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Abstract

In earlier work the author introduced the notion of an updown category, which
can be regarded as a graded poset with multiplicities and automorphisms. An up-
down category C naturally has associated linear operators U and D on the graded
vector space k(ObC). In Stanley’s differential posets, the commutator [D,U ] is a
constant multiple of the identity. We consider various “commutation conditions”
weaker than this: in particular, the “weak commutation condition” that every ele-
ment of ObC is an eigenvector for [D,U ]. We also show how a Hopf algebra structure
on k(ObC) can provide a way of showing that C satisfies the weak commutation con-
dition. We illustrate with various examples, including updown categories of integer
partitions, integer compositions, planar rooted trees, and rooted trees.

1 Introduction

In [16], Stanley introduced the idea of a differential poset. This is a graded, locally
finite poset P (with 0̂) such that the operators U,D defined on the free vector space kP
generated by P (k a field of characteristic 0) by

Up =
∑

q covers p

q and Dp =
∑

p covers q

q (1)
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satisfy [U,D] = rI for some integer r. The principal example is Young’s lattice of integer
partitions (with r = 1). Stanley developed an extensive theory enumerating paths in the
Hasse diagram of a differential poset. As he showed in [17], most of these results generalize
to sequentially differential posets, which are defined like differential posets except that
instead of [U,D] = rI one assumes the restriction [U,D]i of [U,D] to rank-i elements is
riIi, where r0, r1, . . . is a sequence of integers.

In [8] the author considered the graded poset T of rooted trees, which have a structure
similar to Stanley’s sequentially differential posets. Here one has [U,D]i = (i + 1)Ii,
provided equations (1) defining U and D are replaced by

Up =
∑

q covers p

u(p; q)q and Dp =
∑

p covers q

d(q; p)q, (2)

where u(p; q) is the number of vertices of the rooted tree p to which a new edge and
terminal vertex can be added to get q, and d(p; q) is the number of different edges of q
that, when deleted, leave p; as shown in [8], u(p; q) 6= d(p; q) in general. In [8] most of
Stanley’s enumerative results in [17] were carried over to T.

In [10] the author generalized a graded poset to an “updown category”. Here one
has a category C, whose object set is graded, and associated to each pair c, c′ ∈ ObC
with |c′| = |c| + 1 are a pair of nonnegative integers u(c; c′) and d(c; c′). The set C is
naturally a poset, with u(c; c′) and d(c; c′) nonzero if and only if c precedes c′ in the
partial order. There are operators U and D on the free vector space k(ObC) defined by
equations (2). We present these definitions, along with those of the generating functions
associated with an updown category, in §2 below. We also describe the “even covering
conditions” introduced in [10].

While nothing is assumed about the commutator [U,D] as part of the definition of an
updown category, in §3 below we consider a variety of “commutation conditions” ranging
from the absolute commutation condition (i.e., [U,D] = rI) to the weak commutation
condition (i.e., all elements of ObC are eigenvectors of [U,D]). Our theory is somewhat
similar to Fomin’s theory of duality of graded graphs [3, 4], but is both more restrictive
and more general: more restrictive in that the functions u(p; q) and d(p; q) must give
rise to the same partial order, i.e., for any pair p, q we have u(p; q) = 0 if and only if
d(p; q) = 0; and more general in that we discuss weaker commutation conditions than he
does. An updown category with the sequential commutation condition (the restriction of
[U,D] to rank-i elements is a scalar multiple of the identity for all i) has essentially the
properties of a sequentially differential poset. We explore some consequences of the weak
commutation condition, and also prove (Theorem 3.2) that under appropriate hypotheses
the weak commutation condition together with the even covering properties implies the
sequential commutation condition.

In §4 we consider updown categories with a compatible Hopf algebra structure: i.e.,
the vector space k(ObC) has a Hopf algebra structure related to the operators U and D.
We also consider Hopf algebras for which there is a “B+ operator”, which occurs naturally
in the case of Hopf algebras of trees. Results of this section (particularly Theorems 4.2
and 4.4) provide a practical method for showing that various updown categories satisfy
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the weak commutation condition.
In §5 we offer eleven examples. These include updown categories whose objects are

the subsets of a finite set, monomials, necklaces, integer partitions, integer compositions,
planar rooted trees, and rooted trees. For each example we determine which commutation
condition it satisfies.

The author acknowledges the generous hospitality of the Max-Planck-Institut für
Mathematik in Bonn, where the original ideas of this project germinated in the fall of
2003, and where he wrote the final draft of this paper in the winter of 2012. He was further
supported by the Naval Academy Reserach Council during the 2004-2005 and 2005-2006
academic years. The author would also like to thank Prof. Lothar Gerritzen and Dr. Ralf
Holtkamp for helpful discussions.

2 Updown categories

We recall from [10] the following definitions.

Definition 2.1. An updown category is a small category C with a rank functor | · | : C → N

(where N is the ordered set of natural numbers regarded as a category) such that

A1. Each rank Cn = {p ∈ ObC : |p| = n} is finite.

A2. The zeroth rank C0 consists of a single object 0̂, and Hom(0̂, p) is nonempty for all
objects p of C.

A3. For objects p, p′ of C, Hom(p, p′) is always finite, and Hom(p, p′) = ∅ unless |p| < |p′|
or p = p′. In the latter case, Hom(p, p) is a group, denoted Aut(p).

A4. Any morphism p → p′, where |p′| = |p|+k, factors as a composition p = p0 → p1 →
· · · → pk = p′, where |pi+1| = |pi|+ 1;

A5. If |p′| = |p|+1, the actions of Aut(p) and Aut(p′) on Hom(p, p′) (by precomposition
and postcomposition respectively) are free.

Definition 2.2. For any two objects p, p′ of an updown category C with |p′| = |p|+ 1,

u(p; p′) = |Hom(p, p′)/Aut(p′)| = |Hom(p, p′)|
|Aut(p′)|

and

d(p; p′) = |Hom(p, p′)/Aut(p)| = |Hom(p, p′)|
|Aut(p)| .

It follows immediately from these definitions that

u(p; p′)|Aut(p′)| = d(p; p′)|Aut(p)|. (3)

If u(c; c′) = d(c; c′) for every pair c, c′ ∈ ObC with |c′| = |c|+ 1, we say C is univalent. If
in fact u(c; c′) = d(c; c′) is either 1 or 0 for any such pair, we say C is unital. If |Ci| = 1
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for all i, we call C an infinite chain: if there is some n such that |Ci| = 1 for 0 ≤ i ≤ n
and Ci = ∅ for i > n, we call C a finite chain.

As mentioned in the introduction, we have operators U and D on k(ObC) given by
equations (2). These two operators are adjoint with respect to the inner product 〈, 〉 on
k(ObC) defined by

〈p, p′〉 =




|Aut p|, if p′ = p,

0, otherwise.
(4)

The definitions of u(c; c′) and d(c; c′) can be extended to any pair with |c′| ≥ |c| by

u(c; c′) =
〈U |c′|−|c|(c), c′〉

|Aut(c′)| , d(c; c′) =
〈U |c′|−|c|(c), c′〉

|Aut(c)| .

