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Abstract

For any integer P, let {Ln(P)};:O=o be the Lucas sequence defined by Lo(P) = 2,
L1(P) = P and, for every n ~ 2, Ln(P) = PLn- 1(P) +Ln -2(P). The density
of the set of primes dividing this sequence is computed.

1 Introduction

If S is any set of integers, then by S(x) we denote the nUlnber of elen1ents in S not
exceeding x. The limit limx _ oo S(x) /,;r(x), if it exists, is called the prilne density of
S. It will be denoted by 8(S).

Let Q(JD) be areal quadratic field with D > 1 and D squarefree. (This assump­
tion on D is maintained throughout.) Let DD denote its ring of integers. Suppose DD

contains a unit of norm -1. Then obviously the fundamental unit, €D, has norm -1.
Let u ::j:. ±1 be a unit of DD. In this paper we are interested in computing the prime
density of the sequence un+un.The sequence un+un has an irreducible characteristic
polynomial over Q. Few people seern to have considered this problem. Tbe papers
(4, 5] are tbe only ones known to the author in this direction. In contrast several
authors [1, 3, 6, 9] considered the prime density of second order linear recurrences
having reducible characteristic polynomial (i.e. sequences of the form an +bn ).

Dur main result is the following.

Theorem 1 Let Q(JD) be areal quadratic field with D > 1 and D square/ree having
a unit 0/ negative norm. Let u ::j:. ±1 be a unit. Then there exists .A ~ 0 and € 0/
norm -1 such thai u = f2>'. The sequence un +un has a pr1.1ne density. In case D = 2
it is given by 17/24 i/ .A = 0, 5/12 if .A = 1 and 2-).. /3 otherwise. In case D > 2 the
prime density equals 21 -).. /3.

It should be remarked that the question whether a quadratic field has a unit of
negative norm' is' still not satisfactorily resolved. If D has a prime divisor p _
3(mod 4), then there is no such unit. From this it easily follows that there are at most
O(x/yTOgX) discriminants D ::; x for which there is a negative unit. Stevenhagen
conjectures tbat there are asymptotically cx / yTOgX such discriminants, for some con­
stant c > O. For more on this topic see e.g. [8].

Theorem 1 allows one to compute the density of the Lucas sequence defined by
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Vo(P) = 2, V1(P) = P and Vn(P) = PlIn- 1(P) - Vn-2(P) for various P. For ex­
ample the sequence {Vn (326)} has density 5/12. More interestingly Theorem 1 al­
lows one to calculate for every integer P the prime density of the Lucas sequence
Ln(P) = PL n - 1(P)+Ln- 2(P). In this the sequence {Ln(2)}~=o = {2, 2,6,14,34," '},
the so called Pell sequence, plays an important röle.

Theorem 2 For P any nonzero integer let {Ln(P)}~=o be the Lucas sequence defined
by Lo(P) = 2, L1(P) = P und, for n 2:: 2, Ln(P) = PL n- 1 (P) + L n- 2(P). Then the
prime density 0/ this sequence exists und equals 2/3, unless IPI = Ln(2) for some odd
n 2:: I, in which case the density is 17/24.

On taking P = 1 we find that the prime density of the sequence of Lucas numbers
equals 2/3. This was first proved by Lagarias [4]. Taking P = 2 it is seen that the
prime density of the Pell sequence is 17/24.

