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Abstract

lLet M be a noncompact 4-manifold with at least two open ends. Suppose that
one of these ends is homeomorphic to N X R, where N is an oriented 3-manifold
satisfying one of the following conditions:
(i). m (V) is an extension of free group by a perfect normal subgroup.
(). Hi(N)=Z Z/m & ---® Z/ng, k < 4, and the link form of N is isomorphic to
(111_;)@ : @(;1:) where each n;, 1 < ¢ < k is a product of primes which are 1(mod4).
(in). FJi(N)=2 Z/n @ -® Z/ng, k € 2and n;,1 <@ <k, is a power of a prime
which are 3(mod8).
Then there exist uncountably many different smooth 4-manifolds which are home-
omorphic to M.

0. Introduction

The most striking fact of 4-manifolds different from all other dimensions is the existence
of an exotic R?%, a smooth 4-manifold homeomorphic to R* but not diffeomorphic to it.
The first example [8] was pointed out by M.Freedman in 1982 which follows from Don-
aldson’s Theorem|[3] on the nonexistence of closed, smooth 4-manifold with nonstandard
definite intersection form, together with Freedman’s 4-dimensional topological surgery
theory. Subsequently, R.Gompf[9] proved there are infinite many different smooth mani-
folds doubly indexed family {Rum .} o which are all homeomorphic to R*. Donaldson’s
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Theorem was generalized by Taubes[16] to the case of open 4-manifolds of end-periodic,
this leads to construct uncountably many different smooth structures on R%. Freedman
and Taylor[6] proved that there exists a universal exotic R* which includes all others as
a smooth submanifold. [t is conjectured that this smoothing can not be embedded into
any smooth compact 4-manifold. More recently, DeMichelis and Freedman [1] proved
that there exist uncountably many different smooth structures on R* embeds in to R*
smoothly. On the enumeration problem of smooth structures on open 4-manifolds with
nontrivial homotopy type, R.Gompf [10] proved that any punctured four manifold admits
uncountably many smooth structures. Gompf mentioned in [10] that it is plausible to
make a conjecture, namely, every open 4-manifold admits uncountably different smooth
structures. In this paper, we shall address to verify this in some cases.

Theoerem A. Let M be a noncompact 4-manifold which possesses at least two
open ends and one of them is homeomorphic to N x R where N is an oriented closed
3-manifold. Suppose that M has an end collared by N x R where N is an oriented closed
3-manifold. Then there are uncountably many different smooth structures on M if N
satisfies one of the following:

(1). mi(N) is an eztension of a free group by a perfect normal subgroup.

(it). H\(N) = Z/ny @ - @ Z/ng, k < 4, and the link form of N is isomorphic to
(nl_l) oD (1—111") where each n;, 1 <1 <k is a product of primes which are 1{mod4).
(iti). HI{(N) 2 Z/ni @ - ® Z[ng, k <2 and n;,1 <1< k, is a power of a prime which
are 3(mod8).

In particular, N x R admits uncountably many smooth structures if V satisfies the
above assumption.

1. Embeddings of 3-dimensional rational homology spheres

In M.Freedman’s fundamental paper [4], he proves that every homology 3-sphere embeds
locally flat into the 4-sphere. In the smooth category, it is much different. In fact, it
is known for some years [11] that there are infinite homology 3-spheres which can not
be embedded smoothly into 4-space. As remarked in [11], the same method applies
to get infinite many examples which can not be embedded into any simply connected
smooth closed 4-manifold with positive definite intersection form. Generally, rational
homology sphere can not be embedded into the 4-sphere locally flat even in the topological
category(c.f [12]). In this section, we are addressed the study of when a 3-dimensional
rational homology sphere embeds locally flat into a positive definite closed 4-manifold. In
particular, we will handle with the problem of when a 3-dimensional rational homology
sphere can be embedded into the connected sum #7CP? locally flat. This particular
result may be used to prove Theorem A advertised in the introduction.

Theorem 1.1. Let M be a 3-dimensional rational homology sphere. Then M em-
beds locally flat into a simply connected closed 4-manifold with positive definite intersection



form if one of the following condilions holds true:
(ii): M = N#(=N).

