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Abstract

Let M bc a noncompaet 4-manifold with at least two open cnds. Suppose that
one of these ends is homeomorphic to N X R, where JV is an oriented 3-manifold

satisfying one of the following conditions:
(i). 1fl (N) is an extension of free group by aperfeet normal subgroup.
(ii). H 1(N) 2=' Zlnl EB ... EB Zink, k ~ 4, and the link form of N is isomorphie to

(~l )EB" 'EB(n1k) where eaeh ni, 1 ~ i ~ k is a prodnct or primes which are 1(mod4).
(iii). HdN) 2=' Zlnl EB ... EB Zink, k ~ 2 and ni, 1 ~ i ~ k, is apower of a prime

which are 3(mod8).
Then there exist uncounta.bly many different smooth 4-manifolds which are horne­

omorphie to M.

O. Introduction

The most striking fact of 4-Inanifolds different frolll all othcr diIncnsions is the existence
of an exotic R 4 , a smooth 4-manifold homeomorphic to R 4 hut not diffeomorphic to it.
The first cxample [8] was pointed out hy ~.FrecdI11an in 1982 which follows from Don­
aldson's Theorem[3] on the nonexistence of closed, SD100th 4-Inanifold with nonstandard
definite intersection form, together with Freedman's 4-diIllensional topological surgery
theory. Subsequently, R.GoInpf[9] proved there are infinite many different smooth mani­
folds doubly indexed faDlily {Rm,n}~,n=O which are all hODleomorphic to R 4

. Donaldson's
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Theorem was generalized by Taubes[16] to the case of open 4-manifolds of end-periodic,
this leads to construct uncountably many different SI1100th structures on R4. Freedman
and Taylor[6] proved that there exists a universal exotic R 4 which includes all others as
a smooth suhmanifold. lt is conjectured that this sl1100thing can not be embedded into
any smooth compact 4-lnanifold. More recently, DeMicheiis and Freedman [1] provcd
that there exist uncountably many different slnooth structures on R 4 embeds in to R 4

slnoothly. On the enumeration problein of sl1100th structllres on open 4-Inanifolds with
nontrivial homotopy type, R.Gompf [10] provcd that any punctured foul' Inanifold admits
uncountably many smooth strllctures. Gompf mentioned in [10] that it is plausible to
make a conjecture, namely, every open 4-manifold adlnits llncountably different smooth
strllctures. In this paper, we shall address to verify this in some cases.

Theoeren1 A. Let M be a noncompaet 4-manifold which possesses at least two
open ends and one of the'Tn is homeomorphic to lV X R where lV is an oriented closed
3-maniJold. Suppose that M has an end collared by I\T X R where N is an oriented closed
3-maniJold. Then there are uncountably lnany different slnooth stTlLetuies on At if N
satisfies one oJ the following:
(i). 71'"1 (N) is an extens1:on oj a jree g1'OUp by a perjeet norrnal subgroup.
(ii). H1(lV) ~ Zlnl EB ... EB Zink} k ::; 4, and the link form 01 N is isomorphie to
(~1 ) ffi ... EB (n1k) where each nj, 1 ::; i ::; k is a prod7let 01 p7'imes which are 1(mod4).
(iii). H1(N) ~ ZInl EB ... EB Zink} k ::; 2 and nj, 1 ~ i ::; k, is apower 01 a prilne which
a,e 3(mod8).

In particular, N x R adlnits uncountably Inany sInooth structures if lV satisfies the
above assumption.

1. Embeddings of 3-din1ensional rational homology spheres

In M.Freedulan's fundanlental paper [4], he pl'oves that every hOInology 3-sphere embeds
locally flat into the 4-sphere. In the smooth categol'Y, it is much different. In fact, it
is known for some years [11] that there are infini te hOlllOlogy 3-spheres which can not
be embeclcled smoothly into 4-space. As rcmarked in [11], the same method applies
to get infinite many exaInples which can not be elnbedded into any simply connected
smooth closed 4-manifold with positive definite intersection fonn. Generally, rational
horTIology sphere can not be embedded into thc 4-spherc locally flat cven in the topological
category(c.f [12]). In this section, we are addressed the study of when a 3-dimensional
rational hOITIology sphere embecls locally Bat into a positive definite closed 4-manifold. In
particular, we will handle with the problem of when a 3-dilnensional rational homology
sphere can be embeddccl into the connectecl surn #T"C p2 locally Bat. This particular
result may be used to prove Theorem A advertised in the introduction.