2 Outline of the proofs

The arithmetic of the sequence {an +an}, where 0' E Q(v75), is intimately connected
with that of the sequence {Wn }, where Wn := (an - iin)/(O' - ii). This sequence
can be alternatively defined by Wo = 0, IV1 = 1, Wn = Tr(0')Wn- 1 + Wn- 2 for
n 2:: 2. It is a Lucas sequence (see [7, p. 41] for adefinition). We recall same
facts from [7, pp. 41-60]. For primes p with (p,2N(a)) = 1, there exists a smallest
index Po(p) 2:: 1 such that pIWpa(p). The index Po(p) is called the rank of apparition
of p in {Wn}. If (p,2N(a)) = 1, then plllVn if and only if po(p)ln. FurthenTIore
W2n = WnAn and (Wn, An) 12. Using the latter three properties it cau be easily
shown that if (p,2N(a)) = 1, then p divides {Wn} if and only if Po(p) is even (cf.
[5, Lemma 1]). From the theory of Lucas sequences it is known that if p is odd anel
pID, then Po(p) is odd. If P f D and p - 3(mod 4), then Pa(P) is even. If p f D and
p - l(mod 4) and (Dip) = -1, then Po(p) is odd. Thus, using Lemma 4, one deduces
that the density of {Wn} is in [1/2,3/4]. Indeed our approach to compute the prime
density of {Wn} is to compute the density of primes for which Po(p) is even. We will
actually compute the prime densi ty of {p : 2eil Pa (p )} for every e 2:: 0, as th is requires
only little additional effort. It will allow us to deal with the case ,,\ 2:: 1 in Theorem
1. The fact that, for (p,N(O')Tr(Ci)D) = 1, Po(p) divides p - (Dip), forces us to
consider the cases (Dip) = 1 and (Dip) = -1 seperately. For s = 1,2, e 2:: 0, j 2:: 1
put

D . ·+1
N3 (e,j;Ci) = {p: (p,2N(a)) = 1, (-) = 3-28, P - 3-2s+2J (mod 2J ),2e IIPo(p)}.

p

We show that N 3 (e,j; 0') has a prime density, 83 (e,j; Ci), and cOInpute it. In the case
s = 1 this is done by relating 81 (e,.j; 0') to degrees of certain KuInmerian exten sions.
This approach goes back to Hasse [3]. In the case s = 2 more elementary arguments
suffice. It is then not difficult to show that the prime density of the sequence {Wn }

with N(a) = -1 is given by
00

1- L{01(0,jja) + 82(0,j;a)}.
j=1
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NI (e, j; a) and N2(e, j; a) are computed in respectively §3 and §4. They are tabulated
in Tables land 11. The entry e in the last column gives L:~I 0$( e, j; a). The entry
j in the last row gives L:~o o$(e,j; a). The distinction between the case D = 2 and
D > 2 is due to the fact that for j 2: 3 the only real quadratic subfield of Q( (2 i ) is
Q(J2). Finally in §5 the proofs of Theorem 1 and 2 are given.

3 The prime divisors of Lucas seqllences splitting
in the associated quadratic number field

In this section the prime density of the set NI (e, j; a) will be computed by relating
it to the degrees of certain finite extensions of Q (Lemma 1). In Lemma 3 these
degrees are then computed in case N(a) = -1. Using Lemma 1 and Lemma 3 one
easily arrives at Table 1.1 and 11.1. The fact that the second column in Table LI only
contains zero entries is due to the fact that there are no primes satisfying (2Ip) = 1
anel p =5(mod 8).

Lemma 1 Let a E Q(JD)\Q be a quadTatic integer. Pul 8 = 0:
2 IN(a). F01' 0 ~ 7'::;

s put ](r,$ = Q(JD, ß1/2
r

, (2')' Let dr,$ = [](r,$ : Q]. Let j 2: 1 and 0 ::; e ::; j. Then
the prime densitYJ 01(e,j;a), of

exists. In case e = 0,

In case e 2: 1,

1 1---+----
dj - e+1,j dj - e+1,i+1

FuTthennore ol(e,jj a) = 0 in case e > j.

Proof: Some details of the proof will be surpressed. The reader having difficulties
supplying the aussing details is referred to [5]. Tf (Dip) = 1 then p splits in Q(JD).
SO (p) = ~~ in Dn. If (p,2N(a)) = 1, then ord'+t(8) = ord~(8) = Po(p). Using that
for alliarge enough primes satisfying (Dip) = 1, Po(p)lp-l, it follows that N1 (e,j; a)
is finite in case e > j. Then 81 (e,jj a) = O. Now assume e ~ j. Let l7o (p) denote the
exact power of 2 dividing Pa(P)' Put

(D) . '+1Sj = {p: p = 1, (p, 2N(a)) = 1, p _ 1 + 2J (mod 23 )}.

