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1 Introduction

The ma.in' aim of these notes, based on my lectures at Bonn' Univ'ersity (May-June,. 1990), is to
demonstl'ate that- degenera.ted a.fiine Hecke algebras (and Yangians) a.re quite natural !rom math­
ematica1 and physica1' points of view, and are necessary to understand the' very c.lassic object ­
the symmetrie group Sn. Thete is no need to discuss much its important role in mathematics and
natural sciences, the representation theory and the theory of combinations. But Sn is a key thing
not only for science.

The great philosopher Immanuel Kant found that our consciousness ia based- on twa a. priori
nations of space and time. I like his baoks very much and consider him as the best philosopher in
Europe. Nevertheless, I think he made a. mistake. One should add a. third notion to these two. I
mean the nation 01 combination. .

,I da not attempt to discuss this point here. One can find easily many arguments in favor af
the thesis that ca1culus of permutations (tTansposit~ons) interchanges ia the main work aur bra.in
can do a.nd Ukes to da. Gambles. give good models. They are among the most exciting things
for human beings. Moreover, the primitive ones are more exciting, beca.use here the fundamental
concept of combination is a.s pure as possible. However, ga.m.bling is nothing else but the applied
representation theory of. Sn.

It ja strange enough for me that the symmetrie group ja not a. necessa.ry thing to study for
students in physical departments. The space-time is, but not Sn. I can understand to a. certain
extent why it is so for mathematicians (they da not try to understand the universe and for them

. consistent nations a.re on equal grounds). AB for physics (old and· new) its most significant parts
(e.g. the diagrammatic method, the string theory,. the two-dimensional conformal theory) are,very

closely connected with combinatorics. Moreover, the modem representation theory was cres.ted a.s
a. base for quantization and is now such a base. Hut its c.lassic ground' ja undoubted1y in Young's.

works on S".
I shall begin now the detailed exposition of the simplest exa.mple of a. physica1 theory ba.sed

on Sn only. This oue ja the most natural way to quantum groups.. We will discuss A. Za.molod-:
chikov's world ol two-dimenaional elementary lactorized particle.s•. Let the space be R with the
only coordinate :t,and let t be the usual time. The life of a. free particle ca.n be represented u a
Une in R 2• This Une (the graph of the movement of the particle) ca.n be determined (see fig. 1)
by some (initial) point (tc, zeta»~ and by the angle 8 from the t-axis to it (-'Ir /2 < 8 < tr /2). The
momentum of the particle ia p = mtg(8) (in the proper units), where m ia its masa.
. Let tis suppose that the masses of all the particles a.re the same and

(a) there u no m:echanical interaction.

It means that individual momenta of two or more particles a.re conserved at the points 'af
intersecti.ons of corresponding Unes. In some evident sense the particles a.re transparent to ea.u1

. other' (see fig. 2). It ja not a billiard.
This world ia too horing. We should add some quantum sca.ttering to make the lire of these

particles more interesting. Let us consider'"coloured" particles of types (calours) 1, 2, ..., N. The
particles are permitted to

(b) c1uJnge the colcurs (types) anly at the points 01 intersections.

It ia the second postulate. Moreover,

(c) the S-matri: 01 any collision (the set 01 all the amplitudes) does not depend on
concrete initial positions 01 the particlu.

I ahould comment on axiom (c). One can a.lways slightly deform the initial positions (the
:t-coordia.ntes ZI, ••• , Zn :at the time t = to) to have only two-particle intersections in the future
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and in the past like in fig. 2. By the standard principles of quantum mechanics any element of
the total S-matrix can be obtained a.s a certaln sum of products of. two-particle amplitudes over
the intersection points. Thus, it results from (c) that.if we know two-particle S·matrices we can
calculate any amplitude, depending in fact only on the angles' and on the order of the points of the
in·state and out·state.

The last things we have to declare to abtain Zamolodchi.kov's world are some locality (or causal·
ity) properties and some invariances:

(d) every two·particle S-matri::c depends only on the colours 0/ these two particles and
on the difference 0/ their angles.

Other particles da not affect it. ,
A few words about the origin of a.ll these properties. It was conjectured in Zamolodchikov

brothers' paper [I} that the quantum scattering processes should be of this type for O(N)·symmetric
chiral field models in two-dimensions like Pohlmeyer's O'-model. Besides the asymptotic freedorn and
the existence of isovector N·plets of massive particles ("coloured particles") the following property
is of great importance. This quantum model possesses an infinite set of conservation la.ws extending
their classical counterparts. It gives us the conservation of individual momenta..

Zamolodch..ikov's conjecture was proved (at some physical level of strictness). I am not able
to discuss the details here. It is worth mentioning that particles in [1] and in other papers are
relativistic. Therefore, the authors use rapidities 8 (pO =mch(9),pl =TTl3h(8} for the relativistic'
momentum p = (pO, pi)) instead of angles. The dependence of S-matrices on differences of angles .
(see (d)) ia nothing else but the relativistic invariance. Some unitary conditions and cross,ing·
symmetry relations are of physical importance as weil. We will omit the la.tter here and pay Uttle
attention to the first.

2 Yang-Baxter identities

Let us describe a sequence of n particles at the moment t = to with the x-coordinates Xl < x~ <
... < Zn· (see fig. 2) by the symbol AJ(S) = AiJ (9,) .. ·Aj,,(8n ), where e = (91,"', 8n ) and J =
(jl' .. " jn) are the corresponding sets of the angles and the colours (-1l" /2 < 9,. < 1l" /2,1 :5 jJc :5 N).
Owing to property (c) the previous or subsequent changes of a set of particles depend only on its
symbol AJ(e) (on the coloun, angles and on the order of %·coordinates only). Given AI(S') one

'has
Ar(8')in =L: si(8, e')AJ(e)QW (1)

J

for some I = (i1,' • " in), S' = (~'''''~) describing the set of particles at t =t'o < ta. We have
expressed Ar(8') considered as an in-stau in tenns out-states. Every (scalar) coefficient si is the
S·matriz element (the amplitude) from Ar(e') to AJ(6) (by definition). Here I and J can be
arbitrary (1 :5 .ik' jk :5 N) hut not the set S'. The S~matrix is nontrivial only if

(2)

for an appropriate permutation w from the symmeric group Sn-
In this formula some misunderstanding ie possible. I will comment on it. My permutation

w : (1,2, ... , n)" ~ (1',2',"', n') acts on an ordered set" = (:c, y, z,· .. ,) of some elements (e.g.
coordinates) by the substitution the element at pla.ce· No. i for the element at place No. i'. For
exa.mple, the transposition w =(12) : (1,2,3"", n) ~ 21 interchanges the c~ntent of the first and
second places. This definition results in the natural formula. 11(w( ,,)) = (11' w)(,,), W, 11 E Sn' We
see that w-1 ie necessary in the eecond equality of (2). In fig. 4 the corresponding w is equal to
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(4,5,1,3,2) in the one-line notations or ~ii;~ in the two-line notation, La. takes (1 2 3 4 5) to

(3 5 4 1 2) ; 10-1 =Gi~~~"= (3,5,4,1,2) .
Let UB diseuss examples. We will omit the indications "in" and "out". One has for n = 2 and

81 < 8~, 81 = 8~, ~ = 81 :

