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ON AN APPROXIMATE IDENTITY OF RAMANUJAN

D. ZAGIER

Ramanujan's notebooks abound with assertions of strange identities, a good many of
which have remained mysterious until now. I recently learned of one of these from Henri
Gohen, to whom it had been shown by Broee Berndt: on page 2.89, formula (4) of the
Second Notebook, Ramanujan says that

(1)
qx

1 - -----~---q2
1+----~-­

q3 x
1-------q4

1+----­q5 x
1.-

1+.

q

q4
X + -------::---­

qB
x+----­

q12
x+

x+

"nearly"

for q and x between 0 and 1. At first sight it is not even elear what this meanSj certainly the
two continued fraetions do not have the same power senes expansions in q 01' x. However,
Gohen did some eomputations and found that the two sides of (1) are numerically very
elose if q is near one, as shown in Figure 1 or in the following small table giving the two
values in question for x - .5 01' 1 and q = .8, .9 and .95 :

q=.8 q=.9 q=.95
x=.5

x=l

.774652 ... .7767340180 ... .77859859961698872648 ...

.774627 ... .7767340194 ... .77859859961698872686 ...
.59124 ... .605146977 ... .611726198935852157 ...
.59086 ... .605146958 ... .611726198935852104 ...

Gohen also showed that the two sides of (1) agree for x = q . lvloreover, they both satisfy
the same funetional equation

(2) (h(x) + qX)h(q2 x ) = 1 , (q fixed),

so that they in fact agree whenever x is equal to an odd power of q (\ve will give the proofs
of these statements below). However, it remained to find a quantitative measure for the
differenee of the two expressions, in order to explain the extreme degree of nearness seen in
the table. This is provided by the following result, whose proof is the object of the present

paper.
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Figure 1. The functions f(x) and g(x) for q == .6, q == .8

Figure 2. Graph of c(x)

2



THEOREM. For 0 < q < 1 and x > 0 denote by fex) = f(x;q) and g(x) = g(x;q) tbe
left and rigbt sides of (1), respectively. Tben:

'1"2/52

(I) For x = 1, we bave f(l) - g(l) = O(eTöIT). More precisely, setting Q = exp( 71"1 /5)
" og q

we bave .

f(l) = qt V5 - 1(1 + V5Q + 5-V5 Q2 _ 5-3V5 Q3 _ ... )
222

g(l)= qt V5 - 1(1- V5Q +5-V5 Q2 +5-3V5"Q3 _ ... )
2 2" 2

and in particular f(l) - g(l) = (5 - V5) qt Q + O(Q2) as q~ 1.
j2/ 4 2

(11) For x ~ 0 we bave f( x) - g(x) = O(e og q). More precisely, setting Q = exp( ~of;)
7r log x

and 8 = I we bave
20gq

fex) = 1 + O(x)

1 - 2Q cos 8 + 2Q4 cos 28 - 2Q9 cos 38 + ... 0
g(x) --: 1 + 2Q cos 8 + 2Q4 cos 28 + 2Q9 cos 38 +.... + (x )

and in particular f (x) - g( x) = 4Q cos -r;A + O( Q2) as x ~ 0 tbrougb a sequence
x = q4n+A, n ~ 00.

" c(:z:)+o(l)

(111) In general f(x) - g(x) = e log q cos 8 for q ~ 1 witb 8 as in (lI) and

c(x) = ~2 + ~Li2 (h/l + x2/4 - x/2?)

+ ~ log\ VI + x2 /4 + x/2) -log(x) log( VI + x2 /4 + x/2)

( Li2(t) = f t: tbe dilogaritbm function).
n=l n

The theorem implies,for instance, that for q = 0.99 the left- and right-hand sides
of (1) agree to about 85 decimal digits for x near 1, to about 96 digits for x near ~,

(c( t)" = 2.218 ... ), and to about 107 digits for x near O.

The known values Li2(1) = ~2 and Li2( 3-2V5) = ;; - log2( 1+2V5) ([2], 1.4.1) imply

c(O) . ~2, c(l) = ~2, so the formula of part (111) is compatible with the assertions in (I)

and (11). A graph of the function c(x) is shown in ~igure 2. Notice that c(x) becomes
negative for x larger than about 6.177, so for x this large the difference between the two
sides of (1) becomes exponentially big rather than exponentially small as q ~ 1.

In the first section of the paper we give some simple transformations of the continued
fractions in (1). The next three sections contain the proofs ofassertions (I), (11), and (III),
respectively, and we conclude with some speculations about what Ramanujan himself had
in mind when stating (1).
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1. Preliminaries. In this section we give variousrepresentations of fex) and g(x) as
quotients of infinite sums. The formulas' in the first proposition were given by Berndt.

PROPOSITION 1. Denne powerseries F(x) ~F(x;q) E Z[[q,x]] and G(x) = G(x;q) E

Z[[q, x- l ]] by

CX) n 2+nq . ,
.F(x) =~ (1 _ q2)(1 _ q4) .. . (1 - q2n)(1 - q3 x)(1 - q5 X)'" (1 _ q2n+l x ) ,

CX) -2n 4n 2

L x q
G x = .
() n=O (1 - q4)(1 - q8) ... (1- q4n)

Tben
F(q-2 X )

fex) = (1 - qx) F(x) " ( ) _ :i G(q-2 x )
9 X - x G(x) .

The functions F(x) and G(x) satisfy the recursions

An immediate corollary is that both h = fand h = 9 satisfy the recursion (2) .

. Proof. i) For j 2:: 0 define Fj( x) like F( x) but with qn
2
+n replaced by qn

2
+(2 j+l)n in

the numerator. Then for j ~ 1

CX) qn 2 +(2 j -l)ri

Fj-l(x) - Fj(x) = '" -------------­
~ (1 - q2) ... (1 - q2n-2)(1 ~ q3 x )··· (1 - q2n+lx)

q2 j 2

1
3 Fj(q x)

-qx

and

CX) qn2 +(2 j-l)n'
F· (q-2 x )-F· l(x)=qxL~~~~~~~~~~~~~~~~

)-1 )- n=l (1 - q2) ... (1 - q2n-2)(1 - qx)(1 - q3 x) ... (1 - q2n+1 x)

q2 j +1 x
----~-F·(q2x).
(1-qx)(1~q3x) )

These two equations give for j = 1 the recurrence for Fo = F stated in the Proposition,

and für j ~ 1 the recurr~nce

q2 j -l X

fj-l(X) = 1- 2"
q )

l+ fj (x)

4



for the quantities fj(x) = (1- q2j+lx)Fj(q2j-2x)/Fj(q2jx). It now follows by induction

that fo = f as claimed.

