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Abstract

Using the ideas of Keller, Maslov introduced in the mid 1960’s an

index for Lagrangian loops, whose definition was clarified by Arnol’d.

Leray extended Arnol’d’ s results by defining an index depending on two

paths of Lagrangian planes with transversal endpoints. We show that

the combinatorial and topological properties of Leray’s index suffice to

recover all Lagrangian and symplectic intersection indices commonly used

in symplectic geometry and its applications to Hamiltonian and quan-

tum mechanics. As a by-product we obtain a new simple formula for the

Hörmander index, and a definition of the Conley–Zehnder index for sym-

plectic paths with arbitrary endpoints. Our definition leads to a formula

for the Conley–Zehnder index of a product of two paths.

Entia non sunt multiplicanda praeter
necessitatem (William of Ockham)

1 Introduction

In the Preface to his Lagrangian Analysis and Quantum Mechanics [22] Jean
Leray adds a Historical note where he tells us that [... In Moscow in 1967
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I.V. Arnold asked me my thoughts on Maslov’s work. The present book is an
answer to that question...]. One of the most original features of Leray’s “answer”
to Arnol’d’s question –and perhaps one of the most forgotten parts of Leray’s
mathematical work– is the introduction of a function m associating an integer to
each pair of Lagrangian paths with same origin and transversal end points. This
function –which Leray calls “Maslov index”– is uniquely characterized by two
properties. The first of these properties is of combinatorial nature: if Λ, Λ′, Λ
are three such Lagrangian paths defined on [0, 1] and then

m(Λ, Λ′) − m(Λ, Λ′′) + m(Λ′, Λ′′) = Inert(Λ(1), Λ′(1), Λ(1))

(Inert is the index of inertia of a triple of Lagrangian planes), and the second is
topological:

m(Λ, Λ′) is locally constant on its domain.

In [13] we have proposed an extension of Leray’s index to the non-transversal
case using the properties of the signature of a triple of Lagrangian planes, due
to Wall [32] and Kashiwara [24]. Our construction was taken up by Cappell,
Lee, and Miller in [2] who compared our index to other indices appearing in the
literature (beware: the reference “M. de Gosson” is misspelled “E. Gossen” in
this paper). We should add at this point that Dazord [7] had previously proposed
an extension of Leray’s index, using different methods; however (but neither
Dazord nor I were aware of this at that time) Leray himself had constructed an
extension of his index, in [23], using reduction techniques. We notice that Lion
and Vergne sketched in [24] the construction of an index which is identical with
ours (the aim of [13], which was preceded by two “Notes aux Comptes Rendus”
[11, 12], was actually to advertise and make totally rigorous the constructions
in [24]).

The aim of this paper is to propose an unifying approach to the theory of
Lagrangian and symplectic intersection indices (“Maslov indices”) bases on the
properties of the Leray index; we will show that the combinatorial and topolog-
ical properties of Leray’s index allow a simple and elegant construction of all
Maslov indices for Lagrangian and symplectic paths available in the literature.
In addition our approach leads to a very simple formula expressing the so-called
Hörmander index in terms of the signature of a triple of Lagrangian planes, and
to a redefinition of the Conley–Zehnder index for symplectic path with arbitrary
endpoints; this redefinition allows us to prove a general product formula.

We shortly discuss some related by other authors in the Conclusion to this
article.

Notation 1 (General) Let X = Rn; the vector space Z = X ×X∗ is endowed
with the canonical symplectic form defined by:

ω(z, z′) = 〈p, x′〉 − 〈p′, x〉

if z = (x, p), z′ = (x′, p′). The symplectic group of (Z, ω) will be denoted by
Sp(n). The unitary group U(n) is identified with a subgroup of Sp(n). We
denote by Lag(n) the Lagrangian Grassmannian of (Z, ω). We will write X =
X × 0 and X∗ = 0 × X∗.
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Notation 2 (Cohomological) Let E be a set, k ∈ Z+, and (G, +) an abelian
group. A k-cochains on E with values in G is a function f : Ek+1 −→ G. The
coboundary ∂f of a k-cochain is the (k + 1)-cochain defined by:

∂f(a0, ..., ak+1) =

k+1∑

j=0

(−1)jf(a0, ..., âj , ..., ak+1),

where the cap ˆ deletes the term it covers. We have ∂2f = 0. A k-cochain f
is a coboundary if there exists a cochain g such that f = ∂g; a cochain f is a
cocycle if ∂f = 0.

2 The Leray index

We denote by C`0(Lag(n)) the set of all continuous paths [0, 1] −→ Lag(n)

joining a given base point `0 to ` in Lag(n). Let
`0∼ be the equivalence relation

on C`0(Lag(n)) defined by Λ
`0∼ Λ′ if and only if Λ and Λ′ are homotopic with

fixed endpoints. Let πLag : Lag∞(n) −→ Lag(n) be the universal covering

of the Lagrangian Grassmannian; as a set Lag∞(n) = C`0(Lag(n))/
`0∼; for

`∞ ∈ Lag∞(n) we write πLag(`∞) = `, and we will say that `∞ covers `.

2.1 Leray’s index m

Using the intersection theory of Lefschetz chains, Leray constructs in [22], Ch.I,
§2.5, a function

m : CX∗(Lag(n)) × CX∗(Lag(n)) −→ Z

defined for all pairs (Λ, Λ′) with transversal endpoints; this function has the

following homotopy property: m(Λ, Λ′) = m(Λ′′, Λ′′′) if and only if Λ
`0∼ Λ′′ and

Λ′ `0∼ Λ′′′. We can thus view m as a function

m : {(`∞, `′∞) : ` ∩ `′ = 0} −→ Z.

