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1 Introduction

The main aim of these notes, based on my lectures at Bonn University (May-June, 1990), is to
demonstrate that degenerated affine Hecke algebras (and Yangians) are quite natural from math-
ematical and physical points of view, and are necessary to understand the very classic object —
the symmetric group S,. There is no need to discuss much its important role in mathematics and
natural sciences, the representation theory and the theory of combinations. But S, is a key thing
not only for science.

The great philosopher Immanuel Kant found that our consciousness is based on two a priori
notions of space and time. I like his books very much and consider him as the best philosopher in
Europe. Nevertheless, I think he made a mistake. One should add a third notion to these two. I
mean the notion of combination. '

.1 do not attempt to discuss this point here. One can find easily many arguments in favor of
the thesis that calculus of permutations (transpositions) interchanges is the main work our brain
can do and likes to do. Gambles give good models. They are among the most exciting things
for human beings. Moreover, the primitive ones are more exciting, because here the fundamental
concept of combination is as pure as possible. However, gambling is nothing else but the applied
representation theory of S,.

It is strange enough for me that the symmetric group is not a necessary thing to study for
students in physical departments. The space-time is, but not S,. I can understand to a certain
extent why it is so for mathematicians (they do not try to understand the universe and for them
- consistent notions are on equal grounds). As for physics (old and new) its most significant parts
(e.g. the diagrammatic method, the string theory, the two-dimensional conformal theory) are.very
closely connected with combinatorics. Moreover, the modern representation theory was created as
. a base for quantization and is now such a base. But its classic ground is undoubtedly in Young's.
works on S,,. o

I shall begin now the detailed exposition of the simplest example of a physical theory based
on S, only. This one is the most natural way to quantum groups. We will discuss A. Zamolod-
chikov’s world of two-dimensional elementary factorized particles.. Let the space be R with the
only coordinate z,and let ¢ be the usual time. The life of a free particle can be represented as a
line in R2. This line (the graph of the movement of the particle) can be determined (see fig. 1)
by some (initial) point (2o, z(%p)) and by the angle & from the t-axis to it (—7/2 < 8 < 7/2). The
momentum of the particle is p = mtg(#) (in the proper units), where m is its mass.
~ Let us suppose that the masses of all the particles are the same and

(a) there is no mechanical interaction.

It means that individual momenta of two or more particles are conserved at the points of
intersections of corresponding lines. In some evident sense the particles are transparent to eacn
. other (see fig. 2). It is not a billiard.

This world is too boring. We should add some quantum scattering to make the life of these
particles more interesting. Let us consider "coloured” particles of types (colours) 1,2,...,N. The
particles are permitted to

(b) change the colours (types) only at the points of intersections.
It is the second postulate. Moreover,

(c) the S-matriz of any collision (the set of all the amplitudes) does not depend on
concrete instial positions of the particles.

I should comment on axiom (c). Omne can always slightly deform the initial positions (the
z-coordiantes z;,...,Z, at the time ¢ = ¢;) to have only two-particle intersections in the future
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and in the past like in fig. 2. By the standard principles of quantum mechanics any element of
the total S-matrix can be obtained as a certain sum of products of two-particle amplitudes over
the intersection points. Thus, it results from (c) that if we know two-particle S-matrices we can
calculate any amplitude, depending in fact only on the angles and on the order of the points of the
in-state and out-state.

The last things we have to declare to obtain Zamolodchikov’s world are some locality (or causal-
ity) properties and some invariances:

(d) every two-particle S-matriz depends only on the colours of these two particles and
on the difference of their angles.

Other particles do not affect it.

A few words about the origin of all these propertxes It was conJectured in Zamolodchikov
brothers’ paper [1] that the quantum scattering processes should be of this type for O(N)-symmetric
chiral field models in two-dimensions like Pohlmeyer’s o-model. Besides the asymptotic freedom and
the existence of isovector N-plets of massive particles (”coloured particles”) the following property
is of great importance. This quantum model possesses an infinite set of conservation laws extending
their classical counterparts. It gives us the conservation of individual momenta.

Zamolodchikov’s conjecture was proved (at some physical level of strictness). I am not able
to discuss the details here. It is worth mentioning that particles in [1] and in other papers are
relativistic. Therefore, the authors use rapidities 4 (p® = mch(8), p* = msh(8) for the relativistic
momentum p = (p° p!)) instead of angles. The dependence of S-matrices on differences of angles -
(see (d)) is nothing else but the relativistic invariance. Some unitary conditions and crossing-
symmetry relations are of physical importance as well. We will omit the latter here and pay little
attention to the first.

2 Yang-Baxter identities

Let us describe a sequence of n particles at the moment ¢t = to with the z-coordinates z; < 29 <
.. < zn.(see fig. 2) by the symbol A;(0) = A;,(8))--A;,(6n), where @ = (6, --,8,) and J =
(71, *»Jn) are the corresponding sets of the angles and the colours (~7/2 < 6 < /2,1 < jx < N).
Dwing to property (c) the previous or subsequent changes of a set of particles depend only on its
symbol A;(©) (on the colours, angles and on the order of z-coordinates only). Given A;(8’) one

“has
Al(©)in = ;51(9, 0)A1(0)ous (1)

for some I = (iy,:++,i), 0" = (6, -, 8,) describing the set of particles at ¢t = 5 < t5. We have
expressed A;(©') considered as an in-state in terms out-states. Every (scalar) coefficient S is the
S-matriz element (the amplitude) from A;(0") to A;(©) (by definition). Here I and J can be
arbitrary (1 < i, jk < N) but not the set ©’. The S-ma.mx is nontrivial only if

e = w(@) = (Qw_l(l),ﬁw_,h), . 'ow-l(n)) ) (2)

for an appropriate permutation w from the symmeric group S,.

In this formula some misunderstanding is possible. I will comment on it. Any permutation
wi(1,2,..,n) = (1/,2,---,n') acts on an ordered set s = (z,y,z2,:--,) of some elements (e.g.
coordinates) by the substitution the element at place:No. i for the element at place No. #’. For
example, the transposition w = (12):(1,2,3,---,n) — 21 interchanges the content of the first and
second places. This definition results in the natural formula v(w(s)) = (v- w)(s),w,v € S,. We
see that w™! is necessary in the second equality of (2). In fig. 4 the corresponding w is equal to



(4,5,1,8,2') in the one-line notations or }233% in the two-line notation, i.e. takes (1234 5) to
(35412);w™t=(3231)-=(3,5,4,1,2)

Let us discuss examples. We will omit the indications "in” and "out”. One has for n = 2 and
91(93,9&:02,9&:31: ‘

Air (82)Aiy (81) = Y S7172(612)4;,(81) A (62), (3)
11,42 ’
where 8;; = 8; — 8; by definition. Given I = (4,12,13),J = (j1,J2,73) in the case of fig. 3a we

obtain the following relations:

Aiy (83) Ay (82) Aig (61) 3 555 (012) A, (3) Ay (61) Aky (62)
S Sk (612) 57,2 (013) Ajy (61) Ay (83) Aiy (62)

= 3555 (8,5)882 (613) S8 (823) A4(0),

1793

]

where the sum is over all free indices (1, j3,Js, k2, k3,{2). The analogical calculation for fig. 3b
should give the same result. We arrive at the identity:

S S (615)S8 (813)SPR (0) = Y SE(623) 515 (8135132 (612) (4)
0 k3, b2 k1,kz 2

Let us rewrite (4) in a tensor form. We will keep the following notations. Let us consider "multi-
matrices” T = (T’.‘ 7 eﬂ) with the multi-indices I = (4y,-+,1n),J = (j1," -+, Jn), respectively, of

11 12 »*In
rows and columns (1 £ i, jk £ N for 1 < & < n). These T act on "multi-vectors” z = (Zi i)
by the natural formula Tz = (£ ;T{z,). If multi-indices are assumed to be (lexicographically)
ordered then z and T are usual vectors and matrices for CV" in place of CV. Given two N x

N-matrices X = (X,-j),Y = (Y}j) (from the matrix algebra My) one can define the tensor product
T=XQY :T= (T’-‘ ’-’) yTHR B = X1'Y7, The definition of X ®Y ® Z ® - - - is quite analogous.

n 12 4 2 L ]

Later on, &7 will be the Kronecker symbol. Put

X = (l’I 63'::) X%,
myk

HT = (H 6in | Tik (5)
mztk,!

for X = (X)), T = (T,-"';‘,-f),l <k #1<n,1< m< a. These matrices are the natural images of
X,T in the M§" = Mnn with respect to the indices k and (k,!). Note that ¥(X @ Y) =% X'V
and ¥X commutes with 'Y for any X,Y € My, k # 1.

Let us introduce §(f) as the following matrix (depending on § = 6y3) from M$ :' § =
(S’-‘ J’(6')). Now one can represent (4) in the elegant form: -

0 J2
B5(612)125(613)5(623) ="2 5(823)25(813)*25 (612). (6)
If we put S(8) = PR(9) for o o
P= (p’,‘ 7,2) P _ g (7)
2 o2

we get the Yang-Bazter equation

uR(gm)laR(gm)nR(ez:;) = B R(823)" R(613)* R(612). (8)



To check it (to deduce it from.(6)) one should carry all the uP‘::'s P across the other terms in (6)
after the substitution § = PR. Here we have to use the following properties of P:

‘ZSP 12P233P = 12P-23P 12?, ’ (98.)

Bply = 2X2p for X € M. (9b)

It is easy either to prove (9) directly or verify them without matrix calculations using the following
patural interpretation of "/ P,

3 Factorization.
By definition .
P(z®y) = (JZ 6{:6;’:331%’3) =y®z2z,¥y€ ct

This relation proves (9b) and give us that both sides of (9a) induce the same permutations of
components under the above action of My ®@ My ® My on CN @ CV @ CV by left multiplications.
Hence, (9a) is true. Moreover, we have the following more gmera.l property.

Let us denote by id the identical permutation and by 9y, 32, +, $n~1, the adjaceut transpogitions
(12), (23) and so on. Then given w = (1',2/,-+-,n’) # id one has

w= 3‘-' ) -3‘-‘ . (10)

for some indices 1 < i,++-,3; < n—1 and some I. If [ is of minimal possible length then it is called
the length of w (written /(w))). We see that the product
, Py=Py P

3y

for P, ='"*'P : (109
acts on {CV)®" a5 the permutation of components: _
Pu(z'@23@ @2 =¥ @z P g...@zvT ™ gl 2h e OV (cf(2))

Hence, the matrix Z = (Zf) , where 27 = 67,67 ---6}" , coincides with P,. In particular, P, is
independent of the choice of decomposition (10).

The latter can be proven in a more abstract way without the above interpretation of P, as some
interchange of components. Which properties of P,,,-+, P, _, should one check to prove that the
right-band-side product of (10‘) does not depend on the chcnce of decomposition? If we consider in
(10) only products of minimal length (reduced decompositions), then they are as follows

Pqu-:Pu = Pu-o-:PsaPﬂ“ (1£i<n) (11a)

P“P;,' = stPai I‘—] |> L. (llb)

The reason is that relations (11) together with P3 = 1 are the defining ones for S, as an abstroct
group .. In fact, it will be proven below by means of some pictures. Thus, we have two ways to
prove the correctness of (10'). For 5 one has a priori the second way only.
Formula (lla.) (being equivalent to (9a)) is very close to (6). There is the analog of (11b) for
S =i+l S:
$5iS;=8;8ifor |i-jF > L (12)



Indeed, here §; and S; live in different components of the tensor product. For brevity, arguments
have been omitted. Only two things are different. Firstly, we have the arguments 8,2, 813, f23 in (6).
Secondly, we do not know any interpretation of {S} as some permutations. In the next sections we
will find such an interpretation for our basic example of Yang’s 5. But now let us go back to (10).

All possible decompositions of w € S, of minimal length | = l(w) are in one-to-one correspon-
dence with collisions for A(©) = A(61,--+,0,) as an out-state and A(w(B)) = '
A(By=1(1)s* 2 8u=1(n)) a5 an in-state (see (1)).

Indices I,J can be omitted here (nothing depends on them). Given a collision one can get
a sequence 8;,---, 8, by writing s;, one after the other. The element s;, should stay at ¢ = ¢,
being the moment of the k-th intersection (of the ix-th and (4 + 1)-th lines, where we number lines
according to the position of their x-coordinates at ¢ = t; + (¢ > 0) from the bottom to the top.
Then the consecutive product s;, - -+ s;, is equal to w and ! = I(w). Look at fig. 4. It is clear. The
converse (from (10) to some picture) can be proven by induction on . It results from the above’
statement that (11) and {P2 = 1} are defining relations for S,. By the way, it is evident from the
pictures (like fig. 4) that there is only one element of maximal length wg = (n,n - 1,- 2, 1) and
l(wo) = n(n — 1)/2

Now we are in a position to put down the formula for the set 7 7(©,9") from (1) considered as
a mu.ltx-ma.tnx function. Let §(©,©") = (5{(©, ©")), where @’ = w(O) for some w € S, (see (2)),
w = 8 -+, being a reduced decomposition of the length = | = l(w) (see (10)), corresponding
to some collision. Then we can use the same approach as wa obtained (6) from (4). One gets the
.formula

§= S"t (3;'; e '3*'1(9)) To Si:(sﬁ e)sﬁ( )! (133).

5/(0) ="+ 5(6: - 0i41), 1<i<n (13b)

The best way to prove the independence of S of the choice of decomposition (10) is to pass from
a given product for w to any other by some continious deformations of initial points. The oaly
transformations in the formulas will be of type (6) for some indices in the place of 1,2,3, or like in
formula (12). This reasoning is, in fact, due to R. Baxter.

4 An algebraic interpretation

Let us interpret formulas (6), (12), and (13) algebraically. We will now consider symbols A4;,(8) -+
Ai.(0,) as products of generators A;,(8),- -+, A; (fn) in the free algebra T'A with generators 4;(9)
(they have two indices ¢, 8, where 1 < i < N, 4 can be any number). The quotient algebra A of T4
by relations (3) is called Zamolodchikou’s algebra. We suppose here and further that S is analytical
for © close to 0 = (0,---0) and S(0) = 1. The latter is quite natural physically (there should be
no scattering, when two particles are "parallel” one to another). Here we identify 1 with 1 ® 1 for
1 being the unit matrix.
Let us impose on S relation (6) and the sc—ca.lled unitaty condition

S@)S-H="1=191=1. . (14)

Given © = (6,,--+,0,) in some ne.ighbourhood of 0 we wil denote by TA{®} the vector subspace
in TA generated by Ar(w(@)) for any I = (41, --,in),w € S,. Let A{O} be its image in A.