A'l (8'2)A,::. (Bd = 2: S/11~ (81~)Ail (81 )An(0'2),
'l,i,

(3)

where B,; = B, - 0; by definition. Given I = (ilJ i'2, ia), J = (i}, j~, i3) in the case cf fig. 330 we
obtain the following relations:

Ai1 (Oa )At, (O'J )A'3 (81 ) = 2: S::,~ (812 )At1 (83)Ak1 (81 )Ak3 (8'2)

= 2: S;;,:3 (81'J)S{11~ (813 )A;1 (81 )At, (83 )A1l:3 (8~)

= 2: S~,~ (812)S~~ (813)S~1: (823 )AJ(e),

where the sum is over all free indices (il, i'J, j3, k~, ka,12). The analogical calculation for fig. 3b
should give the same result. We arrive at the identity:

t St:,~(812)St11~(813)S~~(023) = 2: S~i~(823)S~~(Ola)S~~1~(812) (4)
J.,A,i, k1,k1h

Let us rewrite (4) in a tensor form. We will keep the following notations. Let us consider "multi­

matrices" T = (T1~ ~ ::: 1:) with the multi-indices I = (i1' .. " in), J = (ilt· .. ,in), respectively, of

rows and columns (1 5 i1l:,j/J: ~ N for 1 :::; k :::; n). These T a.ct on "multi-vectors" x = (Xhi::! ...'")
by the natural formula Tx = (EJ TIxJ). If multi-indices are assumed to be "(lexicographically)
ordered then x and T are' UBUal. vectors and matrices for CHT' in place of C N . Given two N x
N-matrices X =(Xi), Y =(1"/) (from the matrix algebra MN) one can define the tensor product

T = X ®Y : T" = (T1~ ~) ,T1~ ~ =X~1 ~~. The definition of X ®Y ~ Z ® ... is quite analogons.-

Later on,.51 will be the Kronecker symbol. Put - '

1l:IT = (5)

for X = (xl), T = (T~1i~)' 1 :5 k # 1 ~ n,l :5 m :5 n. These matrices are the natural images o~
X, T in the Mt' = MN" with respect to the indices /t; and (k, I). Note that kl( ...-r ® Y) =k X1y
and kX commutes with ly for any X, Y E MN, k f: 1.

Let us introduce S(O) a.s the folloVting matrix (depending on (J = 012) !rom lYfl~2 :" S =
(S{~ ~(8)). Now one can represent (4) in the"elegant form: "

23S(012?2S(813)23S(02a) =12 S(~)23S(813)12S(812).

If we put S(8) =PR(O) for

P = (p i1 i2) pil]2 =o.fJ ob
i1 i2 ' i1 i2 11 1]

we get the Yang-Baxter equation

3
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To check it (to deduee it from.(6» ODe should ca.rry. all the 12P,'l3 P a.crosa the other terms in (6)
after the substitution S =PR. Hare we have to usa the following properties cf P:

231' 12.p23p = 12p"23P 12P, (9a)

(9b)

By de1inition

It is easy either to prove (9) directly or verify them without matrix ca.lculatiens using the following
natural interpretation of iip,

3: Factorization"

P(:& ~ y) = (E 6f.6{; :&i, Y;-, ) = Y~ :&,:&, Y E C"

This relation proves (9b) ud give us that both sides cf (9a) induce the same permuta.tions cf
components under the above action of MN ® MN ®MN on C N ® C N ® C N by left multiplicationa.
Henee, (9a.) ia true. Moreover, we have the foUowing more general property.

Let us denote by id the ideutical permutation a.nd by St, .52, • • •, ""-11 the adjacent transpositions
(12), (23) and so on".. Theu giveu w =(1',2'",·, n') 1: id one has .

(10)

for some indices 1 S i t ,"', i, :5 n -1 ud some l. 11' I is- of minimal poasible length then it is called
the lmgth arw (written 1(10»). We see that the product

(la')

a.cts on (cN )0ft as the permutation of components:

ptu(%l ® Z2 ® .•. ~ z1l) =zw-1
(1) 0 zw-1

(2) 0 ~ zw-l(ft) ,%1"", zn E CN (cf.(2»

Hence, the matrix Z =- (Zf) I where zf =51,1, ö1l 6{:, I coincldes with PUl. In particular, PUl is
1 -. "

independent cf the choke cf decomposition (10).
The la.tter ca.n be proven in a. more abstract way without the above interpretation of PVJ aB some

interchange of components. Which properties cf P~ , · •· I P"rt-. should one check to prove tha.t the
right-hand·side product of (10') does Dot depend on. the choice cf decomposition"? If we consider in
(10) enly products cf minimal length (reduced decompositi~), then they a.re as fellows

(11a)

P~(P.i = P'iPS, I i - j I> 1. (11b)

The reasen is that relations (11) together with P't = 1 are the defining ones for Sn OS an abstract
group '" In fact, it will be proven below by mea.n.s cf some pictures. Thus, we- have two ways to
prove the correctness of (10/). For Sone has a. priori the secend way only.

Formula. (11a) (being equivalent to (9a.)) is very dose to (6). There is the analog cf (11b) for
Si =H+l S:

(12)
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Ind~d, here Bi and S; live in different componenta of the tensor product. For brevity, arguments
have been amitted. Qnly two things are different. Firstly, we have the a.rgu.m.ents 812,813,823 in (6).
Secondly, we da not know any interpretation of {S} as same permutations. In the next sectians we
will find BUch an interpretation for our basic,exa.mple of Yang's S. But now let UB go ba.ck to (10).

All' possible decompositions 0/ w E Sn 0/ minimal length I = I(w) are in one.. to--one correspon-
dence with collisions for A(0) = A(81 , ..• , 8n ) as an out-state and A(w( S ») = .
A(8~-1(1)"'" 8w-1(n) aa an in..state (see (1)).

Indices I, J can be omitted hexe (nothing depends on them). Given a. collisian one can get
a sequence Si.,"', Si1 by writing Si" one after the other. The element Si" should stay at t = tk,

being the moment of the k·th intersection (of the i,l;-th and (i" + l}.th lines, where we number lines
according to the position .of their x·coordinates at t = tk + E{e > 0) from the bottom to the top.
Then the consecutive product Si, .•. Sit is equal to w' and 1= l(~). Look at fig. 4. It is elear. The
converse (from (10) to some picture) can be proven by induction on I. It results from the above·
statement that (11) ud {P~ =1} are defining relations for Sn. By the way, it is evident !rom the
pictures (like fig. 4) that there is ooIy one element of maximallength Wo =(n, n - 1, . ··2,1) and
l(wo) =n(n - 1)/2. .

Now we are in So position to put down the formula for the set Bies, e') from (1) conaidered aB

a. multi-matrix function. Let see, e') =(sl(0, 8'» , where 6' =w(e) for some tu E Sn (see (2»,
10 == Sil •• oS'1 being a reduced decomposition of the length = I = l(w) (see (10», corresponding
to some collision. Then we can use the same approach as we obta.i..ned (6) from (4). One gets the

,formul& .

(13a).

(13b)1 Si S n.S'(8) _ii+l 5(8' - 8· ). 1 - • .+1,

The best way to prove the independence of 5 of the choice of decomposition (10) is to pass from
a given .product for w to any other by same continious deformations of initial points. The only
transformations in the formulas will be of type (6) for same indices in the place cf 1,2,3, cr like in
formula· (12). This reasoning is, in fact, due to R.. Baxter. .