Leray’s index is characterized by the two following properties:

m(`∞, `′∞) − m(`∞, `′′∞) + m(`′∞, `′′∞) = Inert(`, `′, `′′) (1)

((`, `′, `′′) covering (`∞, `′∞, `′′∞)), and

m is locally constant on its domain. (2)

The integer Inert(`1, `2, `3) is the index of inertia of the Lagrangian triple
(`, `′, `′′); it is is defined in the following way (Leray [22], Ch.I, §2.5): the
transversality condition ` ∩ `′ = `′ ∩ `′′ = `′′ ∩ ` = 0 being equivalent to
Z = `⊕ `′ = `′ ⊕ `′′ = `′′ ⊕ ` the relation z + z′ + z′′ = 0 (z ∈ `, z′ ∈ `′, z′′ ∈ `′′)
defines three quadratic forms z 7−→ ω(z′, z′′), z′ 7−→ ω(z′′, z), z′′ 7−→ ω(z, z′)
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such that ω(z′, z′′) = ω(z′′, z) = ω(z, z′). These quadratic forms have the same
index of inertia Inert(`, `′, `′′).

The function m (which Leray calls “Maslov index”) is very simple to describe
explicitly in when n = 1. We can identify Λ∞(1) with the set of all pairs
`(θ) = (eiθ, θ), θ ∈ R; we have πLag(`(θ)) = ` = eiθ, and

m(`(θ), `(θ′)) =

[
θ − θ′

2π

]
(3)

[·] being the integer part function. In the case n > 1 it can be explicitly com-
puted using a formula due to Souriau [30]. Let W (n, C) be the submanifold of
U(n, C) consisting of symmetric matrices:

W (n, C) =
{
u ∈ U(n, C) : u = uT

}
.

(uT = u∗ the transpose of u). The mapping

Lag(n) 3 ` = uX∗ 7−→ uuT ∈ W (n, C)

is a homeomorphism identifying Lag(n) with W (n, C) and Lag∞(n) with

W∞(n, C) =
{
(w, θ) : w ∈ W (n, C), det w = eiθ

}
.

Souriau’s formula says that

m(`∞, `′∞) =
1

2π

[
θ − θ′ + i TrLog(−w(w′−1))

]
+

n

2
; (4)

it is easily verified that this formula coincides with (3) when n = 1. The
logarithm in (4) is well defined because ` ∩ `′ = 0 if and only if +1 is not an
eigenvalue of w(w−

′1) (Leray [22], Ch.I, §2.2). The function m possesses in
addition following property: let γ and γ ′ be two elements of π1 [Lag(n)]. We
have

m(γ`∞, γ′`′∞) = m(`∞, `′∞) + m(γ) − m(γ′) (5)

where m(γ) is the Maslov index of γ ∈ π1 [Lag(n)] ∼= (Z, +); it is defined as
follows: the composition of the natural isomorphism π1 [Lag(n)] ∼= π1 [W (n, C)]
and of the morphism

π1 [W (n, C)] 3 [γ] 7−→
1

2πi

∮

γ

d(det w)

det w
∈ Z (6)

is an isomorphism

m : π1 [Lag(n)] 3 [γ]
∼=
7−→ m(γ) ∈ (Z, +). (7)
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2.2 The index µ and the Wall–Kashiwara signature

We now define an index µ by the formula

µ(`∞, `′∞) = 2m(`∞, `′∞) − n; (8)

when n = 1 we have, in view of (3),

µ(`(θ), `(θ′)) = 2

[
θ − θ′

2π

]

ant

where [k]ant = 1
2 ([k] − [−k]) is the antisymmetric part of the integer function.

Formula (1) becomes

µ(`∞, `′∞) − µ(`∞, `′′∞) + µ(`′∞, `′′∞) = τ(`, `′, `′′) (9)

where
τ(`, `′, `′′) = 2 Inert(`, `′, `′′) − n. (10)

One easily proves (de Gosson [13]) that τ(`, `′, `′′) = τ+ − τ− where τ+ (resp.
τ−) is the number of > 0 (resp. < 0) eigenvalues of the quadratic form

Q(z, z′, z′′) = ω(z, z′) − ω(z, z′′) + ω(z′, z′′); (11)

this identifies τ(`, `′, `′′) with the Wall–Kashiwara index [2, 24, 32]. (Also see
Py’s [27] interesting discussion of Wall’s contributions; also see the paper [1] of
Barge and Ghys where related notions such as Euler’s cocycle are studied in
detail.)

Remark 3 The signature τ is sometime called “Maslov index” in the literature.
This is however somewhat misleading: the Maslov index is defined on loops
(or paths) of Lagrangian planes, while τ depends on (triples of) points in the
Lagrangian Grassmannian.

