"f) the computation is
invalidated by an error of sign and in fact the functions obtained by letting
8-»0 always vanish identically. This fact, unfortunate for Hecke, is very
fortunate for us, for it means that the derivative 52. Es,s-o is the leading
tern of the Taylor expansion of E g At s=0 and therefore computable.‘ We now
describe this.

We begin by noting that CK in (7.2) can be taken to be the wide ideal
class group of K, because replacing @ by )g ()eKk") changes the inner
sum by & factor 1/NOD|NO) 2% = sgn(w(D) WON 2%, vhile (a) changes
by a factor sgn(N())) (because X is a genus character corresponding to a

decomposition of D . into negative factors) and N(a) 1428 by | PTeY) 1428

1f

K had a unit of negative norm, the series would vanish identically, but this
cannot be the case for D = d'-dz . Following Hecke—the method is by now
quite standard——we find the Fourier expansion of E ’(:.z') s

' 2 -8 "’l

E.(z,z') - L‘(Hh,x) yiy'® s D.é L‘(s.x) 0.(0) y y'

| T
SRRl ST MM(OTRRCOTREED @Zrivavixh)
v
v

vhere Lx(c,x) - L(.’(Q;) L(s.(ﬁ)) is the L-series of x and

- =2%ixt
e

o (0 = & (ceB), o, @ - J- x() N(@* .

o= (x+i) (x2+1)®



By deforming the path of integration we see that QS(t) has an analytic

continuation to all s and is bounded (uniformly for s in compact sets)

by |.t|°“)g-2"lt| as |t|+= , so this gives the holomorphic continuation
of Es(z,z') to all seC. At s=0 we have
=271 e-21rt t>0,
bo(t) = ~-ni t=0,
0 t<0 ,

so the coefficients of Eo(z,z') with v not totally positive vanish. On
the other hand, the constant term LK(1,x) - uzD-UZLK(O,x) of Eo(z,z')
vanishes by the functional equation of Lx(s,x) (this is the fact that Hecke's
mistake of sign caused him to miss), while the terms with v» 0 vanish because
the contributions of n and (v)g‘qt‘x’ cancel (this was also overlooked by
Hecke; cf. his remarks on pp. 386 and 394 of [12]). This shows that Es(z,z')

vanishes at s=0 and also permits us to calculate its derivative there:

3:_ Es(z,z') Isgo = 2LK(1’X) log(yy') + 4C + 8‘[20 }vezi |«v)£) ez”l(\’z"\’ z9
v»0
: '
- A'ZD.} 2 o (()d) §¢’.,y,) e211(yz+y'z )
ved 0,% -

>’

- 41.21).! L aa’x((“)g) f(My) e2\ri(yz+p'z')

with

Cx = Lp(1,0 + (5 1°8D log ¥-y) L, (1,x) (y= Euler's constant)
3

%@ " 7 .,x@l.-o Z X() log N(®) ,

- i 2t D

Q) = 5 T = (- t)‘,._o

(The terms with J«0 contribute nothing because Fs wy), §s(y'y') and
0, ,((W)d) all vanish at s=0, so the corresponding Fourier coefficients of
»

B.' have a third~order zero.) Therefore the function
F(z) = -8%1.; % Z.(z,z)"-o (z €R)

has the Fourier cxp‘hsion



F(z) = %(LK(‘.X) log y + cx) + X-i 0;((\’)3) eZ'li Tr(v) z
ved
v»0

- X % x((v)g) o( I\,t l y) eZ'Ii Tr(v) z

vsd."
v>0>v’

-Ant)

(convergent because ¢(t) = O(e as t-+w). Now we apply to this the

following result.

Proposgion 7.3. Let F(z) be a function on -4 vhich transforms under SL,(Z)

like a modular form of weight 2 and satisfies F(z) = A logy + B + O(y-e)

as y+= for some constants A, B and €> 0. Let the Fourier expansion of

F(z) be } a (y) 2™ | Then
m=-e .
by - '
lim (""I a0 e P ay + ZA) 2 2a(2E (24 1410g4) - 2B
s 4
s+0 0
For m>1 there is an analogous formula for }mo(lom ) am(y)e-“mysdy + ———-—-2“‘:(“)) ,
-
0

where o(m) denotes the sum of the divisors of m .

This result is an extension of a result of Sturm on holomorphic projections
of modular forms[19).We donot give the details of the proof, since a more general
result (for forms of arbitrary weight and level) is given in [10), but merely

h

sketch the idea. For Re(s)>0 the ot non-holomorphic Poincare series of

weight 2 is defined by srind +b

Bez+d s
G %:' — I
’ |cz+d|“®

2
a (cz+d)
(3 e

If F(z) = O(y.‘), then the Petersson scalar product of F and P

(m)

converges
2,8 8

absolutely (even if the terms in the Poincaré series are replaced by their absolute
values) and equals fa ||l(y) e.hmy y' dy for Re(s)>0. On the other hand, it
is known that P(':i has an analytic continuation to s =0 and vanishes therxe
(because there are no holomorphic modular forms of weight 2 on SL,() ). This
proves the proposition in the case A=B=0. For the general case it then suffices
to consider & single function with A=0, By0 and one with A¥0, and taking the

(0)

value and derivative at s=0 of the non-holomorphic Eisenstein series 22’.-1’2"



we obtdin the formula given.