The idea to show the theorem is to construct two simply connected 4-dimensional
topological manifolds with boundary M and —AM and with positive definite intersection
forms respectively. Gluing them together along the boundary one can obtain a desire
simply connected 4-manifold with positive definite intersection form and the proof can be
done.

The Lens space La(k) and S°/Q(8k) embeds in #7C P? smoothly as the circle bun-
dles over $% and RP? respectively for n large enough. It is natural to ask when a 3-
manifold embeds in  #7C P? locally flat. Unfortunately it is very hard to control the
intersection form of the 4-manifold constructed in the proof of Theorem 1.1. Thanks to
J.Conway and N.Elkies for informing me some results on integral lattice relevant to this
question. As an example, we give the following partial result which will be used to prove
Theorem A. We remark that, by the proof one can get some more result along the same
method.

Corollary 1.2. Let M be a 3-dimensional rational homology sphere. Suppose that
H{(M)= Z/ny & @ Z/ny, where k < 4. Then M embeds into #3*C P? if one of the
following conditions holds:

(1) The link form of M is isomorphic to (;ll-) oD (;f;) where eachn;, 1 <1<k isa
product of primes which are 1{mod4).
(2) k <2and n;, 1 <i<k, isapower of prime which are 3(mod8).

Let M be a 3-dimensional closed oriented manifold. Recall that the linking form of
M is a symmetric nonsingular bilinear form

o tor Hy (M) x tor (M) = Q/Z

defined by Poincare duality(c.f. [17]). By [13], any symmetric nonsingular bilinear form
over a finite group can be realized as the linking form of a 3-manifolds. It is often
convenient to identify a linking form (G, ¢) with a matrix which represents ¢ relative to
the generators of a cyclic splitting of G.

Asin [17], write N and N, for the monoid of isomorphism classes of finite groups and
finite p-groups with linking forms, where addition is defined as orthogonal sum. Recall

Theorem (Wall 1962). The monoid N is the direct sum of N,. For p odd, N, has
generators A%, BE(k > 1) and the sole relations 2A7 = 2By, The generators of Ny are
AS, Ef(k > 1), Bi(k > 2), Ff(k > 2), C§, D5 (k > 3); where A} = (%), By = (%)
and a is a positive inleger such that the Jacobi symbol (%) = —1 if p odd. A§ = (5),
By =(z)ifk22;



Ch= (%), Ds=(~%)ifk>3

0 2—1: _ 21-—-1: 2}:
Ek=|:2_.k 0 ]1 sz.: Qk Qlwk]
Let H be a free abelian group of finite rank n with a basis e;,---,e,. Write S for

a nondegenerate n X n matrix over integer. S gives a monomorphism of H to H whose
quotient group G is of order detS. From S one obtains a unique linking form ¢g over G
such that ¢s(e;,e;) = aij, where a;; is the (z,7)-entry of S™'(modZ). We say that S is
a presentation of the linking form ¢. Recall that every linking form over a finite abelian
group can be captured in this way.

We say symmetric matrices over integer S, and S, are closed related if there exists
a unimodular integer matrix P such that

PSi@(x£1)®---@(£INP 25,8 (x])d -8 (£1).

A fundamental theorem of Kneser-Puppe[l4] says that S; and S, are closed related if and
only if they present isomorphic linking forms.

Lemma 1.4. FEvery link form over a cyclic p-group(where p is a prime) can be
presented by a positive definite matriz.

Before proving this lemma we first complete the proof of the Theorem 1.1.

Proof of Theorem1.1. By the Wall’s Theorem, if the condition (i).holds, the
linking form (H1(M), éar) can be written as the direct sum ¢ @ - - @ ¢, where ¢; (1 <
t < n) are all linking pairings over a cyclic group ol order p;, here p; denotes an odd
prime. Note that M bounds a 4-dimensional oriented simply connected manifold V. The
intersection form [y of V is a presentation of ¢yv. By lemma 1.4, ¢as has a presentation
S1®--- &S, where 5y, ---, S, are positive definite matrices over integer. Generally, if
M is a 3-dimensional rational homology sphere. Suppose that the 2 torsion subgroup
of H (M) is isomorphic to Zyi, @ -+ & Zyi,. We want to show that the link pairing of
om @D (%1) @ - ® (5i7) can be presented by a positive definite matrix. By lemma 1.4