Relations (6), (14) are in fact equivalent to a certain Wick (or Poincaré-Birkhoff-Witt) theorem
for every A{©}. Namely (see e.g. [1,2]),

(a) every A;(w(@)) is a linear combination of some A;(©) in A{O};

(b) all the A;(@) are linearly independent in A{O} for any mu-lti-ind:'ces J.



Here 6y, - -8, can be arbitrary complex numbers (possibly not distinct different). The appearance
of (14) is quite evident. If one applies (3) twice, he should get the initial binomial because of (b).
Physically (14) corresponds to the change of time ¢ from 2{, to to > t; then back.
Our other problem is to find the best algebraic language for relations (6), (12), and formula
(13). We will start with S; (see (13b)). Let us denote by S,(®) the product (13a) for w from (10).
Then the set of functions {S,(@)} satisfies the following conditions (cf. [3])

5z(y(©))5,(8) = 524(0), (15a)

if
(zy) =i(z) +U(y), 2,y € Sn. (15b)
(Deduce it from (13)).

Conversally, let §; = §,;, be some undetermined functions of 8 with values a.nywhere and let
relation (12) together with

Sirr()Silu + 0)Si41(v) = Si(v)Si1(u + v)Si(v) (16)

be valid for a.rbitra.ry u= 0; - 9,’4.1,‘0 = 9{.*.1 - 0,‘+2.

Then we claim that one can uniquely define the set of functions {$,,(©)} by (15). Moreover, it
is possible to omit the condition (15b) in the case of unitary S(S5(8)S(-8) = 1).

Summarizing, we see that the tensor mode of rewriting (4) in the form of (6) is very convenient
but not the best. The most natural way is to use S, as the index set (see {15) and (16)).

5 Yang’s S-matrix

Let us discuss the basic example of a factorized S-matriz (a solution of (6)). The following one is
the so-called Yang’s S-matrix:

S(0) =1+ P0,8 = 6y = by — 8. (17)

Here and further we will denote by 1 the unit matrix in My,1 ® 1 and so on. Setting S(8), =
19(8 + n)~! + P8(6 + n)~! for any n we get an unitary S-matrix, satisfying (6) and (14). In
particular, S(8)o = P corresponds to a world without any scattering. To verify (6) for § (or S,) is
an easy exercise. Nevertheless, one can wish to prove (6) without any calculations like it was made
for P (see above). The best way is to find an interpretation of S as a transposition of something
(P interchanges the tensor components). I know four ways to do this. Two of them are based,
respectively, on some algebraic geometry (see [2]) and on the theory of the so-called Knizhnik-
Zamolodchikov equation from the two-dimensional conformal field theory (see {4,5]). I will explain
here and below only other two making use of (degenerated) affine Hecke a.lgebras and the so-called
Yangians {6].

Mathematically, the idea is simple enough. Let us substitute some operators ¥; for 8;(1 < i < n)
in §;(©) ='**! §(6; — 6;41), where S is from (17). We assume {Y;} to be pairwise commutative
and impose the following conditions :

Si(Y: = Vi)Y = Vi 8i(Yi = Yina), (18a)
$(Y%: = Yip1)Yir1 = Y:S(Y: = Yin), (18b)
S(Yi-Yin)Y; =Y;8(Yi - Yipa), for j#4;i+1 (18c)



Formulas (18) are equivalent to the relations

Yijsi —siYi=1= 9%y — Yisi (19a)

Y;si=9Y; for j#ii+1 (19b)

Here and further we will identify P,, =*+1 P with s; and 1 with 1. Let us check e.g. the first of
these formulas. It results from (18a) that

u+1 (K-}-lst - ‘SIY)},II'f‘I‘lKJ Y Y (20)

"Then one can divide (20) by Y;;41. We see that (19) = (18), but the converse holds true only for
{Y;} in a "general position”.

We have arrived at the following object. Let C[S,] =, ®Cw be the group algebra of S, 3 w
with the natural multiplication law: w-w' = ww’ € S, (eg. (a +(12)) (b +(23)) = ab +
a(23) + 5(12) + (3,1,2), a,b € C). It is nothing else but the algebra of formal linear combinations
of permutations. Its extension by pairwise commutative symbols Y;,---,Y,, with relations (19) is
called the degenerated affine Hecke algebra (written H/). It is due to Murphy and Drinfeld (see
[6]). Starting with S, instead of § we get Ha(7n), where 1 should stay for 1 in (19a). The algebra
M!.(n) is isomorphic to H, for n # 0 (use the substitution {¥; — nY;}). But this 7 is important to
understand H}, as some quantum object.

To differentiate S;(@) from **+15(Y;;41) (see (13b)) let us denote the latter by :

Li=1+8(Y; - Yisa), 1<i<n
The main point is that (16) is equivalent to the following identity in H:
ZgE.-+1E.- = B,’+1E,’2,’+1 (1 <1< n). (21)

To prove the equivalence we need some kind of Wick (or Poincaré-Birckhof-Witt) theorem for H.,.
One can deduce directly from (19) that :

each element A € H/, has the unique representation of the following type: A = 1, Wyw,
where w € Sy, Yy are some polynomials in Yy,--,Y,.

Let us denote this sum for A after the converse substitution ¥; — §; by < A >. The only thing we
need is to show that < ;Z;41X5; > and < ;415541 > coincide, respectively, with the Lh.s and
r.h.s of (16). Let us carry all the ¥;, Yi41, Yiy3 in (21) over Z;, Z;4; by means of (18) from the left
to the right..Then one obtains },, - 1’,‘.;.1,},; - }’H.g and }’.‘4.1 - YH.Q instead of Y; i+1, }"‘4.1 i+2 Y{,‘+1
in the L.h.s of (21) and the same elements but in the opposite order in the r.h.s. These differences
are exactly what we need. By the way, I, in the natural notations is involutive in H,(7), i.e.
(Z9)(Zy) = 1 (cf. (14)). The next theorem (see {7}, proposition 3.1 and [8]) results directly from
(21) and (18).

Theorem 1. The collection of elements {T;} from H! eztends uniquely to the set
{Zw,w € Sp} C H!, with the following properties:

(3)  TuZ, = Suy if Lzy) = Ua) + ), Sig =1

(b) EoYiZ3 =Yy, w€ Sy, 1 <i<n.



Here (a} is in fact {15). This property can be deduced from (b) (or (18)). Formulas (21), (6)
are particular cases of this property. Therefore, the Yang-Baxter relation for Yang's § is a direct
consequence of the definition of H/,. Let us discuss this point.

We see that the Lh.s and r.h.s of (a) induce (operating by conjugations) the same permutation
of {Y;}. Hence, the product £;Z, should be equal ta X, modulo multiplications by some elements
from the centralizer (commutant) of {Y3,---,Y,} in H,. It is not difficult to prove that this
centralizer coincides with the algebra C[Yj,---,Y;] of polynomials of "{¥;} (see theorem 3). In
particular, (6) for Yang's § has to be true up to a multiplication by a scalar function in &y, 87,03
(use the Wick theorem for H’). Then it is easy to get (6) from this weaker statement. Thus, we
have verified, in principle, the Yang-Baxter identity without any calculations. Only by means of
formula (b), which is the definition of Hj,. '

6 Quantization of angles

I shall try to interpret this mathematical trick as some quantization procedure. We will look for
observables which correspond to 6y, -+, 8. (I shall remind that mtgf; is the momentum of the i-th
particle. Therefore, a quantization of angles is, in fact, a quantization of impulses).

