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The aim of this paper is to present a method for investigaton of the
topological properties and the birational geometry of the moduli spaces of
vector bundles and torsion free sheaves on the projective plane P2. Qur
method is based on the theory of equivariant vector bundles and sheaves on
a toric variety. One of the main points of the paper is to explain how one can
work with such an extraordinary for geometry object as torsion free sheaf.
The appearance of such sheaves is inevitable in any attempt to complete the
moduli space of vector bundles. We use this occasion to collect all information
on the subject known to us.

All the technical devices are developed for a general situation of an arbi-
trary non-singular projective toric variety X. However the main features and
geometrical dificulties of the theory are clearly seen already in the simplest
case X = P2. This is why we followto a well-established classical tradition
to begin any theory from detailed treatment of the first nontrivial example.

The author wants to thank Max-Plank Institut fir Mathematik for fi-
nancial support and stimulating atmosphere during the preparation of this
article.

1 Introduction

Let M,(c1,¢2) be a moduli space of the Mumford-Takemoto [31] stable vec-
tor bundles £ of rank r on a projective plane P? with Chern classes c;, c,.
Twisting with a line bundle O{d)

&~ EQO(d)
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defines an isomorphism

r(r—1)

—a)

M, (c1,62) 2 M (e; +rdyca +¢(r —1)d +

Hence M,(c1,c2) depends on the discriminant
—D:=(r—1)&-2rc, (1)

only. So we will write M, (D) instead of M,(cy, c2).

It is well known that for a stable vector bundle £ the discriminant D(£) is
positive and the moduli space M, (D) is an irreducible nonsingular quasipro-
jective variety of dimension D —r? +1 (or empty)[22, 2, 10, 7]. In this paper
I shall be interested in topological properties of this moduli space M,(D)
and of its natural compactification

M, (D) := (moduli space of semistable torsion free scheaves).

In this definition we have to use the Gieseker - Maruyama (semi)stabili-
ty and to identify the sheaves with the same stable composition factors to
obtain separable projective moduli space M, (D) [22, 11]. But in fact I can
not treat semistable bundles and sheaves properly. A semistable object lies
on the boundary of the moduli space and seems to escape our understanding.
This leads to a singularity of the moduli space in semistable points. Some
authors enjoy singularity, I do not like it however. Therefore I consider here
only the case when stability is equivalent to semistability, namely

(D(&),rank(€)) =1 (2)

In this case the fraction ¢;/rank is irreducible and semistability is impos-
sible for arithmetical reasons. Hence the moduli space M, (D) is a projective
nonsingular algebraic variety and all the notions of stability are equivalent.!

Thus God gave us two nice objects M,(D) and M,(D) to study. Up
to now, for general r and D not very much is known about their topology
and geometry, save for the above mentioned results on smoothnes and irre-
ducibility.

n fact M, (D) is smooth under a slightly
less strict condition g.c.d.(c1(€), rank(£),x(€)) = 1, but in this case we would have to
use some additional technical tools.



Strome [30] and Dreze [8] have determined the Picard group PicM, (D).
Its rank does not exceed two. If the rank is zero, then M,(D)consists of only
one point and the vector bundle £ is called exceptional, [7]. The exceptional
vector bundles are closely related to the moduli spaces M,(D)with Picard
number one, having a very explicit description [8]. Dreze knows a recurrent
formula for the Betti numbers of these moduli spaces.

In the general case rk Pic M, (D) = 2. It follows that the second Betti
number by(M, (D)) = 2.

Further information on the moduli space M,{D), in particular when it is
not empty, one can find in [7, 28].

In the simplest case 7 = 2 there is some additional information.

The variety My(D) is rational [23, 24, 9] (at least in our case (¢, r) = 1).

It is known also {4, 20] that the Euler characteristic of the moduli space
of vector bundles is equal to :

oy [0 R
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where og(n) is the sum of divisors, and H(D) is the Hurwitz class number

H(D) = number of integer binary quadratic forms @ of (4)
~ \ discriminant -D counted with the weight 2/ Aut(Q)

1.1 Results

The main object of this paper is to give an exposition of a method that allows
us to find all the cohomology groups of the complete moduli space M, (D)
and to investigate its birational nature. By means of this method, if one has
enough time to spend, it is easy to fill the following table of the Betti num-
bers of the moduli space of rank two sheaves M,(D) (the odd Betti numbers
are equal zero):

D | bo | by |ba| bs | bs|bio| bra|bia|bic| brs|boo | boo|bra
3 1

T]1]2]3]2]1

111 ]/2/6[9[12]9[6]2]1

15[ 1




This table confirms the above mentioned results on connectness (b = 1)
and Picard number (b, = 2) of the moduli space. The method also shows
that the Betti numbers b;(M2(D)) stabilize as D — oo. For example, by = 6
for D > 11.

I have not ovecome the arising combinatorial problems and therefore I
can not give a general formula for a Betti number. Nevertheless the Euler
characteristic of the moduli spaces M3(D) may be interpreted as a coefficient
of a modular function:

1 & n
where 7(q) = ¢% [I®°(1 — ¢*) is the Dedekind g-function and H(D) is the
Hurwitz class number (4).

There are similar formulae relating the Euler characteristic of the moduli
space of stable bundles M, (D) and semistable sheaves M, (D) for arbitrary
rank r (see below).

As a byproduct we get rationality of the moduli space of vector bundles
of rank 3 in the case (D,3) = 1.

The method of treatment of the topological properties and of the bi-
rational geometry of the moduli space used in this paper is the same as
in [4, 20]. It based on a reduction of topological and birational questions
concerning M(D) and M(D) to the corresponding problems concerning in-
variant spaces M(D)? and M(D)T with respect to the natural action of the
maximal torus 7' C PGL2 = Aut P?. The following two observations play a
crucial role.

i) Let an algebraic torus T act on a smooth algebraic variety X. Then the
topologies of X and of its fix point set X7 are very closely related [14, 5, 12].
For example, their Euler characteristics are equal:

X(X) = x(XT) (6)

( in fact this is the Lefschetz trace formula applied to a sufficiently general
element t € T').

