On the prime density of Lucas sequences

Pieter Moree

Max-Planck-Institut

fiir Mathematik
Gottfried-Claren-Str. 26
53225 Bonn

Germany

MPI 96-67






On the prime density of Lucas sequences

Pieter Moree

May 31, 1996

Abstract

For any integer P, let {L(P)}5%, be the Lucas sequence defined by Lo(P) = 2,
L(P) = P and, for every n > 2, Ly(P) = PLn-1(P)+ Ln-2(P). The density
of the set of primes dividing this sequence is computed.

1 Introduction

If S is any set of integers, then by S(z) we denote the number of elements in S not
exceeding z. The limit limz_,o, S(z)/7(z), if it exists, is called the prime density of
S. It will be denoted by 6(S).

Let Q(v/D) be a real quadratic field with D > 1 and D squarefree. (This assump-
tion on D is maintained throughout.) Let Op denote its ring of integers. Suppose Op
contains a unit of norm —1. Then obviously the fundamental unit, ep, has norm —1.
Let u # %1 be a unit of Op. In this paper we are interested in computing the prime
density of the sequence u™+u"™. The sequence u"+- %" has an irreducible characteristic
polynomial over Q. Few people seem to have considered this problem. The papers
[4, 5] are the only ones known to the author in this direction. In contrast several
authors [1, 3, 6, 9] considered the prime density of second order linear recurrences
having reducible characteristic polynomial (i.e. sequences of the form a™ + ™).

Our main result is the following.

Theorem 1 Let Q(\/E) be a real quadratic field with D > 1 and D squarefree having
a unit of negative norm. Let u # X1 be a unit. Then there exists A > 0 and € of
norm —1 such thatu = €. The sequence u™ +u" has a prime density. In case D =2
it is given by 17/24 if A =0, 5/12 if A = 1 and 2% /3 otherwise. In case D > 2 the
prime density equals 21 =*/3.

It should be remarked that the question whether a quadratic field has a unit of
negative norm is still not satisfactorily resolved. If D has a prime divisor p =
3(mod 4), then there is no such unit. From this it easily follows that there are at most
O(z/\/log z) discriminants D < z for which there is a negative unit. Stevenhagen
conjectures that there are asymptotically cz/+/log = such discriminants, for some con-
stant ¢ > 0. For more on this topic see e.g. [8].

Theorem 1 allows one to compute the density of the Lucas sequence defined by



Vo(P) = 2, Vi(P) = P and V,(P) = PV,_1(P) — V,_o(P) for various P. For ex-
ample the sequence {V,(326)} has density 5/12. More interestingly Theorem 1 al-
lows one to calculate for every integer P the prime density of the Lucas sequence
Ln(P)= PLu1(P)+Ln—2(P). In this the sequence {L,(2)}2, = {2,2,6,14,34, - -},
the so called Pell sequence, plays an important réle. :

Theorem 2 For P any nonzero integer let {L,,(P)}%2, be the Lucas sequence defined
by Lo(P) =2, Ih(P)= P and, forn > 2, L,(P) = PL,1(P)+ L,—2(P). Then the
prime density of this sequence ezists and equals 2/3, unless |P| = L,(2) for some odd

n > 1, in which case the density is 17/24.

On taking P = 1 we find that the prime density of the sequence of Lucas numbers
equals 2/3. This was first proved by Lagarias [4]. Taking P = 2 it is seen that the
prime density of the Pell sequence is 17/24.

2 Outline of the proofs

The arithmetic of the sequence {a™+@a"}, where o € Q(v/D), is intimately connected
with that of the sequence {W,}, where W, := (o™ — @")/(a — @). This sequence
can be alternatively defined by Wy = 0, W, = 1, W,, = Tr(a)W,_1 + W,_, for
n > 2. It is a Lucas sequence (see [7, p. 41] for a definition). We recall some
facts from (7, pp. 41-60]. For primes p with (p,2N(a)) = 1, there exists a smallest
index pa(p) > 1 such that p|W,, (). The index p,(p) is called the rank of apparition
of p in {W,}. If (p,2N(a)) = 1, then p|W, if and only if pa(p)|n. Furthermore
Wy, = W,A, and (W,, A,)|2. Using the latter three properties it can be easily
shown that if (p,2N(a)) = 1, then p divides {W,} if and only if p,(p) is even (cf.
(6, Lemma 1]). From the theory of Lucas sequences it is known that if p is odd and
p|D, then po(p) is odd. If pt D and p = 3(mod 4), then p,(p) is even. If pt D and
p = 1(mod 4) and (D/p) = —1, then p4(p) is odd. Thus, using Lemma 4, one deduces
that the density of {W,} is in {1/2,3/4]. Indeed our approach to compute the prime
density of {W,,} is to compute the density of primes for which p,(p) is even. We will
actually compute the prime density of {p : 2%||p(p)} for every e > 0, as this requires
only little additional effort. It will allow us to deal with the case A > 1 in Theorem
1. The fact that, for (p, N(a)Tr{a)D) = 1, pa(p) divides p — (D/p), forces us to
consider the cases (D/p) = 1 and (D/p) = —1 seperately. For s =1,2, e 20, j > 1
put

