
On Robin’s criterion for the
Riemann Hypothesis

Y.-J. Choie, N. Lichiardopol, P. Moree, P. Solé

Abstract

Robin’s criterion states that the Riemann Hypothesis (RH) is true if and only
if Robin’s inequality σ(n) :=

∑

d|n d < eγn log log n is satisfied for n ≥ 5041,
where γ denotes the Euler(-Mascheroni) constant. We show by elementary
methods that if n ≥ 37 does not satisfy Robin’s criterion it must be even and is
neither squarefree nor squarefull. Using a bound of Rosser and Schoenfeld we
show, moreover, that n must be divisible by a fifth power > 1. As consequence
we obtain that RH holds true iff every natural number divisible by a fifth power
> 1 satisfies Robin’s inequality.

1 Introduction

Let R be the set of integers n ≥ 1 satisfying σ(n) < eγn log log n. This inequality we
will call Robin’s inequality. Note that it can be rewritten as

∑

d|n

1

d
< eγ log log n.

Ramanujan [12] (in his original version of his paper on highly composite integers,
only part of which, due to paper shortage, was published, for the shortened version
see [11, pp. 78-128]) proved that if RH holds then every sufficiently large integer is
in R. Robin [13] proved that if RH holds, then actually every integer n ≥ 5041 is in
R. He also showed that if RH is false, then there are infinitely many integers that
are not in R. The numbers ≤ 5040 that are not in R are 2, 3, 4, 5, 6, 8, 9, 10, 12, 16,
18, 20, 24, 30, 36, 48, 60, 72, 84, 120, 180, 240, 360, 720, 840, 2520 and 5040. Note
that none of them is divisible by a 5th power of a prime.

In this paper we are interested in establishing the inclusion of various infinite
subsets of the natural numbers in R. We will prove in this direction:

Theorem 1 Put A = {2, 3, 5, 6, 10, 30}. Every squarefree integer that is not in A is
an element of R.

A similar result for the odd integers will be established:
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Theorem 2 Any odd positive integer n distinct from 1, 3, 5 and 9 is in R.

On combining Robin’s result with the above theorems one finds:

Theorem 3 The RH is true if and only for all even non-squarefree integers ≥ 5044
Robin’s inequality is satisfied.

It is an easy exercise to show that the even non-squarefree integers have density
1
2
− 2

π2 = 0.2973 · · · (cf. Tenenbaum [15, p. 46]). Thus, to wit, this paper gives at
least half a proof of RH !

Somewhat remarkably perhaps these two results will be proved using only very
elementary methods. The deepest input will be Lemma 1 below which only requires
pre-Prime Number Theorem elementary methods for its proof (in Tenenbaum’s [15]
introductory book on analytic number theory it is already derived within the first 18
pages).

Using a bound of Rosser and Schoenfeld (Lemma 4 below), which ultimately relies
on some explicit knowledge regarding the first so many zeros of the Riemann zeta-
function, one can prove some further results:

Theorem 4 The only squarefull integers not in R are 4, 8, 9, 16, 36.

We recall that an integer n is said to be squarefull if for every prime divisor p of n
we have p2|n. An integer n is called t-free if pt - m for every prime number p. (Thus
saying a number is squarefree is the same as saying that it is 2-free.)

Theorem 5 All 5-free integers satisfy Robin’s inequality.

Together with the observation that all exceptions ≤ 5040 to Robin’s inequality are
5-free and Robin’s criterion, this result implies the following alternative variant of
Robin’s criterion.

Theorem 6 The RH holds iff for all integers n divisible by the fifth power of some
prime we have σ(n) < eγn log log n.

2 Proof of Theorem 1 and Theorem 2

Our proof of Theorem 1 requires the following lemmata.

