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Abstract. We are looking for the smallest integer k > 1 provid-
ing the following characterization of the solvable radical R(G) of
any finite group G: R(G) coincides with the collection of g ∈ G

such that for any k elements a1, a2, . . . , ak ∈ G the subgroup gen-
erated by the elements g, aiga−1

i
, i = 1, . . . , k, is solvable. We

consider a similar problem of finding the smallest integer ` > 1
with the property that R(G) coincides with the collection of g ∈ G

such that for any ` elements b1, b2, . . . , b` ∈ G the subgroup gen-
erated by the commutators [g, bi], i = 1, . . . , `, is solvable. Con-
jecturally, k = ` = 3. We prove that both k and ` are at most 7.
In particular, this means that a finite group G is solvable if and
only if in each conjugacy class of G every 8 elements generate a
solvable subgroup.
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1. Introduction

1.1. Main results. Let F2 = F (x, y) be the free two generator group.
Define a sequence −→e = e1, e2, e3, . . . , where ei(x, y) ∈ F2, by

e1(x, y) = [x, y] = xyx−1y−1, . . . , en(x, y) = [en−1(x, y), y], . . . ,

An element g of a group G is called an Engel element if for every
a ∈ G there exists a number n = n(a, g) such that en(a, g) = 1.

In 1957 R. Baer proved the following theorem [Ba], [H]:

Theorem 1.1. The nilpotent radical of a noetherian group G coincides
with the collection of all Engel elements of G.

In particular, Baer’s theorem is true for finite groups. Similar the-
orems have been established for many classes of infinite groups satis-
fying some additional conditions (see for example [Plo], [Pla]).

A tempting but difficult problem is to find a counterpart of Baer’s
theorem for the solvable radical of a finite group, in other words, to
find an Engel-like sequence −→u = un(x, y) such that an element g of a
finite group G belongs to the solvable radical R(G) of G if and only if
for any a ∈ G there exists a number n = n(a, g) such that un(a, g) = 1.
The first results towards a solution of this problem have been obtained
in [BGGKPP1], [BGGKPP2], [BWW], and [BBGKP].

In the paper [GKPS] a Thompson-like characterization of the solv-
able radical of finite groups (and, more generally, linear groups and
PI-groups) has been obtained.

Theorem 1.2. [GKPS] The solvable radical R(G) of a finite group G
coincides with the set of all elements g ∈ G with the following property:
for any a ∈ G the subgroup generated by g and a is solvable.

This theorem can be viewed as an implicit description of the solvable
radical since it does not provide any explicit formulas which determine
if a particular element belongs to R(G).
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In the present paper our goal is to obtain a new characterization of
the solvable radical R(G) of a finite group G.

Theorem 1.3. The solvable radical of any finite group G coincides
with the collection of g ∈ G satisfying the property: for any 7 elements
a1, a2, . . . , a7 ∈ G the subgroup generated by the elements g, aiga−1

i ,
i = 1, . . . , 7, is solvable.

The proof involves the classification of finite simple groups.

This theorem implies the following characterization of finite solvable
groups:

Theorem 1.4. A finite group G is solvable if and only if in each
conjugacy class of G every 8 elements generate a solvable subgroup.

We hope to sharpen these results.

Conjecture 1.5. The solvable radical of a finite group G coin-
cides with the collection of g ∈ G satisfying the property: for any
3 elements a, b, c ∈ G the subgroup generated by the conjugates
g, aga−1, bgb−1, cgc−1 is solvable.

This statement implies

Conjecture 1.6. A finite group G is solvable if and only if in each
conjugacy class of G every four elements generate a solvable subgroup.

Remark 1.7. These characterizations are the best possible: in the
symmetric groups Sn (n ≥ 5) any triple of transpositions generates a
solvable subgroup.

Remark 1.8. The main step in our proof of Theorem 1.3 is Theorem
1.11 below. To prove Conjecture 1.5 (and hence Conjecture 1.6), one
has to extend the statement of Theorem 1.11 to all almost simple
groups, i.e. to the groups H such that G ⊆ H ⊆ Aut (G) for some
simple group G.

Remark 1.9. The statements of Theorems 1.3 and 1.4 remain true
for arbitrary linear groups. Once Conjectures 1.5 and 1.6 are proved,
they can also be extended to arbitrary linear groups.

Throughout the paper 〈a1, . . . , ak〉 stands for the subgroup of G
generated by a1, . . . , ak ∈ G. We define the commutator of x, y ∈ G
by [x, y] = xyx−1y−1.
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Definition 1.10. Let k ≥ 2 be an integer. We say that g ∈ G
is a k-radical element if for any a1, . . . , ak ∈ G the subgroup H =
〈[a1, g], . . . , [ak, g]〉 is solvable.

We prove the following result.

Theorem 1.11. Let G be a finite nonabelian simple group. Then G
does not contain nontrivial 3-radical elements.

This theorem implies Theorems 1.3 and 1.4.

The proof goes by case-by-case inspection of simple groups (alter-
nating groups, groups of Lie type, sporadic groups). In fact we prove
a more precise result (Theorem 1.15) which distinguishes between 2-
radical and 3-radical elements.

The following simple fact allows us to define a new invariant of a
finite group.

Proposition 1.12. Let G be a group which has no nontrivial solvable
normal subgroups. Then for every g ∈ G, g 6= 1 the group Hg = 〈[g, G]〉
is not solvable.

Proof. For every x, y ∈ G we have

[g, x]−1[g, y] = (xgx−1g−1)(gyg−1y−1) = (xgx−1)(yg−1y−1) ∈ Hg.

Thus, CgCg−1 ⊂ Hg where Cg, Cg−1 are the corresponding conjugacy
classes. Since the set CgCg−1 is invariant under conjugation, the sub-
group F = 〈CgCg−1〉 ≤ Hg is normal in G and therefore cannot be
solvable. �

Corollary 1.13. Let G be a finite group, and let R(G) denote the
solvable radical of G. Then g /∈ R(G) if and only if there exist an
integer n and x1, . . . , xn ∈ G such that the subgroup 〈[g, x1], . . . , [g, xn]〉
is not solvable.

Definition 1.14. Denote by ρ(g) the smallest possible n with the
following property: g /∈ R(G) if and only if there exist x1, . . . , xn ∈ G
such that the subgroup 〈[g, x1], . . . , [g, xn]〉 is not solvable. We call the
number ρ(G) := maxg∈G\R(G) ρ(g) the radical degree of G.

In these terms we have to prove that the radical degree of a finite
nonabelian simple group G is ≤ 3. Our most precise result, which
implies Theorem 1.11 and, correspondingly, Theorems 1.3 and 1.4, is
the following
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Theorem 1.15. If G is a finite nonabelian simple group, then ρ(G) ≤
3. If G is a group of Lie type over a field K with char K 6= 2 and
K 6= F3, or a sporadic group not isomorphic to Fi22 or Fi23, then
ρ(G) = 2.

1.2. Notation and conventions. First introduce some standard no-
tation which mostly follows [St], [Ca1], [Ca2].

Denote by G = G(Φ, K) a Chevalley group where Φ is a reduced
irreducible root system and K is a field. Assume that Φ is generated
by a set of simple roots Π = {α1, . . . , αr}, that is Φ = 〈α1, . . . , αr〉.
We number the roots according to [Bou]. Let W = W (Φ) be the Weyl
group corresponding to Φ. Denote by Φ+, Φ− the sets of positive and
negative roots, respectively.

We use the standard notation uα(t), α ∈ Φ, t ∈ K, for elementary
root unipotent elements of G. Correspondingly, split semisimple ele-
ments will be denoted by hα(t), t ∈ K∗, where K∗ is the multiplicative
group of K. For α ∈ Φ, let Uα denote the root subgroup generated by
all elementary root unipotent elements uα(t).

For the sake of completeness, recall that wα(t) =
uα(t)x−α(−t−1)uα(t), wα = wα(1) and hα(t) = wα(t)w−1

α .
Define the subgroups U = U+ = 〈uα(t), α ∈ Φ+, t ∈ K〉,
V = U− = 〈uα(t), α ∈ Φ−, t ∈ K〉, T = 〈hα(t), α ∈ Φ, t ∈ K∗〉,
and N = 〈wα(t), α ∈ Φ, t ∈ K∗〉.

As usual, the Borel subgroups B± are B = B+ = TU , B− = TU−.
The group N contains T , and N/T ∼= W . Denote by ẇ a preimage of
w ∈ W in N .

We also consider twisted Chevalley groups over finite fields. As-
sume that K is a finite field of characteristic p and |K| = q = ps.
By a twisted Chevalley group we mean the group GF = GF (Φ, K) of
fixed points of the simply connected Chevalley group G(Φ, K) under
the Frobenius map F (see [St], [Ca1], [Ca2]). Here K stands for the
algebraic closure of K. Let θ be the field automorphism corresponding
to F . Denote by k = Kθ the subfield of θ-fixed points for all cases ex-
cept for the Suzuki groups and the Ree groups. For the latter groups
suppose that k = K. Let γ be the graph automorphism correspond-
ing to F . We denote by Φγ the root system which determines the
structure of the group GF = GF (Φ, K). Elementary root unipotent
elements uα(t), α ∈ Φγ , have either one parameter t ∈ K or t ∈ k,
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or two parameters uα(t, u), t, u ∈ K (for the cases 2A2,
2B2,

2F4),
or three parameters uα(t, u, v), t, u, v ∈ K (for 2G2), see [St]. Again,
the root subgroups Uα are generated by root unipotent elements. The
subgroups BF , W F , T F , HF , U±F

in GF are defined in a standard
way, see [Ca2]. A maximal torus of GF is a subgroup of the form T F ,
where T is an F -stable maximal torus of G. A maximal torus T F is
called quasisplit if it is contained in BF . Throughout the paper we
suppress the map F in the notations. We also suppress γ in the no-
tation of the root system corresponding to the group GF . Whenever
we need to specify the type of a group, it will be written explicitly.

We follow [Ca2] in the notation of twisted forms. Thus unitary
groups are denoted by PSUn(q

2) (and not by PSUn(q)), the notation
2F4(2

2m+1) means that q =
√

22m+1, etc.

The paper is organized as follows. In Section 2 we reduce Theorem
1.4 to Theorem 1.15. In Sections 3–9 we prove Theorem 1.15 using
case-by-case analysis.
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2. Reduction Theorem

Let us show how Theorem 1.15 implies Theorem 1.4.

Suppose Theorem 1.15 is proven, and let us show that the solvable
radical R(G) of a finite group G coincides with the collection of g ∈ G
satisfying the property: for any 7 elements a1, a2, . . . , a7 ∈ G the
subgroup generated by the elements g, aiga−1

i , i = 1, . . . , 7, is solvable.
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For the sake of convenience, let us call the elements g ∈ G satisfying
the condition of the theorem, suitable.

Suppose g ∈ R(G). Since R(G) is a normal subgroup, aga−1

belongs to R(G) for any a ∈ G. Hence for any k the subgroup
〈a1ga−1

1 , . . . , akga−1
k 〉, where a1, . . . , ak ∈ G, is solvable. Therefore,

all the elements of R(G) are suitable.