The Wall–Kashiwara index τ is a totally antisymmetric 2-cocycle, that is
ε∗τ = (−1)sgn(ε)τ (ε any permutation of (`, `′, `′′)) and ∂τ = 0; it has the
following properties:

Let us mention the following properties of the signature:

• τ is a symplectic invariant:

τ(s`, s`, s`′′) = τ(`, `′, `′′) (12)

for all s ∈ Sp(n);

• Let M be a symmetric automorphism of Z and `M = {(x, Mx) : x ∈ X}.
We have `M ∈ Lag(n) and

τ(X∗, `M , X) = signM (13)

where sign M is the difference between the number of > 0 and < 0 eigen-
values of M ;
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• Let τ ′ and τ ′′ the signatures on Lag(n′) and Lag(n′′),. Then τ = τ ′ ⊕ τ ′′

is the signature on Lag(n), n = n′ + n′′, and

τ(`′1 ⊕ `′′1 , `′2 ⊕ `′′2 , `′3 ⊕ `′′3) = τ ′(`′1, `
′

2, `
′

3) + τ ′′(`′′1 , `′′2 , `′′3). (14)

Now, let us come to the crucial point: τ(`, `′, `′′) is defined for all triples
(`, `′, `′′); we may thus define µ(`∞, `′∞) for an arbitrary pair (`∞, `′∞) by choos-
ing `′′∞ ∈ Lag∞(n) such that `′′ ∩ ` = `′′ ∩ `′ = 0 and setting

µ(`∞, `′∞) = µ(`∞, `′′∞) − µ(`′∞, `′′∞) + τ(`, `′, `′′). (15)

In fact, using the cocycle property ∂τ = 0 one shows (de Gosson [13]) that
the right-hand side of (15) does not depend on the choice of `′′∞, justifying the
notation µ(`∞, `′∞) in the left-hand side. We will call µ the Leray index on
Lag∞(n).

Theorem 4 (i) The Leray index is the only function

µ : Lag∞(n) × Lag∞(n) −→ R

having the two following properties:

µ(`∞, `′∞) − µ(`∞, `′′∞) + µ(`′∞, `′′∞) = τ(`, `′, `′′) (16a)

µ is is locally constant on {(`∞, `′∞) : ` ∩ `′ = 0}; (16b)

(ii) In addition µ is locally constant on the sets

Lag2
∞(n; k) = {(`∞, `′∞) : dim(` ∩ `′) = k}

for 1 ≤ k ≤ n. (iii) We have

µ(γ`∞, γ′`′∞) = µ(`∞, `′∞) + 2(m(γ) − m(γ′)) (17)

for all γ, γ′ ∈ π1 [Lag(n)].

Proof. The statement (i) was proven in de Gosson [13]. (The uniqueness
statement is obvious: if δ is the difference between two functions satisfying
conditions (16) then δ(`∞, `′∞) = δ(`∞, `′′∞) − δ(`′∞, `′′∞) for all `′′∞ hence δ is
locally constant on Lag∞(n)×Lag∞(n); since Lag∞(n) is connected δ is in fact
constant; taking `∞ = `′∞ that constant is 0.) (ii) The kernel of the quadratic
form Q is isomorphic to (` ∩ `′) × (`′ ∩ `′′) × (`′′ ∩ `) ([24], Proposition 1.9.3)
hence τ is locally constant on each set Lag2

∞(n; k)×Lag2
∞(n; k′)×Lag2

∞(n; k′′).
Let now (`∞, `′∞, `′′∞) move continuously in such a way that dim(`∩ `′) = k and
` ∩ `′ = `′′ ∩ ` = 0. Then µ(`∞, `′′∞) and µ(`′∞, `′′∞) remain constant in view of
property (2) of m and τ(`, `′, `′′) also remains constant. The claim follows in
view of (15). (iii) Formula (17) immediately follows from (5), the definition of
µ, and the fact that πLag(γ`∞) = `.

Let Sp∞(n) be the universal covering group of Sp(n). As a set, Sp∞(n)
consists of the homotopy classes s∞ of paths in Sp(n) joining the identity I to
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s. The projection πSp : Sp∞(n) −→ Sp(n) associates to s∞ its endpoint s. Let
StX∗(n) be the isotropy subgroup of X∗ in Sp(n). The fibration

Sp(n)/ StX∗(n) = Lag(n) (18)

defines an isomorphism

Z ∼= π1 [Sp(n)] −→ π1 [Lag(n)] ∼= Z

which is multiplication by 2 on Z. It follows (Leray [22], Theorem 3,3o, p.36)
that the action of Sp(n) on Lag(n) can be lifted to a transitive action of the
universal covering Sp∞(n) on the Maslov bundle Lag∞(n) such that

(αs∞)`∞ = β2(s∞`∞) = s∞(β2`∞) (19)

for all (s∞, `∞) ∈ Sp∞(n)×Lag∞(n); α (resp. β) is the generator of π1 [Sp(n)]
(resp. π1 [Lag(n)]) whose image in Z is +1; note that the Maslov index of β is
m(β) = 1.

The Leray index has the following properties of symplectic invariance: for
all s∞, `∞, `′∞ we have

µ(s∞`∞, s∞`′∞) = µ(`∞, `′∞). (20)

Set in fact, for fixed s∞, µ′(`∞, `′∞) = µ(s∞`∞, s∞`′∞). The index satisfies
µ′ satisfies condition (16a) because of the symplectic invariance (12) of the
signature, it also satisfies condition (16b) because s` ∩ s`′ = 0 is equivalent to
` ∩ `′ = 0, hence µ′ = µ.