Lemma 1
1) For x ≥ 2 we have

∑

p≤x

1

p
= log log x + B + O(

1

log x
),

where the implicit constant in Landau’s symbol does not exceed 2(1 + log 4) < 5 and

B = γ +
∑

p

(

log(1 −
1

p
) +

1

p

)

= 0.2614972128 · · ·

denotes the (Meissel-)Mertens constant.
2) For x ≥ 5 we have

∑

p≤x

1

p
≤ log log x + γ.
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Proof. 1) This result can be proved with very elementary methods. It is derived from
scratch in the book of Tenenbaum [15], p. 16. At p. 18 the constant B is determined.
2) One checks that the inequality holds true for all primes p satisfying 5 ≤ p ≤
3673337. On noting that

B +
2(1 + log 4)

log 3673337
< γ,

the result then follows from part 1. 2

Remark 1. More information on the (Meissel-)Mertens constant can be found e.g. in
the book of Finch [6, §2.2].
Remark 2. Using deeper methods from (computational) prime number theory Lemma
1 can be considerably sharpened, see e.g. [14], but the point we want to make here
is that the estimate given in part 2, which is the estimate we need in the sequel, is a
rather elementary estimate.

We point out that 15 is in R.

Lemma 2 If r is in A and q ≥ 7 is a prime, then rq is in R.

Proof. Suppose that r is in A. Direct computation shows that 7r is in R. From this
we obtain that

(1 +
1

q
)
σ(r)

r
≤

8σ(r)

7r
< eγ log log(7r) ≤ eγ log log(qr),

for q ≥ 7, whence the result follows on noting that σ(rq) = σ(r)σ(q). 2

Proof of Theorem 1. By induction with respect to ω(n), that is the number of distinct
prime factors of n. Put ω(n) = m. The assertion is easily provable for those integers
with m = 1 (the primes that is). Suppose it is true for m − 1, with m ≥ 2 and let
us consider the assertion for those squarefree n with ω(n) = m. So let n = q1 · · · qm

be a squarefree number that is not in A and assume w.l.o.g. that q1 < · · · < qm. We
consider two cases:
Case 1: qm ≥ log(q1 · · · qm) = log n.
If q1 · · · qm−1 is in A, then if qm is not in A, n = q1 . . . qm−1qm is in R (Lemma 2) and
we are done, and if qm is in A, the only possibility is n = 15 which is in R and we
are also done.
If q1 · · · qm−1 is not in A, by the induction hypothesis we have

(q1 + 1) · · · (qm−1 + 1) < eγq1 · · · qm−1 log log(q1 · · · qm−1),

and hence

(q1 + 1) · · · (qm−1 + 1)(qm + 1) < eγq1 · · · qm−1(qm + 1) log log(q1 · · · qm−1). (1)

We want to show that

eγq1 · · · qm−1(qm + 1) log log(q1 · · · qm−1)

≤ eγq1 · · · qm−1qm log log(q1 · · · qm−1qm) = eγn log log n. (2)
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Indeed (2) is equivalent with qm log log(q1 · · · qm−1qm) ≥ (qm + 1) log log(q1 · · · qm−1),
or alternatively

qm(log log(q1 · · · qm−1qm) − log log(q1 · · · qm−1))

log qm

≥
log log(q1 · · · qm−1)

log qm

. (3)

Suppose that 0 < a < b. Note that we have

log b − log a

b − a
=

1

b − a

∫ b

a

dt

t
>

1

b
. (4)

Using this inequality we infer that (3) (and thus (2)) is certainly satisfied if the next
inequality is satisfied:

qm

log(q1 · · · qm)
≥

log log(q1 · · · qm−1)

log qm

.

Note that our assumption that qm ≥ log(q1 · · · qm) implies that the latter inequality
is indeed satisfied.
Case 2: qm < log(q1 · · · qm) = log n.
It is easy to see that σ(n) < eγn log log n is equivalent with

log(q1 + 1) − log q1 + · · · + log(qm + 1) − log qm < γ + log log log(q1 · · · qm). (5)

Note that

log(q1 + 1) − log q1 =

∫ q1+1

q1

dt

t
<

1

q1
.

In order to prove (5) it is thus enough to prove that

1

q1
+ · · ·+

1

qm
≤

∑

p≤qm

1

p
≤ γ + log log log(q1 · · · qm). (6)

Since qm ≥ 7 we have by part 2 of Lemma 1 and the assumption qm < log(q1 · · · qm)
that

∑

p≤qm

1

p
≤ γ + log log qm < γ + log log log(q1 · · · qm),

and hence (6) is indeed satisfied. 2

Theorem 2 will be derived from the following stronger result.