If X is a projective variety, then all the cohomology groups of X and
their Hodge decomposition may be reconstructed from the corresponding
information on the connected components (X7); of XT. More precisely, let

W=

> x(Mafdn - 1))q
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7 : G,, — T be a one dimensional subtorus of T such that X = X7. For
each connected component (X7); = (X7); fix a point z; € (X7); and put

I the number of weights x of the torus T in
'\ the tangent space T (z;) such that (x,7) >0

Then there is a natural isomorphism

H”"(X) — @HP_“"Q'“‘(X,-T) (7)

This formula is due to Bialynicki-Birula [5] in the case of isolated fix points
and to Ginsburg [12] in general. To prove it Bialinycki-Birula constructed
a decomposition X = [[ X; on a locally closed nonsingular T-invariant sub-
scheme and morphisms ~; : X; — (X T),- which are G, -fibrations( the action
of multiplicative group G,, defined by 7 : G, — T). At the present time
it is known that these fibrations are in fact vector bundles {3, 21].? In par-
ticular the variety X is birationally equivalent to a product of an invariant
component (X7T); and affine space A™.

Ginsburg’s proof uses essentially the same stratification but in the general
situation of simplectic geometry.

To sum up we may say that the invariant space XT together with the
torus representations in the fibers of its normal bundle is a skeleton on which
the whole body of X is spanned and from which the topology and biratinal
geometry of X may be reconstructed.

ii) The second observation is that for the above moduli spaces M,(D)
and M, (D) and a maximal torus 7' C AutP? = PGLy the corresponding
invariant spaces M(D)T and M(D)” have a natural interpretation as moduli
spaces of T-equivariant vector bundles or torsion free sheaves £on P2:

M (D) = (

moduli space of T-equivariant vector bundles Sofﬂrank)
r up to twisting with character E— EQ x, x €T

An interpretation of M(D)T is similar to that of M(D)?. Thus to apply
i) to the moduli spaces M, (D) and M, (D) we need:

e Description of the moduli space of the T-equivariant vector bundles
and sheaves.

2The author is indebted to H.Kraft who has pointed out to him these papers and
explained the result.



¢ The torus representation in the tangent space of the moduli, which is
known to be equal to Ext!(£, £) [23].

We may replace P2 by an arbitrary nonsimgular complete toric variety
X, our approach being applicable in this mor general situation as well. In the
next two sections we give an exposition of the general theory of equivariant
vector bundles and torsion free sheaves on toric varieties.

1.2 Toric vector bundles

Here we give a digest of the theory of toric vector bundles as it has been
developed in {18, 19, 20]. See also earlier papers of Kaneyama [16, 17], used
by Bertin and Elengzwajg in [4].%

Let X be a complete nonsingular toric variety [6, 26]. This means that an
action of an algebraic torus T is defined on X and that X contains an open
orbit on which this action is free. An equivariant or toric vector bundle on
X is a vector bundle p : £ — X together with an equivariant 7-structure,i.e.
with an action of the torus T on £ which makes the following diagram com-
mute for all ¢t € T

£ 4 ¢
rl rl
X 5L X

Recall that a toric variety X is defined by a fan ¥ = E(X) in the lattice
T* dual to the lattice of characters 7" of T. The cones ¢ C ¥ are in one to one
correspondence with the orbits O, C X, in such a way that 7 C 0 & O, C
0,; dimo = codimQ,. In particular the orbits of codimention 1 correspond
to the one dimensional cones of £. We denote by |X| the set of primitive
generators of this cones. For o € £ we let 0| = o N|Z].

Definition 1.2.1 A family of filtrations E*,a € A of a vector space E is
called split if the multifiltered space (E; E®,a € A) can be decomposed in a
direct sum of multifillered spaces of dimension one.

3Unfortunately while working on my papers [18, 19, 20] I was not aware of these articles.
I use this opportunity to apologize to their authors. The overlap with [16, 17] both in
methods and results seems to be minor; my note [20] may be considered as a supplement
to [4].



In this definition, and henceforth, the filtrations are assumed to be de-
creasing and full: £2(i) =0,7>> 0; and E°(i) = E,: € 0;i € Z.

Theorem 1.2.2 ([18]) The category of toric bundles on a toric variety X =
X(X) is equivalent to the category of multifiltered vector spaces (E; E*,a €
|Z|), satisfying the following compatibility condition:

Vo € I, the family of filtrations (E*; a € |o]|) is split. (8)

The equivalence of the categories is established by associating to each
bundle £ the fiber £ = £(z¢) at a fixed point zq of the open orbit. The
filtrations on E are formed as follows. For every orbit O, a € ||, of codi-
mension 1, choose a point z, € O, and put

E*(i)y={e€ EB::EE}:., f(te)(te);t € T} 9)

where f(x) is a rational function on X with a pole of order i at O,. It turns
out that filtrations F*(?) satisfy the compatibility condition 8) and uniquely
determine the vector bundle £.

Example 1.2.3 For the projective plane this theorem gives us an equivalence
of categories

( Toric vector ) ( Vector spaces E with a triplet ) (10)

bundles on P2 of filirations E*, EF EY

It is easy to see that a pair of filtrations is always split. Hence the
compatibility condition (8) in this example is automatically satisfied.

It follows from the theorem that all the geometric properties and invari-
ants of toric vector bundles can be expressed in terms of filtrations. Below
we give a small glossary for translation from one language to another.



Glossary

Notations. Let £ be an equivariant vector bundle on a toric variety X =
X(X) and let (E; E°,a € |Z]) be the corresponding multifiltered space of
theorem 1.2.2. For any 0 € ¥ and x € T we define the vector spaces

E7(x)= [\ E*({x,a)),

a€le|

B0 = 00/ 5 ) B,
fa aflo|
where in the second formula the sum is taken over all the integers i,; @ € |o]
such that i, > (x, ) and at least for one a € |o| the inequality is strict.
Sometimes it is convenient to use the detailed notation:

where o = (ay,...,a), o; € |¥] and 1, = x(ay).
For example for an one-dimensional cone E°l(i) = E*(i)/E*(i 4+ 1).
Representations in fibers. Let O, C X,0 € £ be an orbit of a torus
T on X and let 7, C T be the stabiliser of a point z, € O,. Then T, acts
in the fiber £(z,) and

._ (multiplicity of character\ _ .. i,
m(xE@) = (e b o the fier £ ) = GMEIC) (1)

A

(strictly speaking on the right hand side instead of the character x € T,
should be one of its extensions on T').