ii) We have

00 -2n 4n2
() ( -2) "" X q

G x - G q x =~ (1- q4) ... (1 _ q4n-4)

00 x-2(n+l)q4(n+l)2
"" 4 -2G( -4 )= L...J (1 4) (1 4n) .= q x q x.
n=O - q ... - q

Replacing x by q-2n+2 x and rearranging, we find

4n
G( -2n+2 )/G( -2n ) - + q ( > 1)

x q x q x - X xG(q-2nx )/G(q-2n-2x ) . n _

and hence by induction xG(x)/G(q-2 x ) = q/g(x) as asserted. 0

The representation for f is a little more awkward than that for 9 because F(x) has
poles at x = q-3, q-5 , .... To eliminate· these, set

Then both the recursion for Fand the formula for f become simpler:

(3)

Write F(x) = z::::c=o anxn where an E Z[[q]]. Comparing coefficients of xn in the first
equation in (3) gives (1 - q-4n )an = q-2n+l an-l, so by induction

Now writing H(x) for UÖ
l F(q-2 x ) (the value of Uo is irrelevant; it is in fact equal to

I1~(1+ q2n)) we have

PROPOSITION 2. ·Denne H(x) = H(x; q) E Z[[q, x]] by

00 (_1)n qn2
xn

H(x) = "" .~ (1 - q4)(1 - q8) ... (1 _ q4n)

Tben H(x) = _q~H(q2x) + H(q4 x ) and fex) = H(x)/H(q2 x ). D

Of course, we could have proved this direct1y by an argument similar to the proof of
Proposition 1 and avoided introducing F entirely.
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2., Asymptotic behaviour for x = 1: the Rogers-Ramanujan identities. Define

a function ((z) in theupper half-plane iJ = {z E C I ~(z) > O} by

1.

(4) ((z) = q'"
(z E iJ),

1+
q

q2
1+

1+.

where q = e27riz and q>" for A E Q ,denotes e27ri>"z. For x = 1, both continued fractions in
(1) can be expressed in terms of ( :

(5)
1 5

f(l;q) = -qr;/((z+ 2")'
, 1

g(l; q) = qr;((4z)

The key to understanding the behaviour of f(l) and g(l) as q -+ 1 is the fact that ((z) is
a modular function, namely

where

(( ,(z)) = ((z) V, E r(5), z E iJ,

r(5) = { (: ~) Ia, b, c, dEZ, ad - bc = 1, a =d =1 (mod5), b=c =0 (mod5)}

,and -y(z) for a 2 X 2 matrix -y = (: ~) of determinant 1 denotes the image :: 1~ of z

under the associated fractionallinear transformation. This fact, weIl known to Ramanujan,
folIows from the Roger-Ramanujan identities. Recall that these are the formulas

([1], Theorems 362 and 363). The left-hand sides of these equations are G(I; qt) and

G(q-~;q1-), respectively, where G(x;q) is defined as in Proposition 1, so by (5) and that

Proposition we have
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n .
(( 5") = Legendre symbol = +1, -1, 0 for n = ±1, ±2, 0 (mod 5), respectively). On the

other hand, we have

rr (1 - qn) = L (-l)n q~"\j-3"

n=O,±l (5) n

rr (1 - qn) = L (_l)n q5n~±n
n=0,±2 (5) n

by the Jacobi tripIe product identity ([1], Theorems 355 and 356), so this can be written

(6) ((z) = :10.3~Z~, 81O.i(z) =L (_1)nq(10n+iJ2 /40 (j = 1,3)..
10,1 Z n

This equation makes it clear that ((z) is a modular function, since both theta-series B10 ,3(Z)
andB10 ,1(Z) are modular forms of weight t. In fact ((z) is a well-known modular func­
tion called Klein's icosahedral function. It is a "Hauptmodul" for r(5), i.e., defines an
isomorphism from SJ/r(5) U{cusps} to·p1(C).

We will not give the proof of the invariance of ((z) under r(5), since in view of (5)
what we actually need are the transformation laws satisfied by ((z) with respect to matrices
sending the cusps 0 and ~ to infinity. To obtain these, recall that the Poisson summation
formula implies

(7) f x(n)e-1r,,2t/f = G(Xl f x(n)e-1rn2/ft UR(t) > 0)
n=l v77 n=l

for any even primitive Dirichlet character X of conductor f > 1, where G(X) is the Gauss
sum ~~=1X(n) cos 2jn associated to X, a complex number of absolute value V]. Applying
this to the two primitive even characters of conductor 20 gives

. . . 2 sin 251r ( • V5 - 1) ( i . i )
B10 ,1(zt) ± zB10 ,3(zt) = V5i 1 ±z 2 B10 ,1( i) =f zB10 ,3( i)

and hence from (6)

V5-1_((~)
((it) = 2 t. .

1 + V5
2
-1 ((;)

Inserting this into the second of equations (5) and letting t tend to 0 through positive real
values, we find

V5 - 1 _ (( -1ri )

(1' ) - t 2 2 log q
9 ,q - q V5 1 .

1 + 2- ((2~::q)

1 V5-11- ~±lQ/(1+Q5/(1+Q10/(1+... )))
= q5 _ .......~'--------------

2 1 + ~-1 Q/(1 +Qs /(1 + Q10/(1 + ... )))

7



7(2/ 5

(Q = e1OSi"), giving the second formula in (I) of theTheorem. Similarly (7) applied to the
two non-real even primitive characters of conductor 40 gives

o (5+it)±iO (5+it)= 2sin K-(1 i Y5 + 1)(O (5+i/t) '0 (5+i/t»)
10,1 2 10,3 2 Y5 1= 2 10,1. 2 1= Z 10,3 2

and hence by (6) and (5)

. Y5+1_((5+i/t)
((5~tt)= 2 . 2. ,

. -1 + ..;52+ 1((5 +2t
/
t )

( )
1/s V5 - 11 + v52±lQ/(1-QS/(1-QI0/(1- ... »)

f 1; q = q ,
2 1- ~-lQ/(1-QS/(1-QI0/(1-... »)

giving the first formula in (I) also.

3. Asymptotic behaviour for x smalI: theta series. Write the function H(x) of
Proposition 2 as H+(x) + H_(x), where

2qn.xn
L (1 - q4) ... (1 _ q4n) ,
n~O

( -l)n=±l

so that H+(x) E Z[x2][[q4]], H_(x) E qxZ[x2][[q4]]. As a refinement of the recursion
H(x) = _qxH(q2 x ) + H(q4 X ) of Proposition 2 we have

=±

An equivalent formulation of this is that the 2 x· 2 matrix

satisfies the recursion

(8) 1i(q2x) = (~ q~ ) 1i(x) G6) .