Then equation (3) still holds, as do the relations

Uk(c) =
∑

|c′|=|c|+k

u(c; c′)c′, Dk(c) =
∑

|c′|=|c|+k

d(c; c′)c′.

If C and D are updown categories, then so is their product C×D (see [10, Prop. 2.1]).
We define a partial order on ObC by setting c � c′ if and only if u(c; c′) 6= 0 (or

equivalently d(c; c′) 6= 0. If c′ covers c in this partial order (i.e., c � c′ and |c′| = |c|+ 1)
we write c� c′.

Definition 2.3. For any updown category C, the object generating function is

OC(t) =
∑

n≥0

∑

p∈Cn

tn

|Aut(p)|

and the morphism generating function is

MC(t) =
∑

n≥0

∑

p∈Cn

∑

q∈Cn+1

u(p; q)t2n+1

|Aut(p)| .

Both generating functions can be expressed in terms of the formal series

SC(t) =
∑

p∈ObC

pt|p|

|Aut(p)| ∈ k(ObC)[[t]]

and the inner product (4) as follows:

〈SC(t), SC(t)〉 = OC(t
2) (5)

and
〈USC(t), SC(t)〉 = 〈SC(t), DSC(t)〉 = MC(t). (6)
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Following [10], we say C is evenly up-covered if there is a sequence u0, u1, . . . of integers
such that ∑

c′∈Cn+1

u(c, c′) = un

for all c ∈ Cn, and evenly down-covered if there is a sequence d1, d2, . . . of integers with

∑

c′∈Cn−1

d(c′; c) = dn

for all c ∈ Cn. If C is evenly down-covered with dn = n, we call C factorial. In [10] the
following results are proved.

Theorem 2.1. If C and D are factorial updown categories, so is C×D.

Theorem 2.2. If C and D are updown categories, their generating functions and those
of their product C×D are related by

OC×D(t) = OC(t)OD(t)

and
MC×D(t) = MC(t)OD(t

2) +OC(t)MD(t
2).

Theorem 2.3. Let C be an updown category with OC(t) =
∑

n≥0 ant
n.

1. If C is evenly up-covered, then

MC(t) =
∑

n≥0

anunt
2n+1.

2. If C is evenly down-covered, then

MC(t) =
∑

n≥1

andnt
2n−1.

In particular, if C is factorial then MC(t) = tO′
C(t

2).

If C is both evenly up-covered and evenly down-covered, we can equate the two ex-
pressions for MC(t) in the preceding result to get

anun = an+1dn+1 for all n ≥ 0. (7)
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3 Commutation Conditions

We shall consider various conditions on the commutator of the operators D and U intro-
duced in §2. In what follows we write Pi for the restriction of the operator P to rank i,
so [D,U ]i = Di+1Ui − Ui−1Di.

Definition 3.1. Let C be an updown category, with operators D and U as defined above.
We write I for the identity operator on k(ObC).

1. If [D,U ] = rI, where r is a scalar, then C satisfies the absolute commutation
condition (ACC) with constant r.

2. If [D,U ]i = (ai + b)Ii for constants a, b then C satisfies the linear commutation
condition (LCC) with slope a and intercept b.

3. If [D,U ]i = riIi for some sequence of scalars {r0, r1, . . . , }, then C satisfies the
sequential commutation condition (SCC).

4. If every element of ObC is an eigenvector for [D,U ], then C satisfies the weak
commutation condition (WCC).

Evidently ACC =⇒ LCC =⇒ SCC =⇒ WCC. Of course the SCC coincides
with the WCC if C is a chain. We can rephrase the preceding definition as follows. The
updown category C satisfies the WCC if there is a function ǫ : ObC → k such that
(DU − UD)(c) = ǫ(c)c for all c ∈ ObC. Then C satisfies the SCC if ǫ(c) is a function of
|c|, the LCC if ǫ(c) is a linear function of |c|, and the ACC if ǫ(c) is independent of c. We
have the following result about products; cf. Lemma 2.2.3 of [4].

Proposition 3.1. Let C and D be updown categories.

1. If C satisfies the ACC with constant r and D satisfies the ACC with constant s, then
C×D satisfies the ACC with constant r + s.

2. If C and D satisfy the LCC with slope a, then so does C×D.

3. If C and D satisfy the WCC, then so does C×D.

Proof. Since any element of C×D covering (c, d) ∈ Ob(C×D) must have the form (c′, d)
with c′ covering c or (c, d′) with d′ covering d, we have

U(c, d) =
∑

|c′|=|c|+1

u(c; c′)(c′, d) +
∑

|d′|=|d|+1

u(d; d′)(c, d′) = (Uc, d) + (c, Ud), (8)

and similarly for D. If C and D satisfy the WCC, we can calculate that

(DU − UD)(c, d) = ((DU − UD)c, d) + (c, (DU − UD)d) = (ǫ(c) + ǫ(d))(c, d),

from which all three parts follow easily.
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Note that 0̂ is an eigenvector for [D,U ] in any updown category C, since

[D,U ]0̂ = DU 0̂ =
∑

c∈C1

u(0̂; c)Dc =

(
∑

c∈C1

u(0̂; c)d(0̂; c)

)
0̂.

Henceforth we write ǫ(0̂) for
∑

c∈C1
u(0̂; c)d(0̂; c), whether C satisfies the WCC or not.

Our axioms require that ǫ(0̂) ≥ |C1|.
Assuming the WCC, we can define a new generating function as follows.

Definition 3.2. If C is an updown category satisfying the WCC, the generating function
Oǫ

C(t) is defined by

Oǫ
C(t) =

∑

p∈ObC

ǫ(p)t|p|

|Aut(p)| .

We record some immediate consequence of our definitions in the next result.

Proposition 3.2. Let C be an updown category satisfying the WCC.

1. 〈[D,U ]SC(t), SC(t)〉 = Oǫ
C(t

2).

2. If C satisfies the ACC with constant r, then Oǫ
C(t) = rOC(t).

3. If C satisfies the LCC with slope a and intercept b, then Oǫ
C(t) = atO′

C(t) + bOC(t).

If an updown category C is evenly down-covered, we have

USC(t) =
∑

c∈ObC

∑

c′�c

u(c; c′)c′t|c|

|Aut c| =
∑

c∈ObC

∑

c′�c

d(c; c′)c′t|c|

|Aut c′|

=
∑

c′∈ObC

c′t|c
′|−1

|Aut c′|
∑

c�c′

d(c; c′) =
∑

c∈ObC

cd|c|t
|c|−1

|Aut c|

so that

〈USC(t), USC(t)〉 =
∑

c∈ObC

t2|c|−2d2|c|
|Aut c| =

∑

n≥0

t2nd2n+1an+1, (9)

where OC(t) =
∑

n≥0 ant
n. Similarly, if C is evenly up-covered, we have

〈DSC(t), DSC(t)〉 =
∑

n≥1

t2nu2
n−1an−1. (10)

This gives us the following result.