Characteristic classes. Let X, = O,, @ € |Z| denote the closure of an
orbit of codimension one and at the same time its class in the Chow or in
the cohomology ring. Then the following formulae for the Chern character
and for the full Chern class hold:

ch(€)= Y (—1)®%" dim El)(x) ePaater(xieXa,

s€XxeTs,
—1)cedime gim Elel ().
(&)= I (1+ T (xa)Xq)Dems dmBi) (12)
ot xely a€lo|



For example
a)= 3 idimEF()X,. (13)
i€Z,a€|z|
Cohomology. Let H*(X, £), be the isotypical component of the char-
acter y € 1" in cohomology group H*(X,£). It can be evaluated by means
of the following complex C.(€, x):

l—Ee— P E()= D E)e« D EKX)«0 (14)

dimo=i dime=2 dimo=n

with a differential given by the formula

dk = Z do; & = Z(—l)iE;
dimo=k 1
where ¢; : E° — E° is a natural inclusion corresponding to the i-th face
g; C o.
In this notations we have a natural isomorphism:

HY(X,E)y = Haop(Cu(&, x)); n=dim X.

For the zero- and the highest degree cohomology one has the followings
formulae:

Ho(ng)xz ﬂ E%(x),
a€|E|

E
HY' (X, )y = =———————.
( H )X ZQGIEI EG(X)

All the cohomology groups for the projective space P®* may be written
explicitly:

H# (PP £), = E°(x)N...NEP"Y(x) N sy E¥(x)
T T E2X) N N EPTM(x) N ER(X)’
where E°; a = 0,n are the filtrations, defining the bundle £,0 < p < n.

Euler characteristic and a trace formula. The complex (14) gives
the following equality for the Euler characteristic:

S (1P dim H?(X, €), = 541‘2(—1)“*”‘"“r dim E°(x).
p 43
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This equality may be written also as a trace formula for t € T

> (—1PTr(t|H"(X,£)) = ; nw::((tllq?-)l)(t))’

where A € E(™ ranges over the cones of maximal dimention n = dim X;
za € X7 is a fixed point corresponding to A; A* is the basis of the character
group T' dual to the basis |A| of the lattice 7°.

The trace on the right hand side may be expressed in terms of the filtra-
tions E* as explained in the first item of the Glossary.

Other structure groups. For a toric vector bundle £ with a structure
group G different from GL(E), theorem 1.2.2 requires some modifications.
Up to discrete parameters the filtration E* is determined by the parabolic
subgroup

(15)

P%:={g € GL(E)| 9(E°) = E*}. (16)

The disrete parameters of the filtration E* (that is a numbering of the sub-
spaces) defines a character

w*: P* > G,
w*(diag(zy,. .., 2.)) = 1,% - - £,°", (17

where a, € Z are the jump points of a function dim E°(i),
dim E*(ax + 1) < k < dim E%(ay).

In this language the compatibility condition (8) of theorem 1.2.2 means
that
Vo€ %, ()| P® contains a mazimal torus . (18)
a€lo)

Theorem 1.2.4 Let X be a nonsingular toric variety and let G be a reductive
group. Then principal toric G-bundles on X are parametrised by the families
(P*,w?), a € ||, of parabolic subgroups P* € G° of the dual group G° and
its characters w® satisfying the compatibility condition (18).

This theorem allows one to formulate the main problems on toric vector
bundles in the framework of the theory of reductive groups. A resonable gen-
eralisation often simplifies a mathematical problem. In any case the "highest
vectors” w* from (17) play an essential role in the study of stability.

10



It follows from this theorem that up to some discrete parameters the space
of toric vector bundles on X = X (X) with a reductive structure group G is
parametriesed by the simplicial maps of the fan X to the complex P(G) whose
vertices are the parabolic subgroups P C G, while the simplices are formed by
the families of subgroups P, « € A, containing a common maximal torus. So
the complex P(G) may be considered as a classifying space for toric bundles.
Some of its properties one may find in [18, 19].

Stability. The following conditions on a toric vector bundle £ deter-
mined by a compatible family of filtrtions (E*|a € |Z|) of vector space E are
equvalent:

1. € is Mumford - Takemoto stable {31, 27];

2. The family of subspaces £°(i) C E is Mumford stable [25] with respect
to the action of the group GL(E);

3. For any subspace F C F with 0 < dimF < dim E, the following
inequality holds

1 oy l- ey
mgdlmff (i) < dimEaZ,idlmE (2), (19)

where F'*(1) = F N E°(7) and the sums are taken over all a € |¥| and
i>N; NxO.

It is easy to see that inequality (19) is independent of the choice of the
sufficiently small N, but we have to fix it to make the sums finite. The same
problem appears in the second item as well: the family of subspaces E°(3)
is infinite but almost all of its members are equal to 0 or to £ and do not
influence stability.

Example 1.2.5 Toric vector bundles on the projective plane.

As we have seen in example 1.2.3 toric vector bundles £ on P? are deter-
mined by a triplet of filtrtions E*, E®, E" of a vector space E. To evaluate
the discriminant of £ one can use formulae {12) for the characteristic classes:
of £

—D(€) =(r—1)ey? = 2rc; =

r}(D(ia) + D(i5) + D(i,) + 2cov(iq, i) + 2cov(ig, i,) + 2cov(iy, ia)) (20)

11



where the dispersion IXi,) and the covariance cov(i,,1s) are defined by the
formulae

D(i,) = 1Z:i'b’dim El(5) - (% Zz’dimE’l"](z’)) )

r

t
cov(tq, tg) =

% 3" 45 dim EAi(3, 5) - (% 3 idim E[C'](i)) (% 3" jdim E[’G](j)) .
| 2%) ' 2

It follows from the formula (20) that the discriminant D(€) depends on
the pairwise relative positions of the filtrations E*, E| EY or of the corre-
sponding parabolic subgroups P, PP, P” only (cf.(16)). The relative position
of P* and PP is determined by an element 7 of the Weyl group W (in our
case the symmetric group S, ) such that the intersection (P*)"N PP contains a
Borel subgroup. There is only one such an element 7,5 = 7( P, PP) of min-
imal length which will be refered to as the relative position of the parabolic
subgroups P* and PP or the corresponding filtrations £* and EP. In terms
of the relative positions 7,4 of filtrations the discriminant may be written as

follows
——D(S) = r(w02 + ""’32 + w’rz + 2(“"0%‘6)“’,3) + Q(wﬁxﬁ’wﬁ) + Q(W'rﬂ-w""’a))a

where wq, wg, w, are the dominant weights defined by (17) and (*, *) is the
standard scalar product on the weight lattice (squares of roots are equal to
two).