Ny(e,j;e) = {p: (p,2N(a)) =1, (% =3-2s, p = 3—2s+27(mod 27*"), 2°||pa(p)}.

We show that N,(e, ;@) has a prime density, é5(e, j; @), and compute it. In the case
s = 1 this is done by relating é;(e,j; @) to degrees of certain Kummerian extensions.
This approach goes back to Hasse [3]. In the case s = 2 more elementary arguments
suffice. It is then not difficult to show that the prime density of the sequence {W,}
with N{a) = —1 is given by

L= S {51(0,550) + 8100, 5: ).
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Ni(e, j; ) and Na{e, 7; @) are computed in respectively §3 and §4. They are tabulated
in Tables I and II. The entry e in the last column gives 3°52, é,(e, j; ). The entry
7 in the last row gives .02, 8,(e, 7; ). The distinction between the case D = 2 and
D > 2 is due to the fact that for j > 3 the only real quadratic subfield of Q((y) is
Q(v/2). Finally in §5 the proofs of Theorem 1 and 2 are given.

3 The prime divisors of Lucas sequences splitting
in the associated quadratic number field

In this section the prime density of the set N;(e, 7; ) will be computed by relating
it to the degrees of certain finite extensions of @ (Lemma 1). In Lemma 3 these
degrees are then computed in case N(a) = —1. Using Lemma 1 and Lemma 3 one
easily arrives at Table 1.1 and II.1. The fact that the second column in Table 1.1 only
contains zero entries is due to the fact that there are no primes satisfying (2/p) =1
and p = 5(mod 8).

Lemma 1 Let o € Q(vD\Q be a quadratic integer. Put § = o* /N (a). For0 <r <

s put K, , = Q(vVD,0M% (). Let dry = [K; 5 : Q). Let j > 1 and 0 < e < j. Then
the prime density, §1(e, j; @), of

Nole jia) = {p: (7, 2V(a)) = 1, (—ﬁ-) 1, p=142(mod 2*), 2°|[pa(p))

exists. In case e =0,

) 1 1
(0,53 0) = 5= — o—.
ad Jhi+1
In case e > 1,
1 1 1 1

61(e,j;a)= - - .
Gjej di—ejtr  dj—et1i  dj—et1,jh1

Furthermore 61(e,j; ) = 0 in case € > j.

Proof: Some details of the proof will be surpressed. The reader having difficulties
supplying the missing details is referred to [5]. If (D/p) =1 then p splits in Q(v/D).
So (p) = PP in Op. If (p,2N(a)) = 1, then ordy(8) = ordga(8) = pa(p). Using that
for all large enough primes satisfying (D/p) = 1, po(p)|p—1, it follows that Ny(e, 7; o)
is finite in case e > j. Then &;(e,j; &) = 0. Now assume e < j. Let o4(p) denote the
exact power of 2 dividing p,(p). Put

Sj={p: (2) =1, (p,2N(a)) = 1, p =1+ 27(mod 27*1)}.
p
Then the set Ny(e,J; @) equals
{p:p€S; aa(p)2N\{p:p€S;, aa(p)i2°).

3



This, on its turn, can be written as {p:p € S;, 8% = 1(mod )} if e = 0 and

{p:p€s;, g3 = I{mod B)}\{p:p € 5, gt = 1(mod P)}

otherwise. The latter set equals
{p: (g) =1, (p,2N(a)) =1, p = 1(mod 279), g7 = 1(mod )}
with the subset
{p: (%) =1, (p,2N(a)) =1, p = 1(mod 29*1), §5°T = I(mod )}

taken out. The latter set equals, with at most finitely many exceptions, the set of
primes that split completely in K;_etq j+1. Since for r < s, K, , is normal over @, it
follows by the prime ideal theorem or by the Chebotarev density theorem that the
prime density of this set equals dj'_leﬂ,j_l_] The density of the other sets involved
are computed similarly. One finds 6;(0,7;a) = d_ d;'Jl-H and, in the case e > 1,
51(e,j;a) = d; leJ dJ_ e,j+1 dg_ et1,5+1 T d; e+1,5+1° =

In our computation of the degrees d, ), we will make use of the following easy
lemma.