In our situation we have A = 2—!@ l.x(t,x) s B= E-'g— c and

X
2N S (O L 2_‘ 99, (D) eClvty) .
vEd ‘vEd
v 0 v3>0>y
Tr(v)=1 Tr(v)=1

The first term , which we denote by S, is independent of y and equals

the expression occurring on the right-hand side of (7.1). In the second

term we write v = nﬂﬁ; then n>/D , n=D(mod 2) and
255
n+vD. . -
oo’x((vm) °o,x(( )) .I,Z;n €(d) = p(n)
4=
by Proposition 6.1. Therefore
s ~4my 8 I'(s+1) n- 5
4nfa (y)e ydy = ——=5 - p()‘l’(
{> ! m® n§{5 P
n=D(2)
with
(7.8) ¥ ) =4n [ e0y)e 4™ oy (>0,
0

and Proposition 7.3 gives

(7.5) s-ii.:( 1_ o)y (“g ‘2’511(1«) )
n=D(2)

X) (Z52) + 1+ log &) -‘—zﬁ c, -

12.15

To complete the proof we must calculate the function Y.(A) defined by



- 42 -

(7.4) near 8 = 0. First we need a formula for ®(y). For t>0 we can
deform the path of integration in the integral defining 4’3(:) to a path
C circling the positive imaginary axis from - €+ i® to +e+ i® in
a counter-clockvise diréction. The resulting integral is convergenﬁ for
all s€€, so we obtain the holomorphic continuation (ins) of ‘bs(t) aﬁd -

differentiating under the integral sign and setting s = 0 - the formula

e -i -2me 1 2 2xixt
&(¢t) 77 © I o7 108 (x“+1) e dx (t>0) .

Since log (x2 + 1) changes by 2ni as one crosses from the left to the

right side of C, this is equal to

-2%t 27ixt
e e

S

porey dx .

po Ny §

Setting x = i(2u - 1), we obtain the formula

inte a (t>0)

o(t) =

- 8

(exponential integral). Substituting this into (7.4) gives

[- -] [- -]
Y () =4n [ fe ™y du ~bTy s,
8 o 1 .u
oD
< T(s+1) du

I —_—
“m® 1 u(e Au)"'

for any s €L, Re(s) >-1. In particular,

" log(l+~-;-)

Ta ‘u
) = S - e = 1o 5 |
and

v ) - LD T 2, 007020 g
s (4'). 1

oL I(st)) ,=8=1 [ 50752y  (aew).
s+ (“)s



- g3 =

On the other hand, from the definition of Qs-l in terms of the hyper-

geometric finition given in §5 we find

n+1

Qo(::t - 5 “;3 -% los% (o<t<1),
Q,_ G5 % [(1 - 0% + 001 -)%* ] (t+ 1)

or

Qy(1+22) = - log (1 + X')’

Q,_,(1423) = 31(%7 + 0™ O .
It follows that the function ¥ _(A) - 20(2s42) Q'(l +2)) is O(Ams-2
(4)°T (s+2)

a8 ) + ® and vanishes identically for s = 0, so

. n-vD K

50 o>/D
n=D(2)
. 2T'(28)
-m[ pme,_ &) - £
£51 4m® ‘l'(s«c»l) nz>v5 s-1 /D
n=D(2)

2 b, @) - Gn®'resen) « ]

"Rl P, D T2s) s

n=D(2)

where Kk is chosen to make the limit exist. Comparing this with (7.5), we

see that « -‘2'5 L‘(l.x) and

. %) LK("X)
s :i? [Zﬂ.,lm p.(n)Q.-'(ﬁ) '2 8 - 3§ ]
- n=D (2)

+-lz;"§ L‘(l.x)[z+ éitlez)-%mﬁ] - ‘"FLKU.x) .

)



Comparing this with Proposition 5.3, and using the Taylor expansions
Ty, () = L(a)Lls,x,)

J
= [ .-1—+7+ "'] [ L(‘DX') + L'(IDX.)(S ‘) + e ] (j = 1)2) »
s-1 3 3

LK(S.X) = 1-(8.)(1) L(sth)

L' '
= L(1,X,) L(1,xp) [1 + GFOxs LT(t,xz))(s - 1) + ]

L(l,xj) = h.' (G =1,2),

Jidjl 3

we find

2
§ = ~.1log |J(d,,d,)]

as vas to be shown. This completes the anélytic proof of the formula

for -.ZI(ll1 ,dz) . A similar calculation for the mth coefficient of ¥(z),

using the general formula referred to in Proposition 7.3 and the generalization
of Proposition 5.3 mentioned at the end of §5 , leads to a formula for

) log [¢ (1, x )Iz; we omit the details.
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