Let us finally mention the following dimensional additivity property of the
Leray index: Let µ′ and µ′′ be the indices on Lag∞(n′) and Lag∞(n′′). Identi-
fying Lag∞(n′) ⊕ Lag∞(n′′) with a submanifold of Lag∞(n), n = n′ + n′′, we
have µ = µ′ ⊕ µ′′, that is:

µ(`′1,∞ ⊕ `′′1,∞,, `
′

2,∞ ⊕ `′′2,∞,) = µ′(`′1,∞, `
′

2,∞,) + µ′′(`′′1,∞, `′′2,∞). (21)

This property readily follows from the dimensional additivity property (14) of
the signature τ and definitions (15) and (8) of µ (that Leray’s original index m is
additive immediately follows from Souriau’s formula (4), identifying W (n′, C)⊕
W (n′′, C) with a submanifold of W (n, C) in the obvious way).

3 Maslov indices for Lagrangian paths

3.1 Axiomatic definition

For 0 ≤ k ≤ n the set

Lag`(n; k) = {`′ ∈ Lag(n) : dim(` ∩ `′) = k}

is the stratum of Lag(n) of order k with respect to `. The Lag`(n; k) are con-
nected submanifolds of Lag(n), of codimension k(k + 1)/2 (see for instance
Trèves [31]).
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Let [a, b] be an arbitrary compact interval and C(Lag(n)) the set of all con-
tinuous mappings Λ : [a, b] −→ Lag(n). We will write Λab when we want to
emphasize that Λ is defined on [a, b], and set Λ(a) = `a, Λ(b) = `b

A “Maslov index” on Lag(n) is a mapping

Mas : C(Lag(n)) × Lag(n) 3 (Λ, `) 7−→ Mas(Λ; `) ∈ 1
2Z

having the following four properties:

(L1) Homotopy invariance: If the paths Λ and Λ′ in Lag(n) have same end-
points, then Mas(Λ; `) = Mas(Λ′; `) if and only if Λ and Λ′ are homotopic
with fixed endpoints;

(L2) Additivity: If Λab and Λ′

bc are two consecutive paths, the concatenation
Λ′′

ac = Λab ∗ Λ′
bc satisfies

Mas(Λ′′

ac, `) = Mas(Λab, `) + Mas(Λ′

bc, `)

for all ` ∈ Lag(n);

(L3) Zero in strata: If Λ(t) ∈ Lag`(n; k) for all t, then Mas(Λ, `) = 0;

(L4) Restriction to loops: If Λaa is a loop in Lag(n), then Mas(Λaa; `) =
m(Λaa) (the Maslov index (7) of Λaa).

The two following properties are an immediate consequence of the axioms
above:

(L5) Antisymmetry: Mas(Λo
ba, `) = −Mas(Λab, `) where Λo

ba is the inverse
path of Λab: Λo

ba(t) = Λab(a + b − t) for t ∈ [a, b];

[Follows from (L2) and (L4) noting that the Maslov index of a contractible loop
is 0];

(L6) Stratum homotopy: if there exits a continuous mapping h : [0, 1] ×
[0, 1] −→ Lag(n) such that h(t, 0) = Λ(t), h(t, 1) = Λ′(t) for 0 ≤ t ≤ 1
and two integers k0, k1 (0 ≤ k0, k1 ≤ n) such that h(0, s) ∈ Lag`(n; k0)
and h(1, s) ∈ Lag`(n; k1) for 0 ≤ s ≤ 1, then Mas(Λ; `) =Mas(Λ′; `);

[Define paths Γ0 and Γ1 joining Λ′(0) to Λ(0) and Λ(1) to Λ′(1), respectively,
by Γ0(s) = h(0, 1− s) and Γ1(s) = h(1, s) (0 ≤ s ≤ 1). Then Λ ∗ Γ1 ∗Λ′o ∗ Γ0 is
homotopic to a point, and hence, in view of (L2) and (L4):

Mas(Λ, `) + Mas(Γ1, `) + Mas(Λ′o, `) + Mas(Γ0, `) = 0.

But, in view of (L3) we have Mas(Γ1, `) = Mas(Γ0, `) = 0, hence Mas(Λ, `) +
Mas(Λ′o, `) = 0 so that Mas(Λ, `) = Mas(Λ′, `) using (L3)].
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3.2 Existence and uniqueness up to a coboundary

Let us state and prove the main result of this section:

Theorem 5 (i) For Λab ∈ C(Lag(n)) set Λ(a) = `a and Λ(b) = `b. Let
`a,∞ ∈ Lag∞(n) be the homotopy class of an arbitrary path Λ(a) joining the
base point `0 of Lag∞(n) to `a and `b,∞ ∈ Lag∞(n) be the homotopy class of
the concatenation Λ(a) ∗ Λab (thus πLag(`a,∞) = `a and πLag(`b,∞) = `b). Let
`∞ ∈ Lag∞(n), πLag(`∞) = `. The formula

MasL(Λab; `) = 1
2 (µ(`b,∞, `∞) − µ(`a,∞, `∞)) (22)

defines a Maslov index with respect to `. (ii) MasL has the following property:
let Λ′ ∈ C(Lag(n′)) and Λ′′ ∈ C(Lag(n′′)) and identify Λ′ ⊕ Λ′′ with an element
of C(Lag(n)) with n = n′ + n′′. Then

MasL(Λ′ ⊕ Λ′′; `′ ⊕ `′′) = Mas′L(Λ′; `′) + Mas′′L(Λ′′; `′′). (23)