Suppose now that g ∈ G is a suitable element. We want to show
that g belongs to R(G). It is enough to prove that there are no non-
trivial suitable elements in the semisimple group G/R(G). So one can
assume that the group G is semisimple in the sense that R(G) = 1.

As usual we consider a minimal counterexample G to the statement
above.

Recall that any finite semisimple group G contains a unique maxi-
mal normal centreless completely reducible (CR) subgroup (by defini-
tion, CR means a direct product of finite non-abelian simple groups)
called the CR-radical of G (see [Ro, 3.3.16]). We call a product of
the isomorphic factors in the decomposition of the CR-radical an iso-
typic component of G. Denote the CR-radical of G by V . This is a
characteristic subgroup of G.

Let us show that V has only one isotypic component. Suppose
V = N1 × N2, where N1 ∩ N2 = 1. Consider Ḡ = G/N1 and denote
R̄ = R(G/N1). Consider a suitable g ∈ G, g 6= 1 and denote by ḡ
(resp. ¯̄g) the image of g in Ḡ (resp. Ḡ/R̄). Since Ḡ/R̄ is semisimple
and ¯̄g ∈ Ḡ/R̄ is suitable, we have ¯̄g = 1 (because G is a minimal
counter-example) and hence ḡ ∈ R(G/N1). Consider V/N1 ' N2.
Then V/N1 ⊂ G/N1 is semisimple and therefore V/N1∩R(G/N1) = 1.
Since ḡ ∈ R(G/N1), we have [ḡ, v̄] = 1̄ for every v̄ ∈ V/N1. Hence
[g, v] ∈ N1 for every v ∈ V . Similarly, [g, v] ∈ N2 for every v ∈ V .
Therefore [g, v] = 1. Hence g centralizes every v ∈ V . Since the
centralizer of V in G is trivial, we get g = 1. Contradiction.

Any g ∈ G acts as an automorphism g̃ on V = H1×· · ·×Hn, where
all Hi, 1 ≤ i ≤ n, are isomorphic nonabelian simple groups.

Suppose that g is a suitable element. Let us show that g̃ cannot act
on V as a non-identity element of the symmetric group Sn. Denote
by σ the element of Sn corresponding to g̃.
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By definition, the subgroup Γ = 〈g, xigx−1
i 〉, i = 1, . . . , 7, is solvable

for any elements xi ∈ G. Evidently, the subgroup 〈[g, x1], [g, x2]〉 lies
in Γ.

Suppose σ 6= 1, and so σ(k) 6= k for some k ≤ n. Take x̄1 and

x̄2 of the form x̄i = (1, . . . , x
(k)
i , . . . , 1), where x

(k)
i 6= 1 lies in Hk

(i = 1, 2). Then we may assume (x̄i)
σ = (x

(k)
i , 1, . . . , 1), and so [g, x̄i] =

(x̄i)
σx̄−1

i = (x
(k)
i , 1, . . . , (x

(k)
i )−1, . . . , 1).

By a theorem of Steinberg, Hk is generated by two elements, say

a and b. On setting x
(k)
1 = a, x

(k)
2 = b, we conclude that the group

generated by [g, x̄1] and [g, x̄2] cannot be solvable because the first
components of these elements, a and b, generate the simple group Hk.
Contradiction with solvability of Γ.

So we can assume that a suitable element g ∈ G acts as an auto-
morphism of a simple group H. Then we consider the extension of the
group H with the automorphism g̃. Denote this almost simple group
by G1. We shall use the formula

y[x, g]y−1 = [x, g][[g, x], y].

Since G1 has no centre, one can choose x ∈ H such that
[x, g̃] 6= 1. Evidently, [x, g̃] belongs to the simple group H. Then
by Theorem 1.15, there exist y1, y2, y3 ∈ H such that the subgroup
〈[[x, g], y1], [[x, g], y2], [[x, g], y3]〉 is not solvable. But

〈[[x, g], y1], [[x, g], y2], [[x, g], y3]〉 ≤ 〈yi[x, g]y−1
i , [x, g] | i = 1, 2, 3〉 ≤

≤ 〈g, x−1gx, y−1
i gyi, y

−1
i x−1gxyi | i = 1, 2, 3〉

Since g is suitable, the latter subgroup must be solvable. Contradiction
with the choice of yi.

3. Alternating groups

Proposition 3.1. Let G = An, n ≥ 5. Then ρ(G) = 2.

Proof. For n = 5, 6 the statement can be checked in a straightforward
manner, so assume n ≥ 7. Let us proceed by induction. Let y ∈ G,
y 6= 1. First suppose that y can be written in the form

(3.1) y = στ, σ ∈ Am, σ 6= 1, m < n.
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Then by induction hypothesis there exist σ1, σ2 ∈ Am such that the
subgroup generated by [σ, σ1] and [σ, σ2] is not solvable. Take xi = σiτ ,
i = 1, 2. Then [y, xi] = [σ, σi], and we are done.

Suppose y cannot be represented in the form (3.1). Then we have
one of the following cases: either n is odd and y = (12 . . . n), or n is
even and y = (12 . . . n − 2)(n − 1, n). In any of these cases we take
x1 = (123) and x2 = (345) and get 〈[x1, y], [x2, y]〉 ∼= A5. �

4. Groups of Lie type of rank 1 over fields of large

characteristic

Proposition 4.1. Let G be one of the groups A1(q) (q 6= 2, 3), 2A2(q
2)

(q 6= 2), 2B2(2
2m+1) (m ≥ 1), 2G2(3

2m+1) (m ≥ 0). Then ρ(G) = 2.

Remark 4.2. Obviously, it is enough to prove that ρ(G1) = 2 for
some group G1 lying between G and its simply connected cover. In
each specific case the choice of G1 will depend on the convenience of the
proof. In particular, we shall often assume the Chevalley group under
consideration to be simply connected. We shall use this observation
without any special notice.

We start with computations for simple groups of Lie type of small
Lie rank defined over F2 and F3. They will be used in several parts of
our proof. The computations were made for all groups of rank 1 and 2
and also for certain groups of rank 3 and 4 needed for our arguments.
The results of MAGMA computations are exhibited in Table 1. Each
entry displays the number of 2-radical elements in the corresponding
group (up to conjugacy) and their orders (in parentheses). Dash means
that the corresponding group either is solvable or does not exist (for
this reason the types A1 and 2B2 do not appear at all). Asterisks
mean that the corresponding group G is not simple, and computations
were made for the derived subgroup G′, which is simple. It is worth
recalling the isomorphisms B2(q) ∼= C2(q), B2(3) ∼= C2(3) ∼= 2A3(2

2),
G2(2)′ ∼= 2A2(3

2), A3(2) ∼= A8.

Before starting the proof of the proposition, we recall the following
result from [Gow] (compare with [EG2]) regarding conjugacy classes
of semisimple elements in Chevalley groups. This fact is essential for
our arguments.

Theorem 4.3. [Gow] Let G be a finite simple group of Lie type, and
let g 6= 1 be a semisimple element in G. Let L be a conjugacy class
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F2 F3 Remarks
2A2 — 0
2G2 — 0∗ (*) Computed for G′

A2 0 0
B2 0∗∗ 3 (2,3,3) (**) Computed for G′

C2 0∗∗ 3 (2,3,3)
G2 0∗∗∗ 0 (***) Computed for G′

2A3 3 (2,3,3) 0
2A4 3 (2,3,3) 0
3D4 0 0
A3 0 0
B3 1 (2) 1(2)
2F4 0∗∗∗∗ — (****) Computed for G′

D4 0 0
Table 1. 2-radical elements in groups of small Lie rank

of G consisting of regular semisimple elements. Then there exist a
regular semisimple x ∈ L and z ∈ G such that g = [x, z].

Let us now go over to the proof of Proposition 4.1.

Proof. First note that for the groups G = 2A2(3
2) and G = 2G2(3

2)
the statement of the proposition follows from calculations presented
in Table 1. So we exclude these groups from consideration in the rest
of the proof. We start with several simple lemmas (recall that G is a
finite group).

Lemma 4.4. Let G = B ∪BẇB be a group of rank one. Let 1 6= u ∈
U . If gug−1 ∈ U , then g ∈ B.

Proof. Suppose g = u2ẇu1 where u1, u2 ∈ U . Then v =
u2ẇu1uu−1

1 ẇ−1u−1
2 ∈ U . Hence

U 3 u−1
2 vu2 = ẇu1uu−1

1 ẇ−1 ∈ U−.

This contradicts the assumption u 6= 1. �

Lemma 4.5. Let G be a group of rank one. Then every nontrivial
unipotent element is contained in only one Borel subgroup.

Proof. Suppose 1 6= u ∈ U ≤ B and u ∈ B ′, where B′ = xBx−1, x /∈ B
[St]. Then u = xvx−1 for some v ∈ U . By Lemma 4.4, x ∈ B,
contradiction. �
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Lemma 4.6. Let G be a group of rank one. Then, up to conjugacy,
for every g ∈ G we have either g ∈ T , or g ∈ U , or g = tu with
t ∈ T, u ∈ U, tu = ut, or g is a regular semisimple element which is
not contained in any Borel subgroup.

Proof. Indeed, let g = su = us be the Jordan decomposition of g.
We may and shall assume u ∈ U . If s = 1, then g = u ∈ U , so we
assume further s 6= 1. Suppose u 6= 1 ∈ U . Then sus−1 = u ∈ U and
therefore, by Lemma 4.4, we have s ∈ B. Since s ∈ B, s lies in some
quasisplit torus. As all quasisplit tori are conjugate [Ca2], we have
s′ = bsb−1 ∈ T for some b ∈ B. Thus we get

bgb−1 = bsb−1bub−1 = s′u′

with s′ ∈ T , u′ ∈ U . Suppose now u = 1. We have g = s, and if s lies
in a Borel subgroup, then s is conjugate to an element of T , as above.
Finally, if s is a semisimple element which does not belong to any
Borel subgroup, then according to Lemma 4.4 it does not commute
with any unipotent element, and thus g = s is a regular semisimple
element. �

Definition 4.7. Let t ∈ T . Define

t[2] := ẇt−1ẇt.

If G is of the type A1,
2B2, or 2G2, we have t[2] = t2. If G

is of the type 2A2(q
2) and t = diag(λ, λ−1λq, λ−q), we have t[2] =

diag(λλq, 1, λ−1λ−q).

Lemma 4.8. Let G be a group of rank one, let g /∈ Z(G), and let t be
a generator of T . Suppose t[2] is a regular element. Then there exists
x ∈ G such that [g, x] is of the form ρ[2] where ρ is a generator of a
quasisplit torus of G.

Proof. We may assume g = uẇ. Put x = t−1. Then

σ = [g, t−1] = uẇt−1ẇ−1tt−1u−1t = ut[2]t−1u−1t

which is conjugate to t[2]v for some v ∈ U . Since t[2] and, correspond-
ingly, t−[2] are regular elements, there exists y such that v = [t−[2], y]
(see, for example, [EG2]). Then yt[2]y−1 = t[2][t−[2], y] = t[2]v. Put
ρ = yty−1. Then ρ is a generator of a quasisplit torus T ′ = yTy−1 and
w1 = yẇy−1 is a preimage of the generator of the Weyl group. We
have
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yt[2]y−1 = yẇt−1ẇ−1ty−1 = (yẇy−1)(yt−1y−1)(yẇ−1y−1)(yty−1)
= ẇ1ρ

−1w−1
1 ρ = ρ[2].