8



This implies that the determinant of 'H( x) is invariant under x 1----+ q2 X and hence, since
'H(x) tends to the identity matrix for x -+ 0 with q fixed, that det 'H(x) = 1 identically.
Now the content of Proposition 2 can be reformulated as

(9) fex) = 'H(x)(l),

where ( ) denotes fractionallinear transformation as in Section 2. The key to Ramanujan's
assertion is that g(x), the second expression in (l),.is given by

(10)

where

g(x) = 'H(X)(A(X)).

(11)
8_(x)

A(X) = '\(x;q) = 8+(x)'
°nEZ

( -1)"=±1

Indeed, by applying the Poisson summation formula to 8+ and 8_ as in the last section
(this is of course the most classical application of the Poisson summation formula, g6ing
back to Jacobi), we obtain

(12)
A x_I - 2Q cos 8 + 2Q4 cos 28 - 2Q9 cos 38 + .

( ) - 1 + 2Q cos 8 + 2Q4 cos 28 + 2Q9 cos 38 + .

where Q = exp( ~~::) I () = i ~~~:' and since 1i(x) = (~ n+ O(x) we hnmediately

deduce from (10) the assertion of part (11) of the Theorem.

Equation (10) follows immediately from Proposition 1 and

-+ -+ (qX- 1G(q-2 x )) (8 (x))
PROPOSITION 3. Denote by G\x) and t{x) tbe vectors G(x) and 8~(x) ,

respectively. Tben G(x) = c . 'H(x)8(x) wbere eisa scalar independent oE x.

(In fact c = rr~=l (1 - q4n)-1, but we do not need this fact and will omit the proof.)

PraoE. The recursion satisfied by G(x) can be written in terms of G(x) as

Combining this with (8) we see that the vector ttx) = 'H(x)-lG(x) satisfies the recursion

(13)

9



Write ttx) as (~:~:~). Since G(x) is an even power series in x we have

G(x) = (Odd),
even

hex) = (even Odd)
odd even

(where "odd" and "even" denote even and odd functions of x), so t_(x) is odd and t+(x)
. .
lS even, 1.e.,

t±(x) = L tnxn
n

( -1)n=±1

for some coefficients t n . E Z[[q]]. (Note that all coefficients of H, G, ii and r are in the ring
Z[x, x-I ][[q]] and can be expanded as doubly infinite Laurent series in x with coefficients
in Z[[q]].) The recursion (13) now gives tn+I = q2n+Itn for ail n E Z, so tn - tOqn

2
• This

proves Proposition 3 with c = t o· D

The fact that the recursion (13) is satisfied by jj = c- I r as weil as by r says that
B±(q2x ) = q-I x - IB=f(x) . Therefore A(X) is changed to its reciprocal under x ~ q2 x and
hence is invariant under x ~ q4x , which is why A(X) must have a Fourier series expansion

in B = 7r
2

1
1
0

g
x (as given explicitly in (12)). The property A(q2x ) = A(X)-I together with

, ogq
the obvious symmetry property A(x-I) = A( x) implies that A( x) = 1 for x an odd power
of q (this also foUows from (12), or from the weU-known product expansion of A, or from
(11) since L: qn

2
+n = L: qn

2
+n via n -T -1- n), so (9) and (10) imply Cohen's result

n odd n even

that fex) and g(x) agree for such x. FinaUy, instead of using just H(x) = 12 + O(x) we
could use the fuU expansion

and thus replace the formula in (11) of the Theorem by a fuU expansion in powers of x for B
(mod 27r) fixed (i.e., for x tending to 0 through a sequence q4n xo , n -T 00). In particular,

to two terms we have

f(x)=l-l
Q

2 x + O(x 2),
+q .

where /-l( x) is the periodic function

for x -T 0,

( = q 2 + O(Q) as q -T 1) .
l+q

10



4. Asymptotic behaviour for x arbitrary: the dilogarithnl function. In the
last two sections we studied the asymptotics of fex; q) - g(x; q) as q ~ 1 for x = 1 and
x near O. We now want to study how these asymptotics change as x changes. Write
c;(x) = c;(Xj q) for fex) - g(x). Subtracting the functional equation (2) with h = g from
the same equation with h = /, we find

or
1 ° 2

c;(x) = - f(q2 x )g(q2 x ) c;(q x).

By induction this gives

(14)

As n ~ 00 we have

for n even

for n odd,

° by the results of the last section (specifically, by equationso(9) and (10) and the periodicity
,\(q4x ) = '\(x)), so letting n ~ 00 in (14) gives the closed formula

where the n th term of the product tends to 1 with exponential rapidity. We want to use
equations (14) and (15) to study the asymptotics of c;(Xj q) as q ~ 1 with x fixed. (Actually,

this is not quite right since as IIOg x varies modulo 4 the value of c; will oscillatej thus we
ogq

should either let q tend to 1 continuously and restrict x to lie in an interval [q-2 xO , q2 xO ]
• ° logx °

wIth -1- (mod 4) constant, or else fix x and let q tend to 1 through a sequence of values
ogq

for which IIOgx (mod 4) is constant.) In fact, since the behaviour of 1 - '\(x) as q ~ 1 is
ogq 0

. . • j2/4 7r log x .
completely known-1t lS asymptotIcally equal to 4e ogq cos( --1-)-and slnce

O

both c;(x)
° 2 ogq

and 1 - '\(x) vanish whenever x is an odd power of q, it is more convenient to study the
ratio c;(x)/(l - '\(x)), the first factor in (15). It is also natural to consider the (logq)th
power of this, i.e., to define a new quantity A(Xj q) by

(16) c;(Xj q) = (1 - '\(Xj q)) A(x; q)roh,

11



because by parts (I) and (Il) of the Theorem we know that A(x; q) has the well-defined
limits e-1r2

/
20 and 1 as x ~ 1, q ~ 1 and x ~ 0, q ~ 1, respectively. We want to show

that A(xj q) tends to a liInit as q ~ 1 for any x, and to evaluate this limit.

The first thing to notice is that g( Xj q) tends to a well-defined litnit as q~ 1, since the

continued fraction on the right of (1) converges at q = 1 for all x > O. Call this limit ,(x);
then ,(x) = I/(x + ,(x)) and consequently

The continued fraction on the left of (1) also converges for q = 1 if x is sufficiently small
(actually, as one easily checks, for x < 2), and it must have the same'limit ,(x) because
of the functional equation (2). On the other hand, equation (14) implies

Choose a small number 8 and let q ~ 1 and n ~ 00 in such a way that q4n = e-0. Then
each factor f(q2i x ) and g(q2i x ) in (17) equals ,(x) + 0(8) for q ~ 1, so (17) gives

A(e-Oxjq) (,(x)+0(8))4nlogq
A(Xjq) = (,(X) + 0(8))-0 A(xjq)

- (1 - 8,(x) + 0(82
)) A(x; q) (q ~ 1).