(iii) Let Mas be an arbitrary Maslov index on Lag(n); there exists a mapping
f : {0, 1, ..., n} −→ 1

2Z (only depending on Mas) such that

Mas(Λ; `) = MasL(Λ; `) + f(dim(`b ∩ `)) − f(dim(`a ∩ `)). (24)

Proof. (i) We first note that the left-hand side of (22) does not depend on the
choice of `a,∞ and `∞: if `′a,∞ and `′∞ correspond to other choices of paths,
then there exist integers γ and γ ′ in π1 [Lag(n)] such that `′a,∞ = γ`a,∞ and
`′∞ = γ′`∞. Of course we also have `′b,∞ = γ′`b,∞ hence, using property (5) of
the Leray index,

µ(`b,∞, `∞) − µ(`a,∞, `∞) = µ(`′b,∞, `′∞) − µ(`′a,∞, `′∞).

Let us now show that MasL satisfies the axioms (L1)–(L4) defining a Maslov
index. If Λab and Λ′

ab are homotopic with fixed end points then `′b,∞ = `b,∞

where `′b,∞ is defined as `b,∞, replacing Λab by Λ′

ab, hence

MasL(Λab; `) = MasL(Λ′

ab; `).

Suppose conversely that two paths Λab and Λ′

ab have same endpoints, and that
MasL(Λab; `) =MasL(Λ′

ab; `). The concatenations Λ(a) ∗Λab and Λ(a) ∗Λ′

ab have
the same endpoints and we can therefore find γ ∈ π1 [Lag(n)] such that `b,∞ =
γ`′b,∞ where `b,∞ and `′b,∞ are the homotopy classes of Λ(a) ∗Λab and Λ(a) ∗Λ′

ab.
In view of formula (17) in Proposition 4 we have µ(`′b,∞, `∞) = µ(`b,∞, `∞) +
2m(γ); since MasL(Λab; `) =MasL(Λ′

ab; `) we must thus have m(γ) = 0 hence γ is
homotopic to a point; it follows that `b,∞ = `′b,∞ so that Λ(a)∗Λab and Λ(a)∗Λ′

ab

are homotopic, and Λab and Λ′

ab are therefore also homotopic. We have proven
that (L1) holds. That property (L2) is satisfied by MasL is obvious. Assume
now that Λ(t) ∩ ` = 0 for a ≤ t ≤ b. Then µ(`b,∞, `∞) = µ(`a,∞, `∞) in view of
the topological property (16b) of µ, hence property (L3). That (L4) is satisfied
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by MasL immediately follows from formula (17). (ii) Formula (23) immediately
follows from formula (22) using the additivity property (21) of the Leray index µ.
(iii) In view of (L1) and (L4) the difference Mas(Λ; `)−MasL(Λ; `) only depends
on the triple (`, `a, `b) let us denote it by δ`(`a, `b). We claim that δ` is an
antisymmetric cocycle: δ`(`a, `b) = −δ`(`b, `a) and ∂δ` = 0. The antisymmetry
is clear by (L5). To prove that ∂δ` = 0, let Λab, Λbc, and Λca be three paths
joining `a to `b, `b to `c, and `c to `a, respectively. In view of (L1) and (L4) we
have

Mas(Λab; `) − Mas(Λac; `) + Mas(Λbc; `) = m(γ)

MasL(Λab; `) − MasL(Λac; `) + MasL(Λbc; `) = m(γ)

where γ is the loop Λab ∗Λbc ∗Λca and m(γ) its Maslov index. This proves that
∂δ` = 0. It follows that

Mas(Λ; `) − MasL(Λ; `) = δ`(`a, `) − δ`(`b, `).

In view of Axiom (L3) the function `a 7−→ δ`(`a, `) is locally constant on each
stratum; formula (24) follows.

The following result describes the effect of a change of Lagrangian plane `
in the Maslov index; it will be useful for the study of the Hörmander index in
§3.3.2:

Proposition 6 For all `, `′ in Lag(n) we have

Mas(Λab; `) − Mas(Λab; `
′) = τ(`b, `, `

′) − τ(`a, `, `′). (25)

Proof. In view of formulas (22) and (24) in Theorem 5 we have

Mas(Λab; `) − Mas(Λab; `
′) = µ(`b,∞, `∞) − µ(`b,∞, `′∞)

− (µ(`a,∞, `∞) − µ(`a,∞, `′∞));

in view of property (16a) of µ we have

µ(`b,∞, `∞) − µ(`b,∞, `′∞) = −µ(`∞, `′∞) + τ(`b, `, `
′)

µ(`a,∞, `∞) − µ(`a,∞, `′∞) = −µ(`∞, `′∞) + τ(`a, `, `′)

hence (25).

Corollary 7 Let Λab, Λbc, and Λca be paths in Lag(n) joining `a to `b, `b to
`c, and `c to `a, respectively. The following “triangle equality”:

Mas(Λab; `c) + Mas(Λbc; `a) + Mas(Λca; `b) = τ(`a, `b, `c) (26)

holds for every Maslov index Mas on Lag(n).

Proof. This is an immediate consequence of (24) and property (9) of µ.