�

Remark 4.9. Explicit calculations with the matrices

t = diag(λ, λ−1),
t = diag(λ, λ−1λq, λ−q),
t = diag(λ, λ2θ−1, λ−1, λ1−2θ),
t = diag(λθ, λ1−θ, λ2θ−1, 1, λ1−2θ, λθ−1, λ−θ),

corresponding, respectively, to the natural representation of SL2(q),
natural representation of SU3(q

2), 4-dimensional representation of the
Suzuki group and 7-dimensional representation of the Ree group,
show that the hypothesis of Lemma 4.8 holds for every group from
Proposition 4.1 except for A1(5) which we can throw away because
PSL2(5) ∼= A5.

Lemma 4.10. Let T ′ be a quasisplit torus in a group G of rank 1,
and let S be a subgroup of T ′ such that CG(S) = T ′. Then NG(S) =
NG(T ′).

Proof. Let B′ = T ′U ′ be a Borel subgroup containing T ′, and let
G = B′ ∪ B′ẇ′B′ be the corresponding Bruhat decomposition. Let
g ∈ NG(S). Suppose g = u1ẇ

′u2 where u1, u2 ∈ U ′. Then for every
s ∈ S we have

gsg−1 = (u1ẇ
′u2)s(u

−1
2 ẇ′−1u−1

1 ) = s′ ∈ S ⇒

⇒ B′− 3 (ẇ′sẇ′−1)(ẇ′[s−1, u2]ẇ
′−1) = s′[s′−1, u−1

1 ] ∈ B′ B′−1∩B′=T ′

⇒
⇒ [s−1, u2] = 1, [s′−1, u−1

1 ] = 1
CG(S)=T ′

⇒ u1 = u2 = 1 ⇒ g = ẇ′.

Suppose g ∈ B′. Then g = tu for some t ∈ T ′, u ∈ U ′, and for every
s ∈ S we have

gsg−1 = st[s−1, u]t−1 ∈ S ⇒ [s−1, u] = 1
CG(S)=T ′

⇒ u = 1.

Hence g ∈ NG(T ′) and therefore NG(S) ≤ NG(T ′).

Further, using the same arguments as above (put S = T ′) one can
see that NG(T ′) = 〈T ′, ẇ′〉. Note that the conjugation with w′ is an
automorphism of T ′ and T ′ is a cyclic group. Hence the conjugation
with w′ is an automorphism of S. Thus NG(T ′) ≤ NG(S). �
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Lemma 4.11. Suppose the hypothesis of the previous lemma holds.
Suppose that for every non-regular s ∈ T and for every regular t ∈ T
the element st is regular. Then for every g /∈ Z(G) there exist x, y ∈ G
such that the group H generated by τ = [g, x] and σ = [g, y] is not
contained in any Borel subgroup. Moreover, τ /∈ N(〈σ〉).

Proof. We shall divide the proof into two cases: 1) g is not a regular
semisimple element; 2) g is a regular semisimple element. Case 1,
in turn, will be subdivided into two subcases: 1a) char(K) 6= 2; 1b)
char(K) = 2.

Case 1a) First suppose g is not a regular semisimple element. By
Lemma 4.6, we have g ∈ B, g = su with su = us, s ∈ T is a non-
regular element, and u ∈ U . Then we can get 1 6= τ = [g, x] ∈ U .
Indeed, if u 6= 1, we take x = s1 ∈ T such that [u, s1] 6= 1. Then
[g, x] = [g, s1] = [us, s1] = [s, s1]

u[u, s1] = [u, s1] = us1u
−1s−1

1 ∈ U . If
u = 1, then s /∈ Z(G), and hence 1 6= [s, v] ∈ U for some v ∈ U .

Then by Lemma 4.8, we get σ = [g, y] = ρ[2] where ρ is a generator of
a quasisplit torus. Suppose 〈τ, σ〉 = H ≤ B ′ for some Borel subgroup
B′. Since τ is a unipotent element, by Lemma 4.5 we have B ′ = B and
therefore gyg−1y−1 = σ ∈ B. Consider the element g−1σ = u−1s−1σ.
Since σ ∈ B, we have σ = s′u′ where s′ ∈ T is semisimple and u′ ∈ U .
Since σ is regular, so is s′. Then g−1σ = u−1s−1s′u′ = s−1u−1s′u′ =
s−1s′u1u

′ = s−1s′u′′ for some u′′ ∈ U . By the hypothesis of the lemma,
s−1s′ is a regular semisimple element. Hence g−1σ = s−1s′u′′ is a
regular semisimple element. Contradiction, since yg−1y−1 = g−1σ is
not a regular semisimple element.

Let us now prove that τ /∈ NG(〈σ〉). Assume the contrary. Since
σ is a regular semisimple element, we have CG(σ) = CG(〈σ〉) = T ′.
Lemma 4.10 gives NG(〈σ〉) = NG(T ′). Therefore τ ∈ NG(T ′).

Hence τ 2 ∈ T ′. Indeed, since τ ∈ NG(T ′), we have τ = ẇ′ where
ẇ′ is a preimage of an element of the Weyl group (possibly, w′ = 1)
corresponding to T ′. Thus τ 2 ∈ T ′. But τ ∈ U . Hence τ is a unipotent
element of order 2 which contradicts to the assumption char(k) 6= 2.

Case 1b) Suppose g is not a regular semisimple element and
char(k) = 2. In this case we may assume g = ẇ.

Indeed, let g = su be the Jordan form for g. Suppose the order of u
is greater than 2. On setting x = t ∈ T , we get the element [g, x] ∈ U
of order greater than 2. Then, by the arguments of Case 1a, we have
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τ /∈ NG(〈σ〉). Thus the order of u is one or two. As char(k) = 2, every
non-regular element of T lies in the centre of G, and therefore we may
assume s = 1. Hence we may assume g = u to be an element of order
2.

As char(k) = 2, in each of the Lie rank one groups, SL2(2
m),

SU3(2
2m), 2B2(2

2m+1), all involutions are conjugate, and we may as-
sume g = ẇ.

Therefore we can take σ = [g, t] = [ẇ, t] = t[2], and τ = [g, u] =
[ẇ, u] = ẇuẇu−1 = vu−1 where u ∈ U and 1 6= v ∈ U−. Suppose
σ, τ ∈ B′ for some Borel subgroup B ′. Then T ≤ B′ and therefore
B′ = B or B′ = B−. Contradiction, since τ /∈ B, τ /∈ B−.

Suppose now τ = vu−1 ∈ NG(〈σ〉) = NG(T ). This is impossible:

vu−1tuv−1 = t′ ∈ T ⇒ (B \ T ) 3 u−1tu = v−1t′v ∈ (B− \ T ).

Case 2. Let g be a regular semisimple element. By [Gow], we can
get σ = [g, y] to be a generator of a quasisplit torus and τ = [g, x] to
be a regular semisimple element which is not contained in any Borel
subgroup.

We have

| T |= q − 1 if G = SL2(q);

| T |= q2 − 1 if G = SU3(q
2) or G is a Suzuki or a Ree group.

Further,

(q + 1) divides | G | if G = SL2(q), (q + 1, q − 1) = 2 or 1 (if q is
even);

(q2−q+1) divides | G | if G = SU3(q
2), (q2−1, q2−q+1) equals 3 or

1 (indeed, p divides (q−1) implies q ≡ 1 (mod p), hence q2−q+1 ≡ 1
(mod p)). Correspondingly, p | q +1 implies (q2− q +1) ≡ 3 (mod p);

(q4 +1) divides | G | if G is a Suzuki group, q2 = 22m+1, (q2−1, q4 +
1) = 1;

(q4 − q2 +1) divides | G | if G is a Ree group, q2 = 32m+1, (q4 − q2 +
1, q2 − 1) = 1.

Let now G = SL2(q). Then the maximal nonsplit torus is a cyclic
group of order q+1. By [Gow], we can take τ = [g, y] to be a generator
of such a group. Then the order of τ 2 is equal to q + 1 > 2 if q = 2m

or (q + 1)/2 > 2 (note that q > 3). Hence τ /∈ NG(〈σ〉) = NG(T )
(because τ 2 /∈ T ). Also τ does not belong to a Borel subgroup.
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Let G = SU3(q
2). Suppose that 3 divides q2 − q + 1. Then q ≡ −1

(mod 3), hence q ≡ 2, 5, 8 (mod 9) and, therefore, 9 does not divide
q2 − q + 1. Then there exists a prime p 6= 2, 3, p | q2 − q + 1. By
[Gow], we can obtain an element of order p of the form τ = [g, y].
Then τ /∈ NG(〈σ〉), and τ does not belong to a Borel subgroup.

If G is of Suzuki or Ree type, take p | q4 + 1 or p | q4 − q2 + 1,
respectively, and proceed as above.

Thus, in all the cases τ /∈ NG(〈σ〉). �

Remark 4.12. The hypotheses of Lemma 4.11 hold for every group
from Proposition 4.1. This can also be checked by explicit calculations
with diagonal matrices (see [Ca2] and [KLM]).

Lemma 4.13. There exist τ = [g, x] and σ = [g, y] such that the
subgroup H = 〈σ, τ〉 is not solvable.

We choose τ = [g, x] and σ = [g, y] as in the previous lemma.

It is enough to show that H does not contain abelian normal sub-
groups. Let A be a maximal abelian normal subgroup of H. We want
to check that A is a reductive group. Suppose p = char(K) divides the
order of A. Then the Sylow p-subgroup of A is normalized by H. By
Lemma 4.6, H ≤ B′ for some Borel subgroup B ′. This is impossible
in view of Lemma 4.11. Hence the order of A is not divisible by p,
and A is a reductive group.

Let us now view H as a subgroup of GL(V ) where V is a finite di-
mensional vector space over an algebraically closed field and dim V = 3
(if G = PSL2(q), q 6= 2n), dim V = 2 (if G = SL2(2

m)), dim V = 8 (if
G = PSU3(q

2), dim V = 4 (case 2B2), or dim V = 7 (case 2G2). Then
A is diagonalizable in GL(V ) and not all irreducible components of the
A-module V are isomorphic (if A 6= Z(H)). Thus there exists a non-
trivial homomorphism ρ : H → Sk, k ≤ 3, 2, 8, 4, 7 which corresponds
to permutations of isotypical components (otherwise, A ≤ Z(H)).

Case 1. Let G = PSL2(q), q 6= 2m. For q ≤ 25 the statement of
the lemma is checked by explicit computer calculations with MAGMA.
Let now q > 25. Recall that σ = t2 or σ = t for 〈t〉 = T ′, where T ′ is
a split torus in G. Since the order of T ′ is ≥ (q − 1)/2, the order of
σ is ≥ (q − 1)/4 . Since ρ(σ) lies in S3, we have ρ(σn) = 1 for some
n ≤ 3. Thus ord σn ≥ (q − 1)/12 > 2. Hence CG(σn) = T ′ because
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σn is a regular semisimple element of T ′. Since ρ(σn) = 1, we have
σn ∈ CH(A).

