
On primitive elements in the
bialgebra of chord diagrams

s. K. Lando

Institute of New Technologies
11 Kirovogradskaya
I 13587 Moscow

Russia

Max-Planck-Institut für Mathematik
Gattfried-Claren-Straße 26
53225 Bann

Germany

MPI / 94-47





On primitive elements in the bialgebra of
chord diagrams

S. K. Lando •

The bialgebra of chorcl diagrams arises naturally in the study of Vassiliev
knot invariants (see (l, 2]). The bialgebra of chord diagrams is both com
mutative and coeommutative. It follows then from Milnor-Moore strueture
theorem {4] that eonsidered over a field of eharaeteristic zero it is asymmetrie
algebra in its primitive elements.

Over a field of charaeteristie zero investigating bialgebra of Vassiliev knot
invariants is essentially equivalent to investigation of the bialgebra of chorcl
diagrams. However, over an arbitrary ring both the structure of the bialgebra
and the question, whether it determines Vassiliev invariants remain open. For
example, it is unknown whether the bialgebra has torsion. In the present text
we prove that the bialgebra of ehord diagrams is generated by its primitive
elements over Z.

The pfoof is obtained by presenting an explicit formula for a projection
onto the submodule of primitive elements. In fact, the proof presented is
valid in a more general situation, namely for a dass of bialgebras where a
multiplication and comultiplication may be presented aB "disjoint union" and
"partition" correspondently.

In the first section we give all the definitions concerning the algebra of
chord diagrams and present the formula for a projection on the submodule
of primitive elements. In the second section we introduce the bialgebra of
partitions and prove the formula for the projector in this bialgebra. In the
third seetion we apply this formula for bialgerba of chord diagrams as weIl
as for bialgebra of weighted graphs.

·Max-Planck Institüt rur Mathematik, Bonn. (On leave of absence from the Indepen
dent University of Moscow aod Moscow Institute of New Technologies).
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1 Bialgebra of chord diagrams

1.1 Notions

Definition 1.1 A chord diagram 01 order n is a circle with a distinguished
set of n unordered pairs of points, regarded up to an orientation preserving
diffeomorphism of the circle.

A chord diagram may be depicted aB a circle with a set of n chords an of
whose endpoints are distinet. Of course, these chords cao be drawn as lines
or curves whose actual shape is irrelevant; what matters is the way they bind
their endpoints into pairs.

Consider a free Z-module freely generated by an chord diagrams of order
n and introduce a set of linear relations in this module:

(four-term relation)

for an arbitrary fixed position of (n - 2) chords (which are not drawn here)
and the two additional chords positioned as shown in the picture. Here dotted
ares suggest that there might be further chords attached to their points, while
on the solid portions of the circle an the endpoints are explicitely shown.

Let Mn be the Z-module of chord diagrams of order n modulo an four
term relations. Consider the graded module

M = Mo EI1 MI ffi M 2 ffi ...
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Module M carries the structure of abialgebra. I Explicit description of
this structure is given in the next subsection.

1.2 Bialgebra structure

Definition 1.2 Let DI, D'J be two chord diagrams of order nl, n'J respec
tiveIy. The product [Dd . [D 2 ] of classes [Dd E M nll [D2 ] E M n2 is a dass
[D] E Mnt+n2 defined as folIows.

Break the circle of the diagram D I in a point Xl different from all the
ends of the chords of D I , and break the circle of the diagram D2 in a point
X2 different from all the ends of the chords of D2 • Gluing two broken circles
in a new circle taking into account their orientations oue obtains a new chord
diagram D of order nl +n2. We set [Dd . [D2] = [D].

Definition 1.3 Let D be a chord diagram of order n. Denote by V = V(D)
the set of its chords. Any subset VI C V of chords of D determines a diagram
(Vd consisting onIy of the chords belonging to the set VI, so, for exampIe,
(V) = D. We set coproduct J.l((V)) = L (VI) C9 (V2 ), where the surn is

V=VtuV:.;z
taken over all disjoint partitions V = VI U V2 •

Theorem 1.4 (see [1]) The operations 0/ multiplication and comultiplication
defined above are consistent operations on the module M 01 chord diagrams.
The graded module M supplied with these two operations becomes a (gradedJ

even commutative and cocommutative) bialgebra over Z.

(The definition of abialgebra see in [4], for exampIe.)
The unit e E Mo is represented by the chord diagram with an empty set

of chords. The counit is a mapping f : M -t Z, such that f(e) = 1, and the
restriction of f on Mn for n > 0 vanishes.