Lemma 2 [2, Satz 1]
The field Q(+/@) with « € Q(vVD)\Q is normal over Q if and only if N(e) is a square
in Q(vV/D).

Lemma 3 Suppose that a >0, a € Q(\/ﬁ), s a unit of negative norm.

(i) D = 2. We have dyy1 = 2, doy = 4 and dyy = 2°71 for b > 3. Furthermore
dig =4, dyp=dop forb>22. Forb>a22,d, = 20+6=2  Pinally, dyo = 8 and
dj.j = 2%-2 for3 > 3.

(ii) D > 2. We have for b > a > 1, dgp = 2971, Furthermore dop = 2°, b > 1,
din =4 and dyp = 225=1 for b > 2.

Proof: (i). Since V2 € Q((s), we have, for b > 3, Q(v/2,(s) = Q(() and thus
dop =21 Fora=1, b>2 we have Q(V2,vV—=a?, (p) = Q(v2,1, () = Q(V2, ().
Thus dy, = dpp for b > 2. Now assume that b > a > 2. Then Q(\/i, (—a2)1/2n,(,’25) =
Q(v2, a”’*‘“",gza) = Q(a”za-l,@a). I claim that z%°”" — & is irreducible over Q( ().
If it were not, then Q(y/a) would be a subfield of Q({,:) and hence normal. But since
Q(+/a) is not normal by Lemma 2, this is impossible. Thus [@(a/2*™",(x) : Q] =

Q2™ - Q(¢w)a(() Q]—2“+” Next consider the field @(v/Z, (~a?)1/', (z)
for b > 3. Note;tha,t

Q(\/i: (_a2)1/2‘, CZ”) = Q(\/ia o /2 ) CZ"'I 051/25_2(2*)'
By taking composita with Q((ys+1) one sees that

ri= [Q(\/i: 01/25—27 C?"a V a1/2°—7€2&) : Q(ﬁ:a]/25_27gﬁb)] =2
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Thus dyp = rdy_1p = 22%=2  Finally one checks that the missing degrees, doj, dog,
di1 and dj 2, are as asserted.
(i1). We only deal with the case b > a > 2. The other cases are even more similar to

(i) and left to the reader (see also [5, Lemma 6]). We have Q(v/D, (—a?)}/* () =
Q(VD, a2 (). 1 claim that X**™' — a is irreducible over Q(v/D, (). Note that

the latter field, as a compositum of two abelian fields, is itself abelian. Hence all 1ts

subfields are normal. Now if X2*' — « were reducible over Q(v/D, (), @(+/a) would
be a subfield of Q(\/ﬁ, (3). By Lemma 2 this is seen to be impossible. The degree
dap is then computed as in (i). )

4 The prime divisors of Lucas sequences inert in
the associated quadratic number field

As will be seen, in case a is a unit of negative norm, the problem of computing
the density 8:(e,j; @) can be easily reduced to that of computing the density of
{p:(D/p) = =1, p= =1+ 2%(mod 27*1)}. For D > 2 this density is computed in
the next lemma.

Lemma 4 Let D > 2 be squarefree. Put

Ri={p: (%) =1, p= -1+ 2'(mod 27*1)}.

Then 6(R;), the prime density of R;, equals 27179,
Proof: Consider the set of primes

S;={p: (%) =1, p= —1(mod 29)}.

