On the prime density of Lucas sequences

Pieter Moree

Max-Planck-Institut
für Mathematik
Gotfried-Claren-Str. 26
53225 Bonn

Germany

On the prime density of Lucas sequences

Pieter Moree

May 31, 1996

Abstract

For any integer P, let $\left\{L_{n}(P)\right\}_{n=0}^{\infty}$ be the Lucas sequence defined by $L_{0}(P)=2$, $L_{1}(P)=P$ and, for every $n \geq 2, L_{n}(P)=P L_{n-1}(P)+L_{n-2}(P)$. The density of the set of primes dividing this sequence is computed.

1 Introduction

If S is any set of integers, then by $S(x)$ we denote the number of elements in S not exceeding x. The limit $\lim _{x \rightarrow \infty} S(x) / \pi(x)$, if it exists, is called the prime density of S. It will be denoted by $\delta(S)$.

Let $\mathbb{Q}(\sqrt{D})$ be a real quadratic field with $D>1$ and D squarefree. (This assumption on D is maintained throughout.) Let \mathfrak{O}_{D} denote its ring of integers. Suppose \mathfrak{D}_{D} contains a unit of norm -1 . Then obviously the fundamental unit, ϵ_{D}, has norm -1 . Let $u \neq \pm 1$ be a unit of \mathcal{O}_{D}. In this paper we are interested in computing the prime density of the sequence $u^{n}+\bar{u}^{n}$. The sequence $u^{n}+\bar{u}^{n}$ has an irreducible characteristic polynomial over \mathbb{Q}. Few people seem to have considered this problem. The papers $[4,5]$ are the only ones known to the author in this direction. In contrast several authors $[1,3,6,9]$ considered the prime density of second order linear recurrences having reducible characteristic polynomial (i.e. sequences of the form $a^{n}+b^{n}$).

Our main result is the following.
Theorem 1 Let $\mathbb{Q}(\sqrt{D})$ be a real quadratic field with $D>1$ and D squarefree having a unit of negative norm. Let $u \neq \pm 1$ be a unit. Then there exists $\lambda \geq 0$ and ϵ of norm -1 such that $u=\epsilon^{2^{\lambda}}$. The sequence $u^{n}+\bar{u}^{n}$ has a prime density. In case $D=2$ it is given by $17 / 24$ if $\lambda=0,5 / 12$ if $\lambda=1$ and $2^{-\lambda} / 3$ otherwise. In case $D>2$ the prime density equals $2^{1-\lambda} / 3$.

It should be remarked that the question whether a quadratic field has a unit of negative norm is still not satisfactorily resolved. If D has a prime divisor $p \equiv$ $3(\bmod 4)$, then there is no such unit. From this it easily follows that there are at most $O(x / \sqrt{\log x})$ discriminants $D \leq x$ for which there is a negative unit. Stevenhagen conjectures that there are asymptotically $c x / \sqrt{\log x}$ such discriminants, for some constant $c>0$. For more on this topic see e.g. [8].

Theorem 1 allows one to compute the density of the Lucas sequence defined by
$V_{0}(P)=2, V_{1}(P)=P$ and $V_{n}(P)=P V_{n-1}(P)-V_{n-2}(P)$ for various P. For example the sequence $\left\{V_{n}(326)\right\}$ has density $5 / 12$. More interestingly Theorem 1 allows one to calculate for every integer P the prime density of the Lucas sequence $L_{n}(P)=P L_{n-1}(P)+L_{n-2}(P)$. In this the sequence $\left\{L_{n}(2)\right\}_{n=0}^{\infty}=\{2,2,6,14,34, \cdots\}$, the so called Pell sequence, plays an important rôle.
Theorem 2 For P any nonzero integer let $\left\{L_{n}(P)\right\}_{n=0}^{\infty}$ be the Lucas sequence defined by $L_{0}(P)=2, L_{1}(P)=P$ and, for $n \geq 2, L_{n}(P)=P L_{n-1}(P)+L_{n-2}(P)$. Then the prime density of this sequence exists and equals $2 / 3$, unless $|P|=L_{n}(2)$ for some odd $n \geq 1$, in which case the density is $17 / 24$.
On taking $P=1$ we find that the prime density of the sequence of Lucas numbers equals $2 / 3$. This was first proved by Lagarias [4]. Taking $P=2$ it is seen that the prime density of the Pell sequence is $17 / 24$.