Proposition 3.3. Suppose the updown category C is evenly up-covered, evenly down-
covered, and satisfies the WCC. Then

Oǫ
C(t) = d1u0a0 +

∑

n≥1

(dn+1un − un−1dn)ant
n,

where OC(t) =
∑

n≥0 ant
n.
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Proof. Subtract equation (10) from equation (9) to get

〈USC(t), USC(t)〉 − 〈DSC(t), DSC(t)〉 = d21a1 +
∑

n≥1

t2n(d2n+1an+1 − u2
n−1an−1).

The left-hand side is 〈[D,U ]SC(t), SC(t)〉, so by the first part of Proposition 3.2 we have

Oǫ
C(t

2) = d21a1 +
∑

n≥1

t2n(d2n+1an+1 − u2
n−1an−1).

Now replace t2 by t and use equation (7) to obtain the conclusion.

The following result generalizes Proposition 2.4 of [8].

Theorem 3.1. Let C be an updown category satisfying the WCC, and define ǫ : ObC → k

as above. Then for objects c1, c2 of C,

〈U(c1), U(c2)〉 − 〈D(c1), D(c2)〉 =





0, if c1 6= c2;

ǫ(c)|Aut(c)|, if c1 = c2 = c.

Proof. Since U and D are adjoint, the left-hand side is 〈[D,U ]c1, c2〉.

Remark. The second alternative of this result can be written
∑

c′�c

u(c; c′)2|Aut(c′)| −
∑

c′′�c

d(c′′; c)2|Aut(c′′)| = ǫ(c)|Aut(c)|,

or, dividing by |Aut(c)| and using equation (3),

∑

c′�c

u(c; c′)d(c; c′)−
∑

c′′�c

u(c′′; c)d(c′′; c) = ǫ(c). (11)

Equation (11) has the following consequence.

Corollary 3.1. If the updown category C satisfies the WCC, then

∑

c∈Cn

∑

c′∈Cn+1

u(c; c′)d(c; c′) =
∑

|c|≤n

ǫ(c)

Proof. We use induction on n. Equation (11) with |c| = 0 gives the result for n = 1. Now
suppose the conclusion holds for n < k, and use equation (11) with |c| = k to get

∑

c′∈Ck+1

u(c; c′)d(c; c′) =
∑

c′′∈Ck−1

u(c′′; c)d(c′′; c) + ǫ(c).

Sum this on c ∈ Ck and apply the induction hypothesis to obtain the conclusion for
n = k.
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If C is unital, we have the following result.

Corollary 3.2. Suppose C is a unital updown category that satisfies the WCC. Then

MC(t) =
t

1− t2
Oǫ

C(t
2).

Proof. Since C is unital, the left-hand side of the preceding result is

∑

|c|=n

∑

|c′|=n+1

u(c; c′)2 =
∑

|c|=n

∑

|c′|=n+1

u(c; c′)

Now
USC(t) =

∑

n≥0

∑

|c|=n

Uctn =
∑

n≥0

∑

|c|=n

∑

|c′|=n+1

u(c; c′)c′tn,

so we have

MC(t) = 〈USC(t), SC(t)〉 =
∑

n≥0

∑

|c|=n

∑

|c′|=n+1

u(c; c′)t2n+1 =
∑

n≥0

∑

|c|≤n

ǫ(c)t2n+1

and the result follows by equation (6) and Definition 3.2.

The first alternative of Theorem 3.1 has interesting implications in the cases where
the induced poset is a lattice. This includes Examples 1, 4, 7 and 8 in §5 below.

Corollary 3.3. Let C be an updown category whose induced poset (ObC,�) is a lattice.
If C satisfies the WCC, then (ObC,�) is modular.

Proof. It is enough to show that, for x, y ∈ ObC with x 6= y, x and y cover x∧ y iff x∨ y
covers both x and y (see [1, §17]). Necessarily x 6= y satisfying either condition must be
in the same rank. For such x and y,

〈Dx,Dy〉 =




d(x ∧ y; x)d(x ∧ y; y)|Aut(x ∧ y)|, if x and y cover x ∧ y,

0, otherwise,

and

〈Ux, Uy〉 =




u(x; x ∨ y)u(y; x∨ y)|Aut(x ∨ y)|, if x ∨ y covers x and y,

0, otherwise.

But Theorem 3.1 implies 〈Ux, Uy〉 = 〈Dx,Dy〉, so the required equivalence follows.

If C is unital, this result can be strengthened as follows (cf. Proposition 1.3 of [16]
and Proposition 2.2 of [17]).

Corollary 3.4. Suppose C is a unital updown category. If (ObC,�) is a lattice, then C

satisfies the WCC iff (ObC,�) is modular.
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Proof. In view of the preceding result, it suffices to show that C satisfies the WCC when
(ObC,�) is modular. In this case we have, for c ∈ Cn,

DUc = D(
∑

c′�c

c′) = |C+(c)|c+
∑

{d∈Cn: |c∨d|=n+1}

d

and
UDc = U(

∑

c′′�c

c′′) = |C−(c)|c+
∑

{d∈Cn: |c∧d|=n−1}

d,

where C+(c) is the set of elements that cover c and C−(c) is the set of elements c covers.
Now modularity implies |c∧d|+|c∨d| = 2n for c, d ∈ Cn, so |c∧d| = n−1 iff |c∨d| = n+1.
It follows that

(DU − UD)c = (|C+(c)| − |C−(c)|)c,
so C satisfies the WCC.

The commutation conditions do not force (ObC,�) to be a lattice, even if C is unital:
see Example 3 below. Examples 9, 10 and 11 also satisfy the WCC although the induced
poset is not a lattice. Whether or not the induced poset is a lattice, in the unital case the
even covering properties allow us to deduce the SCC from the WCC as follows.

Theorem 3.2. Suppose the unital updown category C is evenly up-covered, evenly down-
covered, and satisfies the WCC. Then C satisfies the SCC with rn = un−dn. Further, the
numbers un and dn must satisfy the relations

un − dn = undn+1 − un−1dn, n ≥ 1. (12)

Proof. For c ∈ Cn we can write

U(c) =

un∑

i=1

c(i)

and thus

DU(c) = unc+

un∑

i=1

dn+1−1∑

j=1

c(i, j)

for elements c(i, j) ∈ Cn − {c}. Similarly, if c 6= 0̂ we have

UD(c) = dnc+
dn∑

i=1

un−1−1∑

j=1

c′(i, j)

for c′(i, j) ∈ Cn − {c}. The WCC implies that all the elements c(i, j) and c′(i, j) cancel
in the difference DU(c) − UD(c), so (DU − UC)(c) = (un − dn)c. But then C satisfies
the SCC with rn = un − dn, and equation (12) follows by comparing Proposition 3.3 with
Oǫ

C(t) =
∑

n≥0 rnant
n.
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Remarks. 1. The hypotheses imply d1 = 1 and u0 = |C1|. If in addition dn = 1 for all n,
then equation (12) implies un−1 = 1 for all n, and thus that C is a chain.
2. If in addition to the hypotheses C is factorial, then equation (12) implies un = |C1|−n.
Hence Ck = ∅ for k > |C1|, and rn = |C1| − 2n for 0 ≤ n ≤ |C1|. From equation (7),

|Cn| = an =

(|C1|
n

)
, 0 ≤ n ≤ |C1|.