4 An algebraic interpretation

Let us interpret fonnulas (6), (12), and (13) algebraically. We will now consider symbols Ai
1
(8) ...

Ain (8n ) as p.roducts of generators Ai1 (8), . · · , Ain (8n ) in the free algebra T A with generators Ai(8)
(they have two indices i,8, where 1 ~ i ~ N, 8 cu be any number). The quotient algebra A ofTA
by rela.tions (3) is called Zamolodchikov's algebra. We suppose here and further that S is analytical
for e elose to 0 = (0, . ··0) ud S(O) =1. The latter is quite na.tural physically (there should be
no scattering, when two particles are "parallel"' one to another). Here we identify 1 with 1 ®1 for
1 being the unit matrix.

Let us impose on S relation (6) ud the so--called unitaty condition

S(8) S(-8) =12 1 =1 ® 1 = 1. (14)

Given 0 = (8}, ... , 8n ) in same neighbourhood of 0 we wH denote by T A{S} the vector subspace
in TA genera.ted by Ar(w(0» for any 1= (i l ," ·,in),w E Sn' Let A{S} be its image in A.

Relations (6), (14) are in fact equivalent to a certain Wiek (ar Poincare-Birkhoff-Witt) theorem
for every A{8}. Na.mely ·(see e.g. [1,2]),

(a.) every Ar(w(El» is a linear combination 0/ some AJ(e) in A{S};

(b) all. the AJ(8) are linearly independent in A{0} /or any multi·indices J.
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Here 01 , .• ·,On can be arbitrary complex numbers (possibly not distinct different). The appearance
of (14) is quite evident. If one applies (3) twice, he should get the initial binomial because of (b).
Physically (14) corresponds to the change cf time t from toto to > t:> then back.

Our other problem is to find the best algebraic language for relations (6), (12), and formula
(13). We will start with Si (see (13b)). Let as denote by Sw(8) the product (13a) for w from (10).
Then the set cf functions {Sw( E> )} satisfies the following conditions (cf. [3])

if
l(xy) = lex) + l(y), x, Y E Sn.

( ISa)

(15b)

(Deduce it from (13)).
Conversally, let Si = S~i be same undetermined functions of 8 with values a.nywhere and let

relation (12) together with

(16)

be valid for arbitrary u = 8, - 8i+1, v = Oi+1 ~ 8,+2,
Then we claim that one can uniquely define the set of functions {Sw(E»} by (15). Moreover, it

is possible to omit the condition (15b) in the case of unitary S(S(6)S( -8) =1).
Summarizing, we see that the tensor mode of rewriting (4) in the form of (6) is very convenient

but not the b.est. The most natural way is to use Sn aB the index set (see (15) and (16)).

5 Yang's S-matrix

Let us discuss the basic example of a Jactorized S-matrix (a. solution of (6)). The following one ia
th~ so-called Yang's S-ma.trix:

S(8) = 1 + PO, 8 = 812 = 01 - 82 : (17)

Here and furt her we will denote by 1 the unit. matrix in MN, 1 ® 1 and so on. Setting S(8)" =
11](0 + 1])-1 + P8(B + 1])-1 for any 1] we get an unitary S-matrix, satisfying (6) and (14). In
particular, S(8)0 =P corresponds to a world without any scattering. To verify (6) for S (or S,,) ia
an easy exercise. Nevertheless, one can wish to prove (6) without any calculations like it was made
for P (see above). The best way ia to find an interpretation of S aB a transposition of something
(P interchanges the tensor components). I know four ways to do this. Two of them are based,
respectively, on same a.lgebraic geometry (see [2]) and on the theory of the so-ca.lled Knizhnik­
Zamolodchikov equation from the two-dimensional conferma.l field theory (see [4,5]). I will explain
here and below only ether two making use of (degenerated) affine Hecke a.lgebras and the so-ca.lled
Yangians [6].

Mathematically, the idea is simple enough. Let us substitute some operators Yi for 0,(1 :::; i :::; n)
in Si(0) =ii+1 S(B, - Oi+r), where S is from (17). We assume {Yi} to be pairwise commutative
and impose the following conditions

S(Yi·- Yi+dYj = YjS(Yi - Yi+d, for j # i;i + 1

6
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Formulas (18) are equivalent to the relations

(19a).

1';3, = SiYj for j:f: i, i + 1 (19b)

Here and further we will identify PSi =i i+1 P with Si and 1 with 1. Let us check e.g. the first cf
these formulas. It results from (1830) that

(20)

"Then one ca.n divide (20) by Yii+l. We see that (19) => (18), but the converse holds true o~y for
{Yi} in a "general positionn •

We have arrived at the following object. Let CrS,,] =w EBCw be the group algebra of Sn 3 w
with the natural multiplication law: w· vi = ww E Sn (e.g. (a + (12)) . (b + (23) = ab +
4(23) +b(12) + (3,1,2), c, b E Cl. It is nothing else hut the algebra of formal linear combinations
of permutations. Its extension by pairwise commutative symbols Y1t ···, Yn with relations (19) ia
called the degenerated affine Hecke algebra (Written 1l~). It Is due to Murphy and Drin/eId (see
[6]). Starting with S" instea.d of 5 we get 7in(11), where 11 should stay for 1 in (1930). The algebra
1i~('7) is isomorphie to 1i~ for '7 #; 0 (use the substitution {Yi ....... '7Yi}). But this 11 is important to
understand 1i~ as some quantum object.

To differentiate 5,(8) from ii+lS(Yii+l) (see (13b» let us denote the latter by :

The maln point is that (16) is equivalent to the following identity in ~:

(1 ~ 1 < n). (21)

To prove the equivalence we need some kind of Wiek (or Poincare-Birckhof·Witt) theorem for 1l~.

One can deduce directly from (19) that

each element A E 1l~ haa the unique representation 0/ the /ollowing type: A = Ew WYtJJ,
where w E Sn, Yw' are some polynomials. in Y1 ,··· I Yn.

Let us denote this sum. for A after the converse substitution Yi ....... 8, by < A >. The ooIy thing we
need is to show that < E,E'+lE, > a.n.d < Ei+1E,Ei+1 > coincide, respectively, with the l.h.s and
r.h.s of (16). Let us ca.rry all the Yi, Yi+l, l';+~ in (21) over E" ~i+l by means of (18) from the left
to the right .. Then one obtains Yi - Yi+l' Yi - Yi+2 and Yi+l - Yi+2 instead cf Yi i+l, Yi+l i+2 t Yi i+1

in the l.h.s of (21) and the same elements but in the opposite order in the r.h.s. These differences
are exactly what we need. By the way, ~t7 in the natural notations is involutive in 7t~(11), Le.
(Et7 )(Et7 ) = 1 (cf. (14». The next theorem (see [7], proposition 3.1 and [8]) results direct1y from
(21) and (18).

Theorem 1. The collection 0/ elements {~,} from 1i~ eztend.s uniquely to the set
{~tJJ, tu E Sn} C 1i~ with the follotuing properties:

(a) ~:r;y = ~~ ü l(xy) =l(x) + l(y), ~,d = 1

7



Here (a) ia in faet (15). This property can be deduced from (b) (or (18)). Formulas (21), (6)
are particular eases of this property. Therefore, the Yang-Baxter. relation for Yang's S ia a direet
eonsequence of the definition of 1t~. Let us diseuss this point.