2 Outline of the proofs

The arithmetic of the sequence $\left\{\alpha^{n}+\bar{\alpha}^{n}\right\}$, where $\alpha \in \mathbb{Q}(\sqrt{D})$, is intimately connected with that of the sequence $\left\{W_{n}\right\}$, where $W_{n}:=\left(\alpha^{n}-\bar{\alpha}^{n}\right) /(\alpha-\bar{\alpha})$. This sequence can be alternatively defined by $W_{0}=0, W_{1}=1, W_{n}=\operatorname{Tr}(\alpha) W_{n-1}+W_{n-2}$ for $n \geq 2$. It is a Lucas sequence (see [7, p. 41] for a definition). We recall some facts from [7, pp. 41-60]. For primes p with $(p, 2 N(\alpha))=1$, there exists a smallest index $\rho_{\alpha}(p) \geq 1$ such that $p \mid W_{\rho_{\alpha}(p)}$. The index $\rho_{\alpha}(p)$ is called the rank of apparition of p in $\left\{W_{n}\right\}$. If $(p, 2 N(\alpha))=1$, then $p \mid W_{n}$ if and only if $\rho_{\alpha}(p) \mid n$. Furthermore $W_{2 n}=W_{n} A_{n}$ and $\left(W_{n}, A_{n}\right) \mid 2$. Using the latter three properties it can be easily shown that if $(p, 2 N(\alpha))=1$, then p divides $\left\{W_{n}\right\}$ if and only if $\rho_{\alpha}(p)$ is even (cf. [5, Lemma 1]). From the theory of Lucas sequences it is known that if p is odd and $p \mid D$, then $\rho_{\alpha}(p)$ is odd. If $p \nmid D$ and $p \equiv 3(\bmod 4)$, then $\rho_{\alpha}(p)$ is even. If $p \nmid D$ and $p \equiv 1(\bmod 4)$ and $(D / p)=-1$, then $\rho_{\alpha}(p)$ is odd. Thus, using Lemma 4 , one deduces that the density of $\left\{W_{n}\right\}$ is in $[1 / 2,3 / 4]$. Indeed our approach to compute the prime density of $\left\{W_{n}\right\}$ is to compute the density of primes for which $\rho_{\alpha}(p)$ is even. We will actually compute the prime density of $\left\{p: 2^{e} \| \rho_{\alpha}(p)\right\}$ for every $e \geq 0$, as this requires only little additional effort. It will allow us to deal with the case $\lambda \geq 1$ in Theorem 1. The fact that, for $(p, N(\alpha) \operatorname{Tr}(\alpha) D)=1, \rho_{\alpha}(p)$ divides $p-(D / p)$, forces us to consider the cases $(D / p)=1$ and $(D / p)=-1$ seperately. For $s=1,2, e \geq 0, j \geq 1$ put
$N_{s}(e, j ; \alpha)=\left\{p:(p, 2 N(\alpha))=1,\left(\frac{D}{p}\right)=3-2 s, p \equiv 3-2 s+2^{j}\left(\bmod 2^{j+1}\right), 2^{e} \| \rho_{\alpha}(p)\right\}$.
We show that $N_{s}(e, j ; \alpha)$ has a prime density, $\delta_{s}(e, j ; \alpha)$, and compute it. In the case $s=1$ this is done by relating $\delta_{1}(e, j ; \alpha)$ to degrees of certain Kummerian extensions. This approach goes back to Hasse [3]. In the case $s=2$ more elementary arguments suffice. It is then not difficult to show that the prime density of the sequence $\left\{W_{n}\right\}$ with $N(\alpha)=-1$ is given by

$$
1-\sum_{j=1}^{\infty}\left\{\delta_{1}(0, j ; \alpha)+\delta_{2}(0, j ; \alpha)\right\}
$$

$N_{1}(e, j ; \alpha)$ and $N_{2}(e, j ; \alpha)$ are computed in respectively $\S 3$ and $\S 4$. They are tabulated in Tables I and II. The entry e in the last column gives $\sum_{j=1}^{\infty} \delta_{s}(e, j ; \alpha)$. The entry j in the last row gives $\sum_{e=0}^{\infty} \delta_{s}(e, j ; \alpha)$. The distinction between the case $D=2$ and $D>2$ is due to the fact that for $j \geq 3$ the only real quadratic subfield of $\mathbb{Q}\left(\zeta_{2^{j}}\right)$ is $\mathbb{Q}(\sqrt{2})$. Finally in $\S 5$ the proofs of Theorem 1 and 2 are given.

3 The prime divisors of Lucas sequences splitting in the associated quadratic number field

In this section the prime density of the set $N_{1}(e, j ; \alpha)$ will be computed by relating it to the degrees of certain finite extensions of \mathbb{Q} (Lemma 1). In Lemma 3 these degrees are then computed in case $N(\alpha)=-1$. Using Lemma 1 and Lemma 3 one easily arrives at Table I. 1 and II.1. The fact that the second column in Table I. 1 only contains zero entries is due to the fact that there are no primes satisfying $(2 / p)=1$ and $p \equiv 5(\bmod 8)$.

Lemma 1 Let $\alpha \in \mathbb{Q}(\sqrt{D}) \backslash \mathbb{Q}$ be a quadratic integer. Put $\theta=\alpha^{2} / N(\alpha)$. For $0 \leq r \leq$ s put $K_{r, s}=\mathbb{Q}\left(\sqrt{D}, \theta^{1 / 2^{r}}, \zeta_{2}\right)$. Let $d_{\tau, s}=\left[K_{r, s}: \mathbb{Q}\right]$. Let $j \geq 1$ and $0 \leq e \leq j$. Then the prime density, $\delta_{1}(e, j ; \alpha)$, of

$$
N_{1}(e, j ; \alpha):=\left\{p:(p, 2 N(\alpha))=1,\left(\frac{D}{p}\right)=1, p \equiv 1+2^{j}\left(\bmod 2^{j+1}\right), 2^{e} \| \rho_{\alpha}(p)\right\}
$$

exists. In case $e=0$,

$$
\delta_{1}(0, j ; \alpha)=\frac{1}{d_{j, j}}-\frac{1}{d_{j, j+1}} .
$$

In case $e \geq 1$,

$$
\delta_{1}(e, j ; \alpha)=\frac{1}{d_{j-e, j}}-\frac{1}{d_{j-e, j+1}}-\frac{1}{d_{j-e+1, j}}+\frac{1}{d_{j-e+1, j+1}} .
$$