Remark 8 Formula (26) can be used to define a signature in infinitely dimen-
sional symplectic spaces, as soon as a Maslov index (with adequate properties)
is known.
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3.3 The Robbin–Salamon and Hörmander indices

3.3.1 The Robbin–Salamon index

In [28] Robbin and Salamon have constructed, using differentiability properties,
a mapping MasRS : C(Lag(n)) × ` −→ 1

2Z which they call “Maslov index”. In
addition to (L1)–(L4) that index satisfies the following property:

(L7) Spectral flow formula: Let the path ΛM : [a, b] −→ Lag(n) be defined
by ΛM (t) = {(x, M(t)x) : x ∈ X} where M(t) is a symmetric linear
automorphism of Z depending continuously on t ∈ [a, b]. Then

MasRS(ΛM , X) = 1
2 (sign M(b) − sign M(a)). (27)

This condition identifies MasRS with MasL:

Proposition 9 MasL is the only Maslov index on Lag(n) satisfying (L7); hence
MasRS = MasL.

Proof. (See de Gosson [14] for an alternative proof). In view of formula (24)
in Theorem 5 there exists f such that

MasRS(ΛM ; `) = MasL(ΛM ; `) + f(dim(`b ∩ `)) − f(dim(`a ∩ `)).

Set ΛM (a) = `a, ΛM (b) = `b. Since ΛM (t) ∩ X∗ = 0 for a ≤ t ≤ b) we
have µ(`b,∞, X∗

∞)) = µ(`a,∞, X∗
∞) in view of property (16b) of µ, and hence

Mas(ΛM ; X∗) = 0 in view of (L6) for every Maslov index Mas. Choosing in
particular Mas= MasL we have, in view of property (16a) of µ,

µ(`a,∞, X∞) = µ(`a,∞, X∗

∞) − µ(X∞, X∗

∞) + τ(`a, X, X∗)

µ(`b,∞, X∞) = µ(`b,∞, X∗

∞) − µ(X∞, X∗

∞) + τ(`b, X, X∗)

hence, by subtraction,

MasL(ΛM , X) = 1
2 (τ(`b, X, X∗) − τ(`a, X, X∗))

= 1
2 (sign M(b) − signM(a))

where the second equality follows from the antisymmetry of τ and formula (13);
MasL thus satisfies (L7), as claimed. Assume that Mas is another Maslov index
satisfying satisfying (L7). Then ∆ = Mas − MasL satisfies

∆(ΛM , X) = f(dim(`b ∩ X)) − f(dim(`a ∩ X)) = 0 (28)

for some function f : {0, 1, ..., n} −→ 1
2Z only depending on Mas. Since

dim(ΛM (t) ∩ X) = n − rankM(t) can take any prescribed value in {0, 1, ..., n}
by choosing adequately M(t) it follows that dim(`a ∩ X) and dim(`b ∩ X) can
take arbitrary values in {0, 1, ..., n} hence we must have f = 0.
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3.3.2 The Hörmander index

In his study of pseudo-differential operators, Hörmander introduces in [21] a
mapping

Hor : Lag(n)4 3 (`1, `2, `3, `4) −→ Hor(`1, `2, `3, `4) ∈
1
2Z

(this index is also discussed in Duistermaat [8]). Robbin and Salamon [28] show
that the Hörmander index is related to their index MasRS by the formula

Hor(`1, `2, `3, `4) = MasRS(Λ34, `2) − MasRS(Λ34, `1) (29)

where Λ34 is an arbitrary path in Lag(n) joining `3 to `4. In particular Hor is
a symplectic invariant:

Hor(s`1, s`2, s`3, s`4) = Hor(`1, `2, `3, `4)

for every s ∈ Sp(n).

Proposition 10 The Hörmander index Hor is given by

Hor(`1, `2, `3, `4) = 1
2 (τ(`1, `2, `3) − τ(`1, `2, `4)); (30)

in particular it does not depend on the choice of the path Λ34.

Proof. In view of formula (25) we can rewrite (29) as

Hor(`1, `2, `3, `4) = 1
2 (τ(`4, `2, `1) − τ(`3, `2, `1))

which is (30) in view of the antisymmetry of the signature τ .

Remark 11 Formula (30) generalizes formula (3) of Theorem 3.5 in Robbin
and Salamon [28] to the non-transversal case: it makes sense for all `j, j ∈
{1, 2, 3, 4}.

4 Symplectic Paths

The intersection theory for symplectic paths is very similar to that developed
above for Lagrangian paths.

4.1 The index µ`

We denote by CI(Sp(n)) the set of all continuous paths [0, 1] −→ Sp(n) starting
from the identity I in Sp(n). We will write Σ ∼ Σ′ when Σ, Σ′ ∈ CI(Sp(n))
are homotopic with fixed endpoint. Denoting by πSp : Sp∞(n) −→ Sp(n) the
universal covering of Sp(n) we have the identification Sp∞(n) = CI(Sp(n))/ ∼.
If s = πSp(s∞), s∞ ∈ Sp∞(n), we will say that s∞ covers s.