We see that the I.h.s and r.h.s of (a) induee (opera.ting by conjugations) the same permutation
of {Yi}. Henee, the product Lr LlI should be equal to L:ry modulo multiplications by same elements
from the eentralizer (eommutant) of {Y1,···, Yn } in 'H~. It ia not difficult to prave that this
eentralizer coincides with the algebra C[Y11 ···, Ynl of polynomials of .{Yi} (see theorem 3). In
partieulat, (6) for Yang's S has 'to be true up to a multiplication by a scala.r function in- 9) ~ 82,83

(use the Wiek theorem for 1t~). Then it ia easy to get (6) from this weaker statement. Thus, we
have verified, in principle, the Yang-Baxter identity without any caleulatioos. Only by means of
fonnula (b), whieh ia the definjtion of 1t~.

6 Quantization of angles

I shall try to interpret this mathematical trick as some quantization procedure. We will look for
observables which correspond to 81 , ... , On' (I shall remind that mtg8i is the momentum of the ie th
particle. Therefore, a quantization of angles is, in faet, a quantization of impulses).

Yang's S·matrix (17) is of a very symmeric type. Any in·state Ai1 (~) ... Ai" (8~) for 0' = w( 0)
(see (1,2» can be expressed in terms of A;(0), where J = x(l) for permutations x E Sn. Hence,
it is natural to diminish the space of. states. We fix e and some initial set of indices I. Let

A: = Ar (I)(6'), e' =w(E», x, w e Sn' (22)

Here w and X play different roles. The orderings of 81 , . ~. , On are indexed by w. They are in one-one
eorrespondence with the "aectors" - the conneeted components of {x =(Xl,··', X n ) E Rn, Xi "# Xj

for 1 ::; i "# j :S n}. Therefore, we will Uße- the visiual name "sector" in place of "ordering". The
states (for every given seetor) are numbered by x. By definition, PrA~ = A~lI' x, Y E Sn'

The natural (but wrong) idea. is. to introduce the quantum angfes Y1 ,···, Yn by relations
Yi(A;') =81J1-1(i)A~. If {A~} were independent it might be possible. But they are linearly depen~

dent. However, one can try the following:

Yi(Aid) = 8W -1 (i)Aid· (23)

Giyen I we define the action. of {Yi} only on. the "vacuum" states A~ '= Ail...in( 8') for each seetor.
Let us assume that lV ~ n and all i1 ,,'" ··,in· are pairwise' distinct (for example I = (1,2,·,·, n».
Then the number of sectors·. (Le. orderings cf {8ü) ie equal ta, the· number of states· fOF eaeh of
them. Therefore, the definition (23) is, in· principle.,. consistent., If. the set I = (i}, ... , in) is not
"generic" we should be more preciBe (.we will not consider this case here).

All the seetors are glued together: by the S-matricea· {Su,(e-)}. (see (15». In particular, Aid =
Sw(0)A~~. 1dentifying. ~d with Z, EB~ESnCA~d with C[S~] and P: with x we obtain the basis
{Sw( 0)} of eigenvectors for {Yt , ... , Yn } in the· group algebra; C[Sn):

Yi(Sw(8» = 9w- 1(i)Sw(e), w E Sn, 1 ::; i :5 n. (23')

All these are true for 91 ,' •• ,On being in. a general position only. Simple' caleulations show that
{Yi} and {Sj} satisfy the rela.tions (18·19), where Sn acts on C[Snl by 1eft multiplieations (cf. [9]).
Deduce this statement from (23').

We have collected the vaeuumstatea {Aid} (they linearly generate all the states) together in the
space of states EBreSn CA~d for the initial. seetor. 0' = 0~ Starting: with other sectors we will obtain
same isomorphie representations of1t~.. The S-matrices will be: intenoiners, between these "seetor"
representationB. In fact, thia interpretation of S is very elose to the·ideology of superselection sectors
(see {10,!1]). We will not discuss here the latter, but. formulate the corresponding mathematical
theorem. As a matter of fact it has been partially proven.
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Theorem 2 (see (8,9]). Given E> =(8h .. ·, 8n) let U8 denote by M(8) the 8pace C(Sn]
with the natural Zeft (regular) action' 0/ Sn and the action 0/ Y1 , . • " Yn E 1i~, which
can be uniquely deternained by means 0/ the following relations

Yi(l) =8i . 1, 1 = id E Sn, 1 ~ i :5 n. (24)

Then M(S) is an irreducible 1i~ .. module for e being in a general position (Bi - Bj # 1
for any i,·j). The operator CrS,,] 3 z ........ z· Sw(E» E q[S,,] givtuJ an isomorphism
M (w(e») -+ M (E> ), which appears to be a 1i~ ..isomorphism.

This theorem is in fact equivaJent to theorem 1. Indeed, any Sw( e) considered as .a. function
of 81 , ••• ,8n with its values in C(Sn] is equaJ. to < Eta > (coincides with Ew after the substitution
{Yi -+ 8i, 1 ~ i :5 n}, where a1l the {Y} should be collected on the right). Therefore, the isomor..
phism above'is a direct corolla.ry of statement (b) of theorem 1. The irreducibility of M(e) is dear,
because {Sw(0), w E Sn} form a. basis in CrS,,] of eigenvectors with respect to {Yi} with p~ise

distinct eigenvalues (for e in a general position).
It is worth mentianing that 1i~ is mare natural than C[Sn] !rom same ather physical point' of

view. Let us summa.rize its "quantum" properties.

Theorem 3
(30) The subalgebras Y = C[YI,"', Yn ] is a maximal commutative in 1i~ i.e. the com-
mutant (centralizer) of Y coincides with y. .
(b) The centre C (commutant) ofrt:. eonsists 0/ all symmetrie polinomials in Y1,"', Yn

(due to 1. Bernstein).
c) Haag-duality. The commutant 0/ 'H.'m. c 1i~, where 1i~ is generated by Sb' .', Sm-l

artd Yl1···, Ym, .is equal to C1t~_m generated by C, Sm+1,···, 8n -11 Ym+1,"', Yn (see
e.g. (7J).

Compare (c) with the corresponding axiom from [10]: As for Sn the commutant of C[Sml C
.C[Sn] modulo the centre is more than complimentary C[Sn-m].

Let us consider 1f.!n(11) (see above). with the relations Yi+iSi - "i Yi = '7 = SiYi +1-Yisi in place.
of (193,). Here 11 plays the role cf the Planck constant 1l. For'7 = 0 we get the algebra.1t~(O),which
is' the "quasi..classical" limit of 1i~ (11) and especiaJly simple. For exa.mple, it is evident that a.ny
element z E 1t~(O) can be represented in the form z =L: WYw, w E Sn for appropriat.e polinomials
Yw =YW(Yl,"', Yn ). Moreover, if Yw # 0 for same w ~ id then zYk #: YkZ for any k such that
w(k) ~ k. Indeed, %Yk =Yk% ~ Yw(YA: - YW-l (k) =o. ~he latter is impossible. In particular, the
suba.lgebra Y = C(YI,···, Y,,] coincides with its commutant in 1i~(O).