Furthermore $\delta_{1}(e, j ; \alpha)=0$ in case $e>j$.
Proof: Some details of the proof will be surpressed. The reader having difficulties supplying the missing details is referred to [5]. If $(D / p)=1$ then p splits in $\mathbb{Q}(\sqrt{D})$. So $(p)=\mathfrak{P} \overline{\mathfrak{P}}$ in \mathfrak{D}_{D}. If $(p, 2 N(\alpha))=1$, then $\operatorname{ord}_{\mathfrak{P}}(\theta)=\operatorname{ord}_{\mathfrak{P}}(\theta)=\rho_{\alpha}(p)$. Using that for all large enough primes satisfying $(D / p)=1, \rho_{\alpha}(p) \mid p-1$, it follows that $N_{1}(e, j ; \alpha)$ is finite in case $e>j$. Then $\delta_{1}(e, j ; \alpha)=0$. Now assume $e \leq j$. Let $\sigma_{\alpha}(p)$ denote the exact power of 2 dividing $\rho_{\alpha}(p)$. Put

$$
S_{j}=\left\{p:\left(\frac{D}{p}\right)=1,(p, 2 N(\alpha))=1, p \equiv 1+2^{j}\left(\bmod 2^{j+1}\right)\right\} .
$$

Then the set $N_{1}(e, j ; \alpha)$ equals

$$
\left\{p: p \in S_{j}, \sigma_{\alpha}(p) \mid 2^{e}\right\} \backslash\left\{p: p \in S_{j}, \sigma_{\alpha}(p) \mid 2^{e-1}\right\}
$$

This, on its turn, can be written as $\left\{p: p \in S_{j}, \theta^{\frac{p-1}{2^{j}}} \equiv 1(\bmod \mathfrak{P})\right\}$ if $e=0$ and

$$
\left\{p: p \in S_{j}, \theta^{\frac{R-1}{2-c}} \equiv 1(\bmod \mathfrak{P})\right\} \backslash\left\{p: p \in S_{j}, \theta^{\frac{p-1}{y^{-c+1}}} \equiv 1(\bmod \mathfrak{P})\right\}
$$

otherwise. The latter set equals

$$
\left\{p:\left(\frac{D}{p}\right)=1,(p, 2 N(\alpha))=1, p \equiv 1\left(\bmod 2^{j}\right), \theta \overline{2}^{p-c+\mathrm{T}} \equiv 1(\bmod \mathfrak{P})\right\}
$$

with the subset

$$
\left\{p:\left(\frac{D}{p}\right)=1,(p, 2 N(\alpha))=1, p \equiv 1\left(\bmod 2^{j+1}\right), \theta^{\frac{p-1}{2^{j-c+T}}} \equiv 1(\bmod \mathfrak{P})\right\}
$$

taken out. The latter set equals, with at most finitely many exceptions, the set of primes that split completely in $K_{j-e+1, j+1}$. Since for $r \leq s, K_{r, s}$ is normal over \mathbb{Q}, it follows by the prime ideal theorem or by the Chebotarev density theorem that the prime density of this set equals $d_{j-e+1, j+1}^{-1}$. The density of the other sets involved are computed similarly. One finds $\delta_{1}(0, j ; \alpha)=d_{j, j}^{-1}-d_{j, j+1}^{-1}$ and, in the case $e \geq 1$, $\delta_{1}(e, j ; \alpha)=d_{j-e, j}^{-1}-d_{j-e, j+1}^{-1}-d_{j-e+1, j+1}^{-1}+d_{j-e+1, j+1}^{-1}$.

In our computation of the degrees $d_{a, b}$ we will make use of the following easy lemma.

Lemma 2 [2, Satz 1]
The field $\mathbb{Q}(\sqrt{\alpha})$ with $\alpha \in \mathbb{Q}(\sqrt{D}) \backslash \mathbb{Q}$ is normal over \mathbb{Q} if and only if $N(\alpha)$ is a square in $\mathbb{Q}(\sqrt{D})$.

Lemma 3 Suppose that $\alpha>0, \alpha \in \mathbb{Q}(\sqrt{D})$, is a unit of negative norm.
(i) $D=2$. We have $d_{0,1}=2, d_{0,2}=4$ and $d_{0, b}=2^{b-1}$ for $b \geq 3$. Furthermore $d_{1,1}=4, d_{1, b}=d_{0, b}$ for $b \geq 2$. For $b>a \geq 2, d_{a, b}=2^{a+b-2}$. Finally, $d_{2,2}=8$ and $d_{j, j}=2^{2 j-2}$ for $j \geq 3$.
(ii) $D>2$. We have for $b>a \geq 1, d_{a, b}=2^{a+b-1}$. Furthermore $d_{0, b}=2^{b}, b \geq 1$, $d_{1,1}=4$ and $d_{b, b}=2^{2 b-1}$ for $b \geq 2$.