Let us consider the stability condition 3) for a vector bundle of small
rank.

i) rk€ =2, ie. dimE = 2. Put a, = #{7|dim E°(3) = 1}. Then from
the stability condition 3) one easily deduces that

1 o B8 . -
£ is stable & (the filtrations E*, EP | E7 are in general position and) '

the numbers a,, ag, ay satisfy the triangle inequalities
ii) rk€ = 3. Let
a = #{i|dim E°(z) = 2}, A = #{i|dim E*(i) = 1},

12



and define b, B; c,C in a similar way using £° and EY. Then we may rep-
resent the filtrations £, E®, E" as a configuration of points and lines with
multiplicities on the projective plane P(F):

7N /TN /N

General configuration and its stable degenerations

' / \

Stable configurations with a noncomplete flag

The picture contains all types of configurations with the trivial group of
automorphisms (it is a necessary condition for stability). The precise stability
criterion depends on the type of the configuration in the following way. Put
s=a+b+candlet S = A+ B+ C. Our notations are adjusted in such
a way that if we replace a bundle £ by its dual £* the upper and the lower
case letters will interchange.

1) If the filtrations are in a general position then stability is equivalent
to the following inequalities

s—8 s+25
g i@ + A<
S—s S+2
A> 2% Atac< e
combined with the corresponding inequalities for b, B and ¢,C. A general
configuration is determined by the complex parameter z # 0,1,00 (cross

a> ifs>8§

ifs<S§

13



ratio).
2) If (a1(€),3) = 1(« s # S mod 3) then a general stable configuration
has the following stable degenerations:

A B
/o \ / \
ifS>s ifS<s a—B<i(s-39)
b—C>1i(s—15)

Exactly one of the first two pictures is stable; from the six configurations
of the third type two are stable. Thus we obtain three stable configurations
which fill the three gaps 0,1, co in 1). The full space of stable configurations
in our case (¢;,3) =1 is PL.

This example shows the spirit of the main problem arising in our reduction
of the full moduli space M, (D)to its toric part M, (D).

Problem 1.2.6 Describe as precise as posssible the moduli space of stable
triplets of filtrations E®, EP, EY of a vector space E.

We denote this moduli space by Fi(w) = Fr(ws,ws, wy) where r = dim £
and w = (wq,ws, w,) are the dominant weights (16) which fix dimensions of
the filtrations £*, E#, E7. This space has a natural stratification

Fr(w) = [_If,(w; ), (21)

where F,(w; 7) is a moduli space of stable filtrations E*, E#, E7 of a given
typew = (wa,wp, wy) and given pairwise relative positions © = (Tag, Ty, Tya)-
If the "first Chern class” of the triplet

a(w) =Y i(dim EY(3) 4 dim E¥(i) 4+ dim EM(3)) = (wa + wp + wy, p)

t

is coprime to r = dim E then F,(wq,wg,w,) is a projective nonsingular va-
riety (here p is the sum of the highest weights of the fundamental represen-

14



tations Af E). The following theorems contain almost all the known facts
about its structure.

Theorem 1.2.7 If (¢;,7) = 1 then the moduli space F.(w) ts a projective
nonstngular irreducible variety and all its stratas F,(w; ) are irreducible non-
singular of dimension

Urop) + Umpn) + UMy o) — rP + 1 = dim Fo(w; )
( {(%) is the length of 7).
The proof is based on the following calculations. Smoothness of the mod-

uli space M, (D)implies nonsingularity of M,(D)T and hence F,(w; 7). The
tangent space of the last variety is equal to

Ezt'(£,6)T = H'(P?,End£)T
. Moreover stability and smoothness imply
H(P% End&) = C; HY(P?,EndE) = 0.

All this allows us to find dim F,(w; 7) = dim H'(P2, End £)T from the trace
formula. It depends only on the pairwise positions of the filtrations. Thus
all the components of F,(w; 7) have the same dimention.

To prove that F.(w;n) is irreducible we determine the number of its
rational points over the finite field Fq. This may be done by calculations in
the Hecke algebra H, given by the generators T'(7), # € W and the relations

T(m )T (o) = T(mima), if (myma) = €(m1)e(ms);
T(s?) =g+ (¢g—1)T(s), sisa fundamental reflection.

It is essential for us that H; has the same multiplication table as the algebra
of the double classes B\G/B over Fq. It follows that the following equality
holds

number of flags F*, FP F7 in\ _ | Flag(Fo)| (coeﬂicient at 1 in)
pairwise positions Tag, Wpy, Tqa | PENT (708) T (753 T (7 y6:)

It is easy to see that the coefficient at 1 in the product T'(7,p)T (7 p4)T(Ta)
is a polinomial of ¢ with the leading coeflicient equal to 1. This means that
the variety F,(w; 7) has only one component of the highest dimension. But
as we have already proved all its components have the same dimension, and
therefore it follows that F,(w; 7) is irreducible.

15



Theorem 1.2.8 Let V(w,), V(ws), V(w,) be three irreducible representa-
tions of the group GL(E) with the highest weights w,, wg, w. respectively.
Then the following conditions are equivalent:

i) Filtrations E>, EP, E" of the types w,, wg, w, in general position are
semistable;

it) Tensor product V(w,) ® V(wg) @ V(w,) contains one of the represen-
tations (det E)™ AF E as its component.

Appearance of the irreducible representations V(w) seems very surprising.
It may be explained as follows. By the stability criterion we have to check
inequality (19) for every subspace V C E. This inequlity depends only on
the relative position of the subspace V' with respect to each of the filtrations
E>, EP, E". The subspaces of a fixed relative position with respect to one
of the filtrations, say E%, form a Schubert cell o, in the Grassmann variety
G? ={V C E|dimE = p;codimE = ¢}. Here a is the Young diagram or the
partition

a=(a,a2,...,8,), g2 a1 >a,>... 2a,20.

If the filtrations E*, E®, E” are in a general position then the following
conditions are equivalent:

i) There is a subspace V C E in positions a,b,c¢ with respect to the
filtrations £, Ef, E".

i1) Schubert cells g,, o, 0. have nontrivial intersection.

iii) Schubert cycles @,, @, 7. have nonzero product in the cohomology
or in the Chow ring of the Grassmannian GY.

iv) Tensor product V, ® V, ® V. of the irreducible SL(V) representations
with the Young diagrams q, b, ¢ contains a nonzero SL(V) invariant.

The last item is related to the previous one by the Giambelli formula [13]

Ta, Ca;+1 cee Ogy4p-1

Tuy-1 Ta, <o+ Oagtp-2
Tq = .

Ua,,-—p+1 Jap—p+2 PN Uap

This formula is similar to the Weyl determinant for an irreducible repre-
sentation V, of the general linear group. This similarity leads to the equality

(multiplicity of o. in the de-) _ (multiph'city of the component)
composition of product o,03/ ~ \V. in the tensor product V,®V;/~
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It follows that
0,040 £ 0 & (V, @ V, @ V.)5EV) £ 0.