Now (D/p) = 1 and p = £1{mod 27) if and only if the prime p splits completely
in Q(vD,(y + (5 ) Similarly (D/p) =1 and p = 1(mod 27) if and only if p splits
completely in Q(v/D, (i + (5;') but does not split completely in Q(VD, (a5). Since
both of these number fields are normal extensions of Q, it follows by the Chebotarev
density theorem that

1 1
VD, G +¢Gi) @ [@(VD, &) al

Since [Q(vVD, (25) : Q(V'D, (ai+(5;")]|2 and Q(V/D, (s) as a totally real field is strictly
included in Q(v/D, Cg;) it follows that §(S;) = [@(v/D, (25) : Q). Since the only real
quadratic subfield of Q((zi) 1s at most Q(\/—), it follows that [Q(vV/D, () @ Q] =
[@(VD) : Q)[Q(¢2s) : Q] = 27 and hence §(S;) = 277. Now notice that R; = S;\5;41.
Thus §(R;) = 8(S;) — 8(Sj41) = 27179, )

6(55) =




Remark. From the law of quadratic reciprocity one deduces that for odd D, (D/p) =1
if and only if p = £f(mod 4D) for a set of odd B (this result was already conjec-
tured by Euler). This set has ¢(D)/2 elements. Using this, the supplementary law of
quadratic reciprocity, the chinese remainder theorem and the prime number theorem
for arithmetic progressions, one can give an alternative proof of Lemma 4.

Let € be a unit of negative norm. Now we are in the position to compute 62 (e, j; €).
For primes inert in Q(v/D), Z[e]/(p) & Fp2, and hence the Frobenius map acts by con-
jugation on ¢, that is € = &(mod (p)). Thus, since N(e) = —1, we have ¢!
—1(mod (p)). Hence if p = —1 + 29(mod 29*1), j > 2, then §%F = (—1)F P+
—1(mod (p)). Thus 27|ord)(0) (= pe(p)) and therefore Ny(7,7;¢) = {p : (D/p)
—1, p= —142/(mod 27+1)}. In the case D > 2, j > 2, Ay(4,7;¢) = 277~ by Lemma
4. If D = 2, then Aq(j,5;¢) = 0 for 7 > 3 and N2(2,2;¢) = {p : p = 3(mod 8)},
that is Ag(2,2;€) = 1/4. In case j = 1, p = 1(mod 4) and so §5F = (=1)F et =
1(mod (p)). Since (p + 1)/2 is odd, N2(0,1;¢) = {p : (D/p) = —1, p = 1(mod 4)}.
If D > 2, then A(0,1;¢) = 1/4 by Lemma 4. If D = 2 then Ny(0,1;¢) ={p:p =
5(mod 8)} and so Ay(0,1;¢) = 1/4. Thus we arrive at Table 1.2 and Table I1.2.

[l Il

5 Proofs of Theorems 1 and 2

Theorem 1 is easily deduced from the following theorem.

Theorem 3 Let € be a unit of negative norm in Op. Let p(p) denote the rank of
apparition of p in the sequence {€" +&"}. Consider for e > 0 the prime density of the
set {p:2%||p(p)}. In case D =2 it equals 7/24 if e <1,1/3 if e = 2 and 27°/3 for
e>3. Incase D> 2 it equals 1/3 ife =0 and 217°/3 if e > 1.

Proof: Let N(e,e) = {p: 2¢||pe(p)} and for s = 1,2 let

Ni(ese) = {p: (D/p) = 3 —2s, 2°||pc(p)}.

Thus, with at most finitely many exceptions, N(e;e) = Ny(e;€) U No(e;e). Now
Ni(ej€) = U2, Ni(e,j5¢) and Na(eje) = U2, Ny(e, j;€). Since the latter is a finite
disjoint union of sets of non-zero density, we have 82(e; €) = 3232, 62(e, 7; €). Similarly
we want to show that &, (e;€) = 3252, b1(e, 55 €). As USZ, Ni(e, j; €) is an infinite union
of sets of non-zero density, this needs proof. We proceed as in [4, p. 454]. Put

Ci(e,j;€) ={p: (D/p)=1, p=142(mod 27t} and p & Ny(e,j,¢€)}.

Using Lemma 4 the density of this set is seen to be 279 — §i(e,j;€) in case D = 2
and j > 3, and 27177 — §y(e, j; €) in case D > 2. Now

UiziNi(e,55€) © Ni(ese) € {p: (D/p) =1}\ UL, Ci(e, g5 ¢).