There ia 30 nice mathematical trick to extend the above statement to any 11 sufficiently dose
to o..Ta calculate this commutant for any f1 ane should salve linear equations for coefficients cf
the polinomials {Yw, w E On} in the decomposition % = Ewyw. Ir the commutant contains %(1])
with Yw· ~ 0 for same w #: id then certain determinants of minors are to be equal to zero (and
vice versa). To be more precise, given k E Z+ the rank of the above system far polinomials Yw of
degree 5 k for such 1'] is less than the carresponding rank for 1] =O. The determlnants a.re scalar
polynomial functions in TI. Same cf them do not equal zero at TI =0 (x =Yid for 1] = 0). Hence,
they have no common zeroes not only at 0 but in a neighbourhood of 11 = o. Therefore, rank (11) =
ra.nk(O) and x(11) E Y in ·this neighbourhaod. We have proved. the required statement rar small
1171. But any 1i~(17) for 17 # 0 ia isomorphie to ~(l) =1i~ (see above). Hence, the coincidence of
Y and its commutant holds true for a.rbitrary 17 as well.

The best way to prove (a., b~ e) is to use the following statement.

each element A E 1i~ has the unique representation: A = EwI;wyw, where w E Sn, Yw

are some rational function in Yl, ... , Yn , {rw } are from theorem 1.
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7 Yangians

These algebras are the basic example of quantum groups. I think that they (and their q-analogs)
should be inore important for mathematics and physics than q~analogs of universal enveloping

.. algebras being now in common use. You can find some mathematical arguments in favor of Yangians
in {12]. Here I will try to demanstrate 'only that they are physically na.tural and give us another
interpretation of Yang's S-matrix as an interwiner.

Ta introduce (explain) quantum graups one can follow Faddeev's ideology (the quantum inverse
scattering method w[13]) or its particular case - Drinfeld's way [14]. Faddeev's point of view (as
far as I understand it) is that a quantum group is more or less equivalent to the correspanding
Bethe-ansatz (R-~atrix's or not). To be more precises~ it should be same hidden composition Iaw
of the latter. For Drinfeld the main prolem was to extend a given cla.ssical rwmatrix to the quantum
one. 1'11 try to explain here that it is quite possible to come to quantum groups without the concept
of R-matrices and the inverse scattering technique.

The very first step for any scheme of quantization of a given Lie group G (ar its Lie algebra g) is
to place at each point Z of some sp"ace-time the generators {ga} of g with the natural commutation
relations

[9a(z},9P(Z')] = 2: c~ßg'"1(z)6(z - z')
"Y

(2530)

where [ga,9ß] = L"Y c~ßg-y in g. The r.h.s of (2530) can, iil principle, have Schwinger and other
terms. Let g =giN (Le. g ia MN considered a.s a Lie algebra) {ga} = {ekl' 1 ~ I,l ~ N}, where
ekl = 1kl = (öfö1) has the only unit at place (i,j). The natural way to ihtroduce states and

observables, is based on some initial representations V of g. Let V be C N with the standard action
of giN. '

The first problem is to define the tensor ptoduct V = 09%V(i) over all points of the space-time,
where V(z) is eN at z:

eki(Z')V(Z) = (eklv)(z)O(z - z') for v(-z) E V(z). (25b)

To solve it one should choose some vacuum state 'and consider only such states, that are "elose" to
the vacuum (see works on von Neumann ractors). The second problem ls to.1ntroduce an algebra of
observables A operating in V (see e.g. [10,11]). The pair {V,.A} is a quantum group by definition.

Elements of A cau be expressed in· terms of {ekl(z)}, But one should avoid to include {ekl(z)
in A}. The latter is to bethe least to make V irreducible with respect to theaction of A. The last
(obscure enough) property and 'other similar principles give oue some intuition. But, in fact, it is
impossible to differ good and bad A without dealing with ·concrete physical problems.

Assume that the space-time is finite (written z = 1,' . " n). First of a.ll, it ia natural to include
in A the elements l:~1 ek[(z) for any k,l. One canadd E~: E~t=1 eAil(z)etk(z + 1) to them
(the hamiltonian for the Heisenberg ferromagnet or the 'so-called XXX.mode1). In the Bardeen,
Cooper, Schrieffer (BeS) theory of superconductivity the hamiltonian of the following type (for
N =2, k = l) is 1mportant:

n n N

u I:ekl( z) + l::: -L eAim (z )emt(Z').
%=1 %,r=1 m=l

Summarizing, we see that linear combinations of operators

2: Cl (z )ekt(z), 2: C2( z, z') I: ekm (z )emt(z'), 2: C3( z, z', ZIl).2: ekm (z )em ,,(z')e,.t( ZU), ...
Z %,Z' m z,z'.z" m,r

for some scalar functions Cl, C2, C3, ... and 'every 1 ~ k, l ::; N are 'natural-candidates to incorporate.
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Of course, it is possible to consider analogons elements with two or more ma.trix free indices in
place of (k, l). Hut, generally spea.k.ing, A ia a.1ready big enough without them. We will show below
that for the simplest c the only above elements form an algebra. acting irreducihly on V. Although
such more complicated combinations can be significant for another choice of c.

In our definition below the points z, z', z",'" will be orderded (c ~ 0 only for z < z' < z" . ..).
Irone changes the order he weil get another algebra. of observables and some other representation
isomorphie to the initial pair. The corresponding interwiner will be precisely Yang's S.

In fa.ct, this interpretation of S is dual to the above one (hy means cf 'H~). We note that some
points are in YangJs paper (Phys. Rev. 168 (1968)), which are cl~se to our approach to Yangians.

Ca3e n = 2. Formulas (25) show that we ean use the tensor notations from sec. 2:

V = V ® V, ekl(z) =Z ekl, Y = eNI Z = 1,2.

Let UB consider V as a module under the action of the algebra. generated by e~ = ekl(l) + ekl(2) =
ekl (8) 1 + 1 ~ ekl a.nd eit = Ul ekl(l) + u2ew(2) + Em:::l emk ® elm for a1l 1 ~ k, l ~ lV. Simple
caleulations give that V is irreducible for u= U2 - Ul -:f; ±l.

Thus, .A is big enough to ma.ke V irreducible (for a generie u). However,.A is not very big.
Name1y, it is not far from glN operating on 'V by {e~t}, sinee for special u =1 (respectively u = -1)
the symmetrie S2V (extama! A2y) square of V is the only .A-submodule of V. The idea ia to define
quantum groups (Yangians) like this .A but for any initial representations and n.

The a.im of the next general de:finition.is to make v~n irreducible (for same generic parameters)
but not to loose the classic theory of decomposing of V0n under the diagonal action of glN. For
some special values of parameters we should reproduce in terms of A the classic results like the
decomposition V02 =S2V e A2V above.

Let us use the rational function in ,X E e

L('x) = 1 +L ,X-t'Ekt-1l a:,
r,Jc.l

(26)

where 1 ~ r ~ n, 1 :5 k,l :5 N,ll/t: is eOc considered as N x N-matrix (see above). Letters Eki l are
assumed to be pairwise non-commuting. E.g. for n =1, N =2

L('x =_(la) + ,X-I (E~lEgl) .
01 E12~2

Although L is a matrix with non-eommutative matrix elements we can use multi-index notations
from sec. 2. In particu1ar, 1L = L ~ 1,2 L =1 ® L. Let us impose on {Ek;l} the Yang-Baxter·
Fa.ddeev relation .