Yang’s S-matrix (17} is of a very symmeric type. Any in-state A4; (8])---A;,(8,) for @' = w(0)
(see (1,2)) can be expressed in terms of A;(©), where J = z([) for permutations z € S,,. Hence,
it is natural to diminish the space of states. We fix © and some initial set of indices . Let

A: = Az(l)(ef)a o = w(@)',z,w € Sn. (22)

Here w and z play different roles. The orderings of 8y, --, 8, are indexed by w. They are in one-one
correspondence with the "sectors” — the connected components of {z = (z1,-+-,zs) € R"*,2; # z;
for 1 € i# j < n}. Therefore, we will use the visiual name ”sector” in place of "ordering”. The
states (for every given sector) are numbered by z. By definition, P A} = A%, ,z,y € S,.

The natural (but wrong) idea is. to introduce the quantum angles Yj,---,¥, by relations
Y:(A7) = 8y-1()Ay. If {A¥} were independent it might be possible. But they are linearly depen-
dent. However, one can try the following:

Yi{Aly) = 81 () Ala- (23)

Given I we define the action of {¥;} only on the "vacuum” states A} = A;,....,(@') for each sector.
Let us assume that N > n and all 4, -, 4, are pairwise distinct (for example I = (1,2,:--,n)).
Then the number of sectors. (i.e. orderings of {#;}) is equal to the number of states for each of
them. Therefore, the definition (23) is, in principle,. consistent.. If the set I = (4;,--+,%,) is not
"generic” we should be more precise (we will not consider this case here).

All the sectors are glued together: by the S-matrices {S,(@)} (see (15)). In particular, A =
Sw(0©)AY. Identifying A with z,@,es,CA2 with C[S,] and P, with z we obtain the basis
{5w(0©)} of eigenvectors for {¥1,+-,Y,} in the group algebra C[S;):

Yu(sw(e)) = 0w"1(:')5w(e) , W E Sn’ 1 S i <n. (23’)

All these are true for 8y,:--,0, being in a general position only. Simple calculations show that
{Y:} and {s;} satisfy the relations (18-19), where S, acts on C[S,] by left multiplications (¢f. {9]).
Deduce this statement from (23').

We have collected the vacuum states {A}} (they linearly generate all the states) together in the
space of states B, cg, CAY for the initial sector @' = @. Starting with other sectors we will obtain
some isomorphic representations of H,,. The S-matrices will be interwiners between these ”sector”
representations. In fact, this interpretation of § is very close to the ideology of superselection sectors
(see [10,11]). We will not discuss here the latter, but formulate the corresponding mathematical
theorem. As a matter of fact it has been partially proven.

PREPIC | I';ﬁ



Theorem 2 (see [8,9]). Given @ = (6y,---,8y) let us denote by M(©) the space C(Sy]
with the natural left (regular) action of S, and the action of Y1,---,Y, € H,, which
can be uniquely determined by means of the following relations -

Yi(1)=6-1,1=id€Sy, 1 <i<n. < (24)

Then M(©) is an irreducible M., -module for © being in a general position (6; — 6; # 1
for any i,7). The operator C[S,] 3 z — z - S4(0) € C[S,] gives an isomorphism
M(w(©)) = M(0), which appears to be a M/, -isomorphism.

This theorem is in fact equivalent to theorem 1. Indeed, any S,(©) considered as a function
of 81,---,8, with its values in C[S,] is equal to < I, > (coincides with £, after the substitution
{Y; — 6;,1 < i < n}, where all the {Y} should be collected on the right). Therefore, the isomor-
phism above-is a direct corollary of statement (b) of theorem 1. The irreducibility of M(®) is clear,
because {5,(@),w € S,} form a basis in C[S,] of eigenvectors w1th respect to {¥;} with pairwise
distinct eigenvalues (for © in a general position).

It is worth mentioning that }/ is more natural than C[S,] from some other phys:ca.l pomt of
view. Let us summarize its "quantum” properties.

Theorem 3

(a) The subalgebras Y = C[Y4,---,Y,] is a mazimal commutative in H, i.e. the com-
mutant (centralizer) of Y coincides with Y.

(b) The centre C (commutant) of H', consists of all symmetric polinomials in Yy, -+, Yy
(due to I. Bernstein).

¢) Hoag-duality. The commutant of H!, C H., where H., is generated by s1,",8m~1
and Y1,---,Y,, is equal to CH!,_, generated by C,8m41,"*19n—1,Ym+1," ", Yn (See
e.g. [7]). ‘

Compare (c) with the corresponding axiom from [10]. As for S, the commutant of C[Swm] C
C(Sn] modulo the centre is more than complimentary C{S,_m].

Let us consider H. (1) (see above) with the relations Yi418;—;Y; = = 8;Yi 4+ 1 -Y;s; in place
of (19a). Here 7 plays the role of the Planck constant k. For = 0 we get the algebra H,,(0), which
is the "quasi-classical” limit of H/ (7) and especially simple. For example, it is evident that any
element z € H},(0) can be represented in the form z = 3" wy,,w € S, for appropriate polinomials
Yw = Yu(Y1, -+, Yn). Moreover, if ¥, # 0 for some w # id then zY; # Y,z for any k such that
w(k) # k. I.ndeed 2, = Yiz = yu(Yi — Yy-1(x) = 0. The latter is impossible. In particular, the
subalgebra Y = C[1}, - -,Y,] coincides with its commutant in . (0).

There is a nice mathematical trick to extend the above statement to any 7 sufficiently close
to 0. To calculate this commutant for any 7 one should solve linear equations for coefficients of
the polinomials {y,,w € C,} in the decomposition £ = Zwy,. If the commutant contains z(n)
with 3, # 0 for some w # id then certain determinants of minors are to be equal to zero (and
vice versa). To be more precise, given k € Z,. the rank of the above system for polinomials ¥, of
degree < k for such 7 is less than the corresponding rank for n = 0. The determinants are scalar
polynomial functions in 7. Some of them do not equal zero at n = 0 (z = y;q for n = 0). Hence,
they have no common zeroes not only at 0 but in a neighbourhood of n = 0. Therefore, rank () =
rank(0) and z(n) € Y in this neighbourhood. We have proved the required statement for small
| 7]. But any H},(n) for n # 0 is isomorphic to H,(1) = M/, (see above). Hence, the coincidence of
Y and its commutant holds true for arbitrary n as well.

The best way to prove (a, b, c) is to use the following statement.

each element A € H,, has the unique representation: A = L, Sy, where w € S, Yy,
are some rational function in yy,--+,Y,,{Ey} are from theorem 1.



7 Yangians

These algebras are the basic example of quantum groups. I think that they (and their g-analogs)
should be more important for mathematics and physics than q-analogs of universal enveloping
. algebras being now in common use. You can find some mathematical arguments in favor of Yangians
in {12]. Here I will try to demonstrate only that they are physically natural and give us another
interpretation of Yang’s S-matrix as an interwiner.