This is realized by A|C1| in Example 1 below.
3. Another solution of equation (12) is

dn =
qn − 1

q − 1
and un =

qN−n − 1

q − 1
, 0 ≤ n ≤ N.

If q is a prime power, this is realized by Example 2 below.
4. For an updown category W that satisfies the hypotheses of the theorem, is not a chain,
and has |Wn| 6= 0 for all n ≥ 0, see Example 3 below.

In an updown category satisfying the SCC, we can obtain the kinds of results proved
by Stanley for sequentially differential posets [17] and by Fomin for r-graded graphs in
[4]. For example, we have the following result by essentially the same proof as Theorem
2.3 of [17] (see also Proposition 2.7 of [8]).

Theorem 3.3. Let C be an updown category satisfying the SCC, and let p ∈ Ck. Call a
word w = w1w2 · · ·ws in U and D a valid p-word if the number of U ’s minus the number
of D’s in w is k, and, for each 1 ≤ i ≤ s, the number of D’s in wi · · ·ws does not exceed
the number of U ’s. For such a word w, let S = {i : wi = D} and

ci = |{j : j > i, wj = U}| − |{j : j ≥ i, wj = D}|, i ∈ S.

Then for any valid p-word w,

〈w0̂, p〉 = d(0̂; p)
∏

i∈S

(r0 + r1 + · · ·+ rci).

This result has the following corollary (cf. [8, Proposition 2.8] and [4, Theorem 1.5.2]).

Corollary 3.5. Let C be an updown category satisfying the SCC, and let p ∈ Ck. Then
for nonnegative a,

∑

|q|=k+a

d(p; q)u(0̂; q) = u(0̂; p)
a−1∏

i=0

(r0 + r1 + · · ·+ rk+i).

Proof. Set w = DaUa+k in the preceding result to get

〈DaUa+k0̂, p〉 = d(0̂; p)

a−1∏

i=0

(r0 + r1 + · · ·+ rk+i).
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Expand out the left-hand side to get

∑

|q|=k+a

u(p; q)d(0̂; q) = d(0̂; p)
a−1∏

i=0

(r0 + r1 + · · ·+ rk+i).

Now use equation (3) and divide by |Aut p|/|Aut 0̂| to obtain the conclusion.

In particular, taking p = 0̂ in this result gives

∑

|q|=a

d(0̂; q)u(0̂; q) =

a−1∏

i=0

(r0 + r1 + · · ·+ ri).

4 Algebra Structures on k(ObC)

In this section we consider some algebraic structures on k(ObC) and their implications
for the commutation conditions.

Definition 4.1. We say C has a Pieri algebra structure if k(ObC) has a graded product

kCn ⊗ kCm → kCn+m

with unit element 0̂ ∈ C0, such that U(c) = U(0̂)c for all c ∈ ObC.

Pieri algebra structures are compatible with products.

Proposition 4.1. If C and D have Pieri algebra structures, then so does C×D.

Proof. Identifying k(Ob(C×D)) with k(ObC)⊗ k(ObD), we can define a product by

(c1 ⊗ d1)(c2 ⊗ d2) = c1c2 ⊗ d1d2. (13)

Under this identification equation (8) becomes

UC×D = UC ⊗ id+ id⊗UD,

from which we see that equation (13) provides a Pieri algebra structure for C×D:

UC×D(c⊗ d) = UC(c)⊗ d+ c⊗ UD(d) = UC(0̂C)c⊗ d+ c⊗ UD(0̂D)d = UC×D(0̂C×D)(c⊗ d).

If C has a Pieri algebra structure and additionally k(ObC) admits a coproduct

∆ : kCn →
⊕

a+b=n

kCa ⊗ kCb

such that k(ObC) is a graded connected Hopf algebra, then there is a second multiplication
◦ given by

〈u ◦ v, w〉 = 〈u⊗ v,∆(w)〉.
The following result gives some properties of ◦.
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Proposition 4.2. Let C be an updown category with a Pieri algebra structure such that
kObC is a graded connected Hopf algebra.

1. The element 0̂
|Aut 0̂|

acts as an identity for ◦.

2. The operator D is a derivation for ◦.
Proof. For the first part, note that

〈0̂ ◦ v, w〉 = 〈0̂⊗ v,∆(w)〉 = 〈0̂⊗ v, 0̂⊗ w〉 = 〈0̂, 0̂〉〈v, w〉 = |Aut 0̂|〈v, w〉,
so 0̂ ◦ v = |Aut 0̂|v. Similarly, v ◦ 0̂ = |Aut 0̂|v.

For the second part, it suffices to show

〈D(u ◦ v), w〉 = 〈D(u) ◦ v + u ◦D(v), w〉 (14)

for all w. The left-hand side of equation (14) is

〈u ◦ v, U(w)〉 = 〈u⊗ v,∆(U(0̂)w)〉 = 〈u⊗ v,∆U(0̂)∆(w)〉 =
=
∑

w

(〈u, U(w′)〉〈v, w′′〉+ 〈u, w′〉〈v, U(w′′)〉),

where ∆(w) =
∑

w w′ ⊗ w′′, since U(0̂) is primitive. On the other hand, the right-hand
side of (14) is

〈D(u)⊗ v,∆(w)〉+ 〈u⊗D(v),∆(w)〉 =
∑

w

〈u, U(w′)〉〈v, w′′〉+
∑

w

〈u, w′〉〈v, U(w′′)〉,

and equation (14) follows.

If it happens that the “new” multiplication ◦ coincides with the old one, we have the
following result.

Theorem 4.1. If C has a Pieri algebra structure and k(ObC) is a graded connected Hopf
algebra such that u ◦ v = uv (i.e., k(ObC) is self-dual via the inner product 〈, 〉), then C

satisfies the ACC (with constant ǫ(0̂) ∈ k).

Proof. For any p ∈ ObC,

[D,U ](p) = D(U(0̂) ◦ p)−U(0̂) ◦D(p) = DU(0̂) ◦ p+ U(0̂) ◦D(p)−U(0̂) ◦D(p) = ǫ(0̂)p.

As we shall see, this result applies to Examples 4 and 7 in §5 below.
Now suppose U satisfies

U(p ◦ q) = U(p) ◦ q + p ◦ U(q)− p ◦ U(0̂) ◦ q (15)

for all p, q ∈ ObC. We say U is a pre-derivation for ◦ in this case: note that U is a
derivation exactly when U(0̂) = 0 (and any derivation is a pre-derivation). Note also
that equation (15) is satsified in the case where U(c) = U(0̂) ◦ c for all c ∈ ObC. A
straightforward calculation establishes the following.
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Proposition 4.3. The commutator of pre-derivations is a pre-derivation.

Definition 4.2. We say that the updown category C has a compatible Hopf algebra struc-
ture if k(ObC) is a graded connected Hopf algebra whose product gives C a Pieri multi-
plication and whose coproduct makes U a pre-derivation for ◦ as defined above.

An updown category with a compatible Hopf algebra structure need not satisfy the
WCC (see Example 5 below), but we have the following result.