Sublemma 4.14. i) With the above notation, suppose there exists
h ∈ H such that

1. h ∈ CH(A); 2. h ∈ T ′; 3. CG(h) = T ′. Then A ⊆ T ′.

ii) If, in addition, there exists a ∈ A such that CG(a) = T ′, then
NG(〈h〉) = NG(A) = NG(T ′).

Proof. The first assertion of the sublemma is obvious: if h ∈ CH(A),
then a ∈ CG(h) for any a ∈ A. The second assertion follows from
Lemma 4.10 applied to S = A and S = 〈h〉. �

On setting h = σn, we conclude that A ⊆ T ′.

Suppose there exists a generating A such that CG(a) = T ′. Then
by the above sublemma we have NG(〈σn〉) = NG(A) = NG(T ′). On
the other hand, we have NG(T ′) = NG(〈σ〉). (Indeed, the inclusion
NG(〈σ〉) ⊆ NG(〈σn〉) is obvious, and the inclusion NG(T ′) ⊆ NG(〈σ〉)
follows from the fact that in the groups of Lie rank 1 the generator w
of the Weyl group normalizes t ∈ T and hence σ.) Thus we conclude
that NG(〈σ〉) = NG(A) ⊇ H, which contradicts the choice of τ .

Suppose now there is no a ∈ A such that CG(a) = T ′. Then A = 〈a〉
is a cyclic subgroup of order 2 (all other elements of T ′ are regular).
Since the order of a equals 2, we have NG(A) = CG(A). On the other
hand, CG(A) = NG(T ′) = NG(〈σ〉). Again we get a contradiction
since τ belongs to H ⊆ NG(A) but does not belong to NG(〈σ〉).

Case 2. Let G = SL2(2
m), m > 1. In this case G has no centre,

any element of T ′ = 〈t〉 is regular, the order of t equals 2m − 1. Hence
the order of σ2 equals 2m − 1 > 1. Therefore we can use the same
argument as in the preceding case.

Case 3. Let G = PSU3(q
2), q > 3. In this case the semisimple

element σ = t or t[2]. The order of the image of σ in PSU3(q
2) is

≥ q − 1 (recall that the centre of SU3(q
2) is nontrivial if and only if

q+1 = 3k for some k). Note that σn is a nonregular nontrivial element
if and only if σn = diag(−1, 1,−1). Hence if n ≤ 8 and q > 17, the
order of σn ≥ (q−1)/8 > 2 and therefore the image of σm in PSU3(q

2)
is a regular element. Thus we may use the same arguments as in the
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previous case. Explicit computer calculations with MAGMA prove
the statement for the remaining cases q ≤ 17.

Case 4. Let G be a Suzuki or a Ree group. Every nontrivial element
of T is regular if G is a Suzuki group [Ca2], and every element of T
of order greater than two is regular if G is a Ree group [KLM]. Note
that if G is a Ree group, then the order of a maximal torus T ′ is equal
to 32m+1 − 1. Hence 2 | T ′ |, 4 -| T ′ |. The element σ is a generator or
the square of a generator of T ′. In particular, σ is not an involution.
So if n is less than the order of σ2, then σn is a regular element of a
maximal quasisplit torus.

Consider the permutation ρ(σ) ∈ Sk. First suppose ρ(σ) = 1. Ar-
guing as in Case 1, we arrive at a contradiction with the choice of
τ whenever we can choose a ∈ A such that CG(a) = A. This is al-
ways possible except for the case where G is a Ree group and A is
generated by the (unique up to conjugacy) involution a of G. But in
this latter case we have NG(A) = CG(a) = Z/2×PSL2(3

2m+1) [Gor2,
Th. 3.33(iv)]. Hence H ⊆ PSL2(3

2m+1), and we are reduced to Case
1.

Thus we may assume ρ(σ) 6= 1. Then the same argument as above
with σn replacing σ shows that ρ(σn) 6= 1 for every n < ordσ2. This
means that the restriction of ρ to 〈σ2〉 is faithful. But this is impossible
since ρ(σ2) ∈ S4 for the Suzuki groups and the order of ρ(σ) must be
less than or equal to 4. However in this case ordρ(σ2) = ordσ2 =
22m+1 − 1 > 4. The same situation takes place for the Ree groups:
ordρ(σ2) = ordσ2 = (32m+1 − 1)/2 > 12, and therefore ρ(σ2) cannot
belong to S7.

Thus in the Suzuki and Ree groups there are no nontrivial abelian
normal subgroups in H, and hence H is not solvable.

Lemma 4.13 (and hence Proposition 4.1) are proved. �

5. Groups of Lie type of arbitrary rank over fields of

large characteristic

Theorem 5.1. Let G be a Chevalley group of rank > 1 over field
char(K) 6= 2, K 6= F3. Then ρ(G) = 2.

Proof. We need several lemmas (most of whose statements are inde-
pendent of the characteristic of the ground field).



18 GORDEEV, GRUNEWALD, KUNYAVSKII, PLOTKIN

Lemma 5.2. Let Π = {α1, . . . , αr}, r ≥ 2, be a basis of an irreducible
root system R 6= A2, where the numbering of the simple roots is as in
[Bou] in the case R 6= Er, and α2 and α3 are interchanged in the case
R = Er. Denote by wc = wα1

· · ·wαr
wα2

the corresponding Coxeter
element. Then wc(α1) > 0, wc(α1) /∈ Π and w−1

c (α2) > 0, w−1
c (α2) /∈

Π.

Proof. Let r = 2. We proceed case by case.

1. R = B2. We have α1 = ε1 − ε2, α2 = ε2, and

wc(α1) = ε1 + ε2 = α1 + 2α2, w−1
c (α2) = ε1 = α1 + α2.

2. R = C2. We have α1 = ε1 − ε2, α2 = 2ε2, and

wc(α1) = ε1 + ε2 = α1 + α2, w−1
c (α2) = 2ε1 = 2α1 + α2.

3. R = G2. Then α1 = ε1 − ε2, α2 = −2ε1 + ε2 + ε3. We have

wc(α1) = ε3 − ε2 = 2α1 + α2, w−1
c (α2) = 2ε3 − ε2 − ε2 = 3α1 + 2α2.

Let r > 3. Note that our numbering of roots gives 〈α1, α2〉 = A2.
Therefore

(5.1) wα1
(α2) = α1 + α2, wα2

(α1) = α1 + α2,

(5.2) wα1
(α1 + α2) = α2, wα2

(α1 + α2) = α1.

Put ω = wα3
· · ·wαr

. Since ω has no factors wα1,2
, we have

(5.3) ω±1(α1,2) > 0.

Moreover,

(5.4) ω±1(α1) = α1, ω±1(α2) /∈ 〈α1, α2〉.

From (5.1)–(5.4) we get

(5.5) ω±1(α1 + α2) = α1 + α2 + ... 6= α1 + α2, ω±1(α1 + α2) > 0.

From (5.5) we get

0 < wc(α1) = wα1
ω(α1 + α2) /∈ Π,

0 < w−1
c (α2) = wα2

ω−1(α1 + α2) /∈ Π.

�
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Lemma 5.3. Let g = u−1ẇ−1
c , where wc is the Coxeter element from

the previous lemma and u ∈ U . Then there exists x ∈ G such that
[g, x] = uα1

uα2
u′, where uα1

6= 1, uα2
6= 1 are the corresponding root

subgroup elements and u′ ∈ U does not contain root subgroups factors
of type uα1

, uα2
. Moreover, every uα1

∈ Uα1
can be obtained in such a

way.

Proof. Let R = A2. Put 1 6= x = u′
α2

∈ Uα2
. Then ẇ−1

c u′
α2

ẇc = u′
α1

∈
Uα1

and

[g, x] = u−1(ẇ−1
c u′

α2
ẇc)uu′−1

α2
= (u−1u′

α1
u)u′−1

α2
= uα1

uα2
u′

where uα1
= u′

α1
, uα2

= u′−1
α2

, and u′ = u′
α2

[u′−1
α1

, u−1]u′−1
α2

does not
contain factors from Uα1

, Uα2
.

On varying x = u′
α′

2

, we can get an arbitrary uα1
.

Let now R 6= A2. We use Lemma 5.2. Put x = u′
α2

u′
β where β =

wc(α1). Then ẇ−1
c u′

α2
ẇc = u′

γ, γ > 0, γ /∈ Π, ẇ−1
c u′

βẇc = u′
α1

∈ Uα1
,

and

[g, x] = u−1(ẇ−1
c u′

α2
u′

βẇc)uu′−1
β u′−1

α2
= (u−1u′

γu
′
α1

u)u′−1
α2

= uα1
uα2

u′,

with u′ as required. �

Lemma 5.4. Let g = u−1ẇ−1
c , where wc is the Coxeter element from

Lemma 5.2. Then there exists y ∈ G such that [g, y] = u−α1
u′ where

u−α1
∈ U−α1

, u′ ∈ U . Moreover, every u−α1
∈ U−α1

can be obtained
in such a way.

Proof. Put y = u−1
−α1

. We have ẇ−1
c u−1

−α1
ẇc = uβ, β > 0, and β 6= α1

(this follows from the definition of wc). Then

[g, y] = u−1ẇ−1
c u−1

−α1
ẇcuu−α1

= u−1(ẇ−1
c u−1

−α1
ẇc)uu−α1

= u−1u−1
β uu−α1

= u−α1
(u−1

−α1
u−1u−1

β uu−α1
) = u−α1

u′.

The last equality follows from the fact that u−1u−1
β u belongs to the

unipotent radical of the minimal parabolic subgroup corresponding to
the root α1. �

Lemma 5.5. Let P = LV be a parabolic subgroup of a Cheval-
ley group G where L is a Levi factor and V is the unipotent rad-
ical of P . Further, let x1, . . . , xs, g ∈ P , and let x̄1, . . . , x̄s, ḡ be
their images in L/Z(L) with respect to the natural homomorphism
P → L → L/Z(L). If the group 〈[ḡ, x̄1], . . . , [ḡ, x̄s]〉 is not solvable,
then the group 〈[g, x1], . . . , [g, xs]〉 is not solvable too.
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Proof. Obvious. �

Lemma 5.6. Let G be a quasisimple Chevalley group of rank one
6= A1(2

m). Then there exist u1 ∈ U−, u2 ∈ U+ such that 〈u1, u2〉 is not
solvable.

Proof. The proof immediately follows from Dickson’s lemma (see
[Gor2, Theorem 2.8.4] and [Nu]), where there are exhibited explicit
pairs of unipotent elements u1 ∈ U−, u2 ∈ U+ such that the subgroup
〈u1, u2〉 is not solvable. �

Now we are able to finish the proof of the theorem. Let X ⊂ Π,
and let X = X1 ∪ . . . ∪ Xl be the decomposition of X into a disjoint
union of subsets Xi generating irreducible subsystems of R. Put

(5.6) wXi
=

∏

α∈Xi

wα

where the product is taken in any order. Set

wX =
∏

i

wXi
.

(If X = ∅, we set wX = 1.) Then wX is a generalized Coxeter element

(see [GS]) corresponding to X. Denote ẆX = 〈ẇα, α ∈ 〈X〉〉, where
〈X〉 stands for the root system generated by X.