To introduce (explain) quantum groups one can follow Faddeev’s ideology (the quantum inverse
scattering method - [13]) or its particular case - Drinfeld’s way [14]. Faddeev’s point of view (as
far as I understand it) is that a quantum group is more or less equivalent to the corresponding
Bethe-ansatz (R-matrix’s or not). To be more precises, it should be some hidden composition law
of the latter. For Drinfeld the main prolem was to extend a given classical r-matrix to the quantum
oné. I'll try to explain here that it is quite possible to come to quantum groups without the concept
of R-matrices and the inverse scattering technique.

The very first step for any scheme of quantization of a given Lie group G (or its Lie algebra g) is
to place at each point z of some space-time the generators {go} of g with the natural commutation
relations

[9a(2), 98()] = D 3 pg+(2)8(2 — #') | (252)

where [ga,98] = L4 Cap8y in g The r.his of (25a) can, in principle, have Schwinger and other
terms. Let g = géy (i.e. g is My considered as a Lie algebra) {ga} = {exe,1 < [,£ < N}, where
exe = 1% = 6"6‘) has the only unit at place (¢,7). The natural way to introduce states and
observables is based on some initial representa.tlons V of g. Let V be GV with the standard action
of gén.

The first problem is to define the tensor product V = @,V(z) over all points of the space-time,
where V(z) is CV at z:

ere(#)o(2) = (exen)(2)6(z = ) for v(z) € V(2). (25b)

To solve it one should choose some vacuum state and consider only such states, that are "close” to
the vacuum (see works on von Neumann factors). The second problem is to-introduce an algebra of
observables A operating in V (see e.g. [10,11]). The pair {V, A} is a quantum group by definition.

Elements of A can be expressed in terms of {er¢(z)}. But one should avoid to include {exs(z)
in A}. The latter is to be the least to make V irreducible with respect to the action of A. The last
(obscure enough) property and other similar principles give one some intuition. But, in fact, it is
impossible to differ good and bad A without dealing with concrete physical problems.

Assume that the space-time is finite (written z =1,--., n) Fxrst of all, it is natural to include
in A the elements 3 7_, exe(z) for any k,{. One can add Ek 1=1 eke(2)eq(z + 1) to them
(the hamiltonian for the Heisenberg ferromagnet or the 'so-ca.lled XXX—model) In the Bardeen,
Cooper, Schrieffer (BCS) theory of superconductivity the hamiltonian of the following type (for
N =2,k = ¢) is important:

n n N
ud er(2)+ D D ekm(2)eme(2).
=1 5,¥=1m=l1

Summarizing, we see that linear combinations of operators

Ecl(z)ekg(z) ch(z z')Ze;m(z)emg(z ) Z c;:,(z,z',z”)vz ekm(2)ems (2 )ere(2"), -

25! 2,8’ ' m,r

for some scalar functions ¢;, ¢g, ¢3,+ + - and'every 1 < k,£ < N are natural candidates to incorporate.
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Of course, it is possible to consider analogous elements with two or more matrix free indices in
place of (k,£). But, generally speaking, .4 is already big enough without them. We will show below
that for the simplest ¢ the only above elements form an algebra acting irreducibly on V. Although
such more complicated combinations can be significant for another choice of c.

In our definition below the points z,2’,2”,--- will be orderded (¢ # 0 only for z < 2/ < 2"--.).
If one changes the order he well get another algebra of observables and some other representation
isomorphic to the initial pair. The corresponding interwiner will be precisely Yang’s S.

In fact, this interpretation of S is dual to the above one (by means of H!). We note that some
points are in Yang’s paper (Phys. Rev. 168 (1968)), which are close to our approach to Yangians.

Case n = 2. Formulas (25) show that we can use the temsor notations from sec. 2:

V=VRV, er(z) =% err, V=CV, z=1,2.

Let us consider V as a module under the action of the algebra generated by €9, = exs(1) + exe(2) =
ere® 1 +10®er and e}, = urepe(1l) + v2eke(2) + mmy emk ® €om for all 1 < k,2 < N. Simple
calculations give that V is irreducible for u = ug — 4y # 1.

Thus, A is big enough to make V irreducible (for a generic u). However, A is not very big.
Namely, it is not far from gy operating on V by {e},}, since for special u = 1 (respectively u = —1)
the symmetric 5%V (external A?V) square of V is the only A-submodule of V. The idea is to define
quantum groups (Yangians) like this .4 but for any initial representations and n.

The aim of the next general definition is to make V®" irreducible (for some generic parameters)
but not to loose the classic theory of decomposing of V®" under the diagonal action of gfn. For
some special values of parameters we should reproduce in terms of A the classic results like the
decomposition V®? = S?V @ A%V above.

Let us use the rational function in A € C

L) =1+ A" E 1%, (26)
rkl

where 1 < r < 1,1 < k,£ < N, 1% is ey considered as N x N-matrix (see above). Letters E[; ! are
assumed to be pairwise non-commuting. E.g. forn =1, N =2

{10 -1 EhER

= () e (53).

Although L is a matrix with non-commutative matrix elements we can use multi-index notations
from sec. 2. In particular, 'L = L®1,°L = 1 ® L. Let us impose on {E[; '} the Yang-Baxter-
Faddeev relation :
' R(M = A3)' L(A1)L(A2) =7 L(A3)' L(A1)R(M = Aa) (27)

for any Ay, A € C, where (see (8))
R(A)=PS(A)=A+P : (28)
One can show directly that (27) for Yang’s R is equivalent to the system of the following relations:
(B, Bl = Ej*67 - Bf*d

ar<h

DY (EEJ'E?:-E% {'e)- (29)
atb=r+a-1

The quotient-algebra of the algebra of non-commutatitve polynomials in {E} by relations (29) is
called the yangian of level n for gfy (written V% ). See [6,15].
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Given a set u = (uy,* -, Uuy,) consider ex(r) =" ey acting on the corresponding components of
Y = VeV = CN) and put

L, = (1 +
(1 + -/-\-_-l-;;l- kz't eu(l)l”‘)

Here {1} commute with {e} and determine "the position” of e (r) in the corresponding N x N-
matrix. This L is a function in A having its values in N x N-matrices with the matrix elements from
‘he algebra MS" generated by {e(r),1 £ r £ n}. It is convenient for the sake of more invariant
writings to denote 1% by e®*(0) or %ez. Then

X juﬂ E eu(‘n)llk) (1 S Zeu(n - 1)1”‘)
kL

ﬂ—l k'«t

I (%5%).

r=1

L)) =" RO\ = un)°" PR(A = tpey) - L R(A = up)AT™,

where R is from (28): R(A) = Al + T4, exe ® ek It results directly from (8) that Lu()) is a
solution of equation {27). Hence, the corresponding E"l(l < r £ n) from the decomposition of
Ly()) (see (26)) give us the representation Y 3 El; E""l € MZ" = End(V) of V¥ in V
(written V(u)). Two simple examples:

a) B9, = exe(1) + - -ene(n) = (u1 + + -+ + ua)1,

b) the operators e}, e}, for n = 2 (see above) are some linear combinations of Ef,, £},
modulo 1.