Theorem 1.1. Let M be a 3-dimensional l'ational homology sphere. Then M ern­
beds locally flat into a sirnply connected closed 4-'TnaniJold with positive definite interseetion
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form if one 0/ the following condilions holds true:
(i): H1(lvI) 0 Zz = O.
(ii): M =.N#(-N).

The idea to show thc theorenl is to construct two SiIDply connected 4-dimensional
topological manifolds with boundary M and - fit, anel with positive definite intersection
forms respectively. Gluing theID together along the boundary aue cau obtain adesire
simply connected 4-Inanifold with positive definite intersection fonn anel the proof can be
done.

The Lens space L3(k) and 53/Q(8k) embcels in #'tC p2 Sllloothly as thc circle bun­
dies over 52 and Rp2 respectively for n largc cnough. It is natural to ask when a 3­
manifold eInbeds in #70 p2 locally flat. Unfol'tunatcly it is very hard to control the
intersection form of the 4-manifold constructed in the proof of TheorcID 1.1. Thanks to
J .Conway and N.Elkies for informing me some rcsults on integrallattice relevant to this
question. As an exalnple, we give the following partial rcsult which will be uscd to prove
Theorem A. vVe reIDark that, by the proof one ean get same more result along the same
method.

Corollary 1.2. Let 1'1 be a 3-dimensional rational ho'mology sphere. Suppose that
H 1(M) ~ Z / nl EB ... EB Z / nk where k ~ 4. Tlten M c'lnbeds info #rkC p2 if one of the
Jollowing conditions holds:
(1) The h:nk form of M l:S isomo1'phic to (:\ ) EB ... EB C;,,) where each ni, 1 ~ i ~ k 1.8 a
prod71ct of primes which are 1(mod4).
(2) k :::; 2 and ni, 1 ~ i :::; k, is apower 0/ pri-fne which are 3(rnod8).

Let A1 be a 3-dimensional closed orientecl tnanifolcl. Recal! that the linking fOrIn of
M is a syolI11etric nonsingular bilinear fonD

defined by Poincare dual ity(c.f. [17]). By [13], any synll1letric nonsingular bilinear form
over a finite group can be realized as the linking fonn of a 3-manifolds. lt is often
convenient to identify a linking form (C, eP) with a 11la.trix which represents r./> relative to
the genera.tors of a cyclic splitting of G.

As in [17], write f.l anel lVp for the monoid of isoolorphism classes of finite groups and
finite p-groups with linking fonns, where addition is defined as orthogonal sumo Recall

Theorem (Wall 1962). Thc monoid N is the rlircct SUln of Np. F01' p odd, Np has
generators A;, B; (k 2:: 1) and thc sole 1'elations 2A; = 2B;. The generators 0/ N2 are
Ak Ek(k> 1) Bk(k > 2) Fk(k > 2) Ck f)k(k> 3)' whel'e Ak = ( 1) Bk = (a)2' 2 - , 2 - , Z - , 2) 2 -, p ~'p PF
and a is a positive integer such l.hat the Jacobi symbol (~) = -1 if p odd. A~ = (~),

Bk = (-1) tf k > 2'z 2F -,
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Let H be a free abelian group of finite rank n with a basis eI,"', en . Write S für
a nondegenerate n x n Illatrix over integer. S gives a monomorphism of H to H whose
quotient group G is of order detS. From Sone obtains a unique linking fornl <Ps over G
such that <ps(ei,ej) = aij, where aij is the (i,j)-entry of S-1(1TIodZ). We say that S is
a presentation of the linking form <p. Recall that every linking fonn over a finite abelian
group can be captured in this wa.1'.