Let g ∈ G \ Z(G). Since char(K) 6= 2, G is not of type 2F4, and
according to [GS, Proposition 6], the conjugacy class of g intersects a
generalized Coxeter cell BẇXB for some X.

Remark 5.7. For G = 2F4 it is not known whether the above state-
ment is true or not.

Thus we may assume

g = uẇX , u ∈ U.

To finish the proof of Theorem 5.1, we now consider three separate
cases. (Note that if X 6= ∅, we have | Xi |6= ∅ for every i.)

Case 1. Suppose X = ∅. Then g = uh, u ∈ U, h ∈ T . We may
assume u 6= 1 (otherwise we can conjugate g with an appropriate
element from U). Conjugating g with an appropriate element ẇ we
can get an element g′ = u′h′ in the conjugacy class of g such that
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u′ ∈ U and among root factors of u′ there is a simple root subgroup
factor uαi

.

Indeed, let

u =
∏

α∈M⊂R+

uα, uα 6= 1.

Let k = min{ht(α) | α ∈ M}. Then there exists an element w ∈ W
such that 0 < min{ht(α) | α ∈ w(M)} < k. Thus we can get
min{ht(α) | α ∈ w(M)} = 1 for an appropriate w ∈ W .

Put P = T 〈U±αi
〉U = B〈ẇαi

〉B. Now in the parabolic subgroup P
we can take the Levi factor Li of rank 1 corresponding to the root αi.
Applying Lemma 5.5 and Proposition 4.1 to Li, we get the result.

Case 2. Suppose | Xi |= 1 for some i. Let P = BẆXB. Then there
exists a simple component Li of a Levi factor of P which is of rank
one. Then we can use Lemma 5.5 and Proposition 4.1.

Case 3. Suppose | Xi |> 1 for every i. Put P = BẆXB. Consider
the group Li = T 〈U±α | α ∈ 〈Xi〉〉. This is a subgroup of a Levi
factor L = T 〈U±α | α ∈ 〈X〉〉 of P . Let gi = uiwXi

be ith component
of g. We may assume that the order of simple reflections in (5.6)
corresponds to the order in Lemmas 5.2–5.4. Then by Lemmas 5.3–
5.4, we have

[gi, x] = uαi1
u′′, [gi, y] = u−αi1

u′.

It remains to use Lemmas 5.5–5.6. �

6. Groups of Lie type over fields of small

characteristic

Proposition 6.1. Let G be a nonsolvable Chevalley group over a field
K where either char(K) = 2 or K = F3. Then ρ(G) ≤ 3.

Proof. Throughout this section we assume G 6= 2F4(q
2) leaving this

case for separate consideration in the next section.

We have to prove that for every g /∈ Z(G) one can find x1, x2, x3 ∈ G
such that the group F = 〈[g, x1], [g, x2], [g, x3]〉 is not solvable.

By Proposition 4.1, for any nonsolvable rank 1 group G we have
ρ(G) = 2. Thus we may and shall assume that rank G > 1.
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First suppose char(K) = 2, | K |> 2. We use the same case-by-
case subdivision as in the proof of Theorem 5.1 above. Cases 1 and 2
are treated in exactly the same way (two commutators are enough).
Suppose that we are in the conditions of Case 3, i.e. | Xi |> 1 for
every i. Arguing as in the proof of Theorem 5.1, we reduce to the
case of Li/Z(Li), where Li is a Levi factor of semisimple rank 1. If
Li is not of type A1(2

m)(m > 1), we can use the same arguments as
in Lemma 5.6 (once again, two commutators are enough). So we may
and shall assume G of type A1(2

m)(m > 1).

Arguing as in the proofs of Lemmas 5.3–5.4, we conclude that there
exist x1, x2, x3 ∈ G such that [g, x1] = v ∈ U−, [g, x2] = u′ ∈ U,
[g, x3] = u ∈ U, u /∈ 〈u′〉, where v, u′, u are arbitrary given elements.
Moreover, according to [EG1], [CEG], we can arrange our choice so
that to make s = vu′ a generator of a maximal split torus of G. Finally,
note that u is a regular unipotent element (as all unipotent elements
in SL2(2

m)).

Put σ = s, τ = u. Since v, u′ are involutions, u′ belongs to NG(〈σ〉).
Indeed, we have u′σu′−1 = u′σu′ = u′su′ = u′vu′u′ = u′v = (vu′)−1 =
σ−1. Then τ = u does not belong to NG(〈σ〉) (otherwise we would
have u, u′ ∈ NG(〈σ〉) and | 〈u, u′〉 | = 4, contradiction to | NG(〈σ〉) |
= 2(2m − 1)). Further, u and vu′ cannot be in the same parabolic
subgroup (u can belong only to B (Lemma 4.5), but vu′ /∈ B). Now
we can repeat the arguments used in the proof for rank one groups
over a field of odd characteristic (see Lemmas 4.11 and 4.13).

Let now | K |= 2 or | K |= 3.

Case 1. X = ∅. Then g = uh, u ∈ U, h ∈ T . We may assume u 6= 1
(otherwise we can conjugate g with an appropriate element from U).
Conjugating g with an appropriate element ẇ, we can get g ′ = u′h′ in
the conjugacy class of g such that u′ ∈ U and among root factors of
u′ there is a nontrivial simple root subgroup factor uαi

(see Case 1 in
the end of the proof of Theorem 5.1). Let αj be any root adjacent (in
the Dynkin diagram) to αi. Then we can reduce to the case of a Levi
factor of semisimple rank 2, as above. For all groups of rank 2 over F2

and F3 we use explicit MAGMA computations (see Table 1).

Case 2. | Xi |= 2 for some i. Let P be a parabolic subgroup,
P = BẆXB. Then there exists a simple component Li of a Levi
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factor of P which is of semisimple rank two. Then we can use Lemma
5.5 and explicit MAGMA computations for the groups of rank two
(see Table 1).

Case 3. | Xi |> 2 for some i.

In this case, the arguments based on the use of Lemmas 5.3–5.4 are
not enough. Instead we shall use the following more subtle version of
Lemma 5.4.

Lemma 6.2. Let g = u−1ẇ−1
c , where wc is the Coxeter element from

Lemma 5.2. Then:

1) there exists y ∈ G such that [g, y] = u−α1
u′ where u−α1

is any
prescribed element from U−α1

and u′ ∈ U ;

2) there exists z ∈ G such that [g, z] = fu′′ where f ∈
〈Uα2

, U−α2
〉, f /∈ B and u′′ ∈ U .

Proof. 1) See Lemma 5.4.

2) Recall that wc = wα1
· · ·wαr

wα2
= ωwα2

. Since ω does not
contain the factor wα2

, we have ω(α2) = γ > 0 and w−1
c (γ) =

wα2
ω−1(γ) = wα2

(α2) = −α2. Put z = uγ ∈ Uγ , uγ 6= 1. Then
ẇ−1

c zẇc = u−α2
∈ U−α2

. Further, for every 0 < β 6= α2 either β+(−α2)
is not a root or β + (−α2) ∈ R+. Hence uβu−α2

u−1
β = u−α2

v for some
v ∈ U . Also, for every u′

α2
∈ Uα2

u′
α2

u−α2
u′−1

α2
∈ 〈U−α2

, Uα2
〉 and u′

α2
u−α2

u′−1
α2

/∈ B.

Recall that g = u−1w−1
c . We may assume u = vu′

α2
where the element

v ∈ U does not have factors from Uα2
. We have

[g, z] = u′−1
α2

v−1(ẇ−1
c uγẇc)vu′

α2
u−1

γ = u′−1
α2

v−1u−α2
vu′

α2
u−1

γ

= u′−1
α2

u−α2
u′

α2
v′u−1

γ

for some v′ ∈ U . Put f = u′−1
α2

v−1u−α2
and u′′ = v′u−1

γ . We have

[g, z] = fu′′

where f ∈ 〈Uα2
, U−α2

〉, f /∈ B and u′′ ∈ U. �

By Lemmas 5.2–5.6, we can come up with the situation when Γ ≤ G
corresponds to the root system generated by α1, α2 (in our notations),
i.e., Γ is of type A2 (here Γ denotes the Levi factor of the corresponding
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parabolic subgroup of G). By Lemmas 5.3 and 6.2, we have got the
following elements in Γ (which are images of commutators of G):

v1 = u−α1
v′, v2 = fv′′, u = uα1

uα2
u′,

where 1 6= u−α1
∈ U−α1

, v′ ∈ UΓ := 〈Uα1
, Uα2

〉, f ∈ 〈U−α2
, Uα2

〉, f /∈
B, v′′ ∈ UΓ, 1 6= uα1

∈ Uα1
, 1 6= uα2

∈ Uα2
, u′ ∈ Uα1+α2

.

We have to show that the group 〈v1, v2, u〉 is not solvable. Consider
the groups

P = 〈v1, u〉 ≤ P̃ = 〈u−α1
, UΓ〉, P ′ = 〈v2, u〉 ≤ P̃ ′ = 〈u−α2

, UΓ〉
and the natural homomorphisms

θ : P̃ → P̃ /Ru, θ′ : P̃ ′ → P̃ ′/R′
u

where Ru (resp. R′
u) is the unipotent radical of P̃ (resp. P̃ ′). We have

θ(P̃ ) = P̃ /Ru
∼= SL2(p), θ′(P̃ ′) = P̃ ′/R′

u
∼= SL2(p)

where p = 2, 3. Obviously, 〈u−α1
, uα1

〉 ∼= SL2(p)〈f, uα2
〉 ∼= SL2(p) if

p = 2, 3. Hence

θ(P ) = 〈u−α1
, uα1

〉 ∼= SL2(p), θ′(P ′) = 〈f, uα2
〉 ∼= SL2(p), p = 2, 3.

Let us show that

Ker θ ∩ P 6= 1, Ker θ′ ∩ P ′ 6= 1.

Recall that u is regular, so if | K |= 2, then u2 ∈ Uα1+α2
, and thus

the order of u equals 4. Hence u2 ∈ Kerθ ∩ P (u2 ∈ Kerθ′ ∩ P ′). Let
now | K |= 3. Take h ∈ P (or h ∈ P ′) such that θ(h) (or θ′(h)) equals
diag(−1,−1) ∈ SL2(3). Then explicit matrix calculations show that

[h, u] = uα2
uα1+α2

∈ Kerθ ∩ P (or [h, u] = uα1
uα1+α2

∈ Kerθ′ ∩ P ′).

We proved that Ker θ ∩ P (resp. Ker θ′ ∩ P ′ ) is not trivial. Let
us show that Ker θ ∩ P = Ker θ (resp. Ker θ′ ∩ P ′ = Ker θ′). Note
that Kerθ ∼= K2 is a 2-dimensional vector K-space on which P acts
by conjugation. Since θ(P ) ∼= SL2(p), we have only one nonzero orbit
of P in Kerθ ∼= K2. Hence Kerθ ∩ P = Kerθ ∼= K2, and therefore
P = P̃ . By the same arguments, Ker θ′ ∩ P ′ = Ker θ′ and P ′ = P̃ ′.
Hence

P = 〈v1, u〉 = P̃ = 〈u−α1
, UΓ〉, P ′ = 〈v2, u〉 = P̃ ′ = 〈u−α2

, UΓ〉.
Thus, UΓ, u−α1

, u−α2
are all contained in 〈v1, v2, u〉, and therefore

Γ = 〈v1, v2, u〉 ∼= SL3(p).
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Case 4. | Xi |= 1 for every i. Since for all groups of rank one or
two the proposition has been checked, we may assume rank G > 2.