Together with the fact that lim A(0; q) = 1 for all q, this shows that A(x; q) for q ~ 1has
. x-o

a limit A(x) which satisfies A'(x) = ,(x) A(x) and A(O) = 1, or equivalently
x

(18) 1r
2 i X

1 (g2 t)c(x) = - + -log 1 + - - - dt.
4 0 t 4 2

In view of(16) and the known asymptotics of 1 - A(X) for q ~ 1, this proves (111) of the
Theorem except for the evaluation of the integral c(x). Setting t = 2y and integrating by

parts, we find

i
X

/
2 log y .+ dy.

o VI + y2

The integral is evaluated in [2] (A.3.1.(6)) in terms of the dilogarithm, and this gives the
formula asserted in the Theorem (up to the evaluation of the constant, which is fixed by
c(O) = 1r2 /4, Lh(l) = 1r

2 /6). As mentioned in the introduction, the formula c(l) = 1r
2 /5,

which we know to be true by (11) of the Theorem, is equivalent to the special value
Lh«3 - vg)/2) = 1r

2 /15 - log2«1 + vg)/2) of the dilogarithm, a value well known to
Ramanujan.

12



5. Final reluarks. In this paper we have made Ramanujan's assertion (1) precise in
various senses and given proofs of these statements. It is reasonable to ask how much of
what we have done Ramanujan actually had in mind. Obviously this is pure speculation. I .
would guess that he knew (I) of the Theorem, since the function defined by the continued
fraction (4) was a favourite of his, and that he knew the magic identity (10),which-since
he certainly knew (9) and that 'x(x) is very close to 1-would suffice to imply (1) in the .
rough form stated. I do not think that he knew the full asymptotics of f - 9 for q ~ 1
as given in (111) of the Theorem, since he was particularly fond of the dilogarithm and of
its evaluation at special arguments and would hardly have failed to at least mention the
formula in his notebook. As to how he might have discovered (10), I have no idea, since
I absolutely do not know whe're this identity comes from. I myself found it by the stupid
method of evaluating the difference f(x; q) - g(x; q) for hundreds of values of x and q and
thus discovering numerically that g( x) for x small had the Fourier exp?,nsion given in (11);
this at least suggested looking at the theta-series B+(x) and B_(x), after which it was not
too hard to discover the matrix 1i(x) and theidentity (10) (the proofs, of course, were easy
once the formulas were known, as in all identities ofthis type). Such extensive numerical
computations would be impossible without a computer even for a Ramanujan-but then
again a Ramanujan would not (and in this case did not) need them to discover mysterious
and beautiful identities which would be hidden to ordinary mortals.
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The Renlarkable Dilogaritlull*

D. ZAGIER

The dilogarithm Junctionis the function defined by the power series

for Izi < 1.

The definition and the name, of course, come from the analogy with the Taylor series
of the ordinary logarithm around 1,

00 n

- log(1 - z) = L ~
n

n=l

for Izi < 1,

which leads similarly to the definition of the polylogarithm

for Iz I< 1, m = 1,2, ....

The relation

d
d Lim(z} = ~Lim-l(Z)
z' z

(m ~ 2)

is obvious and leads by induction to the extension of the domain of definition of Limto the
.cut plane C-(l, oo)j in particular, the analytic continuation of the dilogarithm is given by

Li2 (z) = -1% log(1-u) du for z E C - (1,00).
o U

path of

integration z

o 1 cut

Thus the dilogarithm is one of the simplest non-elementary functions one can imagine.
It is also one of the strangest. It occurs not quite often enough, and in not quite an impor­
tant enough way, to be included in the Valhalla of the greattranscendental functions-the

*Revised version of a lecture given in Bonn on the occasion of F. Hirzebruch's 60th birthday, October
1987.



gamma function, Bessel and Legendre functions, hypergeometrie series, 01' Riemann's zeta
function. And yet it occurs too often, and in far too varied contexts, to be dismissed
as a Inere curiosity. First defined by Euler, it has been stuuicu by sorue of the great
mathematicians of the past-Abel, Lobachevsky, !(ummer, and Ramanujan, to name just

a few-and there isa whole book devoted to it [4]. Almost all of its appearances in
mathematics, and almost all the formulas relating to it, have something of the fantastical
in them, as if this function alone ainong all others possessed asense of humot. In this

paper we wish to discuss some of these appearances and some of these formulas, -to give at
least an idea of this remarkable and too little-known function.

SPECIAL VALUES

Let us start with the question of special values. Most functions have either no ex­
actly computable special values (Bessei functions, for instance) 01' else a countable, easily
describable set of them; thus, for the gamma function

f(n)=(n-l)!,

and for the Riemann zeta function

'f( 1)_(2n)!cn+- ---y1r
2 2n n! '

1r2 1r4
1r6

((2) = 6' ((4) = 90' ((6) = 945' ... ,
1

((-2) = 0, (( -4) = 0,((0) = --, ... ,
2

1 1 1
((-1) = -12' ((-3) = 120' (( -5) = - 252'

Not so the dilogarithm. As far as anyone knows, there are exact1y eight values of z for

which z and Li2(z) can both be given in closed form:

Li2 (0) = 0,

1r
2

~i2(1) = 6'
1r2

Lh(-I)=-12'

. 1 1r
2 1 2

L12( -) = - - -log (2)
2 12 2 '

L. (3 - V5) = 1r
2

-1 2( 1 + V5)
12 2 15 og 2 '

L. (-1 + V5) = 1r
2

-1 2( 1 + V5)
12 2 10 og 2 '

L. (1 - V5) = _ 1r
2

~ 1 2( 1 + V5)
12 2 15 + 2 og 2 '

L. (-1 - V5) = _ 1r
2

~ 10 2( 1 + V5).
12 2 10 + 2 g 2

2



Let me describe arecent experience where these special values figured, and which
admirably illustrates what I said about the bizarreness of the occurrences of the dilogarithlu
in luatheluatics. Fronl Bruce Berndt via Henri Cohen I learned of a still unproved assertion
in Ramanujan's "Lost" Notebook (2nd Notebook, p. 289, fornlula (4)): Ramanujan says
that, for q and x between 0 and 1,

q

q4
X + -----=---­q8

x+-----­q12
x+---

x+

qx
- 1 - -----~----q2

1+----~--­q3 x
1------

q4
1+---­q5 x

1----

1+.