1] prefer to use the term bialgebrn instead of Hopj algebm because a natural antipode
in this bialgebra appears only after the structure theorem is applied.
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1.3 Primitive elements of M
We will make no difference in notation between a chord diagram and an
element of M represented by this diagram.

Definition 1.5 An element p E M is called primitive, if Jl{p) = e0p+p0e.

Theorem 1.6 Let D be a chord diagram 0/ order n, V = V{D) its set 0/
chords. Then the element

p{V) = (V) - I! E {Vd· (\I;) + 2! E (Vd . (V2 ) . (\13) - ... , (1)
V;~u~ V;~u~u~

where sums are taken over all unordered disjoint parfifions 0/ V info non
empty subsetsJ is a primitive element in Mn.

The theorem will be proved in section 3.

Remark 1.7 Changing unordered partitions for ordered ones one would
rewrite the formula (1) as

1 1
p(V) = (V) - 2" E (Vd· (V2 ) + 3" L (Vd . (\I;) . (V3 ) - ••. , (2)

V;~u~ V;~u~u~

Example 1.8 Für the chürd diagramCJ:)we have

P(Q)l= Q) Ö· GD Q. (1)

-CD·(1)+2Ö·Q·CD
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As an immediate corollary of the theorem 1.6 one obtains

Theorem 1.9 Bialgebra 0/ chord diagrams is generated by its primitive ele
ments ouer Z.

Indeed, each chord diagram (V) may be represented aB a sum of p((V))
and a polynomial in the diagrams of smaller order with integer coefficients.

2 Bialgebra of partitions

We associate with a positive integer n abialgebra 8(n), which we call bial
gebra 0/ partitions.

2.1 Algebra structure

The definition proceeds as follows. Let Nn = {l, 2, ... , n}. Consider all non
empty subsets V C Nn as commuting variables. We prefer to denote such
a subset aB a sequence of elements in brackets: (1), (12), and so on. As an
algebra, 8 (n) is a polynomial algebra in these 2n

- 1 variables.
The order of a variable V c N n is just the number of elements in V. This

order makes the algebra B(n) a graded algebra B(n) = Bo(n) EB 8 1(n) EB ...,
where Bo(n) s:: Z (the generator of Bo(n) is the empty subset 0), Bk(n) is a
free Z-module, freely generated over Z by all monomials of order k.

For example, for n = 3

8 0 (3) - < 0 >
BI (3) = < (1), (2), (3) >
B2(3) - < (12), (13), (23), (1)(2), (1)(3), (2)(3), (1)(1), (2)(2), (3)(3) >
8 3 (3) = < (123), (1 )(12), (1 )(13), (1 )(23), ... , (1)( 1)(1), (1 )(1) (2), ... >

A monomial in B(n) will be called a partition.
The empty partition e = 0 forms the unit with respect to this multipli

cation.
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2.2 Coalgebra structure

Let V C Nn , and (V) denote a partition of V, consisting of one set, namely
V itself. We set

p((V)) = E (Vd 0 (\12),
V=V1UV~

where V = \tl U V2 is an arbitrary partition of V into a disjoint union of two
subsets, and the surn is taken over all such partitions.

Example 2.1

Jl((13)) = 0 ® (13) + (1) ® (3) + (3) 0 (1) + (13) 0 O·

For other types of partitions the comultiplication Jl: B(n) -1- B(n) 0 B(n)
is extended as an algebra homomorphism.

Statement 2.2 Module B(n) with the multiplication and eomultiplication
thus introdueed is a graded (even) eommutative and coeommutative bialgebra.

2.3 Primitive elements

Theorem 2.3 For arbitrary subset V C N n the element

p((V)) = (V) -I! E(Vt )(V2 ) +2! E(V1)(V2 )(lI3) -3! E(V1)(\12)("'3)(\14) +...
(3)

where the sums are taken over all disjoint unordered partitions 0/ V into
nonempty subsets, is a primitive element in B(n).

Example 2.4 The element

p( (123)) = (123) - (1 )(23) - (2)(13) - (3)(12) +2 . (1 )(2)(3) E B(n), n ~ 3

is primitive.

Corollary 2.5 The submodule P(n) C B(n) 0/ primitive elements is gener
ated by eleme n ts 0/ type p( (V)) . The bialgebra B (n) is isomorphic to sym
metrie bialgebra 0/ P(n).

Remark 2.6 All primitive elements of B(n) are contained in the first n
orders of grading.
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Proof of theorem 2.3. It is apparently sufficient to prove the theoreITI
for the case V = Nn .