and Wall’s Theorem above, we need only to consider the case that the 2 torsion part of
¢um consists of the direct sum of at most [£] terms which are either Fji; and Ey; of N,.
When k is even, say k = 2r, the matrix
2"'_‘3‘-!-_1 b 0
b 4b 22r+l
0 27+l 3p

is a positive definite matrix over integer to present [« where b = ﬁ. By [13],



E,. ® (3857) = Fyx @ (5857)- The identity

1 0 1 0 2 o 1 =1 0 20 0
-1 1 -1 20 0 0 1 -1]=|0 =2t ¢ |.
0 -1 1 0 0 2% 1 =1 1 0 0 2*

shows that Ey @ (35) = (35) @ (35) @ (5¢). Thus ¢y & (i) @ - @ (5;) is equivalent
to direct sum of linking forms over cyclic groups. Applying lemma 1.4 again it can be
presented by a positive matrix. Note the lens space Lyx has the link form (g¢). Therefore
the linking form of M#La(2)4 - -+ #L3(2%) is isomorphic to ¢ur @ (;}—l) @ D (30)-
If (i) does not hold, we use M# Ly(2)# - - - #L3(2%) to instead of M and still use V to
denote a simply connccted manifold with boundary M# L,(27)# - - - #£ La(2%).

=

The Kneser-Puppe’s Theorem [14] says that Iy and S| & --- @ S, are closed related
and so there are positive integers k, [, m and ¢ such that

vdk(+D)@l(-1) 2S5 & -85, dm(+1) P q(—1).

We may assume m > 1. By Freedman [4] there is a simply conncted manifold V' such that
V'd(m — 1)C P¥#q(—C P?) is homeomorphic to V#kC P*4#l(—C P?). The intersection
formof V'is S1 @ .- ® S, @ (1) which is positive definite.

For the same reasoning, we can obtain another oriented simply connected 4-manifold
W' with boundary —M /(—M)#(—Ls(21))# - - #(—L3(2'*)) and possessing a positive
intersection form. Let X = V' Uy W’. Tt is a simply connected closed 4-manifold with
positive definite intersection form. M /M L3(2 4 - - # L3(2'%) is a locally flat embedded
submanifold as the boundary of V’. In the second case, note that M — int D* embeds into
X locally flat and so the boundary of this embedding, M#(—M) embeds in X locally flat
too. This ends the proof. ¢

Proof of Lemma 1.4. Case (i). p = —1(modd); As (‘Tl) =-—1.
The linking pairing (;ly;) is not isomorphic to (—51,5). The former is presented by the 1 x 1
matrix (p*). And (—;‘;) is presented by the (p* — 1) x (p* — 1) positive definite matrix

2 1 1 !
1 2 1 1
A=11 1 2 1
L 1 1 2



whose determinant is p*. Over rational numbers A is congruent to the diagonal matrix

2

L] ]

(XIS

k

pﬁ—l
The matrix A presents the link form (ﬁf—) as the diagonal element of its inversion are all
k-1
B

Case (ii). p = 1(modd);
Note now (?{—) and (;‘;) are equivalent. So we need only to consider the form () where
a is not quadratic residue. Let n be the minimal positive prime not residue mod p. We
can present (fg) by a positive definite matrix over integer constructed from the Euclidean
algorithm, using the fact
1 = ndy —phd;
di = aid; —ds

di1 = ai1d; =1
di = a;

The matrix B~" is a positive definite matrix over integer presenting the link form (f;)
where

np™ 1 0 -0 1
1 ay 1 -0 0
B = 0 1 a ---0 0

Note the arguments in case (i) and (ii) apply identically to show that Az, Box and Cox,
Dgyx can be presented by positive definite matrices. This completes the proof. {

Proof of Proposition 1.2. I (1) holds, the link form (5-) & -+~ & (5;) and
(1)@ - () are equivalent as the Jacobi-Legendre symbol (S+) = 1 for every prime p =
1(rmod4). For a simply connected 4-manifold V' with boundary —M, its intersection form
is closed related to (n;) ®- - - @ (nk). This is of odd type. By [5] 10.3, V is homeomorphic
to the connected sum of a closed simply connected manilold and a compact manifold with
boundary —M with intersection form isomorphic to (1) & --- @ (nx). As in the proof of
Theorem 1.1 we can obtain an embedding of M in a simply connected closed 4-manifold
X whose intersection form is positive definite of rank 2k < 8. Note that each positive
definite unimodular form of odd type over integer and rank not excess 8 is canonical. Thus