"very nearly." He does not explain what this means, but a Ettle experimentation shows
that what is meant is that the two expressions are numerically very dose when q is near
1; thus for q = 0.9 and x = 0.5 one has

LHS = 0.7767340194 ... ,

A graphical illustration of this is also shown.

1.5

RHS = 0.7767340180 ....

1.5

1.0

0.5

o 0.2

q = 0.5

1.0

0.5

o

q = 0.8

0.8 1.0
x

The quantitative interpretation turned out as follows [9]: The difference between the .
1(2/ 5

left and right sides of Ramanujan's equation is O(e l'O"i"9) for x = 1, q --* 1 (the proof of

this used the identities

1
1+-------­

q
1+---~~­q2

1+-----­q3
1+---

1+

00

II(1 - qn){ i") -
n=l

3

r

2:( ~l)rq 5r~±r '

r



which are consequences of the Rogers-Ramanujan identities and are surely among the
most beautiful formulas in mathematics). For x ---+ 0 and q ---+ 1 the difference in question

,..2/ 4 c(~) 1 x
is O(el'öi9), and for 0 < x < 1 and q ---+ 1 it is O(erc;gq) wherc c'(x) = --arcsinh( -)

x 2

= -.:;.. ~ log( VI + x 2 /4 + x /2). For these three formulas to be compatible, one needs
x

r1 1 . 71'"2 71'"2 71'"2

Jo -; log( VI + x2 /4 + x/2) dx = c(O) - c(l) = 4"" - 5" = 20·

Using integration by parts and formula A.3.1.(6) of [1] one finds

J~ logeVI + x2 /4 + x/2) dx = - ~Li2 (( VI + x2 /4 - x/2?) -~ log2( VI + x2 /4 + x/2)

+ log(x) log( VI + x2 /4 + x/2) + C,

so

r1
1 _I 1 . 1 (. 3 - v'5 2 1 + v'5 )J

o
-; log(vI + x2 /4 + x/2) dx = 2L12 (1) - 2 L12( 2 ) + log ( 2 )

71'"2 71'"2 71'"2

12 30 20

FUNCTION AL EQUATIONS

In contrast to thepaucity of special values, the dilogarithm function satisfies a plethora
of functional equatioris. To begin with, there are the two reflection properties

Li2(~) = -Li2(z)- 71": - ~ log2( -z),

2

Lh(l - z) = -Lh(z) + ~ -log(z) 10g(1 - z).

Together they say that the six functions

are equal modulo elementary functions. Then there is the duplication formula

4



and more generally the "distribution property"

Li2 (x) = n L Lb(z)
z"=x

(n=1,2,3, ... ).

Next, there is the two-variable, five-term relation

Li2 (x)+Li2 (y)+Lb( I-x )+Lb(l-xy)+Lb( 1-
y

)
1 - xy . 1 - xy

7r2 1 - x 1 - y
= -2 - log(x) log(l - x) - log(y) log(l - y) + loge ) loge .. )

1 - xy 1 - xy

which (in this or one of the many equivalent forms obtained by applying the symmetry
properties given above) was· discovered and rediscovered by Spence (1809), Abel (1827),
Hill (1828), Kummer (1840), Schaeffer (1846), and doubtless others. (Despite appearances,
this relation is symmetrie in the five arguments: if these are numbered cyclically aszn

with n E Z/5Z, then 1 - Zn = Zn-l zn+l = Zn-2Zn+2') There is also the six-term
1 - Zn-l 1 - Zn+l

relation

~ + ~ + ~ = 1 ===} Li2 (x) + Lh(y)+ Lh(z) = ~ (Lh(- x
y

) + Li2 (-Yz) + Li2(- zx»)
x y Z . 2 Z x y

discovered by !(wnmer (1840) and Newman (1892). Finally, there is the strange many­
variable equation

(1) Li2(z)= L Li2(::)+ C(J),
a

f(x)=z
f(a)=l

where J(x) is any polynomial without constant term and C(J) a (complicated) constant
depending on f. For f quadratic, this reduces to the five-term relation, while for f of
·degree n it involves n2 + 1 values of the dilogarithm.

All of the functional equations of Li2 are easily proved by differentiation, while the
special values given in the previous section are obtained by combining suitable functional
equations. See [4].

THE BLOCH-WIGNER FUNCTION D(z) AND ITS GENERALIZATIONS

The function Li2(z), extended as above to C - (1,00), jwnps by 27ri log Izlas zcrosses
the cut. Thus the function Li2(z) +i arg(l- z) log Izl, where arg denotes the branch of the
argument lying between -7r and 7r, is continuous. Surprisingly, its imaginary part

D(z) = ~(Li2(Z» + arg(l - z) log Izi

is not only continuous, but satisfies

(I) D(z) is real analytic on C except at the two points 0 and 1 , where it is continuous
but not differentiable (it has singularities of type r log r there).

5



-2 -I o 2

Level Curves

of D(z)

3

The abovegraph shows the behavior of D(z). (We have plotted the level curves
D(z) = 0, .2, .4, .6, .8, .9, 1.0 in the upper half-plane. The values in the lower half-plane
are obtained from D(z) = -D(z). The maximum of D is 1.0149 ... , attained at the point
(1 + iV3)/2.)

The function D(z), which was discovered by D. Wigner and S. Bloch (cf. [1]), has
many other beautiful properties. In particular:

(li) D(z), which is a real-valued function on C, can be expressed in terms of a function
of a single real variable, namely

(2) D(z) = ~ (D (:) D( 1 - 1/z ) D( 1/(1 - z) ))
2 z + 1 - l/z + 1/(1 - z)

which expresses D(z) for arbitrary complex z in terms of the function

~ cos
2

nB
(Note that the real part of Li2 on the unit circle is elementary: Li -

n=l n

7T"2 _ B(27T" - B) for 0 < B < 27T".) Formula (2) is due to Kummer.
6 4 - -

(111) All of the functional equations satisfied by Li2 (z) lose the elementary correction
terms (constants and products of logarithms) when expressed in terms of D(z). In
particular, one has the 6-fold symmetry

(3)
1 . 1 1· . z

D(z) = D(l- -) = D(-) = -D( -) = -D(l- z) = -D(-)
z 1-z z z-l

6



(4)

and the five-term relation

1-x 1-y
D(x) + D(y) + D( ) + D(l ~ xy) + D( ) = 0,

1- xy 1 - xy

while replacing Li2 by D in the many-term relation (1) makes the constant C(f)
disappear.