Then the set NI (e, j; a) equals
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This, on its turn, can be written as {p : p E Sj, 07'- == l(mod ~)} if e = 0 and

{p: pE Sj, O~ =l(mod ~)}\{p: p E Sj, e2J':.~~1 =l(mod ~)}

otherwise. The latter set equals

(D) . ~{p: p = 1, (p,2N(a)) = 1, p _l(mod 23 ), 02i- e+1 =l(mod ~)}

with the subset

(D) . ~{p: p = 1, (p,2N(a)) = 1, p =l(mod 23+1
), 02i-(!+1 - l(mod ~)}

taken out. The latter set equals, witb at most finitely many exceptions, tbe set of
primes that split completely in I<j-e+l,j+l. Since for r ::; s, I<r,3 is normal over Q, it
follows by the prime ideal theorem or by the Chebotarev density theorem that the
prime density of this set equals dj~e+1,j+l' The density of the other sets involved

are computed similarly. One finds 01(0,); a) = dj;} - dj,J+l and, in the case e 2: 1,

81(e,); 0:) = dj~e,j - dj~e,j+l - dj~e+l ,j+l +d~e+1,j+l' 0
In our computation of the degrees da,b we will make use of the following easy

lemma.

Lemma 2 [2, Satz 1]
The field Q(.ya) with 0: E Q(Vi5) \Q is normal ove l' Q if and only if N (0:) is a squaTe

in Q(Vi5).

Lemma 3 Suppose that a > 0, a E Q(Vi5), is a unit of negative norm.
(i) D = 2. We have dO,l = 2, dO,2 = 4 and dO,b = 2b- 1 for b 2: 3. Furthermore

d1,1 = 4, d1,b = dO,b for b 2:: 2. For b > a 2:: 2, da,b = 2a+b- 2. FinallYJ d2,2 = 8 and
dj,j = 22j

-
2 for) 2:: 3.

(ii) D > 2. We have fOT b > a 2:: 1, da,b = 2a+b- l . Furthermore dO,b = 2b, b 2:: 1,
d1,1 = 4 and db,b = 22b- l for b 2:: 2.

Proof: (i). Since V2 E Q((s), we have, for b 2:: 3, Q()2, (26) = Q( (26) and thus
dO,b = 2b

-
1

. For a = 1, b 2:: 2 we have Q( V2, J-a2 , (26) = Q( V2, i, (26) = Q(-/2, (26).
Thus d1,b = dO,b for b 2:: 2. Now assume that b > a 2:: 2. Then Q(.;2, (_0:2)1/2«, (2b) =
Q(-/2, a 1/2«-1 , (26) = Q(a l /

2a-
1

, (26). I claim that x 2a-
1

- 0' is irreducible over Q((2b).
If it were not, then Q(.ya) would be a subfield of Q( (2b) and hence normal. Eut since

Q(va) is not normal by Lemma 2, this is impossible. Thus [Q(0:1/2
a
-

1
'(26) : Q] =

[Q(a 1/2
a

-
1

: Q( (26)][Q( (26 ) : Q] = 2a+b- 2 • Next consider the field Q(-/2, (_0'2 )1/2
6

, (26)
for b 2:: 3. Notelthat

( ~ 2)1/26 In 1!26
-'l _ / / 6 'lQ v2,(-a ,(2b) =Q(v2,a '(2",ya1 2 - (26 ).

