
ON FREE SUBALGEBRAS OF 

CERTAIN DIVISION ALGEBRAS 

Martin Lorenz 

Sonderforschunqsbereich 40 
Theoretische Mathematik 
Beringstra8e 4 

D - 5300 Bonn 1 

MPI/SFB 84-60 

Max-Planck-Institut 
fUr Mathematik 
Gottfried-Claren-Str. 26 

D - 5300 Bonn 3 



ON FREE SUBALGEBRAS OF CERTAIN DIVISION ALGEBRAS 

Martin Lorenz 

The goal of this note is to prove the following 

Theorem. Let K = k(t) be the rational function field over 

the field k, let a € Aut k (K) be of infinite order, and let 

Ka[X] denote the skew polynomial ring. Then the classical 

division ring of fractions 

tive free k-subalgebras. 

D = Q(K [X]) 
a. contains non-commuta-

For example, if () sends t to A· t , where A E k. * is 

not a root of unity, then D = Q(K [X]) 
a. 

equals the division 

algebra EX studied in [Ll and the theorem gives 

[L, Theorem 2.2]. Also, if a. t = t-1 and char k. = 0 , then 

D = Q(R [X]) is the Weyl division algebra a 

D, = Q(k[X,Y]/(XY-YX-1» (take t = XY) . Thus we also recover 

the main result of Makar-Limanov's article [ML 1]. We emphasize, 

however, that the crucial ideas used in the proof of the theorem 

come directly from l-lakar-Limanov' s papers [ML 1] and [ML 2]. 

In fact, if k is algebraically closed, then every a E Autk. (K) 
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of infinite order is conjugate to one of the above two types 

of automorphisms and so the theorem could be deduced from the 

above special cases. Thus we only take credit for the presen-

tation and the unified approach to Makar-Limanov's results. 

Throughout, k will denote a commutative field. 

1. Lemmas on Autk(k(t» • 

Let K = k(t) be the rational function field over k. 

Then every a E Autk (K) acts by a fractional linear 

transformation 

t 1---> at+b 
ct+d with =: M (0; t) E PGL2 (k) • 

The effect of replacing the primitive element t of K/k by 

T t , T E Aut k (K) , is described by the formula 

M (a; t T) -M (T ; t) • M (0 it) • M (1' ; t) -1 

PGL2 (k) also operates by fractional linear transformations 

on lP 1 (k) = k u {co} , and co is a fixed point for 

(~ ~) € PGL2 (k) if and only if c = 0 . 

Lemma 1. Let K = k (t) and let 0 E Autk (K) be such that 

S = M(a;t) satisfies Si.oo,.,co for all i,., 0 . Then 
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Proof. We use the valuations Vy: K -> 2Z U {oo}(y E lP 1 (k» 

given by v (g) = deg (denominator of 
00 

9 ) deg (numerator 

of 9 and (g£ K,y £ k) • Then, for all 

g € K* , v y (g) = 0 for almost all 1 y £ :II? (k) , and 

1 
(y E lP (k) , T£ Autk (K) ,T = Mh;t» • 

(It suffices to check this for y = "" , as PGL2 (k) operates 

transitively on F1 (k) • Also, by passing to an algebraic 

closure i of k, one can assume that g = t-a , a E"Ii .) 

Now suppose that, for some f E K , fa -f E k[ t] and 

deg(fO-f) >0 • Then but 

y * 00 • Therefore, min{v"" (fa), v"" (f)} < 0 , say 

Then, setting S = M(o;t) , we have 

voo(f) < 0, v_ 1 (fa-f) ~ 0 
s-oo 

for all 

v (f)<O. 
00 

and thus v_ 1 (fa) = v_ 1 
s-oo 

(f) <0. Continuing in this way, 
s-oo 

we see that v_i (f) 
S_oo 

= v (f) < 0 
00 

contradictionl Similarly, 

and so the lemma is proved. 

holds for all i ~ 0 , 

leads to a contradiction 

Lemma 2. Let K = k (t) and let a E Autk (K) be of infinite 

order. Then there exists a primitive element a for K/k 
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such that A = M (0; a) satisfies Ai 000 *' 00 for all i * 0 • 

Proof. Set 

there exists 

T = M(o;t) € PGL2 (k) • It suffices to show that 

~€lPl(k);:::: kU{oo} with Ti·s*s for all 

i * 0 • Indeed, if s is such an element, choose XE PGL2 (k) 

with Xos = 00 and set T a = t ,where M(Tit) = X • Then 

a is a primitive element for K/k, and A = M(oia) = XTX- 1 

satisfies i A 000 *' eo for all i *' 0 , as required. 