Proof: (i). Since $\sqrt{2} \in \mathbb{Q}\left(\zeta_{8}\right)$, we have, for $b \geq 3, \mathbb{Q}\left(\sqrt{2}, \zeta_{2^{b}}\right)=\mathbb{Q}\left(\zeta_{2^{b}}\right)$ and thus $d_{0, b}=2^{b-1}$. For $a=1, b \geq 2$ we have $\mathbb{Q}\left(\sqrt{2}, \sqrt{-\alpha^{2}}, \zeta_{2^{b}}\right)=\mathbb{Q}\left(\sqrt{2}, i, \zeta_{2^{b}}\right)=\mathbb{Q}\left(\sqrt{2}, \zeta_{2^{b}}\right)$. Thus $d_{1, b}=d_{0, b}$ for $b \geq 2$. Now assume that $b>a \geq 2$. Then $\mathbb{Q}\left(\sqrt{2},\left(-\alpha^{2}\right)^{1 / 2^{a}}, \zeta_{2^{b}}\right)=$ $\mathbb{Q}\left(\sqrt{2}, \alpha^{1 / 2^{a-1}}, \zeta_{2^{b}}\right)=\mathbb{Q}\left(\alpha^{1 / 2^{a-1}}, \zeta_{2^{b}}\right)$. I claim that $x^{2^{a-1}}-\alpha$ is irreducible over $\mathbb{Q}\left(\zeta_{2^{b}}\right)$. If it were not, then $\mathbb{Q}(\sqrt{\alpha})$ would be a subfield of $\mathbb{Q}\left(\zeta_{2^{b}}\right)$ and hence normal. But since $\mathbb{Q}(\sqrt{\alpha})$ is not normal by Lemma 2, this is impossible. Thus $\left[\mathbb{Q}\left(\alpha^{1 / 2^{a-1}}, \zeta_{2^{b}}\right): \mathbb{Q}\right]=$ $\left[\mathbb{Q}\left(\alpha^{1 / 2^{a-1}}: \mathbb{Q}\left(\zeta_{2^{b}}\right)\right]\left[\mathbb{Q}\left(\zeta_{2^{b}}\right): \mathbb{Q}\right]=2^{a+b-2}\right.$. Next consider the field $\mathbb{Q}\left(\sqrt{2},\left(-\alpha^{2}\right)^{1 / 2^{b}}, \zeta_{2^{b}}\right)$ for $b \geq 3$. Note that

$$
\mathbb{Q}\left(\sqrt{2},\left(-\alpha^{2}\right)^{1 / 2^{b}}, \zeta_{2^{b}}\right)=\mathbb{Q}\left(\sqrt{2}, \alpha^{1 / 2^{b-2}}, \zeta_{2^{b}}, \sqrt{\alpha^{1 / 2^{b-2}} \zeta_{2^{b}}}\right)
$$

By taking composita with $\mathbb{Q}\left(\zeta_{2^{6+1}}\right)$ one sees that

$$
r:=\left[\mathbb{Q}\left(\sqrt{2}, \alpha^{1 / 2^{b-2}}, \zeta_{2^{b}}, \sqrt{\alpha^{1 / 2^{b-2}} \zeta_{2^{b}}}\right): \mathbb{Q}\left(\sqrt{2}, \alpha^{1 / 2^{b-2}}, \zeta_{2^{b}}\right)\right]=2 .
$$

Thus $d_{b, b}=r d_{b-1, b}=2^{2 b-2}$. Finally one checks that the missing degrees, $d_{0,1}, d_{0,2}$, $d_{1,1}$ and $d_{2,2}$, are as asserted.
(ii). We only deal with the case $b>a \geq 2$. The other cases are even more similar to (i) and left to the reader (see also [5, Lemma 6]). We have $\mathbb{Q}\left(\sqrt{D},\left(-\alpha^{2}\right)^{1 / 2^{a}}, \zeta_{2^{b}}\right)=$ $\mathbb{Q}\left(\sqrt{D}, \alpha^{1 / 2^{a-1}}, \zeta_{2^{b}}\right)$. I claim that $X^{2^{a-1}}-\alpha$ is irreducible over $\mathbb{Q}\left(\sqrt{D}, \zeta_{2^{b}}\right)$. Note that the latter field, as a compositum of two abelian fields, is itself abelian. Hence all its subfields are normal. Now if $X^{2^{a-1}}-\alpha$ were reducible over $\mathbb{Q}\left(\sqrt{D}, \zeta_{2^{b}}\right), \mathbb{Q}(\sqrt{\alpha})$ would be a subfield of $\mathbb{Q}\left(\sqrt{D}, \zeta_{2^{b}}\right)$. By Lemma 2 this is seen to be impossible. The degree $d_{a, b}$ is then computed as in (i).

4 The prime divisors of Lucas sequences inert in the associated quadratic number field

As will be seen, in case α is a unit of negative norm, the problem of computing the density $\delta_{2}(e, j ; \alpha)$ can be easily reduced to that of computing the density of $\left\{p:(D / p)=-1, p \equiv-1+2^{j}\left(\bmod 2^{j+1}\right)\right\}$. For $D>2$ this density is computed in the next lemma.