The smallest set in the above inclusion of sets has density 7%, é1(e, 7; €). The largest
set has prime density 277 + 37, 81(e,j;¢) in case D = 2 and m > 3 and prime
density 27177 4+ S i1 81(e, 55 ¢) in case D > 2. Letting m — co shows that é;(e;€) =
Y521 61(e, 75 ¢). On computing the densities 352, {1(e, j; €) + ba(e, j; €) }, on making
use of Lemma 1 and Lemma 3, the proof is then completed. O



Proof of Theorem 1. Since the prime density of {u™+@"} is invariant under replacing
u by @, —u or —u and, by assumption, u # 1, we may assume w.l.o.g. that u > 1.
Then v = eg for some N > 1. Write N = 2*m with m odd. Put ¢ = €f. Then
u =€ with N(e) = —1. Note that X is unique. Consider the sequence {u™ + @"} as
a subsequence of {¢® + €"}. One easily shows that p divides {62A" + EZA"} if and only
if pe(p) is divisible by 2**1. Hence the prime density of {u™ + 4"} equals

A
1= 3" 6({p:2™lp<(p)})-
m=0
Using this expression and Theorem 3, Theorem 1 now follows. |

Proof of Theorem 2. Put D = P? 4 4. Notice that for P # 0, D is not a square. We
have L,(P) = o™ + & with o = (P 4+ +/D)/2. If D = 0(mod 4) then o € z[\/D], if
D = 1(mod 4) then a € Z[(1 + vV D)/2]. Thus a« € Op. Furthermore N(a) = —1. In
order to apply Theorem 1 we have to determine when Q(v/P? + 4) = Q(v/2), that is
we have to find all solutions P to the Pell equation P? —2Q? = —4. The fundamental
unit of Q(\/§) is 14+ V2. By the theory of Pell equations it {follows that the solutions
(P,Q) € 7%, of P? —2Q% = —4 are precisely given by {(zn,yn) : n > 1 isodd },
where z, + y,v2 = 2(1 + v/2)*. Using induction it is easily proved that z, = L,(2).
Theorem 2 now follows on invoking Theorem 1. O

With the previous proof in mind the reader will have little problems in proving
the following curiosum.

Theorem 4 Let D > 1 be squarefree. Suppose that X* — DY? = —4 has a solution.
Put, for:=1,2,

Ci={P: P* = DQ* = (=1)4 for some Q € 7}

and .

Cari = {Q: P? — DQ* = (—1)'4 for some P € Z}.
Then, when D =2, §(C;) = T/24, §(C2) = 5/12, 6(Cs) = 7/24 and 6(Cy) = 17/24. If
D > 2, then §(C1) = 1/3, 8(Cy) = 1/3, 8(Cs) = 1/3 and 6§(Cs) = 2/3.



The case D =2
Table I.1

Prime densit.'.y of thg set
{p:(2) =1, p=1+2(mod 2%), 2°|p(p)},
where N(e) = —1

lev [ 1]2]3[4 (5[ 6 |7 [.] |
NEEIEAEAEA A
1 1510 |5 |85l me | am "
I I e s T

16 614 2%6 1024 4(2198 1_12
5 [0 00 [0 o [ %
6 0(0|0! 0O 0 0 358 To5
L lalolslswlamla [mmllla2

Table 1.2

Prime density of the set

(p:(2) = =1, p= =142 (mod 2¥"), 2o (p)},
where N(e) = —1

[ 1[2[3]4]5]6]7]..[ |
0 JI]0J0J0J0]0]0 1
1 Jo0J0J0|0[0[0]0 0
2 o[ T[0[0(0]0]0 T
3 JoJofofo]o]0]o 0
4 [olofojo]ofolo 0
5 [0]0|0]0[0]0]0 0
6 |0[0]0[0[0]0]0 0

L [slsfojofojojof.[3]




The case D # 2 and N(ep) = —1

Table I1.1

Prime density of the set
(p:(2) =1, p=1+2(mod 274, 2*|p.(p)},
where N(¢) = —1

[(V[1]2]3] &[5 67 [.] ]
0 o L1 L 1 1 1 N 1
16 64 | 256 1024 4096 | 16384 12

T L R ! T = Y
4 18 614 2%6 1[1124 4(]196 16‘1}84 :%

3 0/0]0 ) 5'153 m]T 4096 Elg
5 0103010 0 o= ]—Olﬁ Tz
6 [o[ofoJo] oo | o m e
C I ([ [ [ 1 7]

Table 11.2

Prime density of the set

where N(e) = —1

D) ==1,p=-1+ Zj(lnod 2j+1), QCHPe(P)}a

e\ 1]2]3]415[6]7 [ |
0 [s]oJojoJoJoTo 3
1 folojoJofo}o]o 0
2 Jolg]ofJoJof[o]oO x
3 fojolE[ojofJofo =
4 TofoJo[Z]o]o]oO %
5 [oJoJololZ[ o]0 o
6 [ofofo]lofo|{gs] O o=
| lilslwlolalomiml [ 7]
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