Theorem 7 For all odd integers except 1, 3, 5, 9 and 15 we have

n

ϕ(n)
< eγ log log n. (7)

To see that this is a stronger result, let n =
∏k

i=1 pei

i be the prime factorisation of n
and note that for n ≥ 2 we have

σ(n)

n
=

k
∏

i=1

1 − p−ei−1
i

1 − p−1
i

<

k
∏

i=1

1

1 − p−1
i

=
n

ϕ(n)
, (8)
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where ϕ(n) denotes Euler’s totient function.

We let N (N in acknowledgement of the contributions of J.-L. Nicolas to this subject)
denote the set of integers n ≥ 1 satisfying (7). Our proofs of Theorems 2 and 7 use
the next lemma, the proof of which rests on some numerical estimates in combination
with very straightforward manipulations and is left to the interested reader.

Lemma 3 Put S = {3a · 5b · qc : q ≥ 7 is prime, a, b, c ≥ 0 and ω(3a · 5b · qc) ≥ 2}.
Then S ⊂ R. Moreover, all elements from S except for 15 are in N .

Remark. Let t be any integer. Suppose that we have an infinite set of integers all
having no prime factors > t. Then σ(n)/n and n/ϕ(n) are bounded above on this
set, whereas log log n tends to infinity. Thus only finitely many of those integers will
not be in R, respectively N . It is a finite computation to find them all.

Proof of Theorem 7. As before we let m = ω(n). If m ≤ 1 it is easy to check that n
is in N , except when n = 1, 3, 5 or 9. So we may assume m ≥ 2. Let κ(n) =

∏

p|n p

denote the squarefree kernel of n. Since n/ϕ(n) = κ(n)/ϕ(κ(n)) it follows that if r
is a squarefree number satisfying (7), then all integers n with κ(n) = r satisfy (7) as
well. Thus we consider first the case where n = q1 · · · qm is an odd squarefree integer
with q1 < · · · < qm. In this case n is in N iff

n

ϕ(n)
=

m
∏

i=1

qi

qi − 1
< eγ log log n.

Note that
qi

qi − 1
≤

3

2
and

qi

qi − 1
<

qi−1 + 1

qi−1
,

and hence
n

ϕ(n)
=

m
∏

i=1

qi

qi − 1
<

3

2

m−1
∏

i=1

qi + 1

qi

=
σ(n1)

n1

,

where n1 = 2n/qm < n. Thus, n/ϕ(n) < σ(n1)/n1. If n1 is in R, then invoking
Theorem 1 we find

n

ϕ(n)
<

σ(n1)

n1
< eγ log log n1 < eγ log log n,

and we are done.
If n1 is not in R, then by Theorem 1 it follows that n must be in S. The proof is

now completed on invoking Lemma 3. 2

Proof of Theorem 2. One checks that 1, 3, 5 and 9 are not in R, but 15 is in R. The
result now follows by Theorem 7 and inequality (8). 2

Remark. Note that the proofs of our theorems could have been nicer, if instead of
Robin’s criterion we had a criterion involving every integer n ≥ 1. Such a criterion
was found in 2002 by Lagarias [7] who, using Robin’s work, showed that the RH is
equivalent with the inequality

σ(n) ≤ h(n) + eh(n) log(h(n)),
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where h(n) =
∑n

k=1 1/k is the harmonic sum. Unfortunately our methods, which rest
on the multiplicativity of σ(n)/n, break down for this inequality.

2.1 Theorem 7 put into perspective

Since the proof of Theorem 7 can be carried out with such simple means, one might
expect it can be extended to quite a large class of even integers. However, even a
superficial inspection of the literature on n/ϕ(n) shows this expectation to be wrong.

Rosser and Schoenfeld [14] showed in 1962 that

n

ϕ(n)
≤ eγ log log n +

5

2 log log n
,

with one exception: n = 2 · 3 · 5 · 7 · 11 · 13 · 17 · 19 · 23. They raised the question of
whether there are infinitely many n for which

n

ϕ(n)
> eγ log log n, (9)

which was answered in the affirmative by J.-L. Nicolas [9]. More precisely, let Nk =
2 · 3 · · · · pk be the product of the first k primes, then if the RH holds true (9) is
satisfied with n = Nk for every k ≥ 1. On the other hand, if RH is false, then there
are infinitely many k for which (9) is satisfied with n = Nk and there are infinitely
many k for which (9) is not satisfied with n = Nk. Thus the approach we have taken
to prove Theorem 2, namely to derive it from the stronger result Theorem 7, is not
going to work for even integers.