The functional equations become even cleaner if we think of D as being a fu~ction not
of a single complex number but of the cross-ratio of four such numbers, i.e. if wedefine

(5)

Then the symmetry properties (3) say that D is invariant under even, anti-invariant under
odd permutations of its four variables, the five-term relation (4) takes on the attractive
form

(6)
4

L(_l)iD(zo, ... ,,Zi, ... ,Z4) = °
i=O

(we will see the geometrie interpretation of this later), and the multi-variable formula (1)
generalizes to the following beautiful formula:

L D(ZO,ZI,Z2,Za) = nD(ao,al,a2,aa)
zlEj-l(ad
z2Ej-l(a2)
zsE!-l(as)

where I : pI -t pI is a function of degree n and ao = f(zo). (Equation (1) is the special
case when I is a polynomial, so 1-1 (00) is 00 with multiplicity n.)

Finally, we mention that a real-analytic function on pl(C) - {O, 1,00} built up out of
the polylogarithms in the same way as D(z) was constructed from the dilogarithm, has
been defined by Ramakrishnan [6]. His function (slightly modified) is given by

(so D1 (z) = log Izl/2 - z-I/21, D2 (z) = D(z)) and satisfies

~D ()= .!:- (D () ~ (-i log Izl)m-l 1 + z)
8z m z 2z m-l Z + 2 (m - 1)! 1 - z .

However, it does not seem to have analogues of the properties (11) and (IlI): for example,
it is apparently impossible to express Da (z) for arbitrary complex z in terms of only the

7



function D3(e i8 ) = L:::"=1 co~~9, and passing from Li3 to D3 removes many but not all

of the numerous lower-order terms in the various functional equations of the trilogarithm,
e.g.:

Nevertheless, these higher Bloch-Wigner functions do occur. In studying the so-called
"Heegner points" on modular curves, B. Gross and I had to study for n = 2, 3, . .. "higher
weight Green's functions" for iJ/r (iJ = complex upper half-plane, r = SL2 (Z) or a

congruence subgroup). These are functions Gn(Zl,Z2) = G~/r(Zl,Z2) defined on iJ/r x
iJ/r, real-analytic in both variables except for a logarithmic singularity along the diagonal

. Zl = Z2, and satisfying ~ZlGn = ~z2Gn = n(n -l)Gn , where~z = y2(82/8x 2+ 82/8y2)
is the hyperbolic Laplace operator with respect toz = x + iy E iJ. They are obtained·as

G~/r(ZbZ2) = L G~(Zb ,Z2)
'"YEr

where G~ is defined analogously to G~/r but with iJ/r· replaced by iJ. The functions G~

(n = 2,3, ... ) are elementary, e.g.,

In hetween G~ and G~/r are the functions G~/z = l:rEZ G~(Zl' Z2 + r). It turns out [10]
that these are expressible in terms of the Dm (m = 1,3, ... ,2n - 1), e.g.,

I do not know the reasons for this connection.

VOLUMES OF HYPERBOLIC 3-MANIFOLDS ...

The dilogarithm occurs in connection with measurements of volumes in Euclidean,
spherical, and hyperbolic geometry. We will be concerned with thelast of these. Let iJ3

8



be the Lobachevsky space (space of non-Euclidean solid geometry). We will use the half­
space model, in which S)3 is represented by C x R+ with the standard hyperbolic metric
in which the geodesics are either vertical lines or semicircles in vertical planes with end­
points in C x {O} and the geodesie planes are either vertical planes or else hemispheres
with boundary in C x {al. An ideal tetrahedron is a tetrahedron whose vertices are all
in 8S)3 = CU {oo} = Pl(C). Let ß be such a tetrahedron. Although the vertices are at
infinity, the (hyperbolic) volume is finite. It is given by

(7) Vol(ß)

where zo, . .. ,Z3 E C are the vertices of ß and fJ is the .function defined in (5). In the
special case that three of the vertices of ß are 00, 0, and 1, equation (7) reduces to the
formula (due essentially to Lobachevsky)

(8) Vol(ß) D(z).

. Volume

= D(z)

~~_C~ Z3 __0 ----",,1/

In fact, equations (7) and (8) are equivalent since any 4-tuple of points zo, . .. ,Z3 can
be brought into the form {oo,O,l,z} by the action of some element of SL2 (C) on P 1 (C),
and the group SL2 (C) acts on S)3 by isometries.

The (anti-)symmetry properties of fJ under perr;nutations of the Zi are obvious from

the geometrie interpretation (7), since renumbering the vertices leaves ß unchanged but
may reverse its orientation. Formula (6) is also an immediate consequence of (7),since
the five tetrahedra spanned by four at a time of zo, . .. ,Z4 E Pl(C), counted positively or
negativelyas in (6), add up algebraically to the zero 3-cycle.
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The reason that we are interested in hyperbolic tetrahedra is that these are the building
blocks of hyperbolic 3-manifolds, which in turn (according to Thurston) are the key objects
for. understanding three-dimensional geometry and topology. A hyperbolic 3-manifold is
a 3-dimensional riemannian manifold M which is locally modelled on (i.e., isometric to
portions of) hyperbolic 3-space S)3; equivalently, it has constant negative curvature -1. We
are interested in complete oriented hyperbolic 3-manifolds which have finite volume (they
are then either compact or have finitely many "cusps" diffeomorphic to SI X SI X R+).

Such a manifold can obviously be triangulated into small geodesic simplices which will
be hyperbolic tetrahedra. Less obvious is that (possibly after removing from M a finite
number of closed geodesics) there is always a triangulation into ideal tetrahedra (the part
of such a tetrahedron going out towards a vertex at infinity will then either tend to a cusp
of M or else spiral in around one of the deleted curves). Let these tetrahedra be numbered
ßl ,... ,ßn and assurne (after an isometry of J)3 if necessary) that the vertices of ß v are
at 00, 0, 1, and ZV. Then

(9) Vol(M)

Of course, the numbers Zv are not uniquely determined by ß v since they depend on the
order in which the vertices were sent to {oo, 0, 1, zv}, but the non-uniqueness consists

(since everything is oriented) only in replacing Zv by 1 - l/zv or 1/(1 - zv) and hence
. does not affect the value of D( zv).