First suppose that the root system corresponding to G does not
contain D4, i.e. is of one of the types Ar, Br, Cr, F4. Suppose Xi =
{αj}, where j is the number of the root in the standard numbering.
Note that by construction of X, neither αj−1, nor αj+1 belong to X.
Suppose that αj+2 /∈ X or αj−2 /∈ X (in particular, this assumption
holds if αj±2 does not exist). Then the subgroup L of G generated
by U±αj

and U±αj+1
(or U±αj−1

) commutes with the elements U±β for
every β ∈ X \ Xi. Thus we are reduced to the group L of rank two,
and the statement is proved. Let us now suppose that αj+2 ∈ X.
Then we can consider the group L = 〈U±αj

, U±αj+1
, U±αj+2

〉 which
commutes with the groups U±β, β ∈ X \ (Xi ∪ {αj+2}). Hence we
may assume rank G = 3 and g = ẇα1

ẇα3
u for some u ∈ U . Here we

have to check the groups A3(p), B3(p), C3(p), 2D4(p), 2A5(p), 2A6(p),
p = 2, 3. We can exclude 2D4(p), 2A5(p), 2A6(p), p = 2, 3, because
these groups have a root subgroup Gα, α = α1 or α = α3, which is
isomorphic to SL2(p

2), and we can use our considerations for rank
one. Since A3(2) ∼= A8, B3(2) ∼= C3(2), it remains to calculate in
the groups A3(3), B3(2), B3(3), C3(3). These groups are checked by
explicit MAGMA calculations (see Table 1).

Suppose now that the root system of G is of type Dr or Er. Let
β be the root corresponding to the node with 3 edges on the Dynkin
diagram. First suppose β ∈ X. Then we can take γ ∈ Π which is
joined with β and disjoint from all other roots. As β ∈ X, we have
γ /∈ X, and L = 〈U±β, U±γ〉 commutes with every U±δ, δ 6= β, δ ∈ X.
Thus we may reduce our considerations to groups of rank 2. Let now
β /∈ X. Suppose r > 4. If none of α1, α2 belongs to X, we are reduced
to the case of type A2 treated above. If not, we are reduced to the
case of groups of rank 1. So it remains to consider the case r = 4, i.e.,
the case of the groups D4(p), p = 2, 3. This is checked by MAGMA
(see Table 1). �

7. Groups 2F4(q
2)

Recall that in light of Remark 5.7 we have to consider the groups
of type 2F4(q

2) separately.

If R is a root system and GR is a connected reductive algebraic
group with root system R defined over some algebraically closed field,
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we denote by G̃R the universal cover of the derived group of GR. If
it is clear what is the root system under consideration, we often drop
the subscript R. In particular, throughout this section we denote by
G the twisted Chevalley group 2F4(q

2), q =
√

22m+1, and by G̃ the
simple algebraic group of type F4 defined over F2 (identifying it with
its group of F2-points). We have G ⊂ G̃. Correspondingly, tilde

always indicates to subgroups of G̃. We denote K = Fq2.

Theorem 7.1. Let G = 2F4(q
2). Then ρ(G) = 2.

Proof. For m = 0, the group G is not simple; its derived subgroup
(the Tits group) is checked by MAGMA (see Table 1). So throughout
below we assume m > 0.

Let 1 6= g ∈ G. First suppose g ∈ P for some parabolic subgroup P .
Any parabolic subgroup is conjugate to a standard parabolic subgroup
(see [Ca2]). We may thus assume P to be a standard parabolic sub-
group. We have P = LV, V = Ru(P ). We may assume that the image
of g in P/Z(L)V is not trivial (as above) and reduce the consideration
to the group L/Z(L) of semisimple rank 1.

Hence we may assume that g does not belong to any parabolic sub-
group P . Then (see [Ca2, 6.4.5]) the order of CG(g) is prime to p = 2
(and so is an odd number). Hence g is a regular semisimple element,
and by [Gow] we can get representatives of any two semisimple con-
jugacy classes of G in the form σ = [g, x], τ = [g, y].

Put H = 〈σ, τ〉. Suppose H is solvable. Denote by I = {p1, . . . , pk}
some set of prime divisors of | H | and by HI a Hall subgroup of H
corresponding to I. Let A be a maximal normal abelian subgroup of
HI .

Let us now consider two separate cases: m ≥ 2 and m = 1.

General case q =
√

22m+1, m ≥ 2.

We have [Ca2, 2.9, p. 76]

| G |= q24(q2 − 1)(q6 + 1)(q8 − 1)(q12 + 1) =
(q2)12(q2 − 1)2(q2 + 1)2((q2)2 + 1)2((q2)2 − q2 + 1)((q2)4 − (q2)2 + 1),

where q =
√

22m+1.
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Lemma 7.2. Let T be a maximal quasisplit torus of G. Then there
exists t ∈ T such that t is a regular element of G̃, i.e. CG̃(t) = S̃ is a

maximal torus in G̃.

Proof. Let S̃ be a maximal torus of G̃ containing T . Let α be a
positive root of R = F4 corresponding to S̃, and let αT : T → F

∗

2 be
the restriction of α to T .

Let us show that

(7.1) Im αT = K∗

for every α ∈ R(F4). We have the following simple root system

α1 = ε2 − ε3, α2 = ε3 − ε4, α3 = ε4, α4 =
1

2
(ε1 − ε2 − ε3 − ε4),

and
T = 〈h1(t) = hα1

(t)hα4
(tθ), h2(s) = hα2

(s)hα3
(sθ)〉

where s, t ∈ K∗, 2θ2 = 1. Further,

ε1(h1(t)) = tθ, ε2(h1(t)) = t1−θ, ε3(h2(s)) = s, ε4(h1(t)) = t−θ

(note 2(1 − θ)(1 + θ) = 2 − 2θ2 = 2 − 1 = 1),

(ε1 + ε2)(h1(t)) = t, (ε1 − ε2)(h1(t)) = t1−2θ

((1 − 2θ)(1 + 2θ) = 1 − 4θ2 = 1 − 2 = −1),

(ε1 ± ε3)(h2(s)) = s±1, (ε1 ± ε4)(h2(s)) = s±1±2θ,

(ε2 ± ε3)(h2(s)) = s±1, (ε2 ± ε4)(h2(s)) = s±1±2θ

(ε3 + ε4)(h2(s)) = s2θ, (ε3 − ε4)(h2(s)) = s2−2θ,
1

2
(ε1 ± ε2 ± ε3 ± ε4)(h2(s)) = s±1±θ or s±θ.

Thus we have (7.1). From (7.1) we get

| Ker αT | = (q2 − 1)

and

(7.2) |
⋃

α∈R+(F4)

Ker αT | < (q2 − 1) · 24 < (q2 − 1)2.

From (7.2) we conclude that the set M = T \ ⋃
α∈R+(F4) Ker αT is

not empty. Any element t ∈ M is regular. The lemma is proved. �

Lemma 7.3. There exists a prime p 6= 2, 3, (p, q2 − 1) = 1 such that
p | q2 + 1 or p | q4 + 1.
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Proof. This follows from the fact that (q2 − 1, q2 + 1) = 1 and (q2 +
1, q4 + 1) = 1. �

Lemma 7.4. Let R be a root system, and let GR be a connected reduc-
tive group. Further, let A ⊆ GR be a finite abelian subgroup consisting
of semisimple elements and such that (| A |, | W (R) |) = 1. Then
there exists a maximal torus S in GR such that A ⊆ S.

Proof. Let GR = S ′G′
R, where S ′ ≤ Z(GR) is a torus of GR and G′

R

is semisimple. Hence Z(GR) = S ′A′, where A′ = Z(G′
R) is a finite

abelian group. Suppose A ⊆ Z(GR). Since (| A |, | W (R) |) = 1, we
have (| A |, | A′ |) = 1 (because | W (R) | is divisible by | A′ |), and
hence A ≤ S ′. Suppose a /∈ Z(G) for some a ∈ A. Let S be a maximal
torus of GR containing a. By [Ca2, Theorem 3.5.3], we have

CGR
(a) = 〈S, Uα, ẇ | α(a) = 1, w ∈ CW (R)(a1)〉,

CG(a1)
0 = 〈T1, Uα, | α(a) = 1〉.

Hence | CG(a)/CG(a)0 | divides | W (R) |, and therefore A ≤ CG(a)0 6=
GR. To finish the proof, we use induction by | R |. �

Before going over to the proof of the assertion of the theorem, we
shall describe some general construction (parallel to that of Lemma
4.10).

Let GR be a connected semisimple group corresponding to a root
system R, and let S be a maximal torus of GR. Further, let M ⊆ S,
let g ∈ NGR

(M), and let g = uẇv be a Bruhat decomposition of g in
GR with respect to a Borel subgroup containing S. We may assume
ẇvẇ−1 ∈ U−. Let s ∈ M . Then

gsg−1 = uẇvsv−1ẇ−1u−1 = uw(s)v′u−1 = s′ ∈ M ⊆ S,

where v′ ∈ U−. Hence w(s)v′ = u−1s′u = s′[s′−1, u−1]. Since
[s′−1, u−1] ∈ U, v′ = [w(s)−1, v] ∈ U−, we have [s′−1, u−1] =
1, [w(s)−1, v] = 1, s′ = w(s). Since we can consider any s ∈ M , we
have u, v ∈ CGR

(M). Now we have a homomorphism

φ : NG(R)(M) → W (R)

with

(7.3) Kerφ = ZG(R)(M).
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We can now go over to the proof of Theorem 7.1.

Set σ = t, where t is chosen as in Lemma 4.11. Let τ be an element
of order p (it exists by Lemma 7.3). Denote by I the set consisting
of p and all prime divisors of q − 1. Since all Hall subgroups HI are
conjugate and each element of order p belongs to one of those, we may
assume t ∈ HI and some element τ ′ of order p is also in HI .

Note that 2, 3 - (q2 − 1). Since | W (F4) |= 2732, we have σ, τ ′ ∈
CG̃(A)0 (by (7.3) and Lemma 7.4). Then A ⊆ T ⊆ T̃ where T̃ is

the unique maximal torus of G̃ containing T (recall that T contains a

regular semisimple element of G̃).

Denote by R ⊂ R(F4) the minimal (with respect to inclusion) root
subsystem such that

σ, τ ′ ∈ GR = 〈T̃ , Uα | α ∈ R〉.
First note that R 6= R(F4) because otherwise we would have A ⊆
Z(F4) = 1 (recall that H ≤ CG̃(A)0). Second, note that R 6= ∅
because τ ′ /∈ T = T̃ F . Set G′

R = 〈Uα | α ∈ R〉. Then GR = SG′
R

where S ≤ T̃ ∩ Z(GR) is a subtorus of T̃ . Then Z(GR) = SZ(G′
R).