Theorem 4.2. If C has a compatible Hopf algebra structure and (k(ObC), ◦) is generated
as an algebra by eigenvectors of [D,U ], then C satisfies the WCC.

Proof. Suppose and p, q ∈ ObC are eigenvectors of [D,U ] with eigenvalues ǫ(p), ǫ(q)
respectively. Since [D,U ] is a pre-derivation,

[D,U ](p◦q) = [D,U ](p)◦q+p◦ [D,U ](q)−p◦ [D,U ](0̂)◦q = (ǫ(p)+ǫ(q)−ǫ(0̂))p◦q. (16)

We say C admits a B+ operator if k(ObC) has a Hopf algebra structure such that

m∗B+(u) = B+(u)⊗ 0̂ + (id⊗B+)m
∗(u) (17)

where B+ : k(ObC) → k(ObC) is an injective linear function that increases degree by 1,
and m∗ is the dual comultiplication defined by

〈uv, w〉 = 〈u⊗ v,m∗(w)〉

for u, v, w ∈ k(ObC). Then we have the following result.

Proposition 4.4. If C admits a B+ operator, then DB+(u) = B+D(u) for |u| > 0.

Proof. Writing m∗(u) =
∑

u u
′ ⊗ u′′, we have

〈DB+(u), w〉 = 〈B+(u), U(0̂)w〉 = 〈m∗B+(u), U(0̂)⊗ w〉
= 〈B+(u)⊗ 0̂ + (id⊗B+)m

∗(u), U(0̂)⊗ w〉
= 〈B+(u)⊗ 0̂ +

∑

u

u′ ⊗ B+u
′′, U(0̂)⊗ w〉

= 〈B+(u), U(0̂)〉〈0̂, w〉+
∑

u

〈u′, U(0̂)〉〈B+(u
′′), w〉

while

〈B+D(u), w〉 = 〈D(u), B∗
+(w)〉 = 〈u, UB∗

+(w)〉 = 〈m∗u, U(0̂)⊗ B∗
+(w)〉

=
∑

u

〈u′, U(0̂)〉〈B+(u
′′), w〉.

The two expressions agree unless |w| = |u| = 0.
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Examples of updown categories admitting a B+ operator occur in Examples 4, 10, and
11 below. The next result distinguishes the first of these examples from the other two.

Theorem 4.3. Suppose the Pieri algebra structure on C is commutative and |C1| = 1. If
C admits a B+ operator, then there is a scalar t 6= 0 with B+D(u) = DB+(u) = tu for all
|u| > 0. It follows that C is an infinite chain.

Proof. Let C1 = {a}. Then the hypotheses mean that for any u ∈ Cn, n ≥ 1, there exists
u1 ∈ kCn−1 so that

m∗(u) = u⊗ 0̂ + u1 ⊗ a+ · · ·+ a⊗ u1 + 0̂⊗ u. (18)

There must be nonzero scalars r and s so that U(0̂) = ra and B+(0̂) = sa. For any
w ∈ ObC,

〈w,D(u)〉 = 〈U(w), u〉 = 〈raw, u〉 = 〈ra⊗ w,m∗(u)〉 = 〈ra, a〉〈w, u1〉 = r|Aut a|〈w, u1〉,

so Du = r|Aut a|u1. Now apply the identity (17) to equation (18) to get

m∗B+(u) = B+(u)⊗ 0̂ + u⊗ sa+ · · ·+ a⊗ B+(u1) + 0̂⊗B+(u),

and the cocommutativity of m∗ implies

su = B+(u1) =
1

r|Aut a|B+D(u),

i.e., B+D(u) = DB+(u) = rs|Aut a|u.
To see that C must be an infinite chain, suppose first that |Cn| > 1 for some n: we can

assume n minimal. Let u1, u2 be distinct elements of Cn. Then if v is the unique object
in Cn−1, we have the contradiction

0 = 〈tu1, tu2〉 = 〈B+D(u1), B+D(u2)〉 = d(v; u1)d(v; u2)〈B+(v), B+(v)〉 6= 0.

That C is infinite follows from the fact that Bk
+0̂ is nonzero for all k.

Definition 4.3. Suppose k(ObC) has a compatible Hopf algebra structure and admits a
B+ operator. We say C has a unilateral arboreal structure if in addition

UB+(p) = B+U(p) + U(0̂) ◦B+(p)

for all p ∈ ObC, and a bilateral arboreal structure if

UB+(p) = B+U(p) + U(0̂) ◦B+(p) +B+(p) ◦ U(0̂).

Theorem 4.4. Suppose C has a (unilateral or bilateral) arboreal structure such that
k(ObC) can be generated via the product ◦ and the operation B+ from eigenvectors of
[D,U ]. Then C satsifies the WCC.
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Proof. It suffices to show that p ◦ q and B+(p) are eigenvectors of [D,U ] whenever p and
q are. The first statement follows from equation (16) above. For the second, we note that
in the unilateral arboreal case,

[D,U ]B+(p) = DUB+(p)− UDB+(p)

= DB+U(p) +D(U(0̂) ◦B+(p))− UB+D(p)

= B+DU(p) +DU(0̂) ◦B+(p) + U(0̂) ◦DB+(p)−B+UD(p)− U(0̂) ◦DB+(p)

= B+[D,U ]p+ ǫ(0̂)|Aut 0̂|B+(p).

Hence if p is an eigenvector of [D,U ] we have

[D,U ]B+(p) = (ǫ(p) + ǫ(0̂)|Aut 0̂|)B+(p). (19)

A similar calculation shows that

[D,U ]B+(p) = (ǫ(p) + 2ǫ(0̂)|Aut 0̂|)B+(p) (20)

in the bilateral arboreal case.

5 Examples

In this section we present eleven examples of updown categories. Eight of them appear in
the last section of [10]. For the convenience of the reader we have included a cross-reference
to [10] at the beginning of each example where it applies.

Example 1. (Subsets of a finite set; [10, Example 1]) First, let A be an updown category
such that A0 = {0̂}, A1 = {1̂}, An = ∅ for n 6= 0, 1, and Hom(0̂, 1̂) has a single element.
The groups Aut(0̂) and Aut(1̂) are trivial since they act freely on the one-element set
Hom(0̂, 1̂). The object and morphism generating functions are evidently

OA(t) = 1 + t and MA(t) = t.

We also have
(DU − UD)0̂ = D1̂ = 0̂

and
(DU − UD)1̂ = −U 0̂ = −1̂,

so A satisfies the LCC with slope −2. Also, A has a Pieri multiplication if we identify 1̂
with x in the algebra k[x]/x2, but this cannot be improved to a compatible Hopf algebra
structure: for then x would have to be primitive, but this would force 0 = ∆(x2) = 2x⊗x.

There is an identification of objects of An with subsets of {1, 2, . . . , n}: an n-tuple
(c1, . . . , cn) corresponds to the set {i : ci = 1̂}. The induced partial order is inclusion of
sets, and An is unital. It is also factorial and evenly up-covered. From Theorem 2.2, the
generating functions are

OAn(t) = (1 + t)n and MAn(t) = nt(1 + t2)n−1.
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By Proposition 3.1, An satisfies the LCC with slope −2; in fact, (DU − UD)p =
(n−2|p|)p for p ∈ ObAn by Remark 2 following Theorem 3.2. Cf. Example 2.5(b) of [17]
and Example 6.2.6 of [2].