We say s.1'mlnetric matrices over integer 5. and 52 are closed related if there exists
a unimüdular integer matrix P such that

P(SIEB (±1) EB ... EB (±1))p' ~ S2 EB (±1) EB ... EB (±1).

A fundamental theorem of Kneser-Pllppe[14] says that 81 a.nd S2 are closed relaied if and
onl.1' if the.1' present isomorphie linking forms.

Lemma 1.4. Every link form over a cyclic p-g'l'oup(where p is a prirne) can be
presenied by a positive definite matrix.

Before proving this lemma we first eomplcte the proof of thc Theorem 1.1.

Proof of Theorel111.1. By the Wall's l'heorCln, if the conditiol1 (i).holds, the
lil1king form ([fi (AI), ePM) ean be written as the direet SUlll 4>1 ffi ... ffi <Pn where <Pi (1 ~

i ::; n) are all linking pairings over a eyclie group of order pi;, here Pi denotes an odd
prime. Note that M- bounds a 4-dimensional ol'iented silnply connceted manifold 1/. The
interseetion form Iv of \I is a presentation of <pv. By lemma 1.4, <PM has a presentation
51 ffi ... EB Sn where SI, "', 5n are positive definite Illatl'iees over integer. Generally, if
M is a 3-dimensional rational homology sphere. Suppose that the 2 torsion subgroup
of HI(M) is isomorphie to Z2il EB ... EB Z2ik' "Ve want to show that the link pairing of
<PM EB (-~ ) EB ... E9 (2~k) ean be presented by a posi ti ve definite Inatrix. By lemma 1.4

'2'1

and Wall's Theorem abovc, we need only to eonsider the case that the 2 torsion part of
ePM eonsists of the direet SUlTI of at most [~] tenns whieh are either F2ij and E2ij of N2.
When k is even, say k = 21', the matrix

o )22r+1

3b

1S a positive definite Inatrix over integer to present F2k where b

4
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E21c EB (~) ~ F21c EB (~). Thc identity

(~1 J1 ~1) (2; 2i ~k) ( ~ '!~ ~i ) = (2i _gk ~k)'
shows that E2k EB (~) ~ (~) ffi (~) ffi (~). Thus <PM EB (~) EB ... EB (2~1c) is equivalent

2 11

to direct sum of linking fonns over cyclic groups. Applying leIllma 1.4 again it can be
presented by a posi ti ve matrix. Note the lens space L2k has the link form (~). Therefore

the linking fonn of M#L3(2 i1 )# ... #L3(2 ik ) is isomorphie to cPM EB (~) EB ... EB (2!1c ).
. 2'1

If (i) does not hold, we use NJ#L3 (2 i1 )# ... #L3 (2 ik ) to instead of NI and still use V to
denote a simply connccted Inanifolel with bounclary fd#LJ (2 i1 )# ... #L3 (2 ik ).

The Kneser-Puppe's Theoretn [14] says that Iv anel S\ EB ... EB 5'n are closed related
and so there are positive integers k, l, 1H and q such that

Iv ffi k(+1) EB l( -1) ~ 5'1 EB ... EB 5'n EB 1n(+1) EB q( -1).

We may assuIne m ;::: 1. By Freedman [4] there is a sinlply connctccl manifold V' such that
V'#(m - l)C P2#q(-CP2) is hOIneOInorphic to V #kC P2#1(-CP2). The intersection
form of V' is 5'1 EB ... EB 5'n EB (1) which is positive definite.