So we heve a description of the cone of stable weights w = (wq, wg, w,)
in purely group representational terms. Then making use of the Littlewood-
Richardson rule [15] we can compare it with the cone generated by the weights
satisfying condition ii) of the theorem. It turns out that they coincide.

1.3 Toric torsion free sheaves

We begin with a theorem that describes torsion free sheaves in terms of
linear algebra in the same way as theorem 1.2.2 describes vector bundles. To
state the result we need some definitions and notation. Let X = X(X) be a
nonsingular toric variety with the fan £. For a vector space E we will denote
by {E%|o € £} a family of the decreasing multifiltrations

E°(I) = E@eae)(y iy . iy)

for 0 = (a1,02,...,0¢) € & and I = (41,%2,...,%),¢ € Z. Often it is
convenient to regard a multifiltration as a function of a character:

E°(x) 1= ECrer-au)(x(ay), x(az), . ., X(cw))

Definition 1.3.1 A family of multifiltrations (E’|o € X) is said to be com-
patible if the following condition holds for every pair of cones 7 C o, 7 =

(a1, a2,...,0p), 0 = (a1, 02,...,0p, 01,...,5) :

E(i1,42,. - yip) = E°(i1, 2, .., ip, —00, ..., —00) (22)

It follows from the definition that a compatible family of multifiltrations
is completely determined by the filtrations E® for the mazimal cone A € .

Theorem 1.3.2 Let X = X(X) be a nonsingular toric variety. Then

t) The category of the toric torsion free sheaves £ on X is equivalent to
the category of vector spaces E with a compatible family of multifiltrations
(E’|o € ).

ii) For a toric torsion free sheaf £ its bidual sheaf £ is defined by the
multifiltrations

E;t(al,...,ap](ih ey zp) — E'al(il) Nn...N EGP(I'p)
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iii) Torsion free sheaf € is reflexive (i.e. equal to its bidual £**) if and
only if Vo = (aq,...,a,) €L

E(a,,...,ap)(ih o yip) = E™ (f«l) N...N Ear(ip)

The category of the toric reflezive sheaves 1s equivealent to the category of vec-
tor spaces E with a family of filtrations (E®(2)|e € |X|) and no compatibilily
condition.

iv) Reflezive sheaf € is a vector bundle (i.e. it is locally free) iff the cor-
responding filtrations (E®| a € |L|) tn iii) satisfy the compatibility condition
(8) of theorem 1.2.2.

For a toric vector bundle £ the filtrations (E*| a € |Z|) in theorem 1.3.2
are the same as in theorem 1.2.2,

To show how the multifiltrations appear let us consider an open affine
T-equivariant subset Uy C X corresponding to a maximal cone A € I;
Ua = SpecCluwy,...,ws] where (wy,...,w,) is a basis of the character lattice
T dual to the basis |A| of 7°. Then the T-equvariant sheaf £2 = £|U, is
nothing else but the multigraded module

£A = @ EA(il:-- -ain) (23)

yoendn

over the polinomial ring Clwy, . .. ,wy]. Multiplication by a character wi ... w2"
defines a morphism

(‘DZEA(Z.l,---,in)(_‘*EA(':I'I'al;"-,in'l'an)

which is a monomorphism because the module is torsion free. So the multi-
grading (23) is completely determined by the natural multifiltration of a limit
space
E=_lim E®%@,... 1)
11400yt — 00

This space is easily identified with a general fiber of £. The compatibility
condition (22) allows us to glue together all the modules £24,A € ¥ in a
single sheaf £.

The main difference between the theory of toric vector bundles described
in the previous section and the theory of torsion free sheaves is that the latter
one has been never published. In all others respects they are quite similar.
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Metatheorem 1.3.3 The Glossary of the previous section is valid for tor-
sion free toric sheaves.

The only way to prove this theorem is to write a sheaf-theoretic version of the
paper [19]. The author will do it in an appropriate place and at the proper
time. But right now I should like to explain how one can use the Glossary
for torsion free sheaves. Most of the entries of the Glossary are expressed in
terms of the multifiltrations £°(x). In this case no changes are necessary. In
some places (e.g. in the formulae for the characteristic classes) a composition
factors EW)(I) of multifiltrations E?(I) appears. It must be interpreted as a
formal linear combination of vector spaces

EPay, . i) = Ay ALE (i, 1),
where Ay 1s a difference operator
ARE7 (31, ytgyeoytp) = B, ooyt i) — E7(g, i+ 1,000, 3p)

The dimension of E“l(1) may be negative.

It seems worthwhile to say a little bit more about the trace formula. As
Serre [29] and Grothendieck taught one has to deal with the Euler charac-
teristic

E(x) :=Tor.(E, k(z)) = Z(-l)iTor;(S, k(z)) (24)

instead of the fiber £(z) of a vector bundle £ in the case of an arbitrary sheaf
& (here k(z) is the residue field of a point z). We have the same formula for
the multiplicity of the character for this fiber as in (11):

m(x, Tor.(€, k(z,))) = dim EF)(x). (25)

The difference operators A;, which enter in the definition on right hand side
of this formula correspond to the Koszul complex for the calculation of the
Tor’s in the left hand side. This ”fiber” satisfies the same trace formula trace
formula (15):

S (1PHA(X,£) = 3 = E(za)

r A HwGA‘(l - w—l). (26)
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This formula gives us an equality in the character ring of the torus T. The
multiplicity formula (25) implies that the "fiber” £(z,) has the following
character:

E(za) = 3 x dim E¥(x) (27)
x€T

For our applications we need not a trace formula for cohomology but rather a
trace formula for Ezt'(£, £). The latter groups have a natural interpretation
in terms of of the moduli space structure in a neighbourhood of the ”point”

£[23, 1):

Ezt®(E,E) = C, for stable sheaves;
Ezt'(E,€) = (tangent space to the moduli); (28)
Ext*(£,€) = 0,if £ is nonsingular point of the moduli space.

The trace formula for Ezt is easily deduced from the above one.

Proposition 1.3.4 For any equivariant sheaves £ and F on a toric variety
X = X(Z) the following equality in the character ring of the torus holds:

S (~1PEzt?(£,F) =3 E(za)F(za)

p A [loea-(1 —wty

where the characters of E(za) and F(z,a) are given by the formula (27), the
bar denotes the automorphism x — x~! of the character ring of the torus
and the rest of the notations are the same as in the trace formula (15).