3 Proof of Theorem 4

The proof of Theorem 4 is an immediate consequence of the following stronger result.

Theorem 8 The only squarefull integers n ≥ 2 not in N are 4, 8, 9, 16, 36, 72, 108,
144, 216, 900, 1800, 2700, 3600, 44100 and 88200.

Its proof requires the following two lemmas.

Lemma 4 [14]. For x > 0 we have

∏

p≤x

p

p − 1
≤ eγ(log x +

1

log x
).

Lemma 5 Let p1 = 2, p2 = 3, . . . denote the consecutive primes. If

m
∏

i=1

pi

pi − 1
≥ eγ log(2 log(p1 · · ·pm)),

then m ≤ 4.
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Proof. Suppose that m ≥ 26 (i.e. pm ≥ 101). It then follows by Theorem 10 of
[14] which states that θ(x) :=

∑

p≤x log p > 0.84x for x ≥ 101, that log(p1 · · · pm) =
θ(pm) > 0.84pm. We find that

log(2 log(p1 · · · pm)) > log pm + log 1.64 ≥ log pm +
1

log pm
,

and so, by Lemma 4, that

m
∏

i=1

pi

pi − 1
≤ eγ

(

log pm +
1

log pm

)

< eγ log(2 log(p1 · · · pm)).

The proof is then completed on checking the inequality directly for the remaining
values of m. 2

Proof of Theorem 8. Suppose that

n

ϕ(n)
≥ eγ log log n.

Put ω(n) = m. Then

m
∏

i=1

pi

pi − 1
≥

n

ϕ(n)
≥ eγ log log n ≥ eγ log(2 log(p1 · · · pn)).

By Lemma 5 it follows that m ≤ 4. In particular we must have

2 ·
3

2
·
5

4
·
7

6
=

35

8
≥ eγ log log n,

whence n ≤ exp(exp(e−γ35/8)) ≤ 116144. On numerically cheeking the inequality for
the squarefull integers ≤ 116144, the proof is then completed. 2

Remark. The squarefull integers ≤ 116144 are easily produced on noting that they
can be unqiuely written as a2b3, with a a positive integer and b squarefree.

4 On the ratio σ(n)/(n log log n) as n ranges over var-

ious sets of integers

We have proved that Robin’s inequality holds for large enough odd numbers, square-
free and squarefull numbers. A natural question to ask is how large the ratio f1(n) :=
σ(n)/(n log log n) can be when we restrict n to these sets of integers. We will con-
sider the same question for the ratio f2(n) := n/(ϕ(n) log log n). Our results in this
direction are summarized in the following result:

Theorem 9 We have

(1) lim sup
n→∞

f1(n) = eγ, (2) lim sup
n→∞

n is squarefree

f1(n) =
6eγ

π2
, (3) lim sup

n→∞
n is odd

f1(n) =
eγ

2
,
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and, moreover,

(4) lim sup
n→∞

f2(n) = eγ , (5) lim sup
n→∞

n is squarefree

f2(n) = eγ, (6) lim sup
n→∞

n is odd

f2(n) =
eγ

2
.

Furthermore,

(7) lim sup
n→∞

n is squarefull

f1(n) = eγ , (8) lim sup
n→∞

n is squarefull

f2(n) = eγ .

(The fact that the corresponding lim infs are all zero is immediate on letting n run
over the primes.)

Part 4 of Theorem 9 was proved by Landau in 1909, see e.g. [2, Theorem 13.14],
and the remaining parts can be proved in a similar way. Gronwall in 1913 established
part 1. Our proof makes use of a lemma involving t-free integers (Lemma 6), which
is easily proved on invoking a celebrated result due to Mertens (1874) asserting that

∏

p≤x

(

1 −
1

p

)−1

∼ eγ log x, x → ∞.

Lemma 6 Let t ≥ 2 be a fixed integer. We have

(1) lim sup
n→∞

t−free integers

f1(n) =
eγ

ζ(t)
, (2) lim sup

n→∞
odd t−free integers

f1(n) =
eγ

2ζ(t)(1 − 2−t)
.