X is either 2kC P? or (2k — 1)C P*# x C P?, where *C P? is the manifold with the same



homotopy type of C P? but nontrivial Kirby-Siebenmann obstruction. *C P x C P? is
homeomorphic to 2C P2. If X is (2k — 1)C P?# » C P?, we may sum *C P? to X and get
the canonical (2k + 1)C P? and M embeds in (2k + 1)C P? topological locally flat.

In the case (2), the symbol (%) = —1 if p = 3(mod8). Note that (r%) has a presen-

2
tation of odd type positive definite matrix ( I le-tL or ( ‘; r]_H ) by r even or odd.
4

Thus M can be embedded into a 4-manifold X with positive definite intersection form
of rank 3k < 6 and hence is standard. The rest of the proof is similarly. This ends the
proof.

2. Embeddings of 3-manifolds with torsion free homology group

This section is devoted to discuss the problem of when a 3-manifold M with H,(M)
torsion free can be embedded into a positive definite 4-manifold. This is relavant to the
cobordism problem of links. The situation now is much complicated and seems hard to
obtain a complete answer.

Let K C S be a knot. Performing framing zero surgery on S° one get a manifold
Mg with the homology of S! x S§%. Tt is easy to show that My embeds into S* if K is a
slice knot, and conversely if M embeds into S$* the knot K is slice in a homology 4-ball,
hence is algebraically slice. So M can not be embedded into S* topologically where K is
the trefoil knot. The analogue relation holds true for link instead of knot. The following
proposition shows that each smooth/topologcal link is smooth/topological slice in the
connected sum D*#(#7C P?) for n large. However, those embedded disks extending the
link does not always give the zero framings. This can not produce an embedding of the
manifold resulted from the zero framing surgeries on a link.

Proposition 2.1. Let L C 83 be a smooth/topological link. Then L is smooth/
topological slice in D*#(#7C P?) for n large.

Proof.Let L be a link with & components Ly, -+, Lr. 1t is easy to see that there
are k generic immersed discs Ay, - -+, Ag in D* with boundary the link L. Note that there
are two embedded 2-spheres S7 and S7 in CP? which intersects in one ponit. For each
double point A of A;, the connected sum A;#5% C D'#C P? is a generic immersed disc
which intersects S? in one point. By the technique of [7] we can remove A and keep all
other double points and intersection points fixed. Proceeding this program we can get a
slice for the link L in DY4t(#7C P?) for n large. This ends the proof. ¢

Recall [5] showed that a knot K C 5% is Z-slice(i.e. the complement of the embedded
disc in D* has Z as the fundamental group) if and only if the Alexander polynomial
A(K) = 1. In this case the manifold My embeds locally flat in S%. By using the C P*-
stable surgery we conclude that



Proposition 2.2. Let M be a closed orviented 3-manifold. Assume that the funda-
mental group m of M is an exlension of free group by a perfect normal subgroup. Then
M embeds into nC P? locally flat for n large enough.

Proof. By [5] 11.6C, there is a Poincare pair (X,Y) where X ~ v¥St and Y ~ M
which is unique up to homotopy. Moreover there is a degree one normal map f : (W, M) —
(X,Y), where (W, M) is a manifold with boundary. The C P?-stable surgery theory [7]
applies to show that (W#(#7CP?), M) is normal cobordant to a pair (W', M) which is
simple homotopy equivalent to (X#(#7C P?),Y) for some n. Note that the intersection
form of (W', M) is n(1). By surgery it is easy to get a simply connected spin manifold V
with boundary M such that Hy(M) — H,(V) is an isomorphism. Gluing V and W' along
the boundary we obtain a simply connected 4-manifold with intersection form n(1). This
gives an embedding of M in this manifold. By Freedman([4], this manifold either nC P?
or (n — 1)C' P*# % C P2 If the latter occurs, we sum *C P? to it and obtain (n + 1)C P2
This completes the proof.