Since the orders of σ, τ ′ are prime to 2, 3, we have σ, τ ′ /∈ Z(G′
R), and

hence so are the orders of their images σ̄, τ̄ ′ in G
′

R = G′
R/(Z(G′

R)∩S).

Now we have a semisimple group G
′

R with a maximal torus T = T̃ /S
which contains the solvable group HI = 〈σ̄, τ̄ ′〉 6= 1, where σ̄ ∈ T is
a regular element. Let A1 be a maximal abelian normal subgroup of

HI . Then A1 ⊆ T and A1 * Z(G
′

R) (note that 2, 3 are the only primes

dividing both | W (R) | and Z(G
′

R)). By (7.3), we have

σ̄, τ̄ ′ ∈ C
G

′

R
(A1)

0 = 〈T ′
, Uβ | β(A1) = 1〉 = 〈T ′

, Uβ | β ∈ R′ $ R〉.
Hence

σ, τ ′ ∈ 〈T̃ , Uβ | β ∈ R′〉.
This is a contradiction with the choice of R.

Let us now consider the last remaining special case.

Case q =
√

23.

Here | G |= 236 · 35 · 52 · 72 · 132 · 19 · 37 · 109.
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Let | 〈σ〉 |= 109, | 〈τ〉 |= 37, and let H0 ⊆ H be a Hall subgroup
of H of order 37 · 109. Since (37, 109 − 1) = 1, the group H0 = 〈h〉 is
cyclic of order 37 · 109.

Let, as above, G̃ denote the simple algebraic group of type F4 over
the field F2, and let F be the Frobenius map of G such that G = G̃F .
Since h ∈ G̃F , the centralizer CG̃(h) is an F -stable connected reductive
group ([Ca2, 3.5.6]) which, in turn, contains an F -stable maximal
torus T̃ (which is also a maximal torus of G̃). Hence h ∈ T̃ F . But

| T̃ F |=
4∏

i=1

(q − εi)

where each εi is a root of unity [Ca2, 3.3.5]. Since

| q − εi |≤ q + 1 =
√

8 + 1 ≤ 4,

we conclude that | T̃ F |≤ 256 < 37 · 109. Contradiction.

The theorem is proved. �

8. Groups generated by 3-transpositions

In this section we show that the estimate of Proposition 6.1 is sharp
as follows from the case of groups generated by 3-transpositions (see
[Fi], [As] for definitions and notations).

Definition 8.1. [Fi] Let G be a finite group generated by a class D of
conjugate involutions such that any pair of non-commuting elements of
D generates a dihedral group of order 6; then D is a class of conjugate
3-transpositions of G.

Equivalently, the product of any two involutions from D is of order
1, 2, or 3.

Proposition 8.2. Let G be a finite group generated by a class D of
conjugate 3-transposition. Then any element of D is 2-radical.

Proof. Let y ∈ D, x1, x2 ∈ G. Denote a = [y, x1], b = [y, x2], H =
〈a, b〉. We have to prove that H is solvable.

Since |y| = 2, both a and b are products of two elements of D and
hence are of order 1, 2, or 3.
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(i) If any of them is of order 1, then H is cyclic. If they are both of
order 3, then H is a subgroup of the group generated by all elements
of D of order 3, and this latter group is solvable [Fi, Cor. 1.6].

(ii) Suppose that both a and b are of order 2. Then we have ab =
a−1b = x1yx−1

1 y ·yx2yx−1
2 = x1yx−1

1 ·x2yx−1
2 . So ab is a product of two

elements of D and is thus of order 1, 2, or 3. If |ab| = 1, then a = b,
and H is cyclic of order 2. If |ab| = 2, then H is the Klein four-group.
If |ab| = 3, then H ∼= S3. In all the cases H is solvable.

(iii) Finally, suppose that |a| = 2, |b| = 3. Then we have, as above,
ab = a−1b = x1yx−1

1 · x2yx−1
2 , and ab, as a product of two elements

of D, is of order 1, 2, or 3. The case |ab| = 1 cannot occur. If
|ab| = 3, then H = 〈ab, b〉 is generated by elements of order 3 and is
thus solvable, as in (i). If |ab| = 2, then H ∼= S3. Again, in all the
cases H is solvable. �

Corollary 8.3. Let G be one of the following groups:

• a symmetric group Sn;
• a symplectic group Sp(2n, 2)(n ≥ 2);
• an orthogonal group Oµ(2n, 2) for µ ∈ {−1, 1} and n ≥ 2;
• a unitary group PSU(n, 2)(n ≥ 4);
• an orthogonal group Oµ,π(n, 3) for µ ∈ {−1, 1}, π ∈ {−1, 1},

and n ≥ 4;
• one of Fischer’s groups Fi22, Fi23, Fi24.

Then G contains a nontrivial 2-radical element.

Proof. This immediately follows from the above proposition taking
into account the fact that all the listed groups are generated by a
class of conjugate 3-transpositions [Fi]. �

9. Sporadic groups

Proposition 9.1. Let G be a sporadic simple group. Then ρ(G) = 3
for G = Fi22, F i23 and ρ(G) = 2 for all the remaining groups.

More precisely, we shall prove that if g 6= 1 is a 2-radical element
of a sporadic simple group G, then G = Fi22 or G = Fi23 and g is
a 3-transposition. (In the latter cases MAGMA computations show
that g is not a 3-radical element.)
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The proof goes case by case. Apart from the theoretical arguments
presented below, we used MAGMA for rechecking them (in all the
cases except for the Monster). For larger sporadic groups we had to
replace most standard MAGMA procedures with our own ones in order
to avoid storing the whole group and large subgroups. In particular,
to check whether a subgroup under consideration is not solvable, we
used the Hall–Thompson criterion [Th]: a group H is nonsolvable if
and only if it contains nonidentity elements a, b, c of pairwise coprime
orders such that abc = 1.

Both in the theoretical proof and in the computer-aided one, we rely
on the ATLAS classification of conjugacy classes of maximal cyclic
subgroups [Wi].

Let us now prove the proposition. The exposition below is some-
times sketchy, we omit some cases where the proof uses arguments
similar to earlier ones.

The main idea is very simple. We first consider the elements of
prime orders. It turns out that in most cases one can include a given
element g of prime order p of a group G in its proper simple subgroup
H. If there is a single conjugacy class of cyclic subgroups of order
p, it is enough to indicate H whose order is divisible by p. In the
case where there are several conjugacy classes of cyclic subgroups of
order p, more subtle arguments are needed. We either use ATLAS
information on elements h of order mp for some m whose powering
gives g and try to include h in some proper simple subgroup H, or
use some information on subgroup structure of G from the literature.
Finally, if g is not contained in any proper simple subgroup of G,
it happens that its normalizer N = NG(g) is the unique maximal
subgroup of G containing g. In that case, one can take x ∈ N and get
a = [g, x] ∈ 〈g〉, and take y such that b = [g, y] /∈ N . Then 〈a, b〉 = G
is not solvable.

If an element g under consideration is of composite order mp, we
note that it belongs to the centralizer of h = gm which is of prime order
p. It remains to use the information from ATLAS on the centralizers
of elements of prime orders in sporadic groups. It turns out that in
many cases the structure of CG(h) is as follows: it contains a normal
subgroup Z of small exponent such that the quotient G′ = CG(H)/Z
is either a smaller simple group or an extension of a simple group by a
group of small exponent. Thus if g is a 2-radical element of sufficiently
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large exponent, then its image in G′ is a nonidentity 2-radical element,
and we arrive at a contradiction by induction. In some cases, elements
of small exponents require separate consideration.

Below we mostly present theoretical arguments as above for ele-
ments of prime orders. We present a more detailed proof for the
baby-monster B and a complete proof for the monster M .

We follow the subdivision of sporadic groups from ATLAS.

Mathieu groups: M11, M12, M22, M23, M24.

M11. The elements of orders 2, 3 and 5 are included in A5, and of
order 11 — in PSL2(11).

M12. Any element of order 11 is included in PSL2(11). All the
remaining ones, of types 2A, 2B, 3A, 3B, 5A, are included in A5 (ac-
cording to [CCNPW, p. 33], M12 contains A5’s of types (2A, 3B, 5A)
and (2B, 3A, 5A)).

M22. The elements of orders 2, 3, 5 and 7 are included in A7, and
of order 11 — in PSL2(11).

M23. The elements of orders 2, 3, 5 and 11 are included in M11, of
order 7 — in A7, and the normalizer N = 23 · 11 of an element g of
order 23 is the unique maximal subgroup of M23 containing g, so we
can apply the argument mentioned above.

M24. Any element of order 23 is included in PSL2(23), of order 11
— in M23, of order 7 — in PSL2(7), and of order 5 — in A5. According
to [CCNPW, p. 96], M24 contains A5’s of types (2B, 3A, 5A) and (2B,
3B, 5A), so it remains to consider the class 2A. Fix an element z of
type 2B. We have CG(z) = E26 ·S5, where E26 is an elementary abelian
subgroup. Let g be any involution of A5 ⊂ S5. Since g centralizes z,
it cannot be conjugate to z, hence g is of type 2A, and we are done.

Leech lattice groups: HS, J2, Co1, Co2, Co3, McL, Suz.

Here we shall be a little sketchy describing only the largest Conway
group Co1 among the three ones.

HS. The elements of orders 3, 7 and 11 are included in M22. Ac-
cording to [CCNPW, p. 80], there is an M11 ⊂ HS containing elements
of types 2A and 5C, and there is an A5 containing elements of type
2B and 5A. The remaining class 5B also has a representative lying in
A5 [GLS, p. 274].
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J2. Any element of order 7 can be included in PSL3(2). According
to [CCNPW, p. 42], there are A5’s of types (2B, 3A, 5CD), (2A, 3B,
5AB), thus including the elements of all the other classes.

McL. There are no problems with the elements of orders 2, 7 and
11 — they can all be included, say, in M11. By [CCNPW, p. 100],
there is a subgroup PSU3(5

2) containing representatives of 3B, 5A
and 5B. It remains to consider the class 3A. Take an element of order
9 in PSU4(3

2). According to [Wi], its cube belongs to 3A.

Suz. Any element of order 13 belongs to a maximal subgroup G2(4),
and hence to an even smaller subgroup PSL2(13). The elements of
orders 7 and 11 belong to M11. On [CCNPW, p. 131] we find an A7

containing representatives of 2B, 3C and 5B, a PSL3(3) containing
representatives of 3B, and a PSL2(25) containing representatives of
5A and 5B. It thus remains to consider the classes 2A and 3A. To
treat 2A, take an element of order 8 in M11, then its cube is of type
2A [Wi]. Similarly, the fifth power of an element of order 15 in J2 is
of type 3A.

Conway groups: we shall skip the arguments for Co2, Co3.

Co1. The elements of orders 23 and 11 belong to M23, and those of
order 13 — to Suz. The classification of A5’s [Wi83] gives subgroups
of types (2B, 3A, 5A), (2C, 3A, 5B), (2C, 3B, 5C), (2B, 3B, 5A),
(2B, 3A, 5A). According to [Cu], the classes 7A and 7B have their
representatives in A7 and PSL2(7), and the class 3D, as 3A, belongs
to A5. It remains to consider 2A. One can take an element of order
18 in Co3, its 9th power is of type 2A.