Proof. 1) Let us consider separately the prime divisors of n that are larger than log n.
Let us say there are r of them. Then (log n)r < n and thus r < log n/ log log n.
Moreover, for p > log n we have

1 − p−t

1 − p−1
<

1 − (log n)−t

1 − (log n)−1
.

Thus,
∏

p|n
p>log n

1 − p−t

1 − p−1
<

(

1 − (log n)−t

1 − (log n)−1

)
log n

log log n

.

Let pk denote the largest prime factor of n. We obtain

σ(n)

n
=

k
∏

i=1

1 − p−ei−1
i

1 − p−1
i

≤
k

∏

i=1

1 − p−t
i

1 − p−1
i

<

(

1 − (log n)−t

1 − (log n)−1

)
log n

log log n ∏

p≤log n

1 − p−t

1 − p−1
, (10)

where in the derivation of the first inequality we used that ei < t by assumption.
Note that the factor before the final product satisfies 1 + O((log log n)−1) and thus
tends to 1 as n tends to infinity. On invoking Mertens’ theorem and noting that
∏

p≤log n(1 − p−t) ∼ ζ(t)−1, it follows that the lim sup ≤ eγ/ζ(t).
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In order to prove the ≥ part of the assertion, take n =
∏

p≤x pt−1. Note that n is
t-free. On invoking Mertens’ theorem we infer that

σ(n)

n
=

∏

p≤x

1 − p−t

1 − p−1
∼

eγ

ζ(t)
log x.

Note that log n = t
∑

p≤x p = tθ(x), where θ(x) denotes the Chebyshev theta function.
By an equivalent form of the Prime Number Theorem we have θ(x) ∼ x and hence
log log n = (1 + ot(1)) log x. It follows that for the particular sequence of infinitely
many n values under consideration we have

σ(n)

n log log n
=

eγ

ζ(t)

(

1 + ot(1)
)

.

Thus, in particular, for a given ε > 0 there are infinitely many n such that

σ(n)

n log log n
>

eγ

ζ(t)
(1 − ε).

2) Can be proved very similarly to part 1. Namely, the third product in (10) will
extend over the primes 2 < p ≤ log n and for the ≥ part we consider the integers n
of the form n =

∏

2<p≤x pt−1. 2

Remark. Robin [13] has shown that if RH is false, then there are infinitely many
integers n not in R. As n ranges over these numbers, then by part 1 of Lemma 6 we
must have max{ei} → ∞, where n =

∏k
i=1 pei

i .

Proof of Theorem 9.
1) Follows from part 1 of Lemma 6 on letting t tend to infinity. A direct proof (similar
to that of Lemma 6) can also be given, see e.g. [4]. This result was proved first by
Gronwall in 1913.
2) Follows from part 1 of Lemma 6 with t = 2.
3) Follows on letting t tend to infinity in part 2 of Lemma 6.
4) Landau (1909).
5) Since f2(n) ≤ f2(κ(n)), part 5 is a consequence of part 4.
6) A consequence of part 4 and the fact that for odd integers n and a ≥ 1 we have
f2(2

an) = 2f2(n)(1 + O((log n log log n)−1)).
7) Consider numbers of the form n =

∏

p≤x pt−1 and let t tend to infinity. These are
squarefull for t ≥ 3 and using them the ≥ part of the assertion follows. The ≤ part
follows of course from part 3.
8) It is enough here to consider the squarefull numbers of the form n =

∏

p≤x p2. 2

5 Reduction to Hardy-Ramanujan integers

Recall that p1, p2, . . . denote the consecutive primes. An integer of the form
∏s

i=1 pei

i

with e1 ≥ e2 ≥ · · · ≥ es ≥ 0 we will call an Hardy-Ramanujan integer. We name
them after Hardy and Ramanujan who in a paper entitled ‘A problem in the analytic
theory of numbers’ (Proc. London Math. Soc. 16 (1917), 112-132) investigated
them. See also [11, pp. 241-261], where this paper is retitled ‘Asymptotic formulae
for the distribution of integers of various types’.
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Proposition 1 If Robin’s inequality holds for all Hardy-Ramanujan integers 5041 ≤
n ≤ x, then it holds for all integers 5041 ≤ n ≤ x. Asymptotically there are

exp((1 + o(1))2π
√

log x/3 log log x)

Hardy-Ramanujan numbers ≤ x.