R('xl - ..\'2)1 L(..\1)2 L("\2) =2 L("\2)l L(Al)R('xl - ..\2)

for any 'x11 'x2 E C, where (see (8))

R("\) = PS("\) =.,\ +P

(27)

(28)

One can show directly that (27) for Yang's R is equivalent to the system of the following relations:

+

E!'+·6~ - E~t·6~
• , "., 1

a<r<b

l: (EkjEt - EZjEil) .
a+O=,.+6-1

(29)

The quotient-algebra of the algebra. of non-commutatitve polynomials in {E} by relations (29) is
caIled the yangian 0/ level n tor giN (written )IN). See [6,15].
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Given a set u = (Ull ... , un ) consider ekl (r) = r eld acting on the corresponding components of
V = V0n (V = C N ) and put

( 1 + ,\~ L eld(n)1lk
) (1 + ..\ _1 L eki(n - l)IU) ...

Un k~ Un -1 k~

( 1 + ..\ ~ u L eki(l)1iJ:) Ir (,\ ~ u,.) .
1 k~ r=1

Here {lik} commute with {e} and determine "the position" of eiA:(r) in the corresponding N x N­
matrix. This L is a. function in ..\ having its values in N x N-matrices with the matrix elements from
'::he algebra M~n generated by {e(r), 1 ~ r ~ n}. It is convenient for the sake of more invariant
writings to denote 1ik by etk(O) or °eo:. Then

Lu (..\) =On R(..\ - Un)On-1 R(..\ - tLn-d" .01 R(..\ - ud..\-n,

where R is from (28): R(..\) = '\1 + Lk,l eki ® eo•. It results directly {rom (8) that i u ('\) is a

s_olution of equation (27). Hence, the corresponding E~ll(l ? r ::; n) from the decomposition of
Lu (..\) (see (26)) give us the representation YN 3 E'kt- -+ E'kt-1 E M~n = E nd(V) of YN in V
(written V(u)). Two simple examples:

-0-a) Ekl = ekl(1) +... eklen) - (U1 +... +Un)l,

b) the operators e2b ell for n = 2 (see above) are some linear combinations of Eft, Elt
module 1.

Theorem 4 a) The 8pace V( u) is an irreducible YN-module i/ and only i/ tLi - Uj #: 1 for
every 1 ::; i,j ~ n. For W E Sn one has

--
e

(30)

where .Rw(u) =PwSw(u),Sw i8 from (15). In particular, ifV(u) is irreducible then the
mapping

V(u) 3 x -+ Rw(u)x, E'kt-1 -+ Rw(u)E'kt-1.R;;;1(u)

is an isomoprhism from V( u) onto V( w( u».

Let us prove identity (30). Consider fig. 5. Let us calculate the corresponding S-matrices (see
(13) and fig. 4). One has .

12S(U13) 01 S(U12) 23S(..\ - U3) 12S(..\ - U2) 01S(..\ - Ul) =
= 23S(..\ _ ud 12S(..\ - U3)01S(A - U2)23S(U13) 12S(U12)'

The simple rule of turning the latter inta its R~matrix version ia as follows. The upper left indices
should be changed to coincide with the indices of the arguments. We obtain the identity

13R 12R (03R 02R 01R) =(01R 03R 02R)13R 12R,

where the arguments are omitted. Here 13R(U13) 12R(U12) = 13P 13S( U13) 12p 12S(U12) =
Pw 23S(U13)12S(U12) = .Rw(u)forw = (3,1,2) = 8231. The producta in brac.kets are Lu (..\)

and Lw(u)(..\)'
Let us compare the corresponding mappings of theorem 4 and theorem 2. The latter is the right

multipli cation by Sw(e). The first is the conjugation by Rw(u) = PwSw(u). The identification of
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e a.nd u makes it evident that these two should be veTi closely connected. In particular, they are
degenerated (i.e. SVJ(e), Rw(u) are non-.invertible) for the sa.me values cf El =u. Moreover, V(u )
a.nd M(6) are simultaneously irreducible.

We will not discuss here the precise mathematical statements (see (6,7]). Roughly spealdng,
the ~-submodules of V(u) are in one--to-one correspondence with 'H~-submodules of M(El) for
N > n. The degeneration of Sw(S) and Ru,(u) for the same parameters is the particular case of
this correspondence. Practical1y, if one ca.n describe the suhmodules of M (e), he ca.n construct aJ.l
the submodules of V(u). Of course, the first problem is more convenient to settle.

B Mirrors and polarizations

Let U8 complicate our spa.ce. The idea. is to consider the half-line~ = {x ~ O} instead of R with
the reflection a.nd iis end, Le. place a minor at x = o. Some typical picture of interactions is in
fig. 6. AB before N is the numher of colours, axioms (a.), (b), (c), (d) (see sec. 1), are valid. But
now we have the refelctien. We connect with it the scattering matrix Il(e) = (Ilt: (- 01 )), Where
e = (8},··., On) are the angles in the out-state according te the·conventions adopted. Each element
of this matrix depends only on the angle 81 of the first particle (alter the reflection at % = 0) a.nd
on its colours i1 (before) a.nd i1 (after) the reflection.

Particles have two phases (=F). The first is before (8 < 0) and the second (8 > 0) is after the
reflection. Respectively, one should consider 3 types of two-particle amplitudes, when the phases
(the signa of the angles) of particles in the out-state are (-, -), (+, +), (-, +), (the combination
(+, -) ja impossible). For the sake of simplicity we will identüy the first two (written S). Let us
denote the S-matrix of the third type (-, +)by. S (d. [3]). Look at fig. 7. Here the out·state is the
stöte after the intersection.

We omit hare the symbolic and multi-index language of sec. 1, 2 a.nd we will use at once the
notations Si(8) or Si(8) (see (13b)) for scattering at the intersection point of the i-th and (i + 1)-th
particles (numbers are from the bottom to the top). We remind that Si and Si depend only on
8, - 8i+1 and on the corresponding colours of the i-th and (i - 1)-th particles. .

We should add to (16) its direct analogs SS S =5S S,SS S = S58 (with the same indices
and arguments), a.nd the new one:

n(u)S1(2u + v)II(u +V)S1(V) =Sl(l1)II(u +v)Sl(2u + v)Il(u). (31)

Here (see fig. 8) u = -8I, Tl =81 - 92 , 2u +v =-81 - 82 ,u +Tl =-82 ,

We claim that the identities (with the indices and arguments from (16), (31))

S S S = S S S , S s S = S s S , s S S = S S S , Il S Il S = S n S n (32a)

together with the evident relations (see (12))

{Si, Sj] =[Si, Si] ={Si, Bi] =[n, Si] =[IT, Sj] =0 (32b)

for i ~ 2, Ii-i I~ 2 provide the independence of any scattering ma.trix of the intema! picture of
intersections. In a ward (32) is equivalent to axiom (c) from sec. l.