Lemma 4 Let $D>2$ be squarefree. Put

$$
R_{j}=\left\{p:\left(\frac{D}{p}\right)=1, p \equiv-1+2^{j}\left(\bmod 2^{j+1}\right)\right\}
$$

Then $\delta\left(R_{j}\right)$, the prime density of R_{j}, equals 2^{-1-j}.
Proof: Consider the set of primes

$$
S_{j}:=\left\{p:\left(\frac{D}{p}\right)=1, p \equiv-1\left(\bmod 2^{j}\right)\right\}
$$

Now $(D / p)=1$ and $p \equiv \pm 1\left(\bmod 2^{j}\right)$ if and only if the prime p splits completely in $\mathbb{Q}\left(\sqrt{D}, \zeta_{2 j}+\zeta_{2 j}^{-1}\right)$. Similarly $(D / p)=1$ and $p \equiv 1\left(\bmod 2^{j}\right)$ if and only if p splits completely in $\mathbb{Q}\left(\sqrt{D}, \zeta_{2^{j}}+\zeta_{2^{j}}^{-1}\right)$ but does not split completely in $\mathbb{Q}\left(\sqrt{D}, \zeta_{2^{j}}\right)$. Since both of these number fields are normal extensions of \mathbb{Q}, it follows by the Chebotarev density theorem that

$$
\delta\left(S_{j}\right)=\frac{1}{\left[\mathbb{Q}\left(\sqrt{D}, \zeta_{2 j}+\zeta_{2 j}^{-1}\right): \mathbb{Q}\right]}-\frac{1}{\left[\mathbb{Q}\left(\sqrt{D}, \zeta_{2 j}\right): \mathbb{Q}\right]} .
$$

Since $\left[\mathbb{Q}\left(\sqrt{D}, \zeta_{2^{j}}\right): \mathbb{Q}\left(\sqrt{D}, \zeta_{2 j}+\zeta_{2 j}^{-1}\right)\right] \mid 2$ and $\mathbb{Q}\left(\sqrt{D}, \zeta_{2^{j}}\right)$ as a totally real field is strictly included in $\mathbb{Q}\left(\sqrt{D}, \zeta_{2^{j}}\right)$, it follows that $\delta\left(S_{j}\right)=\left[\mathbb{Q}\left(\sqrt{D}, \zeta_{2^{j}}\right): \mathbb{Q}\right]^{-1}$. Since the only real quadratic subfield of $\mathbb{Q}\left(\zeta_{2^{j}}\right)$ is at most $\mathbb{Q}(\sqrt{2})$, it follows that $\left[\mathbb{Q}\left(\sqrt{D}, \zeta_{2^{j}}\right): \mathbb{Q}\right]=$ $[\mathbb{Q}(\sqrt{D}): \mathbb{Q}]\left[\mathbb{Q}\left(\zeta_{2^{j}}\right): \mathbb{Q}\right]=2^{j}$ and hence $\delta\left(S_{j}\right)=2^{-j}$. Now notice that $R_{j}=S_{j} \backslash S_{j+1}$. Thus $\delta\left(R_{j}\right)=\delta\left(S_{j}\right)-\delta\left(S_{j+1}\right)=2^{-1-j}$.

Remark. From the law of quadratic reciprocity one deduces that for odd $D,(D / p)=1$ if and only if $p \equiv \pm \beta(\bmod 4 D)$ for a set of odd β (this result was already conjectured by Euler). This set has $\varphi(D) / 2$ elements. Using this, the supplementary law of quadratic reciprocity, the chinese remainder theorem and the prime number theorem for arithmetic progressions, one can give an alternative proof of Lemma 4.

Let ϵ be a unit of negative norm. Now we are in the position to compute $\delta_{2}(e, j ; \epsilon)$. For primes inert in $\mathbb{Q}(\sqrt{D}), \mathbb{Z}[\epsilon] /(p) \cong \mathbb{F}_{p^{2}}$, and hence the Frobenius map acts by conjugation on ϵ, that is $\epsilon^{p} \equiv \bar{\epsilon}(\bmod (p))$. Thus, since $N(\epsilon)=-1$, we have $\epsilon^{p+1} \equiv$ $-1(\bmod (p))$. Hence if $p \equiv-1+2^{j}\left(\bmod 2^{j+1}\right), j \geq 2$, then $\theta^{\frac{p+1}{2}}=(-1)^{\frac{p+1}{2}} \epsilon^{p+1} \equiv$ $-1(\bmod (p))$. Thus $2^{j} \| \operatorname{ord}_{(p)}(\theta)\left(=\rho_{\epsilon}(p)\right)$ and therefore $N_{2}(j, j ; \epsilon)=\{p:(D / p)=$ $\left.-1, p \equiv-1+2^{j}\left(\bmod 2^{j+1}\right)\right\}$. In the case $D>2, j \geq 2, \Delta_{2}(j, j ; \epsilon)=2^{-j-1}$, by Lemma 4. If $D=2$, then $\Delta_{2}(j, j ; \epsilon)=0$ for $j \geq 3$ and $N_{2}(2,2 ; \epsilon)=\{p: p \equiv 3(\bmod 8)\}$, that is $\Delta_{2}(2,2 ; \epsilon)=1 / 4$. In case $j=1, p \equiv 1(\bmod 4)$ and so $\theta^{\frac{p+1}{2}}=(-1)^{\frac{p+1}{2}} \epsilon^{p+1} \equiv$ $1(\bmod (p))$. Since $(p+1) / 2$ is odd, $N_{2}(0,1 ; \epsilon)=\{p:(D / p)=-1, p \equiv 1(\bmod 4)\}$. If $D>2$, then $\Delta_{2}(0,1 ; \epsilon)=1 / 4$ by Lemma 4. If $D=2$ then $N_{2}(0,1 ; \epsilon)=\{p: p \equiv$ $5(\bmod 8)\}$ and so $\Delta_{2}(0,1 ; \epsilon)=1 / 4$. Thus we arrive at Table I. 2 and Table II.2.