Example 2. Let q be a prime power, Fq the finite field with q elements, and V the category
of subspaces of the N -dimensional vector space FN

q over Fq with inclusions as morphisms.

Then V is a unital updown category, with rank given by dimension and 0̂ the zero subspace.
The object generating function is

OV(t) =

n∑

k=0

[
N

k

]

q

tk,

where [
N

k

]

q

=
(qN − 1)(qN−1 − 1) · · · (qN−k+1 − 1)

(qk − 1) · · · (q − 1)

is the Gaussian binomial coefficient. Any V ∈ Vk has
[

k

k−1

]
q
=
[
k

1

]
q
subspaces of dimension

k − 1, so V is evenly down-covered with dk =
[
k

1

]
q
. By Theorem 2.3,

MV(t) =

N∑

k=1

[
N

k

]

q

[
k

1

]

q

t2k−1 =

n∑

k=1

[
N − 1

k − 1

]

q

[
N

1

]

q

t2k−1 = t

[
N

1

]

q

n−1∑

k=0

[
N − 1

k

]

q

t2k.

Note that these generating functions are the “q-versions” of those of Example 1.
Since the induced poset (ObV,�) is a modular lattice, V satisfies the WCC by Corol-

lary 3.4. In fact, V is also evenly up-covered (with uk =
[

N−k

N−k−1

]
q
=
[
N−k

1

]
q
), so Theorem

3.2 implies that V satisfies the SCC with

rk =

[
N − k

1

]

q

−
[
k

1

]

q

=
qN−k − qk

q − 1
.

Cf. Example 2.5(d) of [17] and Example 6.2.6 of [2].

Example 3. Fix a positive integer n, and let W be the unital updown category with
W0 = {0̂} and Wi = {ai, bi, ci} for i ≥ 1. The nontrivial covering relations are:

ai+1 � ai, bi; bi+1 � ai, ci; and ci+1 � bi, ci for i ≥ 1.

Then W is an updown category with object generating function

OW(t) = 1 + 3t+ 3t2 + · · · = 1 + 2t

1− t
.

By direct computation it is easy to show that W satisfies the SCC with r0 = 3, r1 = 1,
and ri = 0 for i ≥ 2. Hence

Oǫ
W(t) = 3 + 3t = 3(1 + t)
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and so by Corollary 3.2 we have

MW(t) =
t

1− t2
Oǫ

W(t2) =
3t(1 + t2)

1− t2
. (21)

Also, W is evenly down-covered with d1 = 1 and di = 2 for i ≥ 2, Thus equation (21) also
follows from Theorem 2.3. The induced poset (ObW,�) is not a lattice since a1 and c2
have no least upper bound.

Since W is also evenly up-covered (with u0 = 3 and ui = 2 for i ≥ 1), Theorem 3.2
applies. In fact, any updown category satisfying the hypotheses of Theorem 3.2 that is
like W in having N elements in rank i for i ≥ 1, and ui = di+1 = k for i ≥ 1, must have
N = k2 − k + 1 by equation (12).

Example 4. (Monomials; [10, Example 3]) Let S be the category with Sn = {[n]}, where
[n] = {1, 2, . . . , n} (and [0] = ∅), and let Hom([m], [n]) be the set of injective functions
from [m] to [n]. Then S is an updown category with Aut[n] the symmetric group on n
letters. Since Hom([n], [n+1]) has (n+1)! elements, u([n]; [n+1]) = 1 and d([n]; [n+1]) =
n+ 1. Clearly S is evenly up-covered and factorial, so

OS(t) = et and MS(t) = tet
2

by Theorem 2.3.
We can give S a Pieri algebra structure by identifying [n] with xn in the polynomial

algebra k[x]. Then U is multiplication by x and D = d
dx
. If we declare x primitive, then

k[x] is a compatible self-dual Hopf algebra structure for S (note 〈xn, xm〉 = n!δn,m). Hence
S satisfies the ACC with constant 1 by Theorem 4.1. Also, S admits the B+ operator

B+(t
n) =

tn+1

n+ 1
.

Objects of the updown category Sn can be identified with monomials in n commuting
indeterminates x1, . . . , xn. By Theorem 2.2, the generating functions are

OSn(t) = ent and MSn(t) = ntent
2

.

There is a Pieri algebra structure on Sn in which U is multiplication by x1 + · · ·+ xn and

D =
∂

∂x1
+ · · ·+ ∂

∂xn

.

Making the xi primitive gives a compatible self-dual Hopf algebra structure for Sn, so
Theorem 4.1 says Sn satisfies the ACC with constant D(x1 + · · · + xn) = n. (Of course
this already follows from Proposition 3.1.) Cf. Example 2.2.2 of [4].

Example 5. For a fixed positive integer c, let F be the updown category with Fn =
{f : [n] → [c]}. Note that an element of Fn can be thought of as a monomial in the
noncommuting indeterminates X1, . . . , Xc. A morphism from f ∈ Fn to g ∈ Fm, m ≥ n,
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is an order-preserving injection ι : [n] → [m] such that f = gι as functions on [n]. In
terms of monomials, in the case c = 2

U(X2
1X2) = 3X3

1X2 +X2
1X2X1 +X2X

2
1X2 +X1X2X1X2 + 2X1X

2
2 .

In fact, it is easy to see that k(ObF) can be identified with the underlying vector space of
the noncommutative polynomial algebra k〈X1, . . . , Xc〉, and we can give it a Pieri algebra
structure by multiplying elements according to shuffle product. We have

U(w) = (X1 + · · ·+Xc)� w

for any word w in X1, . . . , Xn. Evidently F is univalent, so

OF(t) =
∑

n≥0

|Fn|tn =
∑

n≥0

cntn =
1

1− ct
. (22)

Now F has a compatible Hopf algebra structure, with product � and the “deconcate-
nation” coproduct, e.g.,

∆(X1X
2
2 ) = X1X

2
2 ⊗ 1 +X1X2 ⊗X2 +X1 ⊗X2

2 + 1⊗X1X
2
2 .

With this coproduct, the second multiplication defined in §4 is just concatenation, e.g.,
X1X2 ◦ X2X

2
1 = X1X

2
2X

2
1 . By Proposition 4.2, D is the derivation of k〈X1, . . . , Xc〉

sending each Xi to 1, i.e.,

D =
∂

∂X1
+ · · ·+ ∂

∂Xc

.

Hence F is factorial, so it follows from Theorem 2.3 and equation (22) that

MF(t) = tO′
F(t

2) =
ct

(1− ct2)2
.

If c > 1, then F does not satisfy the WCC: it fails to hold for the generators Xi.
Nevertheless, there is a formula for [D,U ]. For 1 ≤ i ≤ c and w a word in X1, . . . , Xc, let

Diw =
∂w

∂Xi

and Uiw = Xi� w.