For the same reasoning, we can obtain anotber oriented silnply connected 4-manifold
W' with boundary - M / (- M)#( - L3(2i1 ))# ... #( - L3 (2ik )) and possessing a positive
intersection form. Let X = \/' UM W'. Tt is a simply connected closed 4-manifold with
positive definite intersection form. M / M-#L3 (2 i\)# ... #L3 (2 ik ) is a locally flat cmbedded
submanifold as the boundary of V'. In tbe seeond case, note that i)1 - intD3 embeds into
X loeally flat and so the boundary of this enlbcclding, M#(-M) Clnbcds in X locally Hat
too. This ends the proof. <>

Proof of Lemlna 1.4. Case (i). p = -1(1HOd4)j As (-I) = -1.
p

The linking pairing (:1) is not isomorphie to (- -:1). 'fhe fonnet' is presented by the 1 x 1
p p

matrix (pk). And (-::\-) is presented by the (pk - 1) X (pk - 1) positive definite matrix
p

2 1 L 1
1 2 ] '1

A= 1 1 2 '1

.1 1 2
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whose detefIl1inant is pk. Over rational nUillbers A is congruent to the diagonal matrix

2

i
3

The matrix A presents the link form (?-) as the diagonal element of its inversion are all
pk;l.

P

Case (ii). p = 1(mod4);
Note now (~) and (:;\-) are equivalent. So wc neeel only to consider the fonn (:1-) where

p p p

a is not quadratic residue. Let n be the minimal positive prinlc not residue ruoel p. We
can present (:?r) by a positive definite Inatrix over integer constructed from the Euclidean

p

algoritlul1, using the fact
nd1 - ]id2

(lld2 - d3

(li-l di- 1
(Li

The matrix B-1 is a positive definite matrix over integer presenting the link form (:?r)p

where
np-k 1 0 .. ·0 I

1 al 1 ···0 0

B= 0 1 (l2 ···0 0

0 0 0 .. ·1 (Li

Note the arguments in case (i) and (ii) apply identically to show that A2k, B2k and C2k,

D2k can be presentcd by positive definite matrices. This completes the proof. <)

Pr?of of Proposition 1.2. lf (1) holels, the link fornl (n\) EB ... EB (~k) and

(:\1 )61' . '61( :~) are equiva.lent as the Jacobi-Lcgendre sYlnbol (~I) = 1 für every prime p =
1(1nod4). For a siInply connected 4-manifold \I with bounelary -M, its intersection form
is closed related to (ni) EB· .. 61 (nk)' This is of add type. By [5) 10.3, \I is hOlneomorphic
to the connected sunl of a. closed simply connected Inanifold anel a compact rnanifald with
baundary -1\1 with interseetian form isomorphie to (nd 61 ... 61 (nk)' As in the proof of
Theorem 1.1 we cau obtain an cnlbedding of Ai in a siInply connectcd closed 4-lnanifold
X whose intersection fonll is positive definite of rank 2k ::; 8. Note that each positive
definite unimodular form of add type over integer anel rank not cxcess 8 is cananical. Thus
X is either 2kC p2 01' (2k - l)C p2# * Cp2, where *0 p2 is thc Inanifold with the same
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honl0topy type of C p2 but nontrivial Kirby-Siebenlnann obstruction. *C p2# * C p2 is
homeornorphic to 2CP2. If X is (2k - l)C p2# * C p2, we may SUffi *C p2 to X and get
the canonical (2k + l)C p2 ancl M embeds in (2k + l)C p2 topological locally flat.

In the case (2), the syrllbol (1) = -1 if p = 3(rnodS). Note that ( 2r ) has a presen-p p

tation cf ood tyPe positivee n e m r x (~ P't' ) 01' (1 P':' ) by r even 01' 000.

Thus M can be embeclded into a 4-manifold X with positive definite intersection form
of rank 3k :::; 6 and hence is standard. The rest of thc proof is similarly. This ends thc
proof.

2. Embeddings of 3-manifolds with torsion free honlology group

This section is devotcd to discuss the problenl of whcn a 3-rnanifold M with IIr(M)
torsion free can be enlbedded into a positive definite 4-Illanifolel. This is relavant to the
cobordisIn problem of links. The situation now is much complicated and seems harcl to
obtain a complete answer.