Monster sections: He, HN, Th, F i22, F i23, F i′24, B, M .

Here we shall skip HN (which can be treated using [CCNPW,
p. 166] and [NW]) and two larger Fischer groups.

He. The elements of order 17 belong to PSp4(4), and hence to
PSL2(16). The elements of order 5 lie in A5. We have to consider
the classes 2A, 2B, 3A, 3B, 7A, 7C and 7D (7B is a power of 7A
and 7E is a power of 7D). First we use the information on (2,3,7)-
subgroups from [CCNPW, p. 104]: a subgroup of type (2A, 3B, 7C) is
contained in 7 : 3×PSL3(2) (and hence 2A belongs to PSL3(2)), and
a subgroup of type (2B, 3A, 7AB) is contained in S4 × PSL3(2) (and
hence 7A belongs to PSL3(2) too). Next, we use the information
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on the centralizers of involutions [GLS, p. 277]. Since 7D and 3B
commute with 2B, they both belong to PSL3(2). Since 3A commutes
with 2A, it belongs to the centralizer of 2A, and hence to PSL3(4).
As to 2A and 2B, the same argument as in the case M24 applies, and
we conclude that 2A belongs to PSL3(2) and 2B belongs to PSL3(4).
Finally, since 7C commutes with 3A, it belongs to the centralizer of
3A and hence to A7.

Th. The normalizer N = 31 · 15 of an element g of order 31 is the
unique maximal subgroup of Th containing g, so we can proceed as
in the case of an element of order 23 in M23. Any element of order
19 belongs to PSL2(19), of order 13 — to 3D4(2), of orders 2, 5 and
7 — to A7. It remains to treat three classes of elements of order 3.
Take an element of order 21 in PSL5(2), its 7th power is of type 3A.
Taking elements of orders 9 and 15 in 21+8 ·A9, we obtain 3B and 3C
as their 3rd and 5th power, respectively.

Fi22. First recall that this group does contain 2-radical elements,
namely, those of the class 2A (3-transpositions), see Section 8 above.
Any element of order 13 belongs to O7(3), and hence to PSL3(3). The
elements of orders 5, 7, 11 lie in M22. We have to consider the classes
2B, 2C, 3A, 3B, 3C, 3D. According to [CCNPW, p. 163], there is an
M12 containing representatives of 2B, 2C, 3C, 3D. We include 3A in
A10 representing it as the 5th power of an element of order 15 in A10.
Similarly, we represent 3B as the 6th power of an element of order 18
in O+

8 (2).

B. The normalizer N = 47 · 23 of an element g of order 47 is the
unique maximal subgroup of B containing g, so we can proceed as
above. The cases of elements of orders 31, 23, 19, 17, 13, 11 and 7 are
easy: those of order 31 belong to PSL2(31), of order 19 — to Th, and
all the remaining ones can be included, say, in Fi23. Furthermore, we
use the classification of A5’s [Wi93, Theorems 5.1, 5.2]: in particular,
there are subgroups of types (2B, 3A, 5A), (2D, 3B, 5B) and also those
containing 2C. It remains to consider 2A. We get it as the 13th power
of an element of order 26 in Fi23.

Let now g be an element of composite order mp, m ≥ p. As p ≤ 5, it
suffices to use information on the centralizers of the elements of orders
2, 3 and 5. We have CB(2A) = 2 · (2E6(2)) : 2, CB(2B) = 21+22

+ · Co2,
CB(2C) = (22 · F4(2)) : 2, CB(2D) = 29 · 216 · O+

8 (2) · 2, CB(3A) =
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3 × Fi22 : 2, CB(3B) = 31+8
+ : 21+6

− · PSU4(2), CB(5A) = 5 × HS : 2,
CB(5B) = 51+4

+ : 21+4
− · A5.

First suppose g is of odd order mp, m > p. If p = 3, then g
centralizes either 3A or 3B. As the exponent of the extraspecial group
31+8

+ equals 3, we get the image of g of order at least 5 in either
Fi22 or PSU4(2) whose 2-radical elements can only be of order 2 or
3. Thus g is not 2-radical. (Note that this argument does not work
for the elements of order 9 which will be considered separately.) If
p = 5, we have to consider the elements of orders 35 and 55 which
all centralize 5A. Hence each of them induces a nonidentity element
of HS, and we are done. The elements of order 25 centralize 5B. As
the exponent of the extraspecial group 51+4

+ equals 5, each of them
induces a nonidentity element of A5 which cannot be 2-radical. To
finish with the case of odd order, it remains to consider the elements
of order 9. According to [Wi], both 9A and 9B can be represented as
the 4th power of an element of order 36. Hence any element of order
9 centralizes either 2B or 2D and thus belongs to either Co2 or O+

8 (2),
and we are done.

Suppose now g is of even order 2m so that g centralizes an involution
of B. If m is odd, then the image of g in the simple group involved in
the centralizer of the corresponding involution is nonidentity, and we
are done. So assume m to be even, i.e. g is of order 4n. The elements
of order 4 were checked by MAGMA, so suppose n > 1. According
to [Wi], there are no elements of order 4n, n > 1, powering to 2A.
If g centralizes 2B, then it induces a nonidentity element of Co2, and
we are done. According to [Wi], the elements of order 4n, n > 1,
powering to 2C are 12T, 20H and 52A, they were checked separately
by MAGMA. Finally, suppose that g centralizes 2D. If n > 2, then
taking into account that CB(2D) < 29 ·216 ·PSp8(2), we conclude that
g induces a nonidentity 2-radical element of order greater than 2 in
PSp8(2) which contradicts to MAGMA computations in that group.
Thus it remains to check the elements of order 8 powering to 2D, i.e.
8G, 8J, 8K, 8M and 8N. This was also done by MAGMA.

M . In this case no additional MAGMA computations were needed,
we only used the results for smaller groups. Our approach mimics the
case of the baby-monster.

The normalizer N = 41 · 40 of an element g of order 41 is the
unique maximal subgroup of M containing g, so we can proceed as
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above. Relying on the existing information on maximal subgroups of
M [BrW], we include the elements of orders 71, 59, 47, 31, 29, 23, 19,
17, 11 in PSL2(71), PSL2(59), B, B, Fi′24, B, B, B, B, respectively.
Representatives of all the remaining classes appear in [No]: Table 1
on p. 201 gives 13A and 13B lying in PSL3(3), in Section 5 there are
exhibited 7A and 7B lying in PSL3(2), and the list of A5’s in Table 3
on p. 202 contains representatives of all classes of elements of orders
2, 3 and 5.

Let now g be an element of composite order mp, m ≥ p. Our
arguments are similar to the previous case. As for B, we have p ≤ 5,
and it suffices to use information on the centralizers of the elements
of orders 2, 3 and 5. We have CM(2A) = 2 · B, CM(2B) = 21+24

+ ·
Co1, CM(3A) = 3 × Fi′24, CM(3B) = 31+12

+ .2Suz, CM(3C) = 3 × Th,
CM(5A) = 5 × HN , CM(5B) = 51+6

+ : 2J2.

First suppose g is of odd order mp, m ≥ p. If p = 3, then g
centralizes either 3A, or 3B, or 3C. As the exponent of the extraspecial
group 31+12

+ equals 3, we get the image of g of order at least 5 in either
Fi′22, or Suz, or Th which do not contain 2-radical elements. Thus g
is not 2-radical. If p = 5, we have to consider the elements of orders
25, 35, 45, 55, 95 and 105. Any of those centralizes either 5A or 5B
and hence induces a nonidentity element of either HN or J2. (We use
the fact that the exponent of the extraspecial group 51+6

+ equals 5.)

If g is of even order 2m, it centralizes either 2A or 2B. If m > 2,
then g induces a nonidentity element of either B or Co1 which do not
contain 2-radical elements. Thus g is not 2-radical and we are done.
Let now g be of order 4. Any 4A-element is the 11th power of 44A and
hence belongs to B. The square of a 4B-element belongs to 2A [Wi].
Therefore 4B centralizes 2A and thus induces a nonidentity element
of B. According to [Wi], the 4th power of any element of order 16
belongs to 4C, hence 4C lies, say, in Fi′24. Finally, 4D is the cube of
12J whose 4th power is 3C. Therefore 12J centralizes 3C and hence so
does 4D. Thus 4D belongs to Th, and we are done.

Pariahs: J1, J3, J4, Ru, O′N, Ly.

J1. The normalizer N = 19 · 6 of an element g of order 19 is the
unique maximal subgroup of J1 containing g, and the above argument
applies. If the order of g equals 7, its normalizer N equals 7 · 6 and
is also a maximal subgroup of J1 but is contained in another maximal
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subgroup of order 168. However, taking x ∈ N and y of order 3, we
get a = [g, x] ∈ 〈g〉 and b = [g, y] of order 15. Since b is outside of
both above mentioned maximal subgroups, we have 〈a, b〉 = J1. The
elements of order 11 belong to PSL2(11), and the elements of orders
2, 3 and 5 belong to A5.

J3. The elements of orders 2 and 5 belong to A5, those of orders 17
and 19 belong to PSL2(17) and PSL2(19), respectively. Taking an
element of order 9 in PSL2(17), we obtain 3B as its cube, and taking
an element of order 15 in PSL2(16), we obtain 3A as its 5th power.

J4. For p = 43 or 29, the normalizer of g of order p is the unique
maximal subgroup containing g, and we apply the above argument.
The elements of order 37 lie in PSU3(112), of order 31 — in PSL2(32),
and of orders 3, 5, 7, and 23 — in M24. It remains to consider the
classes 2A, 2B, 11A, 11B. The centralizers of each of 2A and 2B contain
M22, and we embed both 2A and 2B in M22 using the same argument
as in the case M24 above. According to [J, Prop. 22 and Prop. 26], we
have 11A∈ C(2B) and 11B∈ C(2A), so they are both included in M22

too.

Ru. The elements of orders 29 and 13 lie in the corresponding
PSL’s, and those of orders 7 and 3 lie in A7. The information on
alternating subgroups on [CCNPW, p. 126] gives 2B, 5A and 5B con-
tained there. 2A appears as the square of an element of order 4 in
A6.

O′N . The elements of order 31 lie in PSL2(31), of order 19 — in
PSL3(7), and of orders 11, 5, 3 and 2 — in M11. As to the classes
7A and 7B, the first appears as the square of an element of order 14
in PSL3(7), and the second belongs to PSL2(7) [Wi85, Section 4,
p. 471].

Ly. For p = 67 and 37 we use the same maximal subgroup argument
as above. The elements of order 31 belong to G2(5), and hence to
PSL3(5), and those of orders 11, 7 and 2 — to A11. The classification
of A5’s [Wi84, Section 6, p. 407] shows that 3B and 5B are included
in A5. Both 3A and 5A lie in G2(5): they can be obtained as the 3th
power of an element of order 9 and the 4th power of an element of
order 20, respectively.
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To finish the proof of the proposition, it remains to check all small
groups of Lie type appearing in the above arguments. This was done
by straightforward computations.

Proposition 9.1, and hence Theorems 1.15 and 1.4, are proved. �
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