If L C S is a good boundary link with n-components, i.e, there is a homomorphism
of the fundamental group of its complemnet to the [ree group of n-letters with perfect
kernel so that the image of the linking circles forms a set of generators. The framing zero
surgeries on L gives a manifold My, whose fundamental group is an extension of free group
of n-letters by a perfect normal subgroup. By Proposition 2.2 My, embeds into nC P? for
n large enough.

3. Proof of Theorem A

In this section, we shall give the proof of the result advertised in the introduction.
Our strategy to show this theorem is to construct certain open 4-manifold with periodic
ends in the sense of Taubes. We refer to Taubes [16] for the detailed definition of end-
periodic. Recall the following generalization of Donaldson’s Theorem.

Theorem.(Taubes) Let M be a smooth sumply connected open end-periodic 4-manifold.
If the intersection form of M is definite, then it can be diagonalized over integer.

In [2], using the same method of Gompf [9] which is used to produce two parameters
family of uncountably many exotic R*, Ding claimed that, if M is a noncompact 4-
manifold with at least two open ends and one of them is topological collared by N x R,
where N is a closed oriented 3-dimensional flat submanifold of nCP?, then there are
uncountably smooth structures on M. The proof of Theorem A follows from this claim
and corollary 1.2, proposition 2.2. For reader’s convenient, I include this details here.

Proof of Theorem A: By corollary 1.2 and Proposition 2.2, under the assump-
tions, N can be embedded into nC P? as a flat submanifold for n large. First we are



going to show that there are uncountably many exotic structures on N x R. Note that
N x R is a submanifold of nC P2 Let 5 : N x R < nC P? be the inclusion. Endow nC P?
with a canonical smooth structure. N xR has an induced smooth structure from 7. By
Quinn[15], we may assume that the smooth structure on N x R is canonical near z x R,
where z € N is a fixed point. Let R, be an exotic R' whose end is diffeomorphic to
|Fs & (1)] — pt, where |Fg @ (1)] is a simply connected closed 4-manifold with the inter-
section form Fg @ (1), where [g is the positive definite unimodular form over integer with
rank and signature are both 8. Notice that, by Quinn[15], |Es @ (1)] — pt is smoothable.
We should understand that it has an endowed smooth structure. Let R, = intB,, B,
is the topological ball of radius s. For s large, namely, s > rg, R, is a family of exotic
R* which are pairwise different(c.f: Taubes[16] or [9] for the details of this construction).
Let X, denote the open 4 -dimensional submanifold of |F5s & (1)| — pt with the same end
as R, by cutting a cyclinder along infinity.

Now we want to show that N x RjR, and N x RfR,are not diffeomorphic if s # 1,
s,t > ro. Obviously N x RiR, = N x R for all s. Thus we obtain uncountably many
exotic structures on N x RjR, and the claim is proved.

Suppose not, then there are reals, namely s < ¢, N x RiR, and N x RjR;are
diffeomorphic. We have therefore an embedding smoothly ¢ : R, — N x R4R, —
N x RhR, — nCP?%tR,. One should note that here R; is embedded into the target
manifold with a compact support. Let € be a small real so that { —e¢ > s — € > rg. Let
V = nCP*# Ry — g(B;-). Notice that V is a open manifold and two ends of V are both
diffeomorphic to intB; — B,_.. By the same method ol [9] or [16], one may construct
an end periodic manifold, namely W through splicing X, with infinite many copies of V
along the ends. Notice that the intersection form of W is Eg @ (o, here o denotes
the direct sum of infinite copies of (1). This contradicts with Taubes Theorem mentioned
before. This proves that N x R admits uncountably many smooth structures.

Now let M be a 4-manifold with at least to open ends and one of them, namely ¢ is
topological collared as N x R, where N satisfies the assumption in the theorem. Put the
induced smooth structure on N x R as above. By Quinn[15] this smooth structure can
be extended to M. Now we may understand M as a smooth manifold. We can form the
end sums MyR, for all s > ry along the end €. Note that MiR, are all homeomorphic
to M. Thus we get a family of smooth manifolds which are homeomorphic to M but the
collection of the ends of the manifolds in this family is a uncountable set. Notice that
there are at most countably many different ends for every smooth manifold with countably
base. Thus the collection {M{R,,ro < s} are uncountably up to diffeomorphism. This
completes the Theorem A.
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