Let [( C 53 bc a knot. Performing framing zero surgery on 53 one get a manifold
~1K with the homology of SI x 52. It is easy to show that lvIK eInbeds into S4 if I( is a
slice knot, and converscly if ~1J( embeds into S4 the knoL [( is slice in a, h0l11010gy 4-ball,
heuce is algebraically slice. So 1\1]( can not be enlbedded into 54 topologically where I{ is
the trefoil knot. Thc analogue relation holeIs truc for link instcad of knot. Thc following
proposition shows that each smoothJtopologcal link is smooth/topological slice in the
cünnected surn D4 #(#~CP2) for n large. Howcver, those eIllbcdded disks extending the
link does not always give thc zero framings. This call not produce an embedding of thc
manifüld resulted froIn the zero framing surgeries on a link.

Proposition 2.1. Lel L C S3 be a sm,oolh/lopologicallink. Then L is smooth/
topological slice in D4 #(#~CP2) f01' n [arge.

Proof.Let L be a link with k componcnts LI, .. " Lk. lt is casy to see that there
are k generic imInersed discs ~1, •. " ~k in D4 with bounelary the link L. Note that therc
are two embedded 2-spheres S; anel Si in CP2 which intersects in one ponit. Für each
double point A of ~il the connected sum ~i#S'~ C D'1 #C p2 is a gcneric immersed disc
which intersects 5~ in one point. By thc technique of [7] we call reIllove A anel keep all
other double points anel intersection points fixeeI. Procceding this program we can get a
slice for the link L in D4#(#~CP2) for n large. This cnels thc proof. (:;

Recall [5] showecl that a knot !( C 53 is Z-slice(i.e. 1;he c0l11plemcnt of the embcdded
disc in D4 has Z as the fundamental group) if and only if the Alexander polynomial
~(!() = 1. ]n this case the 111anifold M]( embecIs locally flat in S4. By using the C p2_
stable surgery we conclude that
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Proposition 2.2. Let lVI be a closed oriented 3-mmuJold. Ass1Lme that the funda­
mental group ?T of M is an extension of f1'ee 9rouP by a pe1fect nonnal subgroup. Then
M embeds into nC p2 loca/ly jiat for n large enough.

Proof. By [5J 11.6C, there is a Poincarc pair (X, }/) whcre X ~ vt51 and Y ~ M
which is unique up to homotopy. Moreover therc is a clcgree ünc nonnal map f : (vV, A1) -t
(X, V), where (W, M) is a manifold with boundary. The C p2-stable surgery theüry [7]
applies to show that (VV#(#~CP2),M)is nornlal cobordant to a pair (W',M) which is
silnple hünlotopy equivalent to (X#(#IC P2), )/) for sOlne 11,. Note that the intersection
fonn of (W', M) is n(l). By surgery it is easy to get a simply connected spin manifold V
with boundary M such that Hz(M) -+ H2 (V) is an isolnorphism. Gluing V and W' along
thc boundary we obtain a simply connected 4-nlanifolcl with interseetion form n(l). This
gives an enlbedding of M in this manifold. By Freeclrnan[4], this Inanifold either nC p2
or (11, - I)CpZ# *CP2. If the latter occurs, we SUDl *CP2 to it and obtain (n + l)Cpz.
This completes the proof.

If L C 53 is a, good boundary link with n-components, i.e, there is a hODlomorphislll
of the fundamental group of its complemnet to the [rcc group of n-letters with pcrfect
kernel so that the image of the linking circles fonns a set of generators. The framing zero
surgeries on L gives a manifold M L whosc fundalllcnta,l group is an cxtension of free group
of n-Ietters by aperfeet normal subgroup. By Proposition 2.2 M L crnbeds into nC p2 für
n large enough.

3. Proof of Theorenl A

In this section, we shall give the proof of the result a.dvertised in the introduetion.
Our strategy to show this theorelll is to construct certain open 4-nlanifold with periodic
ends in the sense of Taubes. vVe refer to Taubes [16] for thc detailed definition of end­
periodic. Recall thc following generalization of Donaldson's Theoreln.

Theorem.(Taubes )Let A1 be a s1nooth sl:1nply connected open end-periodic 4-manifold.
If the intersection form 0/ M is definite, tken il can be diagonalized ouer integer.