To establish the existence of .; as above, first 

note that, by the theory of Jordan canonical form, there 

exists a matrix Y € PGL2 (k) ('k ;:::: algebraic closure of k 

such that Tl = y- 1T Y E PGL2 (Ii) has one of the following 

two forms: 

e' , ) G 
~ ) -1 I* 

T1 = = , ~= ~ 1 € ,char k = 0 
o f.L1 1 

or 

T, = (" 0 ) = G :) X=X X- 1 E 1i* a 

o "2 
1 2 

non-root of unity. 

Thus T 1 acts on lP 1 (1i) 

i 
In either case, T,os1 *'';1 for all i * 0 and 

';1€JP 1 (li) \ {O,oo} • As ]p1(1i') \ {O,eo} intersects 

y-l o]p'(li) ::;; ]plan non-trivially (k must be infinite for 

o to exist) we can choose ';1€ lP 1 ('R) \ {O,ro} with 
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. But then for all 

i * 0 , as required. 

Examples. (a). If 0 is given by to = t+1J. , IJ. E 12.* and 

char k. = 0 , then T = M(o;t) satisfies Ti • .; * .; 

.; € k. and i * 0 • Thus we can take X = (~ _'.;) 

for all 

in the 

above argument and get a = (t-';) -1 (.; € k.) as possible choices 

for a. 

(b) . Similarly, if to = At , A € k* a non-root of unity I 

then we can take a of the form -1 * ex = (t-';> (.; E k ) • 

2. Proof of the theorem. 

Let K = k (tl and let ex € Aut12. (K) be of infinite order. 

Set D = Q(Kex[X]) , the classical division algebra of fractions 

of the skew polynomial ring 

consequence of the following 

K [Xl • The theorem will be a ex 

Proposition. Let a € K be as in Lemma 2 and set , 

b = a (1-X) -1 ED. Then the subalgebra k [a, b] 5: 0 is free 

on {a,b} • 

The rest of this section is devoted to the proof of this 

proposition. We will proceed in a number of steps. First note 

that the localization of the skew power series ring K [xl ex 
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at the powers of X is a skew field containing Ko.[X) 

and hence a copy of D. Here, (1-X) -1 E D corresponds to 

1 +x+x2 + ••• E Ka[xJ1 and so the images of a and b lie in 

K ex [xl . In the following, we work in Ka[XD . Note that, as 

K-vector space, K [xD can be identified with the set of ex 

functions <p: lN o = {O,1,2, ••• } -> K • 

(A) Equivalence classes of functions :!No -> K • Let F 

denote the· set of equivalence classes of functions tp::!N o -> K 

modulo the relation ~ given by 

...... <p (n) = IjJ (n) for almost all n. 

Then F becomes a commutative ring under pointwise addition 

and multiplication of functions. In the sequel, we use the 

same notation for a function tp: ~o--> K and its class 

modulo "'. For <p E F define <po E F by 

<pO (n) == <p (n+1) (n»O) • 

Then a is an automorphism of F which acts trivially on 

the set of constant functions C c F • Clearly ,e,. K and 

we will identify constants with their values 

define y E F by 

n 
y(n) = ao. (n»O) , 

E K • Finally I 
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and let A c. F be the subr ing of F generated by C and 

y • 

Claim. A = C[yJ is a polynomial algebra over C . Moreover, 

all nonzero elements of A are units in F and so 

K : = Q(A)~ F • Finally, ° operates on K and 

{q>0_q> I q> E K} n A=. C • 

Proof. First note that y: ~o--> K is injective, because 

otherwise a would have a finite a-orbit and hence a would 

have finite order. Therefore, each nontrivial polynomial 

i~ICi Y 
i 

(I * ~, c. E C*) has only finitely in many zeroes 
~ 

It follows that E i 
iEIciY is a unit in F . In particular, 

transcendental over C and K = Q (A) = C (y) ~ F . Moreover, 

M (a; a) = (~ ~) E PGL2 (k) , then for all n»O we have 

a y (n) = (ra + s)an = 
ua + v 

ry(n) + s 
uy (n) + v 

JN o 

y 

if 

is 

so that yO = rr + s E K = C(y) and M(OiY) = M(aia) Therefore, uy + v . 
by our choice of a , we have i M(OiY) 000*00 for all i :j: 0 and 

Lemma 1 implies that {q>a_q> I q> E: K} n C [y] c C . 