5 Proofs of Theorems 1 and 2

Theorem 1 is easily deduced from the following theorem.
Theorem 3 Let ϵ be a unit of negative norm in \mathcal{O}_{D}. Let $\rho_{\epsilon}(p)$ denote the rank of apparition of p in the sequence $\left\{\epsilon^{n}+\bar{\epsilon}^{n}\right\}$. Consider for $e \geq 0$ the prime density of the set $\left\{p: 2^{e} \| \rho_{\epsilon}(p)\right\}$. In case $D=2$ it equals $7 / 24$ if $e \leq 1,1 / 3$ if $e=2$ and $2^{-e} / 3$ for $e \geq 3$. In case $D>2$ it equals $1 / 3$ if $e=0$ and $2^{1-e} / 3$ if $e \geq 1$.
Proof: Let $N(e, \epsilon)=\left\{p: 2^{e} \| \rho_{\epsilon}(p)\right\}$ and for $s=1,2$ let

$$
N_{s}(e ; \epsilon)=\left\{p:(D / p)=3-2 s, 2^{e} \| \rho_{\epsilon}(p)\right\} .
$$

Thus, with at most finitely many exceptions, $N(e ; \epsilon)=N_{2}(e ; \epsilon) \cup N_{2}(e ; \epsilon)$. Now $N_{1}(e ; \epsilon)=\cup_{j=1}^{\infty} N_{1}(e, j ; \epsilon)$ and $N_{2}(e ; \epsilon)=\cup_{j=1}^{\infty} N_{2}(e, j ; \epsilon)$. Since the latter is a finite disjoint union of sets of non-zero density, we have $\delta_{2}(e ; \epsilon)=\sum_{j=1}^{\infty} \delta_{2}(e, j ; \epsilon)$. Similarly we want to show that $\delta_{1}(e ; \epsilon)=\sum_{j=1}^{\infty} \delta_{1}(e, j ; \epsilon)$. As $\cup_{j=1}^{\infty} N_{1}(e, j ; \epsilon)$ is an infinite union of sets of non-zero density, this needs proof. We proceed as in [4, p. 454]. Put

$$
C_{1}(e, j ; \epsilon)=\left\{p:(D / p)=1, p \equiv 1+2^{j}\left(\bmod 2^{j+1}\right) \text { and } p \notin N_{1}(e, j, \epsilon)\right\} .
$$

Using Lemma 4 the density of this set is seen to be $2^{-j}-\delta_{1}(e, j ; \epsilon)$ in case $D=2$ and $j \geq 3$, and $2^{-1-j}-\delta_{1}(e, j ; \epsilon)$ in case $D>2$. Now

$$
\cup_{j=1}^{m} N_{1}(e, j ; \epsilon) \subseteq N_{1}(e ; \epsilon) \subseteq\{p:(D / p)=1\} \backslash \cup_{j=1}^{m} C_{1}(e, j ; \epsilon)
$$

The smallest set in the above inclusion of sets has density $\sum_{j=1}^{m} \delta_{1}(e, j ; \epsilon)$. The largest set has prime density $2^{-m}+\sum_{j=1}^{m} \delta_{1}(e, j ; \epsilon)$ in case $D=2$ and $m \geq 3$ and prime density $2^{-1-m}+\sum_{j=1}^{m} \delta_{1}(e, j ; \epsilon)$ in case $D>2$. Letting $m \rightarrow \infty$ shows that $\delta_{1}(e ; \epsilon)=$ $\sum_{j=1}^{\infty} \delta_{1}(e, j ; \epsilon)$. On computing the densities $\sum_{j=1}^{\infty}\left\{\delta_{1}(e, j ; \epsilon)+\delta_{2}(e, j ; \epsilon)\right\}$, on making use of Lemma 1 and Lemma 3, the proof is then completed.

Proof of Theorem 1. Since the prime density of $\left\{u^{n}+\bar{u}^{n}\right\}$ is invariant under replacing u by $\bar{u},-u$ or $-\bar{u}$ and, by assumption, $u \neq \pm 1$, we may assume w.l.o.g. that $u>1$. Then $u=\epsilon_{D}^{N}$ for some $N>1$. Write $N=2^{\lambda} m$ with m odd. Put $\epsilon=\epsilon_{D}^{m}$. Then $u=\epsilon^{2^{\lambda}}$ with $N(\epsilon)=-1$. Note that λ is unique. Consider the sequence $\left\{u^{n}+\bar{u}^{n}\right\}$ as a subsequence of $\left\{\epsilon^{n}+\bar{\epsilon}^{n}\right\}$. One easily shows that p divides $\left\{\epsilon^{2^{\lambda} n}+\bar{\epsilon}^{2^{\lambda} n}\right\}$ if and only if $\rho_{\epsilon}(p)$ is divisible by $2^{\lambda+1}$. Hence the prime density of $\left\{u^{n}+\bar{u}^{n}\right\}$ equals

$$
1-\sum_{m=0}^{\lambda} \delta\left(\left\{p: 2^{m}| | \rho_{\epsilon}(p)\right\}\right)
$$