Hardy and Ramanujan proved the asymptotic assertion above. The proof of the first
part requires a few lemmas.

Lemma 7 For e > f > 0, the function

ge,f : x →
1 − x−e

1 − x−f

is strictly decreasing on (1, +∞].

Proof. For x > 1, we have

g′
e,f(x) =

exf − fxe + f − e

xe+f+1(1 − x−f)2 .

Let us consider the function he,f : x → exf − fxe + f − e. For x > 1, we have
h′

e,f(x) = efxf
(

1 − xe−f
)

< 0. Consequently he,f is decreasing on (1, +∞] and since
he,f(1) = 0, we deduce that he,f(x) < 0 for x > 1 and so ge,f(x) is strictly decreasing
on (1, +∞]. 2

Remark. In case f divides e, then

1 − x−e

1 − x−f
= 1 +

1

xf
+

1

x2f
+ · · ·+

1

xe
,

and the result is obvious.

Lemma 8 If q > p are primes and f > e, then

σ
(

pfqe
)

pfqe
>

σ
(

peqf
)

peqf
. (11)

Proof. Note that the inequality (11) is equivalent with

(1 − p−1−f)(1 − p−1−e)−1 > (1 − q−1−f )(1 − q−1−e)−1.

It follows by Lemma 7 that the latter inequality is satisfied. 2

Let n =
∏s

i=1 qi
ei be a factorisation of n, where we ordered the primes qi in such

a way that e1 ≥ e2 ≥ e3 ≥ · · · We say that ē = (e1, . . . , es) is the exponent pattern of
the integer n. Note that Ω(n) = e1 + . . . + es, where Ω(n) denotes the total number
of prime divisors of n. Note that

∏s
i=1 pi

ei is the minimal number having exponent
pattern ē. We denote this (Hardy-Ramanujan) number by m(ē).
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Lemma 9 We have

max

{

σ(n)

n
| n has factorisation pattern ē

}

=
σ(m(ē))

m(ē)
.

Proof. Since clearly
σ (pe)

pe
>

σ (qe)

qe

if p < q, the maximum is assured on integers n =
∏s

i=1 pi
fi having factorisation

pattern ē. Suppose that n is any number of this form for which the maximum is
assumed, then by Lemma 8 it follows that f1 ≥ f2 ≥ · · · ≥ fs and so n = m(ē). 2

Lemma 10 Let ē denote the factorisation pattern of n.
1) If σ(n)/n ≥ eγ log log n, then σ(m(ē))/m(ē) > eγ log log m(ē).
2) If σ(m(ē))/m(ē) < eγ log log m(ē), then σ(n)/n < eγ log log n for every integer n
having exponent pattern ē.

Proof. A direct consequence of the fact that m(ē) is the smallest number having
exponent pattern ē and Lemma 9. 2

On invoking the second part of the latter lemma, the proof of Proposition 1 is
completed.

6 Superabundant numbers

For an arithmetic function f , an integer n is said to be a champion number if f(m) <
f(n) for all m < n. The most well-known champion numbers are the highly composite
numbers, which are the champion numbers for the divisor function

∑

d|n 1. They were

studied in depth by Ramanujan in a celebrated paper [11, pp. 78-128].
The champion numbers for σ are called highly abundant numbers. The champion

numbers for σ(n)/n are called superabundant numbers. An integer N for which there
exists ε > 0 such that

σ(m)

m1+ε
≤

σ(N)

N1+ε

for all natural numbers m, is called a colossally abundant number. The first 30
superabundant numbers are 1, 2, 4, 6, 12, 24, 36, 48, 60, 120, 180, 240, 360, 720, 840,
1260, 1680, 2520, 5040, 10080, 15120, 25200, 27720, 55440, 110880, 166320.

It is easy to show that if N is colossaly abundant, then it is superabundant and
if N is superabundant, then it is highly abundant. These implications can not be
reversed. For example, Nicolas [8] showed that there is a constant c > 0 such that
the number of integers n ≤ x that are highly abundant, but not superabundant is
≥ c(log x)3/2. Erdős and Nicolas [5] proved that if c1 < 5/48, then the number of
integers n ≤ x that are superabundant is at least (log x)1+c1 for x sufficiently large.
It is not known (see [10]) whether this number can be bounded above by (log x)∆ for
some ∆.
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Alaoglu and Erdős proved the following result concerning superabundant numbers.