The coefficient of the term

(\tJ.) ... (VI.) ® (Vk+d ... (Vk+m )

in fL(P((Nn ))) is uniquely determined by two numbers k and m. Denote this
coefficient by (-1 )k+m-l ahn. We set aoo = O. One has

-(k _ )1_(k+m-2)!km (k+m-3)!k(k-l)m(m-l)_
akm - +m 1. I! + 2! ...

Indeed, the term we are considering may be obtained by comultiplying a
term with (k+m-j) subsets in partition for j = O,I, ,min(k,m). Such
a term may be chosen by picking j subsets from (Vd, , (Vk ) and j subsets
from (Vk+d, ... , (Vk+m ) and taking their pairwise union. We divide by j! as
the partitions are unordered.

Multiplying and dividing by k!m! we obtain the following formula for akm:

= .. I I((k+m-l)! (k+m-2)! )
k.m. Ik' 1 - I(k _ )I( _ )' + ...O. .m. 1. 1 . m 1.

I I min(k,m) (k +m - 1 - j)!
= k.m. E 'I(k _ .)'( _ ')1

j;;;;:O J. J . m J.

Consider the exponential generating function for the sequence of coeffi
cients akm and make the following transformations 2

co
"" akm k m
L... kIlx Y -

k,m=O .m.

co k m min(k,m) j (k +m - 1 - j)!
2: x y 2: (-1) "(k- ')I( _ ')'

k,m=O j=O J. J . m J.

co j 1 co (k + m - 1 - j)! k m

2:(-1)12: (k-')'( _')'x y
j;;;;:O J. k,m=j J . m J.

co 1 co k co (k 1+ ')1 I""(_ )i _ i" x "" - m , m
L... 1 'I Y L... (k ')1 LJ '1 Y
'-0 J. k-' - J. Im,)- -) m =0

2This calculation is due to A, Levin,
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00 . 1.00 X k (1) (k-l)

= E(-l)Jj!!I'~(k_j)! l-y

I

_ f)-l)i \yixi (!...)j-I f= (X~t 1
·-0 J. 8y , k . 1 - y
)- k =0

_ f=( -l)i;"yixi (!.-)i- 1

1
i =0 J!. 8y 1 - y - x

= - f= (-x:,lur log(l - x- y)
i;;;;;O J.

= - log(1 - x - y + xy)

= -log(1 - x) - 10g(1 - y)

The upper index in parenthesis denotes a.s usual the corresponding deriva
tive. Remark, that

(
_1_) (-1) = -log(l _ y).
l-y

In this calculation we used twice the fact, that the exponent of the deriva
tive is a shift.

Thus, the coefficient akm equals zero if both k =f. 0, m =f. 0, and aOm =
amo = (m - I)!. This means precisely, that p((Nn )) is primitive, and the
theorem is thus proved.

Remark 2.7 Knowing primitive elements of the bialgebra B(n) we are able
to make it Hopf algebra. The antipode just acts as reflection p Mo -p on the
submodule P(n) of primitive elements.

3 Proof of the main theorem

3.1 Proof of theorem 1.6

Let D be a chord diagram with n chords. Associate with D a homomor
phism mD: B(n) -t M in the following way. Number the chords of D with
elements of {I, ... , n} arbitrarily, so that each chord has a unique nUluber.
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The partition (V) is taken to the chord diagram mD«V)), consisting of the
chords, numbered with elements of V. The partition (\11) ... (Vk ) is taken to
the chord diagram mD«\I1)) ... mD«Vk )).

The mapping mD obviously respects both multiplication and comultipli
cation and extends thus to a homomorphism of bialgebras. Primitive ele
ments are taken to primitive elements, that proves the theorem.

Remark 3.1 It follows directly from [3] that image of the primitive element
(3) under the mapping mD is a non-zero primitive element, if the diagram D
is not a product of two diagrams of smaller order.

3.2 Bialgebra of weighted graphs

The bialgebra W of weighted graphs has been introduced in [3]. It has been
proven there that W is generated by its primitive elements over Z. However,
we may make use of the theorem 2.3 constructing a projection of the algebra
onto the space of its primitive elements.

Theorem 3.2 For arbitrary weighted graph G with weights 0/ all vertices
equal to 1 the element

is a primitive element in W n •

Here Gk is an arbitrary complete subgraph of the graph G, and sums are
taken over all possible disjoint unordered partitions of the set of vertices of
G into non-empty subsets.

The proof is achieved by associating with the graph Ga mapping We from
abialgebra B(n) into the bialgebra W, similar to the mapping mD from the
previous subsection.
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