Theorem 4 a) The space V(u) is an irreducible YR -module if and only if u; —u; # 1 for
every 1 < 1,7 < n. Forw € S,, one has

Ro(u)Lu(A) = Luygu)(A) Rulu), (30)

where R, (u) = P,Sw(u), Sy i8 from (15). In particular, if V(u) is irreducible then the
mapping i '
V(u) 3 z = Ry(¥)z, Ef;' = Ry(uw)EL 1RZ (1)

is an isomoprhism from V(u) onto V(w(u)).
Let us prove identity (30). Consider fig. 5. Let us calculate the corresponding S-matrices (see
(13) and fig. 4). One has
125(‘!&13) Ols(uu) 2-35(/\ - u3) 125()\ - ug) 015(/\ - ul) =
= 235(/\ - ul) nS()\ et u3)°13(/\ - UQ)MS(‘Uls) nS(uu).

The simple rule of turning the latter into its R-matrix version is as follows. The upper left indices
should be changed to coincide with the indices of the arguments. We obtain the identity

13R12R(03R02R01R) = (OIROSRD?R)ISRI.'ZR

where the arguments are omitted. Here *R(uy3) 2 R(u12) = 1BP1S(uy3) 2P 25(uyq) =
Py, 85(u13)*5(u12) = Ry(u)forw = (3,1,2) = s25. The products in brackets are L,(})
and Lw(u}(/\).

Let us compare the corresponding mappings of theorem 4 and theorem 2. The latter is the right
multiplication by Sy,(©). The first is the conjugation by R, (u) = Py,Sy(u). The identification of
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© and u makes it evident that these two should be very closely connected. In particular, they are
degenerated (i.e. Sy,(©), Ry(u) are non-invertible) for the same values of © = u. Moreover, V(u)
and M(@) are simultaneously irreducible.

We will not discuss here the precise mathematical statements (see {6,7]). Roughly speaking,
the YR-submodules of V(u) are in one-to-one correspondence with H{-submodules of M(©) for
N > n. The degeneration of S,,(®) and R(u) for the same parameters is the particular case of
this correspondence. Practically, if one can describe the submodules of M(©), he can construct all
the submodules of V(u). Of course, the first problem is more convenient to settle.

8 Mirrors and polarizations

Let us complicate our space. The idea is to consider the half-line Ry = {z > 0} instead of R with
the reflection and its end, i.e. place a mirror at z = 0. Some typical picture of interactions is in
fig. 6. As before N is the number of colours, axioms (a), (b), (c), (d) (see sec. 1) are valid. But
now we have the refelction. We connect with it the scattering matrix (@) = (]I”( 1)), where
© = (4,,:--,6,) are the angles in the out-state according to the conventions a.dopted Each element
of this matnx depends only on the angle §; of the first particle (after the reflection at z = 0) and
on its colours i; (before) and j; (after) the reflection.

Particles have two phases (). The first is before (# < 0) and the second {8 > 0) is after the
reflection. Respectively, one should consider 3 types of two-particle amplitudes, when the phases
(the signs of the angles) of particles in the out-state are (—,—), (+,+),(~,+), (the combination
(4, ~) is impossible). For the sake of simplicity we will identify the first two (written S). Let us
denote the S-matrix of the third type (=, +)by § (cf. [3]). Look at fig. 7. Here the out-state is the
state after the intersection.

We omit here the symbolic and multi-index language of sec. 1, 2 and we will use at once the
notations 5;(#) or 3;(8) (see (13b)) for scattering at the intersection point of the i-th and (i+1)-th
particles (numbers are from the bottom to the top). We remind that S; and §; depend only on
6; — 6;4+1 and on the corresponding colours of the i-th and (¢ — 1)-th particles.

We should add to (16) its direct analogs §S5 =55 S.’;'S' $ 88 (with the same indices
and arguments), and the new one:

I(4)81(2u + v)I(u + v)S1(v) = S1{(0)(1 + v)51(2u + v)(u). (31)

Here (see fig. 8) u= =01, v=6, - 83,2u+v= =6, - 03, u+v = —0;.
We claim that the identities (with the indices and arguments from (16), (31))

§58§5=585,558§=585,588§=88§s5,015u0S5=50s1 (32a)
together with the evident relations (see (12))
[5:,85] = (8,83} =[5, 831 = [, S = (W, 85} = 0 (32b)

for j 2 2,] i~ j |> 2 provide the independence of any scattering matrix of the internal plcture of
intersections. In a word (32) is equivalent to axiom (c) from sec. 1.

Let us describe the corresponding group of symmetries. Now the transformation of a given out-
state with the angles @ = (6,-:+,0,) to some set of angles ©’ of the in-state can be represented
as the sequence @ = (g11’,€22',--,e,n') for e = £1,(1',2',---,n') = w € S,. It means that the
angle 40y in the set © is situated at place ¥ (from the bottom to the top at moment t = t;),
where 1 £ £ < n. One has % = (3,~2,~1) for fig. 6. The composition of two elements @, @’ of
this type ia quite natural: if £ — (@W)epk/, K — (@')e} k" then k — (0'®) (€rel,) K.
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The group of all © can be represented by permutations (acting on @ € R™ in the usual manner)
multiplied by any number of the reflections

() = (01, -, Ok~1, =0k, Ok41, 1 0n) (1 Sk < ).

Mathematically, it is the semi-direct product of S, and (Zg)" = {x81...xé 6§ = 0,1,} with
the natural action of S, on the latter: wmw™ = Tuw(k) for any k,w € Sp. As an abstract
one this group is generated by $1,:+-,3n-1 € Sy and ™ = m; with the folowing new relations:
18T = T w9y, w8; = 8;7,7 2 2. Each element w of it can be represented in the form w =
(H’,:=11r£")w,w € S,. We will denote this group by S,. It is called the Weyl group of type B, (or
Cn).

Now we are in a position to calculate the S-matrix of any picture. To do it one should know O
(in the out-state) and the corresponding transformation % € S,, from © to ©’ for the in-state (see
above). Let w = s;,---8;, be of minimal possible length (written £ = £(15)), where 0 < i < n and
we denote m by s, for the sake of uniformity. Then (cf. (13))

Sa(©) = iy (8ipy -+ 901 (©)) -+ 8y (8, (0)) §,(0), - (33)

where ) .
S5i(©)=1(-8) fori =0, &i, = Su or S,

if i # 0 and pair (k,k + 1) of the angles from the set s;,_, ---8;,(@) has the coinciding signs or
not. Elements from S, act on © as have been explained. It follows from (32) that $;(©) does not
depend on decomposing of .

The simplest example of such a theory is as follows. Let

5:(0) = 5:(0) = 1 + 5(8; - 8i41), (@) = 1 - by, B € C. (34)

Then the only equation we need to verify is (31). To obtain some matrix interpretation of (34) one
can use some tensor representation of S, (see [3]). Our aim is to quantize the angles. We should
substitute some pairwise commuting letters ¥; for 6; in (34) and (according to the procedure of sec.
5) postulate relations (18) and the natural relations.

(1 - ATV = —Yi(1 - frY), [¥;, ] = O for j > 1

Here H(}il) corresponds to 7 and therefore should act on (Y ---Y;) as ¥; — —Y;. One obtains the
algebra M/, generated by C[S,] and Yj,---,Y, with the relations (19) and some new ones

Y1+ Yir =2/8, [Y;,r]=0for 7 > 1. (35)

This algebra is a certain degeneration of the affine Hecke algebra of type B, or Cy (see e.g. [8]).
To be more precise it is connected with By, Cy, Dy, for § = 1,2,0 (see {3]).