Let us describe the corresponding group of symmetries. Now the transformation of a. given out­
state with the angles e = (91,. ", On) to some set of angles 8' of the in-state can be represented
as the sequence tÜ =(e11',E'l2',·· ·,ennJ) for Eie =±l,(l',~,·.·,nJ),== tu E Sn. It means that the
angle E,,81t; in the set 8' is situated at place k1 (from the bottom to the top at moment t = tle),
where 1 S k :S n . One has tÜ = (3, -2, -1) for fig. 6. The composition of two elements W, ÜJ' cf
this type is quite natural: if k ~ (ÜJ)e"k' ,W.... (üI)e~ k'" then k .... (ÜJ' tü) (ekCJcI ) k".
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The group of al1 wcan be represented by permutations (acting on e E Rn in the usual manner)
multiplied by any number of the reflections

lr,,(e) =(81 ,' ",8Jc-b-8Jc,8Jc+b' .. ,8n ) (1:S; k:S; n).

Mathematically, it ia the aemi-d.irect product of Sn and (Z2)n = {lrt1
•• '11':", OJc = 0,1, l with

the natural action of Sn on the latter: W1I"Jrw- 1 = 7T'w(k) for any k, W E Sn' As an abstract
one this group is generated by S1,···, Sn-1 E Sn and 11' = 11"1 with the following new relations:
S11rS11l' = 1rS11r S1, 11"Sj = Sj1r, j 2:: 2. Each element W of it can be represented in the form tü =
(ITb 11r~11 )w, w E Sn. We will denote this group by Sn. It is called the Weyl group 0/ type Bn (or
Cn).

.Now we are in a position to calculate the S-matrix "of any picture. Ta da it one should know e
(in the out-state) and the corresponding transformation tü E Sn from e to S' for the in-state (see
above). Let 1.Ü = Si t •.• Si, be of minimal possible length (written l = l(w)), where 0 :s; i ~ n and
we denote 1t' by So for the sake of uniformity. Then (cf. (13))

(33)

where
5\(e) =II( -81 ) for i =0, Sill =Sik or SiJc,

if iJc f; 0 and pair (k, k + 1) of the angles from the set 3i"'_1 •• ·-3il (e) has the coinciding signs or
not. Elements from Sn act on e as have been expl$ed. It follows from (32) that SÜ/(S) does not
depend on decomposing of W.

The simplest example of such a theory is aB follows. Let

(34)

Then the only equation we need to verify is (31). To obtain some matrix interpretation of (34) one
cau use Borne tensor representation of Sn (see (3]). Our aim is to quantize the angles. We should
substitute some pairwise commuting letters Yi for Bi in (34) and (according to the procedure of sec.
5) postulate relations (18) and the natural relations. -

Here II(Y1 ) cOITesponda to 1t' and therefore should act on"(Y1 ••. Yn ) as Y1 ~ -Y1 • One obtains the
algebra 'H~ generated by C[Sn] and Yi, ... ,Yn with the relations (19) and same new ones

11'Y1 + Y11t' = 2/ß, [Yj, 1t'] = 0 for j > 1. (35)

This algebra. is a certain degeneration 0/ the affine Hecke algebra 0/ type Bn or en (see e.g. [8]).
To be more precise it is connected with Bn , Cn, Dn for ß =1,2,0 (see [3]).

We can use the group Sn for another problem. Let us consider the UBual R aB aspace (without
any reflections). However, assume that there are two different non-changing types of particles
(two "polarizationsn

). We assume that the scattering process ia descrihed by Yang's two~particle

S whenever they are of the same type (polarization). Otherwise the scattering ia trivial. The
simplest algebra. of observables for collections of n polarised particles is C(Sn]. The operator
'JrJc(1 ~ k ~ n) corresponds to the polarization of k-th particle in a collection; 1rk1l"Jc+l deacribes
the change of pola.rization from the k-th to (k + 1)-th particles. That means that 1t'k(AJ(E» =
sgn( 8Jc )AJ(e), 1I'k1l"k+l (AJ(e)) = 3gn(8k8k+l )AJ(e).

Let us demonstrate that

(36)
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ia ex.a.ctly what we need (see [5]). Fristly, it is a solution of the Ya.ng-Baxter equation (in the
form of (16»). Then Si = 3i for 7f'i1ri+l = -1 (Le. there is no scattering in this case). At last,
SiTri ='Tri.J..1Si and Si1ri+l =1riSi (the polarizations are conserved). The quantization cf angles give
UB the f~nowing relations (from [5]):

[Si, Yj] = [Tr)" Yj] = (Y,i;, l'j] = 0 ror -j ~ i, i +1,1 :5 k, i :5 n.

in place of (19).

9 Towards the CFT

The.re -are ~vera.l possibillties to generalize and extend the above constructions. I sha.ll try to
aniline only some of them connected with the two-dimensional conformal field theory.

First of a.ll, one cu substitute everywhere the q-analog of Yang's S. It is written·a.s

51(9) = Ti + (q - q-l)/(q'J9 - 1), 1 ~ i :5 n (37)

I
I

where q E C, {Ti} are the generators 'of the Hecke algebra~. They satisfy the following defining
relations

(Ti - q)(Ti +q-l) =0, TiTi+tTi =Ti+tTiTi+t, [Ti, Tj] =0 (38)

for Ii-i 12: 2, l' :5 i, i :S n. For q = 1 we a.rrive at C(Sn]'
The function 59 was found independently in (one-dimensional) mathematical physics as same

solution of (16) ud in the theory of representations of p-a.dic affine Hecke algebras a.s an interwiner
(see [7] tor some details). The laUer are defined aB~ but with the term (q2 -1)1';+1 in p1ace of 1 in
formula. (19a), where ane should substitute Ti ~or Si. In p"adic papers q =p"' for a. prime p, m E N.
This way of definition is due to Bernstein, Zelevinsky. In many works {Ti} are considered. in some
natural representation of H~ in (C N )8n (Wenzl, Baner).

Since T2 :f: 1 we have two elements T,T-l being on equaJ grou.nds. We omit the arguments,
but it results in two p088ible pictures for twa-.particle S-matrices instead cf the only one above. We
can consider intersecting a.s a passage of a particle over or under the other.

The 59 from (36) is unitary after a proper normalization. But in other non-unitary theories
thia note can be important.

We have as.sumed the twa-.particle intersections to be the only elementary processes. But ane can
dlsagree with this assumption. Look at fig. 3a.. There is a certai.n process between the intersections
(91 , 9'1) ud (61 , 82 ) of the corresponding particles. The particle with the angle 91 should mave away
from the particle with 92 after the first intersection and approach particle 93. This transference
may be quantum aB weIL (In fact, any movement can be quantum in some general theory).

Let us consider the arranged symbols Ä;(8) , which are A;(0) from sec. 1 with some com­
plete set ofbrackets between some A;.(8j,.). For example, (AiJ (91)Ah(9'2))A~(93)' (Ai! (91 )Aj,(8'2»
(Ah (83 )A;4 (8ot )) are complete but (AtA2)(A3~)A5 is not. The correct arranged symbol shou!d
be either «A1A2)(~A.))A5or (AIA2)«~.tlt)A5)'Here we have omitted j, 8. Physically, the last
symbol ca.n be interpreted aB follows: the particles Aa, A.& are very close one to another, As is elose
to A3 or ~ (it is all the same, since A3 and J4 are very dose, more dose than A5 to each of them),
At ia dose to A2' the pair Al, A2 is not dose to the tripie ~,At, A5. In fact, we have the ordered
sequence of relations "not dose, dose, very dose, very very dose and so on" on the set of AJ(e).