One of the objects of interest in the study of hyperbolic 3-manifolds is the "volume
. .

spectrum"

Vol { Vol(M) IM a hyperbolic 3-manifold} c

From the work of Jfl5rgensen and Thurston one knows that Vol is a countable and well­

ordered subset of R+ (i.e. every subset has a smallest element), and its exact nature is of
considerable interest both in topology and number theory. Equation (9) as it stands says
nothing about this set since any real number can be written as a finite sum of values D( z),
z E C . However, the parameters Zv of the tetrahedra triangulating a complete hyperbolic
3-manifold satisfy an extra relation, namely

(10)
n

E zv/\ (1 - zv) = 0;
v=l

where the sum is taken in the abelian group 1\2 C X (the set of all formal linear combina­

tions x/\y, x, y E C X
, subject to the relations x/\x = °arid (XlX2)/\Y = Xl /\Y+X2/\Y)·

(This follows from assertions in [3] or from Corollary 2.4 of [5] applied to suitable X and

y.) Now (9) doe3 give information about Vol because the set of numbers 2:~=1 D(zv)
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with ZJI satisfying (10) is countable. This fact was proved by Bloch [1]. To make a more
precise statement, we introduce the Bloch gTOUp. Consider the abelian group of formal
sums [Zl] + ... + [zn] with Zl, ... ,Zn E C X

- {I} satisfying (10). As one easily checks, it
contains the elements

(11) [x] + [!.], [x]+[l-x], [x]+[Y]+[ll-X ]+[l-XY]+[ll-y] ,
x - xy - xy

for al1 x and y in CX
- {I} with xy =1= 1, corresponding to the symmetry properties and

5-term relation satisfied by D(·). The Bloch group is defined as

(12) Be = {[Zl] + ... + [zn] satisfying (10)}/(subgroup generated by the elements (11))

(this is slightly different from the usual definitions) .. The definition of the Bloch group in
terms of the relations satisfied by D(·) makes it obvious that D extends to a linear map

D : Be --+ R by [Zl] + ... + [zn] ..-+ D(ZI) + ... + D(zn), and Bloch's result (related to

Mostow rigidity) says that the set D(Be ) coincides with D(BQ) (where BQ is defined by
(12) but with the ZJI lying inQx - {I}). Thus D(Be) is countable,·and (9) and (10) irnply
that Vol is contained in this countable set. The structure of BQ, which is very subtle,

will be discussed below.

We give an example of a non-trivial element of the Bloch group. For convenience set
1-A o-l-A

a = , ß = . Then
2 2

2· C+f1) A C-f1) + (-1+4A ) AC-F)
1 a 2

= 2 . (-ß) /\ a + (ß) /\ ( ß) = ß2 /\ a - ß /\ a 2 = 2· ß /\ a - 2 . ß /\ a = 0,

so

(13) [1+A] [-1 +A] B
2 2 + 4 E e·

This example should make it clear why non-trivial elements of Be can only arise from

algebraic numbers-the key relations 1+ ß = a and 1 - ß- I = a 2 / ß above forced Q' and
ß to be algebraic.

. ..AND VALUES OF DEDEKIND ZETA FUNCTIONS

Let F be an algebraic number field, say of degree N over Q. Among its most important
invariants are the discriminant d, the numbers Tl and T2 of real and imaginary archimedean

valuations, and the Dedekind zeta-function (F(S). For the non-number-theorist we recall

the (approximate) definitions. The field F can be represented as Q(a) where a is a root
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of an irreducible monic polynomial f E Z[x] of degree N. The discriminant of f is an
integer df and d is given by c-2df for some natural number c with c2ldf. The polynomial.
f, which is irreducible over Q, in general becomes reducible over R, where it splits into
rl linear and r2 quadratic factors (thus rl ;:::: 0, r2 ;:::: 0, rl + 2r2 = N). It also in general
becomes reducible when it is reduced modulo a prime p, but if p f df then its irreducible
factors modulo p are all distinct, say rl,p linear factors, r2,p quadratic ones, etc. (so
rl,p + 2r2,p + ... = N). Then (F(S) is the Dirichlet series given by an Eule't product
ITp Zp(p-8)-1 where Zp(t) for Pfdf is the monic polynomial (1- t)r1 • p (1- t 2)r2 ,p ••• of

. degree N and Zp(t) for pldf is a certain monic polynomial of degree:::; N~ Thus (rl,r2)

and (F(s) encode the information about the behaviour of f (and hence F) over the real
.and p-adic numbers, respectively.

As an example, let F be an imaginary quadratic field Q(J ~a) with a ;:::: 1 square­
free. Here N = 2, d = -a or -4a, rl = 0, r2 = 1. The Dedekind zeta function has
the form L: r(n)n-8 where r(n) counts representations of n by certain quadratic forms

n~l

of discriminant d; it can also be represented as the product of the Riemann zeta function

((s) = (Q(s) with an L-series L(s) = :En <:! (~) n-s, where (~) is a symbol taking the

values ±1 or 0 and which is periodic of period Idl in n. Thus for a = 7 .

1 1
(Q(-Cf\(s) = - ~

V-,) 2 L.J (x 2 +xy+2y2)8
(x,y):;e(O,O)

_(f -8) (f (-7) -8)
n=l n n=l ~ n

where (~7) is +1 for n = 1,2,4 (mod 7), -1 for n = 3,5,6 (mod 7), and 0 for n = 0

(mod 7).

One of the questions of interest is the evaluation of the Dedekind zeta function at
suitable integer arguments. For the Riemann zeta function we have the special values
cited at the beginningof this paper. More generally, if F is totally real (i.e., rl = N,
r2 = 0) , then a theorem of Siegel and Klingen implies that (F(m) for m = 2,4, ... equals
7r mN /Vd times a rational number. If r2 > 0, then no such simple result holds. However,
in the case F = Q(yCa), then using the representation (F(s) = ((S)L(s) and the formula

((2) = 71"2/6 and writing the periodic function (~) as a finite linear combination of terms

e27rin/ldl we obtain. ,

2 Idl-l ( )
( (2) = 7r L d D(e27rin/ldl)

F 6.Jidf n=l n
(F real quadratic),

e.g.,
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Thus the values of (F(2) for imaginaryquadratic fields can be expressed in closed form in
terms of values of the Bloch-Wigner function D(z) at algebraic arguments z ..

By using the ideas of the last section we can prove a much stronger statement. Let
CJ denote the ring ofintegers of F (this is the Z-lattice in C spanned by 1 and V-a or
(1 + v-a)/2, depending whether d = -4a or d = -a). Then the group r = SL2 (CJ) is a
discrete subgroup of SL2(C) and therefore acts on hyperbolic space i)3 by isometries. A
classical result ofHumbert gives the volume ofthe quotient spacei)3/r as IdI3/2(p(2)/47r2.
On the other hand, i)3/r (or, more precisely, a certain covering of it of low degree) can
be triangulated into ideal tetrahedra with vertices belonging to pl(F) C pl(C), and this
leads to a representation

with n v in Z and Zv in F itselfrather than in the much larger field Q(e27l"i/ 1d l ) ([8], Theorem

3). For instance, in our example F = Q(A) we find

( (2) = 47r
2 (2D (1 +A) + D(-1 + A)).