(B) For (s?;1) set 
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For s:Si 0 let J = (fI) and BOH (n) = 1 for all n • 

Claim. In order to prove the proposition, it suffices to show 

that the functions BJ E F 

pendent over K = F • 

are linearly inde-

Proof. We have to show that formally distinct monomials in 

a and b = a(1-X)-1 = a(1+x+x2+ ••• ) are linearly independent 

over k. Each such monomial has the form 

where O:Siv = II b-factors , iv E:No and i O"" ,iv- 1 E :N 

for v ii: 1 • In Ka[X] , we have 

. iO i 
= .. ~O tty (n) • a v. B (i 1.") (n) 

U" 1"'" v-1 

i 
(where (11" •• , i v- 1) = ({!) for v:5i 1 and the y (n) 0 -term 

is zero for v = 0 and n> 0 ). For each multiindex 

I = (iO,i" ••• ,iv ) as above write I' = (i" ••. ,iv- 1 ) E :Nv - 1 

(I' = ({!) for v:Si 1 ). Suppose that 
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is a k-linear relation between different monomials 

mI (IE 1) and set 10 = {(iO, ••. ,iv ) E11v = O} ,1>0 = 1\10 . 

Then, in f, we have 

= 0 for all 

and 

For 
iO i 

lEI> 0 ' ~ I Y a v belongs to K 
i 

and t; Ia v € C 

By assumption, the SIt'S are K-independent. Furthermore, 

by Step(A) , y is transcendantal over C. Finally, a is 

transcendental over k, by definition. Thus we conclude that 

~I = 0 for all IE1>O and so the given relation reduces 

to 

over 

E (m = 0 But this is a polynomial equation for IEIO I I • 

k which must be trivial. Therefore, ~I = 0 for all 

I E 10 also, as it was to be shown. 

(C) Conclusion. Fol:' c.p E F def ine I::, c.p E f by 

a 
I::,c.p =c.p -c.p. 

The following formulas are straightforward to verify: 

i . I::, (c.ptjJ ) = c.p a • I::, tjJ + lit{)· tjJ (t{), tjJ E F) 

a 
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and 

(=0 for s = 0) , 

Moreover, by Step (A) , we have 

6Knc [yl~ c 

Now suppose that 5eJt3J = 0 
s 

(J € s~O ' e J € K almost all = 0 ) 

is a riontriv1al K-linear relation which is chosen so that 

u = max {R. (J) leJ * O} is minimal, where we 

have set R. (J) = s for J € ~s (s~O) , 

and 

the number of summands with R.(J) = u is minimal. 

Clearly, u;;: 1 • Rewrite the above relation by isolating the 

"long" JI S to the left: 

E d 8 
J E U :INs J J 

s<u 

where ~ ... J ~ :Nu and all e J (J E J) are nonzero. We can and 

will also assume that e J = 1 

(ii) above, we see that 

for some J € J . Using (i) and 
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and 15 is a ~-linear combination of 

1(I) <1(J) 

8 's with 
I 

As e J = 1 for some J E J , and hence l!.e J = 0 , the re lation 

iv. 

involves fewer summands with 1(J) = u . Therefore, our mini-

mality assumption ~plies that the latter relation is trivial. 

In particular, in view of (iii), we deduce that 

all JE J , i.e. 

l!.e = 0 
J 

for 

e E C* 
J 

for all JEJ 

Moreover, for all J = (j1,j2, •.. ,ju) E J , the coefficients 

of aJ (1) (recall that J(1) = (j2'" .,ju» in (iv) must 

be equal on both sides; i.e. 

v. 
i 

I1dJ (1) = r eO(y 1)0 

I = (i l' ••• , iu) E J I 

I(1) = J(1) 

holds for all JE J . Thus, as e 1 E C for all 1 on the 
-1 -1 

right, we that ° a r see (l1dJ (1)} = ( dJ (1) ) = 
I=(i 1 ,···,iu ) EJ 
I (1) = J (1) 

elY 
i1 
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belongs to Il K n y C[y] = 0 . But, by Step (A) ,y is 

transcendental over C and so all e r in (v) must be 0 , 

contradiction 1 This completes the proof of the proposition, 

and hence the theorem is proved. 
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