By taking composita with Q( (241) oue sees that

(
In 1/2 6

-'l . / 1J26-'l In 1/2 6-'lr:= Q(v2,a '(2b,ya (26): Q(v2,0' ,(2b)] = 2.
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Thus db,b = rdb- l,b = 22b- 2 • Finally one checks that the missing degrees, dO,l, d O,2,

dI,l and d2 ,2, are as asserted.
(ii). We only deal with the case b > a 2: 2. The other cases are even more similar to
(i) and left to thc reader (see also [5, Lemma 6]). We have Q(v'D, (_0:

2)1/2
0

, (26) =
Q(v'D, 0:1/

20
-

1
, (2b). I claim that X 20

-
1

- a is irreducible over Q(v'D, (2b). Note that
the latter field, as a compositum of two abelian fields, is itself abelian. Hence all its
subfields are normal. Now if X 20

-
1

- 0: were reducible over Q(v'D, (26), Q(Jä) would
be a subfield of Q( v'D, (260). By Lemma 2 this is seen to be ilnpossible. The degree
da,b is then computed as in (i). 0

4 The prime divisors of Lucas sequences inert in
the associated quadratic number field

As will be seen, in case 0: is a unit of negative norm, the problem of computing
the density o2(e,j; a) can be easily reduced to that of computing the density of
{p : (Dip) = -1, p == -1 + 2j (mod 2j +1

)}. For D > 2 this density is computed in
the next lemma.

Lemma 4 Let D > 2 be square/ree. Pul

Then 8(Rj ), the prime density 0/ R j , equals 2-1
-

j .

Proof: Consider the set of primes

Si := {p : (~) = 1, p = -1(mod 2i )}.

Now (Dip) = 1 and p =±l(mod 2j
) if and only if the prime p splits completely

in Q(v'D, (v + (;1). Similarly (Dip) = 1 and p _ l(mod 2j ) if and only if p splits

completely in Q(v'D, (2i + (;1) hut does not split completely in Q(v'D, (2i). Since
both of these number fields are normal extensions of Q, it follows by the Chebotarev
density theorem that

1

Bince [Q(v'D, (2i) : Q(v'D, (2i,+(;l)] 12 and Q(v'D, (2i) as a totally real field is strictly
included in Q(v'D, (2i ), it follows that e5(Sj) = [Q( v'D, (2i ) : Q]-l. Bince the only real
quadratic subfield of Q( (2i ) is at most Q( V2), it follows that [Q( v'D, (2i ) : Q] =
[Q(v'D) :Q][Q((2i) : Q] = 2) and hence 8(Sj) = 2-j. Now notice that Rj = Sj \Sj+l'
Thus 8(Rj ) = 8(Sj) - 8(5j+1 ) = 2-1

-
j . 0
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Remark. From the law of quadratic reciprocity one deduces that for odd D, (Dip) = 1
if and only if p =±ß(mod 4D) for a set of odd ß (this result was already conjec­
tured by Euler). This set has cp(D)/2 elements. Using this, the supplementary law of
quadratic reciprocity, the chinese remainder theorem and thc prime number theorem
for arithmetic progressions, one cau give an alternative proof of Lemma 4.

Let c be a unit of negative nonn. Now we are in thc position to compute 52 (e, j; c).
For primes inert in Q(J]5), Z[c]/ (p) ~ IFp:l, and hence the Frobenius map acts by COll­
jugation on €, that is cP - €"(mod (p)). Thus, since N(c) = -1, we have cp+1 _

-l(mod (p)). Hence if p == -1 + 2i (mod 2i +1), j 2:: 2, then Oe.t! = (_1)~€p+1 _
-l(mod (p)). Thus 2jllord(p)(O) (= PE(P)) and therefore N2 (j,j; c) = {p : (Dip) =
-1, p - -1+2i (mod 2i+1 )}. In the case D > 2, j 2:: 2, 6 2 (j,j; c) = 2- j - 1 , by Lemlna
4. If D = 2, then 6 2(j,j; E) = °for j 2:: 3 and N2 (2, 2; c) = {p: p == 3(mod 8)},
that is 6 2(2,2; c) = 1/4. In case j = 1, p - l(mod 4) and so o4! = (-l)~EP+]

l(mod (p)). Since (p + 1)/2 is odd, N2(O,l; c) = {p : (Dip) = -1, P l(mod 4)}.
If D > 2, then 62(0,1; E) = 1/4 by Lemma 4. If D = 2 then N2 (O, 1; E) = {p : p _
5(mod 8)} and so 62(0,1; c) = 1/4. Thus we arrive at Table 1.2 and Table II.2.