Using this expression and Theorem 3, Theorem 1 now follows.
Proof of Theorem 2. Put $D=P^{2}+4$. Notice that for $P \neq 0, D$ is not a square. We have $L_{n}(P)=\alpha^{n}+\bar{\alpha}^{n}$ with $\alpha=(P+\sqrt{D}) / 2$. If $D \equiv 0(\bmod 4)$ then $\alpha \in \mathbb{Z}[\sqrt{D}]$, if $D \equiv 1(\bmod 4)$ then $\alpha \in \mathbb{Z}[(1+\sqrt{D}) / 2]$. Thus $\alpha \in \mathcal{D}_{D}$. Furthermore $N(\alpha)=-1$. In order to apply Theorem 1 we have to determine when $\mathbb{Q}\left(\sqrt{P^{2}+4}\right)=\mathbb{Q}(\sqrt{2})$, that is we have to find all solutions P to the Pell equation $P^{2}-2 Q^{2}=-4$. The fundamental unit of $\mathbb{Q}(\sqrt{2})$ is $1+\sqrt{2}$. By the theory of Pell equations it follows that the solutions $(P, Q) \in \mathbb{Z}_{\geq 0}^{2}$ of $P^{2}-2 Q^{2}=-4$ are precisely given by $\left\{\left(x_{n}, y_{n}\right): n \geq 1\right.$ is odd $\}$, where $x_{n}+y_{n} \sqrt{2}=2(1+\sqrt{2})^{n}$. Using induction it is easily proved that $x_{n}=L_{n}(2)$. Theorem 2 now follows on invoking Theorem 1 .

With the previous proof in mind the reader will have little problems in proving the following curiosum.

Theorem 4 Let $D>1$ be squarefree. Suppose that $X^{2}-D Y^{2}=-4$ has a solution. Put, for $i=1,2$,

$$
\mathcal{C}_{i}=\left\{P: P^{2}-D Q^{2}=(-1)^{i} 4 \text { for some } Q \in \mathbb{Z}\right\}
$$

and

$$
\mathcal{C}_{2+i}=\left\{Q: P^{2}-D Q^{2}=(-1)^{i} 4 \text { for some } P \in \mathbb{Z}\right\}
$$

Then, when $D=2, \delta\left(\mathcal{C}_{1}\right)=7 / 24, \delta\left(\mathcal{C}_{2}\right)=5 / 12, \delta\left(\mathcal{C}_{3}\right)=7 / 24$ and $\delta\left(\mathcal{C}_{4}\right)=17 / 24$. If $D>2$, then $\delta\left(\mathcal{C}_{1}\right)=1 / 3, \delta\left(\mathcal{C}_{2}\right)=1 / 3, \delta\left(\mathcal{C}_{3}\right)=1 / 3$ and $\delta\left(\mathcal{C}_{4}\right)=2 / 3$.

The case $D=2$
Table I. 1
Prime density of the set

$$
\begin{gathered}
\left\{p:\left(\frac{2}{p}\right)=1, p \equiv 1+2^{j}\left(\bmod 2^{j+1}\right), 2^{e} \| \rho_{\epsilon}(p)\right\} \\
\text { where } N(\epsilon)=-1
\end{gathered}
$$

$e \backslash j$	1	2	3	4	5	6	7	\ldots	
0	0	0	$\frac{1}{32}$	$\frac{1}{128}$	$\frac{1}{512}$	$\frac{1}{2048}$	$\frac{1}{8192}$	\ldots	$\frac{1}{24}$
1	$\frac{1}{4}$	0	$\frac{1}{32}$	$\frac{1}{128}$	$\frac{1}{512}$	$\frac{1}{2048}$	$\frac{1}{8192}$	\ldots	$\frac{7}{24}$
2	0	0	$\frac{1}{16}$	$\frac{1}{64}$	$\frac{1}{256}$	$\frac{1}{1024}$	$\frac{1}{4096}$	\ldots	$\frac{1}{12}$
3	0	0	0	$\frac{1}{32}$	$\frac{1}{128}$	$\frac{1}{512}$	$\frac{1}{2048}$	\ldots	$\frac{1}{24}$
4	0	0	0	0	$\frac{1}{64}$	$\frac{1}{256}$	$\frac{1}{1024}$	\ldots	$\frac{1}{48}$
5	0	0	0	0	0	$\frac{1}{128}$	$\frac{1}{512}$	\ldots	$\frac{1}{96}$
6	0	0	0	0	0	0	$\frac{1}{256}$	\ldots	$\frac{1}{192}$
\ldots									
	$\frac{1}{4}$	0	$\frac{1}{8}$	$\frac{1}{16}$	$\frac{1}{32}$	$\frac{1}{64}$	$\frac{1}{128}$	\ldots	$\frac{1}{2}$

Table I. 2

Prime density of the set

$$
\begin{gathered}
\left\{p:\left(\frac{2}{p}\right)=-1, p \equiv-1+2^{j}\left(\bmod 2^{j+1}\right), 2^{e} \| \rho_{\epsilon}(p)\right\} \\
\text { where } N(\epsilon)=-1
\end{gathered}
$$

$e \backslash j$	1	2	3	4	5	6	7	\ldots	
0	$\frac{1}{4}$	0	0	0	0	0	0	\ldots	$\frac{1}{4}$
1	0	0	0	0	0	0	0	\ldots	0
2	0	$\frac{1}{4}$	0	0	0	0	0	\ldots	$\frac{1}{4}$
3	0	0	0	0	0	0	0	\ldots	0
4	0	0	0	0	0	0	0	\ldots	0
5	0	0	0	0	0	0	0	\ldots	0
6	0	0	0	0	0	0	0	\ldots	0
\ldots									
	$\frac{1}{4}$	$\frac{1}{4}$	0	0	0	0	0	\ldots	$\frac{1}{2}$