(29)

For the ptoof it is sufficient to note that both parts of the formula are bilinear
in £and F in the Grothendieck ring of coherent sheaves on X. In the case
of the locally free sheves it is reduced to the ordinary trace formula (15).
Therefore it is valid in general.

Example 1.3.5 Torsion free sheaves on the projective plane.

For the projective plane we have an equivalence of categories:

. Triplets of compatible bifiltrations
(Torsion free sheaves on P2) (E"ﬂ(i,j), EP1(5, k), Bo(k, i) ) ,
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where the compatibility means that the following conditions hold

lim BG,5) = lim BM(j k)= B(j);

lim EP,k) = lim E™(k,i):= E"(k); (30)
j——00 1=+ =00

lim E@(k,i) = lim E(,j):= E(i).

—_—-00 j——00

We call the filtrations E*, EA, EY from (31) the limit filtrations of the triplet
E*P EPY Ev*. This relations give us a natural map from the moduli space
of the compatible bifilirations to the moduli space of filtrations:

(E*f,EPY, E") s (E°, EF, E).

On the level of sheaves £ this map corresponds to the minimal desingulari-
sation

8 — E‘!,

where £* is the bidual sheaf for £ which is in fact a vector bundle in the
two dimentional case. This desingularisation map play an essential role in
what follows. We shall normally try to separate the contribution to from the
vector bundle £** and from the singularity:

S =54 5P 4 v .= £~ /E,

which is a skyscraper sheaf with the stalks S*?, $%7, §7 in the fix points
Tof, Ty, e Of the torus T on P2,

For example the singularity S does not influence the first Chern class but
increases the second class and the discriminant:

a(€) = ai(E7), (€)= cz(E™) + dim S;
D(€) = D(£™) + 2rdim S. (31)

Subezample. Let us consider a toric torsion free sheaf £ of rank 1. The cor-
responding bifiltrations depend only on the discrete parameters dim L*#(, )
and may be represented by the following picture on the (2, 7)-plane:
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T T, T
|

The diagram D*P(L)  The diagram D*P(L**)  The singularity S°P

The polygonal line on the picture divides the plane on two parts, in one of
which dim L*#(4, j) = 1 and while in the other one the dimension is zero. The
first part contains the line and all points to the south-west of it. We will refer
to this line or to the whole picture as a diagram D°? of the rank one sheaf
L. The diagram of the bidual line bundle £** is the whole south-west angle
with the same asymptotic lines. The integral points between the diagrams
D*f(L) and D*#(L**) represent the spectrum of the torus representation in
the singularity stalk SP.

Let us return to a general torsion free toric sheaf £ of an arbitrary rank
r on P2. The restriction £*# of £ to the affine equivariant neighbourhood
Uas = P2\ X, of the fixed point z,s has an equivariant filtration

EFPSEP S .. DEP D0 (32)

with torsion free modules of rank one 7/ Ef’fl as composition factors. The
standard way to construct the filtration (32) of £ is to decompose the re-
striction of the bidual bundle £** to the affine space U,z in a direct sum of
the rank one modules and then to take the filtration of £%# induced by this
decomposition.

The set of this composition factors depends of the filtration (32). It follows
from the above construction that this filtration may be chosen uniformly for
all the sheaves £ with a given desingularisation £**, i.e. with given limit
filtrations (31).

Definition 1.3.6 The diagram of a bifiltration E*P(i, ) ts the set of dimen-

sions dim E*?(4, j) written down on (i,j)-plane. The display of a bifiltration
E°P is the set of diagrams of the rank one composition factors (32).
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It follows from this definition that the diagram of a bifiltration is a sum
of the rank one diagrams of its display. The display of a bifiltration E*#
allows also to reconstruct the relative position of its limit filtrations:

E°(s) = lim E°P(i,5); EP(j) = lim E°°(ij). (33)

J—+—00 1= —00

It is a good idea to picture the diagram of a bifiltration E*# with the fixed
relative position of the ”initial” and the final” limit filtrations E* and EP
as an oriented network on the (i,j)-plane with an indication which of the
horizontal input rays correspond to an output vertical ray. All the horizon-
tal edges of the network are oriented to the east and all the vertical ones
are oriented to the south with the balance of the input and output edges at
each vertex. The edges of the network divide the plane into regions with a
constant value of dim E*#(z, 7). The multiplicity of an edge is equal to the
difference of these dimensions on the right hand side and on the left hand side
of it. The display of a bifiltration is one of the way to decipher the diagram
i.e. to point out for each of the horisontal rays a specific path connecting it
with the corresponding vertical ray. May be the following comics may clarifiy
the situation and compensate for the poorness of my English.

T T T e
L _ _
T T Ty T Y
i

123 1 23

1 —

3 ; 3-*—xjj3—> AL‘H3
R N I e A O » %

1 2 3 1 2 3 1 2 3 1 2 3 2 3 1 2 3

This is the diagram of a bifiltration and all of its displays
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The first picture in this series is the diagram of a bifiltration of 3-dimensio-
nal space with the initial and the final filtrations in general position. Further
follow all displays which are compatible with this configuration of the limit
filtrations.

Now we can state the main technical result on the structure of the space
of bifiltrations with given limit filtrations. Let B(D, E*, E®) (respectively
B(A, E®, EP)) be the space of all the bifiltrations E*#(%, j) with fixed limit
filtrations E* and E* and a given diagram D (resppectively display A). Most
of the geometrical and topological properties of the variety B(D, E*, Ef) may
be deduced from the following stratification

B(D, E*, EF) = | | B(A, E*, EP), (34)
A

where the union is taken over all the displays A of the diagram D compatible
with the relative position of the limit filtrations.

Theorem 1.3.7 All the stratas B(A, E®, EP) are affine spaces. Hence (34)
gives us a cell decomposition of the space B(D, E°, EP).

Corollary 1.3.8 The Euler characteristic of the space B(D, E*, EP) is equal
to the number of displays of the diagram D compatible with the relative posi-
tions of the limit filirations E* and EP.