5 Proofs of Theorems 1 and 2

Theorem 1 is easily deduced from the following theoren1.

Theorenl 3 Let c be a unit of negative norm in CJ D . Let PE(P) denote the 7'ank of
apparition of p in the sequence {E n +~ }. Conside1' /01' e ~ 0 the prime densily of the
set {p : 2e IIPE(P)}' In case D = 2 it equals 7/24 if e ~ 1, 1/3 i/ e = 2 and 2-e13 /01'
e ~ 3. In case D > 2 it equals 1/3 if e = °and 2]-eI3 if e ~ 1.

Proof: Let N(e, c) = {p : 2e llpE(p)} and for s = 1,2 let

N!J(e; E) = {p: (Dip) = 3 - 2s, 2eIIPE(P)}.

Thus, with at most finitely many exceptions, N( ej E) = N2 ( e; E) U N2 ( e; c). Now
N](e; E) = Uj;]N](e,j; E) and N2(e; €) = U~]N2(e,j; E). Since the latter is a finite
disjoint union of sets of non-zero density, we have 52(e; €) = L:~1 52(e,j; E). Similarly
we want ta show that o](e; E) = L~] o](e,j; c). As U~]N1(e,j; E) is an infinite union
of sets of nOll-zero density, this needs proof. We proceed as in [4, p. 454]. Put

C1 (e,jj €) = {p: (Dip) = 1, p == 1 + 2i (mod 2i +]) and p ft. N](c,j, €)}.

Using Lemma 4 the density of this set is seen ta be 2- j - 8](e,jj€) in case D = 2
and j 2:: 3, and 2-]-j - 81 (e,jj €) in case D > 2. Now

Uj;;;;]N1 (e,j;€) ~ N1 (ej€) ~ {p: (Dip) = l}\U~] C](e,jjE).

The smallest set in the above inc1usion of sets has density Lj;;;;l 01 (e, j jE). The largest
set has prime density 2- m + Li;;;;1 51(e,jj E) in case D = 2 and m 2:: 3 and prime
density 2-]-m + L~] 8](e,j; c) in case D > 2. Letting 1n ~ 00 shows that 81 (e; €) =
L~l 01 (e, j; E). On computing the densities L:~] { 0] (e, j; €) + 02 (c, j; E)}, on making
use of Lemma 1 and Lemma 3, the proof is then completed. 0
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Proof 0/ Theorem 1. Since the prime density of {un+un} is invariant under replacing
u by u, -u 01' -u and, by assumption, u =I ±1, we Inay assurne w.l.o.g. that u > 1.
Then u = ft{ for some N > 1. Write N = 2"m with m odd. Put E = EIJ. Then

u = (2). with N (E) = -1. Note that ). is unique. Consider the sequence {u n + un } as

a subsequence of {En + en}. One easily shows that p divides {(2). n + f2).n} if and only
if p€(p) is divisible by 2"+1. Hence the prime density of {un + un } equals

>.
1- E 8({p:2m IIP€(p)})·

m;;;;O

Using this expression and Theorem 3, Theorem 1 now folIows. o

Proof of Theorem 2. Put D = p 2 +4. Notice that for P =I 0, D is not a square. We
have Ln(P) = an + an with a = (P + VJ5)/2. If D =O(mod 4) then a E z[VJ5], if
D =l(mod 4) then a E Z[(l + VJ5)/2]. Thus a E DD. Furthermore N(a) = -1. In
order to apply Theorem 1 we have to determine when Q(VP2 + 4) = Q()2), that is
we have to find all solutions P to the Pell equation p 2- 2Q2 = -4. The fundamental
unit of Q(J2) is 1 + Y2. By the th~ory of Pell equations it follows that thc solutions
(P,Q) E Z~o of p2 - 2Q2 = -4 are precisely given by {(xn,Yn): n 2:: 1 is ocid},

where X n +-YnY2 = 2(1 + V2)n. Using induction it is easily proved that X n = Ln(2).
Theorem 2 now follows on invoking Theorem 1. 0

With the previous proof in mind the reader will have little problems in proving
the following curiosum.