Then [Di, Ui](w) = (|w| + |w|i + 1)w, where |w|i is the Xi-degree of w, and for j 6= i
[Di, Uj ] is the derivation that takes xi to xj and all xp with p 6= i to 0. We have

[D,U ]w = ((c+ 1)|w|+ c)w +
∑

i 6=j

[Di, Uj ]w.

Example 6. (Necklaces; [10, Example 5]) For a fixed positive integer c, let Nm be the set
of m-bead necklaces with beads of c possible colors. A morphism from f ∈ Nm to g ∈ Nn,
m ≤ n, is an injective function sending each bead of f to a bead of g of the same color
and preserving the cyclic order. Then u(p; q) is the number of ways to insert a bead into
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necklace p to get necklace q, and d(p; q) is the number of different beads of q that can be
deleted to give p. Evidently N is factorial and also evenly up-covered with u0 = c and
um = mc for m ≥ 1. From Theorem 2.3,

ON(t) = 1− log(1− ct) and MN(t) =
ct

1− ct2
.

There is a Pieri algebra structure on N given by associating certain polynomials in
k〈X1, . . . , Xc〉 with necklaces. Let A = k〈X1, . . . , Xc〉, and define a linear function R :
A → A by R(1) = 1, R(Xi) = Xi for any i, and

R(Xi1Xi2 · · ·Xik) = XikXi1Xi2 · · ·Xik−1

for any monomial in A. Let AR be the R-invariant polynomials in A, and define the linear
function P : A → AR by P (1) = 1, P (Xi) = Xi, and

P (w) = w +R(w) + · · ·+Rk−1(w)

for w = Xi1 · · ·Xik . For any necklace we have an associated polynomial in AR that uses
Xi to represent the ith color, e.g., for c = 2

P (X2
1X

2
2 ) = X2

1X
2
2 +X2X

2
1X2 +X2

2X
2
1 +X1X

2
2X1 represents the necklace b

b

bc

bc
.

Then it can be shown that P (w1)� P (w2) ∈ AR for any monomials w1, w2 ∈ A, so the
shuffle product on A restricts to AR. Further, this is a Pieri algebra structure for N, since
if p ∈ Nm is represented by P (w), then U(p) ∈ Nm+1 is represented by

(X1 +X2 + · · ·+Xc)� P (w).

For c ≥ 2, N does not satisfy the WCC. There is a formula for [D,U ]p similar to that
of the last example, but involving cyclic derivatives in the sense of [15]. Let Ci = TiP ,
where

Ti(w) =




w′, if w = Xiw

′,

0, otherwise.

If the necklace p is represented by P (w), then Dp is represented by P (C1 + · · · + Cc)w
and [D,U ]p is represented by

(c + 1)|w|P (w) +
∑

j 6=i

P (XjCi(w)).

The induced poset (ObN,�) also fails to be a lattice when c ≥ 2.

Example 7. (Integer partitions with unit weights; [10, Example 6]) Let Y be the category
with ObY the set of integer partitions, i.e., finite sequences (λ1, λ2, . . . , λk) of positive
integers with

λ1 ≥ λ2 ≥ · · · ≥ λk.
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The rank of a partition is |λ| = λ1 + λ2 + · · ·+ λk; we write ℓ(λ) for the length (number
of parts) of λ. The set of morphisms Hom(λ, µ) contains a single element if and only if
λi ≤ µi for all i. Then Y is a unital updown category. By identifying λ with the Schur
symmetric function sλ in the algebra Sym of symmetric functions, we have a Pieri algebra
structure for Y since

sk1sλ =
∑

|µ|=|λ|+k

u(λ;µ)sµ

for any partition µ (for definitions see [13]). Now the standard inner product on the
algebra of symmetric functions [13, I,§5] makes the Schur functions an orthonormal basis.
Further, the usual Hopf algebra structure on Sym (see [5]) is known to be self-dual via this
inner product, so Theorem 4.1 shows that Y satisfies the ACC with constant D(s1) = 1
(cf. [16, Corollary 1.4]).

Since Yn is the set of partitions of n, the object generating function

OY(t) =
∑

n≥0

|Yn|tn =
1

(1− t)(1− t2)(1− t3) · · ·

is familiar. Since Y satisfies the ACC with constant 1, Oǫ
Y(t) = OY(t) by the second part

of Proposition 3.2 and thus

MY(t) =
t

1− t2
OY(t

2) =
t

(1− t2)2(1− t4)(1− t6) · · ·

by Corollary 3.2. Also, since the induced poset (ObY,�) is a lattice, Corollary 3.3 requires
it to be modular: in fact, (ObY,�) is distributive (see the introduction of [16]).

Besides providing the motivating example of theory of differential posets in [16], Y
appears as Example 1.6.8 of [4].

Example 8. (Integer partitions with non-univalent weights; [10, Example 7]). Let K be
the category with ObK the set of integer partitions, and Hom(λ, µ) defined as follows.
Let λ = (λ1, . . . , λn) and µ = (µ1, . . . , µm), always written in decreasing order. Then a
morphism from λ to µ is an injective function f : [n] → [m] such that λi ≤ µj whenever
f(i) = j.

The category K has the same objects as Y, but it also has the nontrivial automorphism
groups: for a partition λ = (λ1, . . . , λk), Aut(λ) is the group of permutations of {1, . . . , k}
exchanging parts of λ of equal size. Thus

|Autλ| = m1(λ)!m2(λ)! · · · ,

where mi(λ) is the number of parts of size i in λ. For partitions λ, µ with |µ| = |λ| + 1,
the multiplicities u(λ, µ) and d(λ, µ) are nonzero if µ comes from λ by increasing a part of
size k in λ to a part of size k+1 in µ: in this case u(λ, µ) = mk(λ) and d(λ, µ) = mk+1(µ),
where we allow the case k = 0 and make the convention m0(λ) = 1. The weights d(λ;µ)
appear implicitly in [12] and explicitly in [11], where they are referred to as “Kingman’s
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branching”: see especially [11, Fig. 4]. As noted in [11], the d(λ;µ) appear in the
multiplication rule for monomial symmetric functions in Sym:

mk
1mλ =

∑

|µ|=|λ|+k

d(λ;µ)mµ,

where mλ is the monomial symmetric function associated with λ. Then

m̃k
1m̃λ =

∑

|µ|=|λ|+k

u(λ;µ)m̃µ,

where m̃λ = |Autλ|mλ, so identifying λ with m̃λ gives a Pieri algebra structure for K.
From [10] the object and morphism generating functions are

OK(t) = exp

(
t

1− t

)
and MK(t) =

t

1− t2
exp

(
t2

1− t2

)
.

The updown category K satisfies the WCC with

[D,U ](λ) = (1 +m1(λ))λ (23)

for all partitions λ. To prove this we use Theorem 4.2, since k(ObK) has a compatible
Hopf structure given by identifying the partition λ with m̃λ as defined above: we again
use the usual Hopf algebra structure on the set Sym of symmetric functions. Then the
second multiplication is given by the union operation on partitions, e.g., (2, 1)◦ (3, 1, 1) =
(3, 2, 1, 1, 1), and on the generators (n) we have

[D,U ](n) =





(n), if n > 1,

2(1), if n = 1.

Equation (23) follows by induction on the number of parts of λ, using equation (16).