Let (Σ, `) ∈ CI(Sp(n)) × Lag(n) we define

µ`(Σ, `) = µ(ΣΛ, Λ) (31)
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where Λ is an arbitrary element of C`0(Lag(n)) joining the base point `0 to
`. Equivalently, µ` can be viewed as the mapping Sp∞(n) −→ Z defined, for
(s∞, `) ∈ Sp∞(n) × Lag(n), by

µ`(s∞) = µ(s∞`∞, `∞) (32)

where `∞ covers `. The notation µ` is motivated by following observations: as-
sume that `′∞ ∈ (πLag)−1(`), then there exists k ∈ Z such that `′∞ = βk`∞
and hence, taking (19) and formula (17) in Proposition 4(iii) into account,
µ(s∞`′∞, `′∞) = µ(s∞`∞, `∞). We will call µ` the Leray index on Sp∞(n) rel-
atively to `. Setting τ`(s, s

′) = τ(`, s`, ss′`) the index µ` is the only mapping
Sp∞(n) −→ Z satisfying the two following properties:

µ`(s∞s′∞) = µ`(s∞) + µ`(s
′

∞) + τ`(s, s
′) (33a)

µ` is is locally constant on {s∞ : s` ∩ ` = 0} (33b)

(these properties immediately follow from the properties (16a), (16b) of µ; for
the uniqueness see de Gosson [13]).

Assume that s and s′ are such that

sX∗ ∩ X∗ = s′X∗ ∩ X∗ = 0 (34)

and identify s and s′ with their matrices

(
A B
C D

)
,

(
A′′ B′′

C ′′ D′′

)
in the canonical

symplectic basis of (X ⊕ X∗, σ) this condition is equivalent to det B 6= 0 and
det B′ 6= 0. We have shown in [15] (also see de Gosson [17], p. 216) that

τX∗(s, s′) = sign(B−1A + D′(B′)−1);

note that B−1A and D′(B′)−1 are symmetric because s and s′ are symmet-
ric. Performing explicitly the matrix multiplication ss′ one sees that B−1A +
D′(B′)−1 = B−1B′′(B′)−1 hence the formula above can be written

τX∗(s, s′) = sign(B−1B′′(B′)−1). (35)

Remark 12 In [28] Robbin and Salamon introduce a quadratic form they de-
note by Q(s, s′), and call it “composition form”. In [15] we proved, using formula
(13) that if condition (34) holds then Q(s, s′) = τX∗(s, s′); notice that τX∗(s, s′)
is however defined for arbitrary s, s′ in Sp(n).

4.2 Symplectic intersection indices

For ` ∈ Lag(n) and 0 ≤ k ≤ n we set

Sp`(n; k) = {s ∈ Sp(n) : dim(s` ∩ `) = k}

(SpX∗(n; k) is the preimage of Lag`(n; k) under the fibration Sp(n)/ StX∗(n) =
Lag(n)). Sp`(n; k) is a submanifold of Sp(n) with codimension k(k + 1)/2.
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Let us denote by C(Sp(n)) the set of all continuous mappings Σ : [a, b] −→
Sp(n). By definition, the symplectic Maslov index on Sp(n) associated to a
Maslov index Mas is the mapping

Symp : C(Sp(n)) × Lag(n) 7−→ 1
2Z

defined by
Symp(Σ; `) = Mas(Σ`; `)

where Σ` is the path in Lag(n) defined by Σ`(t) = Σ(t)`. The properties of the
index Symp immediately follow from the properties (L1)–(L6) of Mas:

(S1) Homotopy invariance: If the paths Σ and Σ′ have the same endpoints,
then SympL(Σ; `) = SympL(Σ′; `) if and only if Σ and Σ′ are homotopic
with fixed endpoints;

(S2) Additivity: If Σ and Σ′ are two consecutive paths, then for all ` ∈
Lag(n):

Symp(Σ ∗ Σ′, `) = Symp(Σ, `) + Symp(Σ′, `)

(S3) Zero in strata: If Σ(t) ∈ Sp`(n; k) for all t, then SympL(Σ, `) = 0;

(S4) Restriction to loops: If Σ ∈ C(Sp(n)) is a loop, then Symp(Σ; `) =
m(Σ) (the Maslov index of Σ).

(S5) Antisymmetry: Symp(Σo, `) = − Symp(Σ, `) where Σo(t) = Σ(a+b− t)
if Σ is defined on [a, b]

(S6) Stratum homotopy: if there exits a continuous mapping h : [0, 1] ×
[0, 1] −→ Sp(n) such that h(t, 0) = Σ(t), h(t, 1) = Σ′(t) for 0 ≤ t ≤ 1
and two integers k0, k1 (0 ≤ k0, k1 ≤ n) such that h(0, s) ∈ Sp`(n; k0) and
h(1, s) ∈ Sp`(n; k1) for 0 ≤ s ≤ 1, then Symp(Σ; `) = Symp(Σ′; `).

Suppose that Mas is the Maslov index MasL defined by formula (22) in
Theorem 5; let us denote the corresponding symplectic Maslov index by SympL.
We have

SympL(Σ; `) = 1
2 (µ`(sb,∞) − µ`(sa,∞)) (36)

where sa,∞ and sb,∞ are defined as follows (cf. Theorem 5(i)): let sa = Σ(a),
sb = Σ(b). Then sa,∞ is the homotopy class of an arbitrary path Σ0a in Sp(n)
joining the base point of Sp∞(n) to sa, and sb,∞ is that of the concatenation
Σ0a ∗ Σ.

The properties (S1)–(S6) listed above do not characterize uniquely Symp.
However:

Proposition 13 Define Σab ∈ C(Sp(n)) by Σab(t)(x, p) = (x, M(t)x) where
M(t) is a symmetric endomorphism of Rn. Then

SympL(Σ; X) = 1
2 (sign M(a) − signM(b)) (37)

and SympL is the only symplectic Maslov index having this property.
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Proof. Formula (37) is just a restatement of property (27) of MasL = MasRS.