Theorem 4 Let D > 1 be squarefTee. Suppose that X 2 - Dy2 = -4 has a solution.
Put, for i = 1,2,

Ci = {P: p 2 - DQ2 = (-1)i4 for some Q E Z}

and
C2+i = {Q: p 2 - DQ2 = (-1)i4 for some P E z}.

Then, when D = 2, 8(C1 ) = 7/24, 8(C2 ) = 5/12, ö(C3 ) = 7/24 and 8(C4 ) = 17/24. 1f
D > 2, then ö(Cd = 1/3, 8(C2 ) = 1/3, ö(C3 ) = 1/3 and ö(C4 ) = 2/3.
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Thc case D = 2

Table 1.1

Prime density of the set
{p : (~) = 1, p == 1 + 2j (mod 2j+1

), 2e llpt(p)},
where N(E) = -1

e\j 1 2 3 4 5 6 7 ...
0 0 0 ~12 f~8 5~2 20

1
48

I
2~8Ül2 ...

1 ~ 0 ~\ '-;8 5~2 20
1
48 8,~q2 ... }4

2 0 0 h i?4 ?tR lA4 4~R .. !?
3 0 0 0 ~ ~R ,lj-h- ~ ... ,14
4 0 0 0 0 i?4 ?iR lr!?4 ... A
5 0 0 0 0 0 ill K~2 ... ~
6 0 0 0 0 0 0 ?iR ... li?

... ... ... ... ... ... ... ... ... ...

i- 0 ~ /f\ :\1? (\1
4 1}~ ... ~

Table 1.2

Prime density of thc set

{p : (~) = -1, p - -1 + 2j (tnod 2j +1
), 2ellPE(p)},

where N(E) = -1

e\j 1 2 3 4 5 6 7 ...
0 t 0 0 0 0 0 0 ... ~
1 0 0 0 0 0 0 0 ... 0
2 0 ! 0 0 0 0 0 ... !

4 4

3 0 0 0 0 0 0 0 ... 0
4 0 0 0 0 0 0 0 ... 0
5 0 0 0 0 0 0 0 ... 0
6 0 0 0 0 0 0 0 ... 0
... ... ... ... ... ... ... ... ... .. .

.!. .!. 0 0 0 0 0 ... i4 4
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The case D f:. 2 and N(ED) = -1

Table 11.1

Prime density of the set
{p : (~) = 1, p =1 +2 j (lnod 2j+1

), 2e llp,;(p)},
where N(E) = -1

~51617~
0 0 ,~ ~ 2k ---..L 4~ ..2...- l-i'-024 '~4

..
1 i /R {t ?~A 10\4 40

1
qR 1ß~,q .. .. k

2 0 0 ~ '-~R ..1....
2rf4R A-,192- 2

1
4.'}12 ...

3 0 0 0 l4 i~-r. lA.. 4~R ... lp.
4 0 0 0 0 ,~,q ..1.... ---.!...- ..l..

.1l'2 204R ... 9R

5 0 0 0 0 0 2.~P; ---.L ,i-2'-024 ...
6 0 0 0 0 0 0 ,Ij~2 ... ~~4
... ... ... ... ... ... ... ... ... ...

Table 11.2

Prime density of the set

{p : (~) = -1, p - -1 +2j (lTIod 2j +1
), 2e Jlp,;(p)},

where N(E) = -1

e\j 1 2 3 4 5 6 7 ...
0 1 0 0 0 0 0 0 1.. ... 4

1 0 0 0 0 0 0 0 ... 0
2 0 1 0 0 0 0 0 1

R ... R
3 0 0 ..l.. 0 0 0 0 ..l..,r. ... ,r.
4 0 0 0 ~l? 0 0 0 ... ~I?

5 0 0 0 0 r.~ 0 0 ... hld

6 0 0 0 0 0 ..1.... 0 ..1....
'?R ... '?R

... ... ... ... ... ... ... ... ... ...

11 ~ k fR A l:t ,tR ?iR ... 11 ~
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