In [2], using the saDle method of Gompf [9] which is used to produce two parameters
family of llncountably lnany cxotic Jtl, Ding clainlcd that, if M is a noncompact 4­
manifold with at least two open ends and one of theIn is topologieal cüllarecl by N x R,
where J\l is a closed oriented 3-dimensional Hat subnlanifold of nC p2, then there are
uncountably smooth structures on M. The proof of rrheorerll A follows from this claim
and corollary 1.2, proposition 2.2. For reader's convenient, T include this details here.

Proof of Theorem A: By corollary 1.2 and Proposition 2.2, under the assump­
tions, N can be cmbedded into nC p2 as a Rat subtnanifold for n Iarge. First we are
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going to show that thcre are uncountably many exotic structurcs on N x R. Note that
Pi x R is a sublnanifold of nC P2. Let j : N x R Y nC p2 be thc inclusion. Endow nC p2
with a canonical smooth structure. N x R has an induced sInooth structure from j. By
Quinn[15], we may assunle that the smooth structure on l\T x R is canonical near x X R,
where x E N is a fixed point. Let ~ be an exotic R'l whosc end is diffeomorphic to
IEs EB (1)1- pt, where IEs EB (1)1 is a simply connected closed 4-Inanifold with the intcr­
section form Es EB (1), where Es is the positive definite unilnodular form over integer with
rank and signature are both 8. Notice that, by Quinn[15], IEs EB (1)1- pt is smoothable.
We should understand that it has an endowed slnooth structure. Let R& = intB&, B s

is the topological ball of radius s. For s largc, namely, s ~ Ta, R& is a family of exotic
R4 which are pairwise different(c.f: Taubes[16] 01' [9] for the details of this construction).
Let X s denote the open 4 -dimensional submanifold of IEs EB (1)1- pt with thc same end
as R& hy cutting a cyclinder along infinity.

Now we want to show that N X R~R& allel lV x I?~ R1are not eliffeomorphic if s #- t,
S l t ~ Ta. Ohvionsly N x R~ R& ::::::: N x R for all s. Thus we obtain uncountably many
exotic structures on N x R~R& and the claim is proved.

Suppose not, then there are reals , nalnely s < l, N X R~R& and N X RqRtare
diffeoDlorphic. We havc thcrcfore an embedding s11100thly g: Rt y N X R~Rt y.

N x RqRs Y nCP2#Rt . One should note that hC1'e Rt is clnbedded into the target
manifold with a compact support. Let E be a sIllall real so that 'l - E > S - E ~ Ta. Let
V = nCp2#Rt - g(Bt-f.)' Notice that V is a open 11lanifold anel two ends of V are both
diffeomorphic to intEt - Bt-~. By the same method or [9] 01' [16], one may construct
an end perioclic manifold, nalnely vV through splicing _>.:& with infinite lnany copies of V
along the ends. Notice that the interscction form of 1,\/ is Es EB QOOl here Qoo denotes
the direct surn of infinite copies of (1). This contradicts with Taubes T'heorem mentionecl
before. This proves that N x R admits uncountably Inany smooth structures.

Now let M be a 4-Inanifold with at least Lo open cnels anel one of them, nalnely c is
topological collared as Ar x R, where N satisfies the assuDlption in the theorem. Put the
induced smooth structure on N X R as above. By Quinn[15] this smooth structure can
be extended to M. Now we lnay understand lvI as a Sillooth manifold. We can form the
end sUlns NlqR& for all s ~ 1'a along the end c. Note that A1qR& are all homeomorphic
to A1. Thus we get a falnily of smooth nlanifolds which are h0l11eOlnOrphic to M hut the
collection of the encls of the Inanifolds in this ramily is a uncountable set. Notice that
there are at most countably many different ends for evcl'Y s11100th Inanifold with countably
base. Thus the collection {NfqR s , ra ~ s} are uncountably up to diffeomorphism. This
completes the Theorenl A. <:;

Acknoledgement: This work was accOll1plished eInring the author's visit at the
Universität Bielefeld anel the Max-Planck-Institut fucr Mathelnatik. The author would
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