Thus the displays play in our theory the same role as the Young diagrams
in the Schubert calculus. To get an explicit formula for the stratas B(A)
and their dimentions one has to fix a reference filtration (32) on which the
definition of the stratas depends. It is a sheaf filtration, but the Glossary
explains that in fact it is determined by a complete filtration £® of the space
E which forms a split triplet with the limit filtrations E* and E®. There is
no canonical choice of this filtration. Nevertheless it is convenient to use as
a reference one of the limit filtrations if it is complete. Let it be the final
filiration £*. Then the decomposition (34) may be explained as follows. Let
us say that the factors

EVP(5, 5) .= E*P(i, )| E*P(i + 1,5)

El(k) := E*(k)/E*(k 4+ 1)
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of a bifiltration E°? and its limit filtration E®(k) = E*P(k,—00) are con-
nected in display A if a display’s line enteres vertically at the point (7, j) and

proceeds to (k, —oo) (see the first picture below).
Now the cell B(A, E*, EP) C B(D, E*, E®) may be described as follows:

bifiltrations E°P such that the factor EWIA(3, §)
B(A, E*, EP) = | has a nonzero projection in E)(k) if and only (35)
if these factors are connected in A

( the projection of A/B in C/D is CN(A+ D)/C N (B + D)). Let us
look once again on the previous picture, which begins with the diagram of
a bifiltration E°P of the three-dimentional space E. The diagram divides
(z,7)-plane into the pieces with equal spaces E*A(3, ). This spaces form the
following configuration on the projective plane P(E) with the limit filtrations
Po € lp and p,, € I, in general position.

k -
J
— 1o ly
I Po .
H b |21 Po Poo _
4P (i, 5) P2 -
J1 L Pa P2 I +
) ! l' /Pl p3\
oo Poo i i
Ex(k)r ! J

The design gives us a view of a general configuration with the above dia-
gram D. The cell (35) consists of configurations with a specific degeneration.
They are given (in the same order as the corresponding displays on page 23)
by the following table.

No . B(A) dim || No B(A) dim
1| po Flispr Eloos P Eloo | 3 6| L =lw;p2=pc #P3| 1
2| po Eli;pr Eloo; P2 Elog | 2 T h#lepp=p=ps | 1
3| PBP=Po EPsmEloo | 2 8| h=lw;ps=pec #p2| 1
4| h=lgpr#PoFps | 2 9| P2=P3=Poo; 1 € loo | 1
5 P Eli;pr Elooip €l | 2 | 10| h=luipp=p3=peo | 0

One can check straightforwardly that the stratas are indeed the affine spaces
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of dimension given in the table. Thus we obtain a Poincare polinomial
P(B(D)) = 1 4 4¢* + 4¢* + 5.

In general there is a simple combinatorial formula for the dimentions of
the stratas (35). To explain this formula we need a notion of the intersection
indez of two lines of display. It is illustrated by the last figure in the above
picture, where two lines [; and [; of the display are shown. Let us look at a
domain between the two lines. Such a domain has an orientation depending
of the side with respect to the line [; where it is situated. There are two
unbounded domains between lines. One of them unbounded on the left will
be called the initial domain , and the other one unbounded on the bottom
will be called the final one. We define the intersection indez as follows:

a number of bounded domains between lines l; and 1_,-)
whose orientation is opposite to that of final domain/”

Illd(l,', l_,) = (
This index is used in the following theorem.

Theorem 1.3.9 A dimension of the cell (85) is given by the formula

dimB(A, B, E?) = ¥ Ind(l,, 1;), (36)

t<J
(the summation is over all pairs of display’s line).

One may proceed as above to obtain formulae of the same type even if
the limit filtration £E¢ is not complete.

The space of bifiltrations B(D, E*, E®) may be reducible and may have
a singularity. For example if we use the diagram on the page 25 with the
initial and the final filtrations not in a general position, say lg = I, then
the space B(D, E*, Ef) will consist of two components intersected by line.
Nevertheless

Theorem 1.3.10 If the initial and the final filtrations E*, E® are in a gen-
eral position then for any diagram D the space of bifiltrations B(D, E°, EP)
is complete nonsingular irreducible variety (or empty).

It is very interesting to understand what happens when a configuration of the
initial and the final filtrations degenerates. The most surprising thing which
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may happen is that nothing happens at all. For example let us consider
the same diagram D as above but under stable degenerations of filtrations
represented on page 13. The first two of them do not change the pairwise
relative positions of the limit filtrations. Hence the space of bifiltrations
is not changes as well. But for degeneration of the third type a pair of
filtrations is not in a general position. Nevertheless if one writes down the
list of displays, similar to the one on the page 23, then it turns out that the
Poincare polinomial is the same as before. It seems that this is a special case
of a general phenomenon but I can prove it for rank three only.

Proposition 1.3.11 If dimE = 3 then the natural map from the moduli
space of stable compatible triplets of bifiltrations E*F, EPY, E7™ to the moduli
space of their limit filtrations is a fibre bundle.

To sum up we may say that the fix points M, (D)7 of the moduli space of
torsion free sheaves essentially coincide with the moduli space of compatible
triplets of bifiltrations. The desingularisation

EHE-*

corresponds on the level of filtrations to the map

(moduli space of compatible) moduli space of theirs limit) (37)
bifilirations E*P, EFY, B ltrations E*, Ef, E™

We have a complete information on the fibres of this map. For fixed
diagrams D°P, DB, D" of the bifiltrations E*#, EfY E7* the fibre splits in
the product

B(D*8, E*, E®) x B(D"", E®, E") x B(D™, E", E®).

Theorem 1.3.7 gives a cell decomposition of the factors. They depend only
on the diagrams and paiwise relative positions of the filtrations. Moreover
the map (37) is a fibre bundle over the space of triplets of filtration with
fixed pairwise relative positions, that is over the stratas of the decomposition
(21). Therefore the investigation of the invariant space M,(D)T to a great
extent may be reduced to the problem 1.2.6 of the description the stable
triplets of filtrations. In low dimentions no problem arises: for rank two
all components are points and for rank three all the components are either
points or projective lines (example 1.2.5).
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1.4 Moduli space of torsion free sheaves on P?

We are reaby now to explain the results mentioned in the beginning of the
paper. Let us start with the Euler characteristic of the moduli space M (D).