The case $D \neq 2$ and $N\left(\epsilon_{D}\right)=-1$
Table II. 1
Prime density of the set

$$
\begin{gathered}
\left\{p:\left(\frac{D}{p}\right)=1, p \equiv 1+2^{j}\left(\bmod 2^{j+1}\right), 2^{e} \| \rho_{\epsilon}(p)\right\} \\
\text { where } N(\epsilon)=-1
\end{gathered}
$$

$e \backslash j$	1	2	3	4	5	6	7	...	
0	0	$\frac{1}{16}$	$\frac{1}{64}$	$\frac{1}{256}$	$\frac{1}{1024}$	$\frac{1}{4096}$	$\frac{1}{16384}$..	$\frac{1}{12}$
1	$\frac{1}{4}$	$\frac{1}{16}$	$\frac{1}{64}$	$\frac{1}{256}$	$\frac{1}{1024}$	$\frac{-1}{4096}$	$\frac{1}{16384}$..	3
2	0	0	$\frac{1}{32}$	$\frac{1}{128}$	$\frac{1}{512}$	$\frac{1}{2048}$	$\frac{1}{8192}$...	$\frac{1}{24}$
3	0	0	0	$\frac{1}{64}$	$\frac{1}{256}$	$\frac{1}{1024}$	$\frac{1}{4096}$	\ldots	$\overline{48}$
4	0	0	0	0	$\frac{1}{128}$	$\frac{1}{512}$	$\frac{1}{2048}$...	$\frac{1}{96}$
5	0	0	0	0	0	$\frac{1}{256}$	$\frac{1}{1024}$	\ldots	$\frac{1}{192}$
6	0	0	0	0	0	0	$\frac{1}{512}$	\cdots	$\frac{1}{384}$
...	\ldots	\ldots	\cdots
	$\frac{1}{4}$	$\frac{1}{8}$	$\frac{1}{16}$	$\frac{1}{32}$	$\frac{1}{64}$	$\frac{1}{128}$	$\frac{1}{256}$	\cdots	$\frac{1}{2}$

Table II. 2
Prime density of the set

$$
\begin{gathered}
\left\{p:\left(\frac{D}{p}\right)=-1, p \equiv-1+2^{j}\left(\bmod 2^{j+1}\right), 2^{e} \| \rho_{\epsilon}(p)\right\} \\
\text { where } N(\epsilon)=-1
\end{gathered}
$$

$e \backslash j$	1	2	3	4	5	6	7	\ldots	
0	$\frac{1}{4}$	0	0	0	0	0	0	\ldots	$\frac{1}{4}$
1	0	0	0	0	0	0	0	\ldots	0
2	0	$\frac{1}{8}$	0	0	0	0	0	\ldots	$\frac{1}{8}$
3	0	0	$\frac{1}{16}$	0	0	0	0	\ldots	$\frac{1}{16}$
4	0	0	0	$\frac{1}{32}$	0	0	0	\ldots	$\frac{1}{32}$
5	0	0	0	0	$\frac{1}{64}$	0	0	\ldots	$\frac{1}{64}$
6	0	0	0	0	0	$\frac{1}{128}$	0	\ldots	$\frac{1}{128}$
\ldots									
	$\frac{1}{4}$	$\frac{1}{8}$	$\frac{1}{16}$	$\frac{1}{32}$	$\frac{1}{64}$	$\frac{1}{128}$	$\frac{1}{256}$	\ldots	$\frac{1}{2}$

References

[1] C. Ballot, Density of prime divisors of linear recurrences, Mem. of the Amer. Math. Soc. 551, 1995.
[2] F. Halter-Koch, Arithmetische Theorie der Normalkörper von 2-Potenzgrad mit Diedergruppe, J. Number Theory 3 (1971), 412-443.
[3] H. Hasse, Über die Dichte der Primzahlen p, für die eine vorgegebene ganzrationale Zahl $a \neq 0$ von gerader bzw., ungerader Ordnung mod. p ist, Math. Ann. 166 (1966), 19-23.
[4] J. C. Lagarias, The set of primes dividing the Lucas numbers has density $2 / 3$, Pacific J. Math. 118 (1985), 449-461 (Errata, Pacific J. Math. 162 (1994), 393397).
[5] P. Moree, Counting divisors of Lucas numbers, MPI-preprint, no. 34, Bonn, 1996.
[6] R. W. K. Odoni, A conjecture of Krishnamurty on decimal periods and some allied problems, J. Number Theory 13 (1981), 303-319.
[7] P. Ribenboim, The book of prime number records, Springer-Verlag, Berlin etc., 1988.
[8] P. Stevenhagen, The number of real quadratic fields having units of negative norm, Experimental Mathematics 2 (1993), 121-136.
[9] K. Wiertelak, On the density of some sets of primes. IV, Acta Arith. 43 (1984), 177-190.

Max-Planck-Institut für Mathematik
Gottfried-Claren Str. 26
53225 Bonn
Germany
E-mail: moree@antigone.mpim-bonn.mpg.de