Example 9. (Integer compositions; [10, Example 8]) Let Cn be the set of integer compo-
sitions of n, i.e. sequences I = (i1, . . . , ip) of positive integers with a1 + · · ·+ am = n; as
with partitions we write ℓ(I) for the length of I. A morphism from (i1, . . . , ip) ∈ Cn to
(j1, . . . , jq) ∈ Cm is an order-preserving injective function f : [p] → [q] such that ia ≤ jf(a)
for all a ∈ [p]. Then C is a univalent updown category. To get a Pieri algebra structure
for C one can use the ring QSym of quasi-symmetric functions (for definitions see [14,
Sect. 9.4]): if MI is the monomial quasi-symmetric function associated with I, then

Mk
1MI =

∑

|J |=|I|+k

u(I; J)MJ .

The object generating function is

OC(t) =
∑

n≥0

|Cn|tn = 1 +
∑

n≥1

2n−1tn =
1− t

1− 2t
.
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From [10] the morphism generating function is

MC(t) =
t− t3

(1− 2t2)2
.

The updown category C satisfies the WCC with

ǫ(I) = ℓ(I) + 2m1(I) + 1, (24)

where m1(I) is the number of 1’s in I. This can be proved using Theorem 4.2. First, note
QSym is a Hopf algebra with coproduct

∆(MK) =
∑

I⊔J=K

MI ⊗MJ

where I ⊔ J is a the juxtaposition of compositions I and J . Then the dualized coproduct
is just MI ◦MJ = MI⊔J , for which the length-1 elements M(n) generate: further, equation
(24) holds for these elements. Equation (24) in general then follows by induction on length
using equation (16).

Example 10. (Planar rooted trees; [10, Example 9]) Let Pn be the set of functions f :
[2n] → {〈, 〉} with card f−1(〈) = card f−1(〉) = n and card f−1(〈) ∩ [i] ≥ card f−1(〉) ∩ [i]
for all 1 ≤ i ≤ 2n. We declare Aut(f) to be trivial for all objects f of P, and define
a morphism from f ∈ Pn to g ∈ Pn+1 to be an injective, order-preserving function
h : [2n] → [2n + 2] such that the two values of [2n + 2] not in the image of h are
consecutive, and f(i) = gh(i) for 1 ≤ i ≤ 2n. Then P is a univalent updown category. We
can regard elements of Pn as balanced bracket arrangements, and also as planar rooted
trees, e.g.

〈〈〉〈〈〉〉〉 is identified with .

Thinking of P as the updown category of planar rooted trees, the rank is the count of
non-root vertices. (The empty bracket arrangement ∅ ∈ P0 is identified with the tree •
consisting of the root vertex.)

It is well known that balanced bracket arrangements, or equivalently planar rooted
trees, are enumerated by Catalan numbers:

OP(t) =
∑

n≥0

|Pn|tn =
∑

n≥0

1

n+ 1

(
2n

n

)
tn =

1−
√
1− 4t

2t
.

Now there are 2n+1 possibilities for order-preserving injections [2n] → [2n+2] that miss
two consecutive values, so P is evenly up-covered with un = 2n + 1 and by Theorem 2.3
the morphism generating function is

MP(t) =
∑

n≥0

2n+ 1

n + 1

(
2n

n

)
t2n+1 =

∑

n≥0

(
2n + 1

n+ 1

)
t2n+1 =

1−
√
1− 4t2

2t
√
1− 4t2

.
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In the tree language, U(t) is the sum of the 2|t| + 1 planar rooted trees obtained by
attaching a new edge and terminal vertex at every possible position of t, and D(t) as the
sum of all trees obtained by deleting a terminal edge of t. For example,

U( ) = + + + +

and
D( ) = + .

The updown category P satisfies the WCC, as can be shown from Theorem 4.4. First
note that k(ObP) has a Hopf algebra structure as described in [9]. For this Hopf algebra
structure the dual multiplication ◦ is juxtaposition of balanced bracket arrangements, or
equivalently joining two planar rooted trees at the root:

◦ = .

Then U is a pre-derivation for ◦, so P has a compatible the Hopf algebra structure. The
unary operation B+ : Pn → Pn+1 encloses a balanced bracket operation in an outer pair
of delimiters, or equivalently adds a new root vertex at the top of a planar rooted tree:

B+( ) = .

This B+ satisfies the identity (17), and indeed P has a bilateral arboreal structure. Hence
P satisfies the WCC by Theorem 4.4. In fact, the eigenvalues are given by

ǫ(t) = 2|t|+ τ(t) + 1, (25)

where τ(t) is the number of terminal vertices of t (and τ(•) = 0), for any planar rooted
tree t. Equation (16) shows that equation (25) holds for t1 ◦ t2 whenever it holds for t1
and t2, and equation (20) shows that it holds for B+(t1) whenever it holds for t1. Now any
planar rooted tree t with |t| > 0 can be written as either t1◦t2 or B+(t1) with |t1|, |t2| < |t|,
so equation (25) follows by induction on |t| starting with the unique element of P1.

Example 11. (Rooted trees; [10, Example 10]) Let Tn consist of partially ordered sets P
such that (i) P has n+ 1 elements; (ii) P has a greatest element; and (iii) for any v ∈ P ,
the set of elements of P exceeding v forms a chain. The Hasse diagram of such a poset P
is a tree with the greatest element (the root vertex) at the top. A morphism of T from
P ∈ Tm to Q ∈ Tn is an injective order-preserving function f : P → Q that sends the root
of P to the root of Q, and which preserves covering relations (i.e., if v � w in the partial
order on P , then f(v)� f(w) in the partial order on Q). Then T is an updown category.

As shown in [10], the categorical definition above gives

u(P ;Q) = n(P ;Q) and d(P ;Q) = m(P ;Q),
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where n and m are the multiplicities introduced in [8]. Since u(P ;Q) can be interpreted
as the number of vertices of P to which a new terminal edge can be attached to get Q, it
follows that T is evenly up-covered with

∑

Q∈Tn+1

u(P ;Q) = |P |+ 1 = n+ 1 for all P ∈ Tn.

It is also shown in [10] that the object and morphism generating functions are

OT(t) =
∑

n≥0

(n+ 1)n

(n+ 1)!
tn and MT(t) =

∑

n≥0

(n+ 1)n

n!
t2n+1.

The operators U and D on k(ObT) appear in §2 of [8] as N and P respectively. As
is proved there (Proposition 2.2), T satisfies the LCC with ǫ(P ) = |P | + 1 (Note that
the grading in [8] differs by 1 from the one used here). That T satisfies the LCC can
also be proved along the lines of the previous example using the Grossman-Larson Hopf
algebra structure on k(ObT) [7]: this Hopf algebra structure gives T a unilateral arboreal
structure.

From Corollary 3.1 it follows that

∑

P∈Tn

∑

Q∈Tn+1

u(P ;Q)d(P ;Q) =
n∑

k=0

(k + 1)|Tk|,

which may be compared with the identity
∑

P∈Tn

∑

Q∈Tn+1

u(P ;Q) = (n+ 1)|Tn|

that follows from T being evenly up-covered.
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