F 210 2 4·

This equation together with the fact that (F(2) = 1.89484144897· .. =1= 0 implies that the
element (13) has infinite order in Be.

In [8] it was pointed out that the same kind of argument works for all number fields,
not just imaginary quadratic ones. If r2 = 1 hut N > 2 then one can again associate to F
(in many different ways) a discrete subgroup r c SL 2(C) such that VOl(i)3/r) is a rational
,multiple of IdI 1/ 2(F(2)/7r2(N-l). The manifold i)3/ris now compact, so the decomposition

into ideal tetrahedra is a little less obvious than in the case of imaginary quadratic F, but
by decomposing into non-ideal tetrahedra (tetrahedra with vertices in the interior of i)3)
and writing these as differences of ideal ones, it was shown thatthe volume is an integral
linear combination of values of D(z) with z of degree at most 4 over F. For F completely
arbitrary there is still a similar statement, except that now one gets discrete groups r
acting on i);2; the final result ([8], Theorem 1) is that Idll/2(F(2)/7r2(rl+r2) is a rational
linear combination of r2-fold products D(z(l)) . .. D(z(r2 )) with eachz(i) of degree ::; 40ver
F (more precisely, over the i th complex embedding F(i) of F, i.e. over the subfield Q(c/i»)
ofC where a(i) is one of the two roots of the i th quadratic factor of f(x) over R).

But in fact much more is true: thez(i) can be chosen in F(i) itself (rather than of degree

40ver this field), and the phrase "rational linear combination of r2-fo1d products" can be

replaced by "rational multiple of an r2 X r2 determinant." We will not attempt to give more
than a very sketchy account of why this is true, lumping together work of Wigner, Bloch,
Dupont, Sah, Levine, Merkuriev, Suslin, ... for the purpose (references are [1], [3], and
the survey paper [7]). This work connects the Bloch group defined iD: the last section with
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the algebraic K -theory of the underlying field; specifically, thegroup* BF is equal, at least
after tensoring it with Q, to a certain quotient I<~nd(F) of I<3(F). The exact' definition of
I<~nd(F) is not relevant here. What is relevant is that this group has been studied by Borel
[2], who showed that it is isomorphie (modulo torsion) to Zr

2 and that there is a canonical
homomorphism, the "regulator mapping," from it into Rr

2 such that the co-volume of the
, image is a non-zero rational multiple of Idll/2(F(2)/rr2rl+2r2 ; moreover, it is known that
'under the identification of K~nd(F) with BF this mapping corresponds to the cotnposition

BF ~ (Bc)r2 ~ Rr2 , where the first arrow comes from using the r2 embeddings Fee
(a ~ a{i)). Putting all this together gives the following beautiful picture: The group

BF / {torsion} is isomorphie to Zr
2. Let el, ... ,er 2 be any r2 linearly independent elements

of it, and form the matrix with entries D(eJi
)), (i, j = 1, ... , r2)' Then the determinant

of this matrix is a non-zero rational multiple of Idll/2(F(2)/7r2rl +2r
2. If instead of taking

any r2 linearly independent elements we choose the ej to be a basis of BF / { torsion}, then
this rational multiple (chosen positively) is an invariant of F, independent of the choice
of ej. This rational multiple is then conjecturally related. to the quotient of the order
of K 3 (F)torsion by the order of the finite group !(2(OF), where OF denotes the ring of
integers of F (Lichtenbaum conjectures).

This all sounds very abstract, but is in fact not. There is' a reasonably efficient aigo­
rithm to produce many elements of BF for any number field F. If we do this, for instance,
for F an imaginary quadratic field, and compute D(e) for each element eE ßF which
we find, then after a while we are at least morally certain of having identified the lattice
D(BF) C R exactly (after finding k elements at random, we have only about one chance
in 2k of having landed in the same non-trivial sublattice each time). By the results just
quoted, this lattice is generated by a number of the form KldI 3

/
2 (F(2)/7r2 with K rational,

and the conjecture referred to above says that " should have the form 2~ where T is the

order ofthe finite group !(2(OF), at least for d < -4 (in this case the order of !<3(F)torsion

is always 24). Calculations done by H. Gangl in Bonn for several hundred imaginary

quadratic fields support thisj the" he found all have the form 2~ for some integer T and

this integer agrees with the order of !(2(OF) in the few cases where the latter is known.
Here is a small excerpt from his tables:

Idl 7 8 11 15 19 20 23 24 31 35 39 40
T 2 1 1 2 1 1 2 1 2 26 1

303 472 479 491 555 583
22 5 14 13 28 34

(the omitted values contain only the primes 2 and 3; 3 occurs whenever d= 3 (mod 9) and
there is also some regularity in the powers of 2 occurring). Thus one of the many virtues
of the mysterious dilogarithm is that it gives, at least conjecturally, an effective way of

*It should be mentioned that the definition of BF which we gave for F = C or Q must be modified
slightly when F is a number field because FX is no Ionger divisible; however, this is a minor point, affeeting
only the torsion in the Bloch group, and will be ignored here.
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calculating the orders of certain groups in algebraic !{-theory!

To conclude, we mention that Borel's work connects not only !{~nd(F) and' (F(2) but
.nl0re generally I(~r:.:!-}(F) and (F(rn) for any integer rn 2:: 1. Noelementary description of
the higher !{-groups analogous to the description of !{3 in terms of B is known, but orie'
can at least speculate that these groups and their regulator mappings may be related to

the higher polylogarithms and that, more specifically, the value of (F(rn) is always a simple
multiple of a determinant (r2 X r2 01' (r} + r2) X (r} + r2) depending whether rn is even 01'
odd) whose entries are linear combinations of values of the Bloch-Wigner-Ramakrishnan

function Dm(z) with arguments z E F. As the simplest case, one can guess that for areal
quadratic field F the value'of (F(3)/((3) (= L(3), where L(s) is the Dirichlet L-function
of areal quadratic character of period d) is equal to d- 5

/ 2 times a simple rational linear

combination of differences D 3(x) - D 3 (x') with x E F, where x' denotes .the conjugate of

x over Q. I have found one (numerical) example of this, namely

(both sides are equal approximately to 1.493317411778544726) . However, even for the
next simplest field Q(V2) (d = 8) I have not yet foundany identity of this type. '
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