Formally speaking, a,. system of brackets is not complete iI Ä contains a segment of type
(Äl)(Ä2)(Ä3) for some arranged symbols A,l,Ä2,A,3. In this case Äl and Ä3 are at the same
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level (dose, very elose, ... ) with respect to A2 • We forbid it, that resembles very much the Pauli
prindple in quantum mechanics.

Given some arranged AJ(0) for any e = (81,"', 8n ), we ca.n define to following two elementary
operations. One can interchange two adjacent terms Aj" (8k) and A;"+l (Bk+l), but only if they are
in ~racket8. The corresponding quantum Sk will be introduced like in sec. 1-3. Another operation
(written cbk) is the passage

"" ( ""I ( ""2)) (( ""I ) ""2)AJ =... A Aj.(8k)A ... -+ ••. A Aj,,(8k) A ... (39)

(40)

for' Borne arranged Ät, A2 or the analogous transformation from ()iI Ak)A2 to AI(AkA2). Given k
the corresponding ÄI, Ä2 (ir any) ca.n be faund uniquely. For example,

Ai] (81) (Ai:a (82)Ai3 (03»= 'EJtt (81, 82, 83) (A;] (81 )Aj:a (82 )) A;3 (83),

where ~:~!:(e) are the amplitudes from the in-state, where A2 is more dose to A3 than to At ,
to the out-state, where A2 is more dose to At; ~ = (~j).

In a contrast with sec. 1 these two opera.tions (processes) exist only for some k. E. g. let U8

consider
A=«A1A2)(A3A.a» (A5(As(A7As»).

Oue can apply only the opera.tions SI, 83, 87, ~2, t 3 , cbs, t a, <b1 to this Ä. It ia quite natural to
postulate the identities

[~i, cI)jl ={Si, Si] = {Si, cI)k] =0, I i - j I> 1, k :F i, i +1.

The reason ia that ~icI)j and ~j4,)i induce for I i - ; I> 1 the same changes of brackets. It holds
true for the permutations and changes of brackets in the case {S, S] or {S, t] aB well. The other
relations are of the following type (see fig. 3). We begin with ÄI = Al(A2~) and use here the
abbreviations 812 =(8}, 82), 8123 =(81 ,82,83 ) and so on. One has

52(812)~2(8312)8t (813)~2(8132 )S2(823 )<b2(8123 )

= ~2(8321 )81(823)Cb2 ( 8231 )S2(813)~2( 8213)Sl(812),.

This equality is quite analogous to identity (2.6) !rom [17] (see also [16]). It is small wonder since
OUT .symbolic language and appropriate pictUIes are very dose to these of [17,16].

Here we assume that 5, ~ depend on the corresponding parameters in the natural order. In
general, 4,) can depend on many indices and parameters. E.g. ~6 for (39) may have 4 matrix indices
and be a function of 8s 6 78 =(8s, 86 , 8r , 88 ), In some sense the order of A7 and As is not important
for ~6 since they both are at the same level with respect to As. In particular, the dependence qf
WB on the indices of At, As should be symmetric. The development of thie point can give some
version of the axiom system from (17], where any 4) are defined by means of the comultiplica.tion in
terms of the least possible Cb (with 3 matrix indices). The penthagone relation arises in this way.
We note that our angles are, in fact, parallel to the conforma.l dimensions (see e.g. [16]).

Pd like to give another ,example of connections between the two-dimensional conformal theory
and the affine Hecke algebras. The so-called Knizhnik-Zamolodchikov equation fot the n-point
function of the Wess-Zumino-Witten model can be written in terms of C{Snl only. It has the
following natural "affine" generalization

I<.dG/dz;= (~(ij)(Z; - Zj)-l +X;Z;l) G,

where 1 ~ i :F j ~ n , G(z},' ", zn) takes its values in the algebra .A generated by C{Sn] and some
operators {Xi} with the relations WK:iW-1 = XUI(i), w E Sn' Here (i;) are the usua! transposition,
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l'i=-x,- L: (ij),l:5i:Sn.
n~>i

" E C. It is easy to show (see [5]), that the cross-derivative integra.bility conditions for (40) are
equivalent to the relations

[x;,z; + (ij)] =0 =[(ij),Zi +Xj]. (41)

The laUer (together with the conditions UJx,w-1 =ZW(i)) coincide with the defining relations for

Yi (sec. 5) if

Hence, this A should be some quotient of the degenerated a.fIi.ne Hecke algebra. 1t~.

To get the usual Knizhnik-Zamolodchikov equation one should put x, =0 for any i. It gives us

the so-called Murphy surjection Yi -p - L:,,~>,(ij) of 1t~ onto C[Sn] (see [6]). This homorphism
cf a.1gebras ia important in the theory of Sn. For example, the centre of C[Sn] is genera.ted by·
symmetrie polynomials in the images of {Yi} (cf. theorem 3 and [7]).

Ta finish this part of my notes I will describe without going into detail some quantum counter-
part of (41). .

Let UB consider the space R with the glass at the point x =o. It is transparent for particles
from sec. 1, but p33sing through this glass is assumed to be quantum. One can connect with this
process two one-index matrices X( +8), X( -9) respectively· for 9 < 0 and 8 > 0 (see fig. 9). E. g.
for 9 < 0

Ai(8)'n ~l~. L: X/(9)Aj(8)out
j

The factorization relations are elose to (6). We will write them down in tenn s of R =PS:

1X(81)12R(912)2X(-82 )

12R(812)1)(81)2X(82)
12R(812)2X(-82 )1 X(-81 ) (42)

Of course, R ahould be a solution of (8) as well. .
These equalities hold true (follow from (8)) if one formally substitute )( = 10R(810 ), X =

01 R(801 ), 80 =0, where 0 is some other tensor index. Really, the transmission through the glass
ca.n be interpreted 33 intersecting with the particle of angle 80 = 0 and colour =0, where the latter
does not change its colour in any· quantum intera.ctiona.

The natural problem is to combain S, I t minon (not more than 2), pola.rizations (any number)
and gla.sses (any number) in one pieture. Then to consider more complica.ted spaces (circum.ference8,
elliptic curves) and find interesting examples. Qnly some fragments of this heavy construction are
clear (see [3,5,17]). I

Let R = Rt, = 8(8 +17)-1 + 17(8 + 17)-1P (see sec. 5), X = X. We can consider (42) over
C[Snl in a natuza.l manner. One identifies permutations with the corresponding matrices and
8UPPOses 'X to be some undeterminate functions with the following action of Sn: tu iXw-1 = w(i)X.

We have R; =i i+1 R = 1 + 118i/8. + 0(7]) as 1] -p O. Let us impose the analogical restrictions
Xi =1 +1]%,/8 +0(1]) on X, =i )( ( in particular, Xw(i) =W%,W- 1). Then (42) results in (41).
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List of Figure Captions

1. The Une (the gra.ph of movement) of a. particle.

2. The collision of Cour particles.

3. The independence cf the three-particle S·matrix cf the initial points.

4. Collisions a.nd reduced decompositions.

5. Some version of Fig. 3 with "parallel" lines.

6. Decomposing of ~ollisions with reflection.

7. The e1ementary processes on the half·line.

8. The fundamental identity for refl.ections and intersections.

9. The transmission through the ~ass. -
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