Theorem 1.4.1 Let M,(D) and M,(D) be the moduli space of the stable
vector bundles (respectively torsion free sheaves) of rank r and of discrimi-
nant —D = (r — 1)c? — 2rcy on the projective plane P2. Then their Euler
characteristic for any fized rank r satisfies the following identity

— 1
> XD = iy 3 MM(D)e”
(Dr)=1 n>0 (Dr)=1

The main part of the proof was outlined above. One start with the
relations

X(M(D)) = x(M.(D)"),
X(M-(D)) = x(M(D)").
Then we consider the minimal desingularisation £** of the torsion free sheaf
£ and its skyscraper singularity sheaf
S=E&"/E.
The discriminants of £ and £ satisfy the relation (31)

D(€) = D(E™) + 2r dim §

Now we make use of the interpretation of the invariants M, (D)7 as a moduli
space of compatible bifiltrations and of the corollary of theorem 1.3.7 to get
an equality

sheaves Ewith a fized desingularisation £ | = | Young diagrams contain-

Euler characteristic of the space of toric (a number of 3r-tuples o!)
and singularity £~ /€ of dimension d ing d cells all together

To comment on this formula let us note that the sheaf £ corresponds to
a triplet of bifiltrations E*?, EAY, E* with fixed limit filtrations E*, E®,
E”. A dimension of the singularity stalk S°f at a fixed point z,5 € P2 is
equal to the sum of singularity dimension of rank one factors of the reference
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filtration (32). In turn the singularity dimention dim $°? of rank one sheaf
L is equal to a number of cells in the corresponding Young diagram (it is
shown on the right picture on page 22). Thus the number of displays A®?
that corresponds to a singularity of dimension d®? is equal to the number of
r-tuples of Young diagrams with the sum of the areas equal to d*?. On the
other hand by the corollary of theorem 1.3.7 this number is equal to the Euler
characteristic of the space of bifiltrations |y B(D, E*, E®) with a singularity
of given dimension d*?. If we consider all the three fix points Zag, Zgy, Tva
we obtain the above equality.
Its left hand side gives us the Euler characteristic of a fibre of the map

M (D, d)T = M (D= 2rd)T; € — £, (38)

where M, (D, d)T ¢ M,(D)T denotes the subspace of sheaves with a singu-
larity of dimension d. The map (38) is in fact a fibre bundle. Therefore from
the multiplicativity of the Euler characteristic it follows

a number of Ir-tuples of Young dia-)
xX(M-(D) = ZX oD —2rd)) (grams containing d cells all together ’

This formula is equivalent to the assertion of the theorem. For vector bundles
of rank two the Euler characteristic of the moduli space is known [20]. Thus
we get

Corollary 1.4.2 The FEuler characteristic of the moduli space of torsion free
sheaves of rank two on P? satisfies the identity

1 oo
H(4n — 1)q¢"
n(q)° ; ( )
where n(q) = q% [I®°(1 — ¢") is the Dedekind 7-function and H(D) is the
Hurwitz class number (4).

W~

> x(Mhy(tn ~ 1))q™ =

As explained in section 1.1 to get further information on the moduli space
M, (D) we need to know

e the structure of the invariant components M,(D)T;

o the torus representation in the tangent space of each of the components.
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__As far as the first item is concerned the complete structure of invariants
M, (D)7 is known only for the small rank r.

Proposition 1.4.3 In the case of rank two each of the components of My(D)T
is a product of lines P! x ... x P!,

Really in this case the range of the desingularisation map £ — £** from the
moduli space of toric sheaves to the moduli of vector bundles is of dimen-
sion zero (c.f. example 1.2.5). As we have seen in the previous section the
components of the fibres of this map for any rank are of the form

B(D*5, E~, E®) x B(D®", E®, E") x B(D", E", E®). (39)

It is easy to check that for a two dimensional space E the space of bifiltrations
B(D, E*, EP) is a product of projective lines P(E) (a number of the factors
is equal to a number of restricted domains in the plane partition determined
by the diagram of a bifiltration ).

For rank three we also have an almost complete information.

Proposition 1.4.4 The components of Mz(D)T are either of the form (89)
or form a bundle over P! with fibre(89).

The proof follows along the same lines as in rank two case except that the
range of the desingularisation map £ — £** consists of points and lines (see
example 1.2.5). In the case of lines we have to use propsition 1.3.11.

As an easy corollary we obtain that all the components of the space
M;3(D)T, g.c.d.(D,3) =1 are rational. Makeing use of the Bialynicki-Birula
stratification, described in section 1.1 we get

Corollary 1.4.5 The moduli space .MIa(D), g.c.d.(D,3) =1 is rational.

In both this cases it is easy to find the Betti number of a component of
M;(D)T, (D,3) = 1. For rank two case a Poincare polinomial is of the form
(1 4+ t2)™. In the case of rank three the Poincare polinomial of a component
is the product that of the base and of the fibre, because one can not find
a place for nonzero differential in the spectral sequence for the bundle of
proposition 1.4.4. An odd Betti number of the fibre is zero and an even one
may be find from the cell decomposition of theorem 1.3.7 in conjunction with
the dimension formula of theorem 36. It seems that no explicit formula for
this Betti numbers exists.
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Let us turn to the second item, that is the torus representation in the
tangent space to the moduli M, (D) in T-invariant point. This represntation
gives us the degree shift in the Ginsbourg’s formula (7) relating cohomology
of M, (D) to the cohomology of M,(D)T.

The tangent space of the moduli space M, (D) in a point corresponding
to a toric torsion free sheaf £ is Ezt!(€,£). The character of this module
may be find from the trace formula of proposition 1.3.4 in conjunction with
the equalities (28).

Proposition 1.4.6 Let £ be a stable toric torsion free sheaf on P2 and E°P,
EPY, E"* are the corresponding bifiltrations. Then a character of the torus

representation in the tangent space to the moduli M, (D) at the point £ is
given by the formula

Eap)(zap)  E(2p)E(@pn)  E(24a)E(ge) (40)

C0-o0-n) (-mi-w) 0-20-2)

1

where we suppose that the torus T consists of diagonal matrices diag(wy, wg, wy),
the bar denote an automorphism of character ring induced by x — x~ ', x € T
and the representation in the "fibre” £(z) of a fized point = is given by the
Jormula (27):

-5 (2) (2) amotc

W \%y Wy

For practical purposes it is conveniant to share out the contribution in the
spectre the sheaf singularity at each fix point. This may be done by make
use of the proposition both to a sheaf £and to its desingularisation £**:

Ect(€, &) = Ext' (£, 6™)+ (41)
5 wawpg e (1_wa)(;_ws)g 3
Sanlo0g) + 2 250pE(zan) = (1= 22) (1= 2) S2gSun +
Sp+€(zpy) + ﬁisaﬁg(mm) - (1 - i) (1 - i) SpvSpy +
s wrvag o (1) (1-%) 5.3
Syal(Tya) + wp wg Svya€(Zra) (1 wﬁ) (1 wp) SoaSnas
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where S, is the stalk of a singularity sheaf S = £**/£ at the fixed point z,g.
Thus we have an explicit formula for a spectrum of the torus representation
in tangent space of the moduli M, (D) at a fix point of the torus 7. Then we
may combine it with the above information on invariant components M, (D)
and Ginsburg’s formula (7) to find the cohomology of M, (D).
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