Theorem 10 [1]. Let n =
∏s

i=1 pei

i denote the factorisation of a superabundant
number n, with ps its largest prime factor. Then n is a Hardy-Ramanujan number
and es = 1 except if n = 4 or n = 36. Furthermore if i and hence n tends to infinity,
then pei

i ∼ ps log ps/ log qi and ps ∼ log n. Moreover, pei

i < 2e1+2.

Superabundant numbers seem to have been first studied by Ramanujan [12]. For some
recent computational results on superabundant and colossally abundant numbers, see
Briggs [3].

7 The proof of Theorem 5

It is easy to see that the smallest integer ≥ 5041 not satisfying Robin’s inequality,
provided it exists, must be a superabundant number. We will prove Theorem 5 by
using the latter observation, Theorem 10 and the lemma below.

By P (n) we denote the largest prime factor of n.

Lemma 11 Suppose that there exists an integer exceeding 5040 that does not satisfy
Robin’s inequality. Let n be the smallest such integer. Then P (n) < log n.

Proof. One numerically checks that we must have n ≥ 10081. Suppose that n is not
superabundant. Since 10080 is a superabundant number, it follows that there is an
integer 5041 ≤ n0 < n that is superabundant and for which σ(n0)/n0 > σ(n)/n ≥
eγ log log n > eγ log log n0. This contradicts the minimality assumption on n and
shows that n must be superabundant. By Theorem 10 it then follows that we can
write n = r · qm with P (n) = qm and qm - r. The minimality assumption on n implies
that either r is a Hardy-Ramanujan number ≤ 5040 not satisfying Robin’s inequality
or that r is in R. It is not difficult to exclude the former case, and so we infer that
r is in R. We will now show that this together with the assumption qm ≥ log n leads
to a contradiction, whence the result follows.

So assume that qm ≥ log n. This implies that

qm

log n
>

log log r

log qm

.

This (cf. the proof of case 1 of Theorem 1) implies that

qm(log log n − log log r)

log qm
>

log log r

log qm
.

The latter inequality is equivalent with (1 + 1/qm) log log r < log log n. Now we infer
that

σ(n)

n
=

σ(qmr)

qmr
= (1 +

1

qm

)
σ(r)

r
< (1 +

1

qm

)eγ log log r < eγ log log n.

This contradicts our assumption that n 6∈ R. 2
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Proof of Theorem 5. By contradiction. So we assume that there exists at least one 5-
free integer ≥ 5041 not satisfying Robin’s inequality. We let n be the smallest of these.
As we have observed before, the number n must be superabundant. Since e1 ≤ 4 we
have, by Theorem 10, that pei

i < 64. Put f1 = 4 and for i ≥ 2 let fi be the largest
integer such that pfi

i < 64. Note that f2 = 3, f3 = f4 = 2 and f5 = · · · = f18 = 1 and
fi = 0 for i ≥ 19. Put P (n) = pm. Then pm < log n by Lemma 11 and we infer that

m
∏

i=1

σ(pfi

i )

pfi

i

≥
σ(n)

n
≥ eγ log log n ≥ eγ log pm

and thus
m
∏

i=1

σ(pfi

i )

pfi

i

≥ eγ log pm.

On numerically checking this for the range m ≤ 19 we see that m ≤ 9. Now we are
left with 142 candidates for the number n: namely those numbers of the form

∏9
i=1 pei

i

with ei ≤ fi and e1 ≥ e2 ≥ · · · ≥ e9 ≥ 0. However, those of the corresponding 142 in-
tegers that furthermore exceed 5040 all turn out (by computer calculation) to satisfy
Robin’s inequality, and thus we have arrived at a contradiction. 2

It might be a project of some interest to replace 5-free in Theorem 5 with t-free, with
t as large as possible. In this direction it should be mentioned that Briggs [3] did
some floating point calculations (which as he himself writes cannot be completely
regarded as rigorous) in which he verified that the superabundant numbers > 5040
with maximal two exponent 12 satisfy Robin’s inequality. If this can be established
rigorously, it would follow that in Theorem 5, 5-free can be replaced by 13-free.
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