We can use the group S, for another problem. Let us consider the usual R as a space (without
any reflections). However, assume that there are two different non-changing types of particles
(two "polarizations”). We assume that the scattering process is described by Yang’s two-particle
S whenever they are of the same type (polarization). Otherwise the scattering is trivial. The
simplest algebra of observables for collections of n polarised particles is C{S,). The operator
k(1 €< k < n) corresponds to the polarization of k-th particle in a collection; 7w describes
the change of polarization from the k-th to (k + 1)-th particles. That means that 7 {A4,(©) =
8gn(8k)As(0), mkmr41(A5(0O)) = sgn(8xbis1)As(O).

Let us demonstrate that

$:(0) = (mimeqr + 1)(6 — Bin)~ /2 + 5 (36)
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is exactly what we need (see [5]). Fristly, it is a solution of the Yang-Baxter equation (in the
form of (16)). Then S; = s; for m;m;;y = =1 (i.e. there is no scattering in this case). At last,
S;m; = mi11 i and Simipy = mS5; (the polarizations are conserved). The quantization of angles give
us the foflowmg relations (from [5]):

Yip18i = 8 = (mimipn +1)/2 = 8i¥41 = 8Y5

[st'vyj] = [Tk)Yj] = [Ylhy_"i] =0forj # 4L,i+1,1<kj<n.

in place of (19).

9 Towards the CFT

There -are several possibilities to generalize and extend the above constructions. I shall try to
outline only some of them connected with the two-dimensional conformal field theory.
First of all, one can substitute everywhere the g-analog of Yang's S. It is written as

SO =Ti+(a~-a)/(¢¥-1), 1<ign (37)

where q € C, {T}} are the generators of the Hecke algebra HY. They satisfy the following defining
relations _
(I‘! - Q)(I: + q-l) = O,I}T'H-],T‘i = ﬁ-{-lﬂﬂ-{-l! [I'u TJ} =0 (38)

for|1—37{>22,1<1,57 < n. For g=1 we arrive at C[S,].

The function 9 was found independently in (one-dimensional) mathematical physics as some
solution of (16) and in the theory of representations of p-adic affine Hecke algebras as an interwiner
(see [7] for some details). The latter are defined as #/, but with the term (¢ —1)¥;4; in place of 1 in
formula (19a), where one should substitute T for s;. In p-adic papers ¢ = p™ for a prime p,m € N.
This way of definition is due to Bernstein, Zelevinsky. In many works {T;} are considered in some
natural representation of HY in (CV)®" (Wenzl, Baxter).

Since T2 # 1 we have two elements T',T~! being on equal grounds. We omit the arguments,
but it results in two possible pictures for two-particle S-matrices instead of the only one above. We
can congider intersecting as a passage of a particle over or under the other.

The S7 from (36) is unitary after a proper normalization. But in other non-unitary theories
this note can be important.

We have assumed the two-particle intersections to be the only elementary processes. But one can
disagree with this assumption. Look at fig. 3a. There is a certain process between the intersections
(81, 82) and (64, 6;) of the corresponding particles. The particle with the angle 8, should move away
from the particle with §; after the first intersection and approach particle 3. This transference
may be quantum as well. (In fact, any movement can be quantum in some general theory).

Let us consider the arranged symbols A;(©) , which are A;(®) from sec. 1 with some com-
plete set of brackets between some Aj, (6;, ). For example, (4;, (61)A;,(02))A5(6a), (4;,(81)A};(62))
(Ajy(83)A;,(04)) are complete but (A143)(A3A44)As is not. The correct arranged symbol should
be either ((A41A42)(AaA4))As or (41A42)((A3Aq)As). Here we have omitted j,§. Physically, the last
symbol can be interpreted as follows: the particles A3, A4 are very close one to another, 4g is close
to A3 or Ay (it is all the same, since Aa and Ay are very close, more close than Ag to each of them),
A, is close to A, the pair Ay, A; is not close to the triple A3, A4, 4;5. In fa.ct, we have the ordered
sequence of relations "not close, close, very close, very very close and so on” on the set of A;(0).

Formally speaking, a.system of brackets is not complete if A contains a segment of type
(A)(A?)(A%) for some arranged symbols A!, A2, A3. In this case A! and A% are at the same
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level (close, very close, ...} with respect to A2, We forbid it, that resembles very much the Pauli
principle in quantum mechanics.

Given some arranged A;(Q) for any © = (64, --,8n), we can define to following two elementary
operations. One can interchange two adjacent terms Aj, (k) and A;,,, (fk+1), but only if they are
in brackets. The corresponding quantum S will be introduced like in sec. 1-3. Another operation
(written @) is the passage

Aj=--. (Al (A,‘.(ﬂk)/iz)) e e ((A‘A,-,(a;.)) /i’) ces (39)

for some arranged A1, 4% or the analogous transformation from (Al Ag)A? to A1(ALA?). Given k
the corresponding A?, A? (if any) can be found uniquely. For example,

Aiy (81) (Ai (62) Ai (83)) = Ss27(61, 82, 63) (A4, (81) A5, (62)) Ajs (8),

where @{:{:;’:(9) are the amplitudes from the in-state, where A3 is more close to A3 than to 4, ,
to the out-state, where A; is more close to Ay; & = (®7).

In a contrast with sec. 1 these two operations (processes) exist only for some k. E. g. let us
consider

A = ((A142)(43A4)) (A5(As(Ar4s))) .

One can apply only the operations S, 53, S7, $2, @3, &5, g, &7 to this A Itis quite natural to
postulate the identities

[§i’§j] = [Shs.i] = [S,',ﬁk] =0,li-j|>1k#4i+1

The reason is that ®;$; and &;®; induce for | i — j |> 1 the same changes of brackets. It holds
true for the permutations and changes of brackets in the case [3, 5] or [S, ] as well. The other
relations are of the following type (see fig. 3). We begin with A; = A;(A343) and use here the
abbreviations 8y = (6,,6;), 0133 = (61,03, 83) and so on. One has

S2(012)%2(8312)51(613)P2(0132)52(823) B2(6123)
= ‘?2(9321)51(923)52(9231)52(913)@2(9213)51(912)~,

This equality is quite analogous to identity (2.6) from [17] (see also [16}). It is small wonder since
our.symbolic language and appropriate pictures are very close to these of [17,16].

Here we assume that 5, ® depend on the corresponding parameters in the natural order. In
general, & can depend on many indices and parameters. E.g. ®g for (39) may have 4 matrix indices
and be a function of 85 ¢ 7 3 = (0, 0s, 07, fs). In some sense the order of A7 and Ag is not important
for ®¢ since they both are at the same level with respect to Ag. In particular, the dependence of
®g on the indices of A7, Ag should be symmetric. The development of this point can give some
version of the axiom system from [17], where any & are defined by means of the comultiplication in
terms of the least possible ® (with 3 matrix indices). The penthagone relation arises in this way.
We note that our angles are, in fact, parallel to the conformal dimensions (see e.g. [16]).

I’d like to give another example of connections between the two-dimensional conformal theory
and the affine Hecke algebras. The so-called Knizhnik-Zamolodchikov equation for the n-point
function of the Wess-Zumino-Witten model can be written in terms of C[S,] only. It has the
following natural ”affine” generalization

kdG[dz = (Z(ij)(z.- -z) 1+ z.-z,-'-l) G, (40)
i
where L £ i# j <n,G(z1,-,2s) takes its values in the algebra A generated by C[S,] and some

operators {z;} with the relations wx;w™! = Tuyi)y W € Sa. Here (ij) are the usual transposition,
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% € C. It is easy to show (see [5]), that the cross-derivative integrability conditions for (40} are
equivalent to the relations

(2i,2; + (1) = 0 = {(i7), =i + =3]. (41)
The latter (together with the conditions wz;w™! = Tuyi)) coincide with the defining relations for
Y; (sec. 5)if

i=—zi- ) ()1gign
n2i>e

Hence, this 4 should be some quotient of the degenerated affine Hecke algebra ..

To get the usual Knizhnik-Zamolodchikov equation one should put z; = 0 for any i. It gives us
the so-called Murphy surjection Y; — = ¥_,5;5:(i7) of M, onto C[S,] (see [6]). This homorphism
of algebras is important in the theory of S,. For example, the centre of C[S,] is generated by
symmetric polynomials in the images of {Y;} (cf. theorem 3 and {7)).

To finish this part of my notes I will describe without going into detail some quantum counter-
part of (41). '

Let us consider the space R with the glass at the point z = 0. It is transparent for particles
from sec. 1, but passing through this glass is assumed to be quantum. One can connect with this
process two one-index matrices X (+6), X(~8) respectwely for 8 < 0 and § > 0 (see fig. 9). E. g.
for8 <0

lass
Ai(0)in O EX?(G)A:'(G)M
J
The factorization relations are close to (6). We will write them down in term s of R = PS:

1X(6:1)*R(612)° X (~8;) = 2X(-62)"R(612)' X (1),
BR(612) X (61)°X(8) = 2X(62)'X(61)'*R(613),
BR(6:12)°X(—02)'X(~61) = 'X(=61)*X(-62)"2R(612). (42)

Of course, R should be a solution of (8) as well.

These equalities hold true (follow from (8)) if one forma.lly substitute X = 10R(10), X =
Ol R(601),80 = 0, where 0 is some other tensor index. Really, the transmission through the glass
can be interpreted as intersecting with the particle of angle 85 = 0 and colour = 0, where the latter
does not change its colour in any quantum interactions.

The natural problem is to combain §, & , mirrors (not more than 2), pola.nza.tlons (any number)
and glasses (any number) in one picture. Then to consider more complicated spaces (circumferences,
elliptic curves) and find interesting examples. Only some fragments of this heavy construction are
clear (see {3,5,17]). '

Let R= R, = 8(8 + 1)~ + n(0 + n)~'P (see sec. 5), X = X. We can consider (42) over
C[Sn] in a natural manner. One identifies permutations with the corresponding matrices and
supposes ‘X to be some undeterminate functions with the following action of Sp: w Xw~! = w0 X,
We have B; =' **1 R = 1 + 1s;/6; + 0(7) as n — 0. Let us impose the analogical restrictions
Xi=1+n2;/0+0(n) on X; =* X ( in particular, z,(;y = wz;w™"'). Then (42) results in (41).

Acknowledgements

These paper was written during my work at the Max-Planck-Institut fir Mathematik, Bonn, and
Physikalisches Institut der Universitit Bonn in May-June 1990. I thank the MPI and the PI for
the kind invitations and hospitality. Whilst producing these notes and reading lectures I have
received encouragement and valuable advices from many colleagues. In particular, I should like to
acknowledge my especial indebtedness to V. Rittenberg (who was the initiator of my lectures) and
R. Flume. [ would like to thank M. Forger, G. v. Gehlen, J. Nuyts, B. Schroer, F. Woynarovich, D.

17



Zagier for useful discussions. I am also grateful to Ms. D. FaBbender for hier assistance in preparing
the manuscript for publication.

Bibliography

[1} Zamolodchikov A.B. Zamolodchikov A.,B., Relativistic factorized S-matriz in two dimensions
having O(N) isotopic symmetry, Nuclear Physics B133 (1978) 525.

{2] Cherednik 1.V., On some S-matrices, connected with abelian varieties, Doklady AN SSSR,
249, No. 5 (1979) 1095.

[3] Cherednik 1.V., Factorized particles on a half-line and root systems, Theor. Math. Phys. 81
No. 1 (1984) 35.

[4) Knizhnik V.G., Zamolodchikov A.B., Current algebra and Wess-Zumino models in two dimen-
sions, Nucl. Physics B247 (1984) 83.

[5] Cherednik 1.V., Monodromy representations for generalized Knizhnik-Zamolodchikov equations
and Hecke algebras, Preprint ITP-89-74E (1989), Kiev, to appear in Publ. of RIMS.

{6] Drinfeld V.G., Degenerdted affine Hecke algebms and Yangians, Funct. Annal. and Appl., 20,
No. 1 (1986) 69.

{7] Cherednik 1.V., A new interpretation of Gelfand-Tzetlin bases, Duke Math. J., 54, No. 2 (1987)
563.

[8] Rogawski J.D., On modules over the Hecke algebras of a p-adic group, Invent. Math. 79 (1985)
443.

(9] Cherednik 1.V., On gpecial bases of irreducible representations of the degenerated affine Hecke
algebra, Funct. Annal. and Appl., 20 No. 1 (1986) 87.

[10] Fredenhagen K., Rehren K.H., Schroer B., Superselection sectors with braid group statistics
and ezchange algebras, Commun. Math. Phys. 126 (1989) 201.

{11] Mack G., Schomerus V., Conformal field algebra with quantum symmetry from the theory of
wperseiectzon sectors, Preprint (1990).

[12] Cherednik L.V., Quantum groups as hidden symmetries of classic representation theory, Pro-
ceed. of 17th Int. Conference on differential geometric methods in theoretical physics, (Chester,
1988), World Scient. (1989) 47.

(13] Faddeev L.D., Integrable models in (1+1)-dimensional quantum field theory, (Lectures in Les
Houches, 1982), Elsevier Science Publishers B:V., 1984.

[14] Drinfeld V.G., Quantum groups, Proc. ICM-86 (Berkeley), vol. 1. 798, Amer. Math. Soc. 1987.

(15] Cherednik L.V., On R-matriz quantization of formal loop groups. Group theoretic methods in
physics, Nauka, Moscow 1986 (VNU Publ. B.V., 1986).

(16] Drinfeld V.G., Quasi-hopf algebras an Knizhnik-Zamolodchikov equations, preprint ITP-89-43E
(1989) Kiev.

[17] Moore G., Seiber N., Classical and quantum conformal field theory,Preprint IASSNS HEP-
88/39, Princeton. IAS 1988.

18



List of Figure Captions
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The line (the graph of movement) of a particle.

The collision of four particles.

The independence of the three-particle S-matrix of the initial points.
Collisions and reduced decompositions.

Some version of Fig. 3 with "parallel” lines.

Decomposing of collisions with reflection. ‘

The elementary processes on the half-line.

The fundamental identity for reflections and intersections.

The transmission through the glass. -
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