5 The Conley–Zehnder index

The Conley–Zehnder is an index of symplectic paths generalizing the usual
Morse index for closed geodesics on Riemannian manifolds. It arises from trivi-
alizing a symplectic vector bundle over a periodic orbit of a Hamiltonian vector
field on a symplectic manifold (or the Reeb vector field on a contact manifold).
The Conley–Zehnder was originally designed to compute the spectral flow of the
Cauchy–Riemann-type operators arising in Floer homology (Salamon and Zehn-
der [29]). It plays a crucial role in the study of periodic orbits in Hamiltonian
systems (Long [25], Long and Zhu [26]) and in their applications to semiclassical
mechanics via “Gutzwiller’s formula” and its variants (see de Gosson [18] and
the references therein).

5.1 Definition, uniqueness, and existence

The subsets of Sp(n) defined by

Sp+(n) = {s ∈ Sp(n) : det(s − I) > 0}

Sp−(n) = {s ∈ Sp(n) : det(s − I) < 0}

Sp0(n) = {s ∈ Sp(n) : det(s − I) = 0}

partition Sp(n); moreover Sp+(n) and Sp−(n) are connected (see Conley–Zehnder
[6]). Let

Sp∗(n) = Sp+(n) ∪ Sp−(n) = Sp(n) \ Sp0(n).

The Conley–Zehnder index is the unique mapping iCZ associating to every
path Σ : [0, b] −→ Sp(n) such that Σ(0) = I and Σ(b) ∈ Sp∗(n) an integer, and
having the three following properties:

(CZ1) Antisymmetry: We have iCZ(Σ−1) = −iCZ(Σ) (where Σ−1(t) =
(Σ(t))−1 for t ∈ [0, b]);

(CZ2) Homotopy invariance: iCZ(Σ) does not change when Σ is contin-
uously deformed in such a way that its endpoint stays in Sp+(n) (or
Sp−(n));

(CZ3) Action of π1[Sp(n)]: We have iCZ(α ∗ Σ) = iCZ(Σ) + 2.

Before we show the existence and uniqueness of the Conley–Zehnder index,
let us remark that the homotopy invariance property (CZ2) implies, in partic-
ular, that iCZ(Σ) = iCZ(Σ′) if the symplectic paths Σ and Σ′ are homotopic
with fixed endpoints. The integer iCZ(Σ) thus only depends on the homotopy
class s∞ ∈ Sp∞(n) of Σ. We can thus view the Conley–Zehnder index as a
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mapping iCZ : Sp∗

∞(n) −→ Z where Sp∗

∞(n) = π−1(Sp∗(n)). We will therefore
write indifferently iCZ(Σ) or iCZ(s∞).

Let us equip the vector space Z⊕Z with the symplectic form ω	 = ω⊕(−ω).
We denote by Sp	(2n) and Lag	(2n) the corresponding symplectic group and
Lagrangian Grassmannian, and by µ	 (resp. Mas⊕L ) the Leray (resp. Maslov)
index on Lag	∞(2n); the corresponding Leray index on Sp	

∞(2n) relative to ∆ ∈
Lag	(2n) (cf. the notation (32)) is µ	

∆.

Proposition 14 The Conley–Zehnder index exists, is unique, and is given by
the formula

iCZ(Σ) = Mas⊕
L

(Σ	∆; ∆) (38)

where Σ	 = I ⊕ Σ and ∆ = {(z, z) : z ∈ R2n}; equivalently

iCZ(Σ) = 1
2µ	((I ⊕ s1)∞∆∞, ∆∞) (39)

where (I⊕s)∞ is the homotopy class in Sp	(2n) of the path I⊕Σ ∈ C(Sp	(2n)),
that is

iCZ(Σ) = 1
2µ	

∆((I ⊕ s1)∞). (40)

Proof. The equivalence between the definitions (38), (39), (40) is obvious. Let
us first prove the uniqueness statement. Let δCZ be the difference between two
such indices. In view of (CZ3) we have δCZ(αk ∗ Σ) = δCZ(Σ) for all k ∈ Z

hence δCZ(Σ) only depends on the endpoint s of Σ; δCZ is thus a function
δCZ : Sp∗(n) −→ Z. Property (CZ2) then implies that δCZ is constant on both
Sp+(n) and Sp−(n). Since det(s−1 − I) = det(s − I) the automorphisms s and
s−1 always belong to the same set Sp+(n) or Sp−(n) if det(s− I) 6= 0, property
(CZ1) implies that f must be zero on Sp∗(n). Let us prove that formula (38)
indeed defines a Conley–Zehnder index. That (CZ1) is satisfied follows at once
from the equality (s	∞)−1 = (I ⊕ s−1)∞ and the antisymmetry of µ	

∆. To
check property (CZ2) it suffices to observe that to the generator α of π1[Sp(n)]
corresponds the generator I∞⊕α of π1[Sp	(2n)] (I∞ the constant path through
I ∈ Sp(n)), and then to apply formula 17 in Proposition 4. Let us finally prove
that (CZ3) holds as well. Assume that s and s′ belong to, say, Sp+(n). Let Σ be
a path joining I to s in Sp+(n), and Σ′ a path joining s to s′ in Sp+(n). Let Σ′

t′

be the restriction of Σ′ to an interval [0, t′], t′ ≤ t and consider the concatenation
Σ ∗ Σ′

t′ . We have det(Σ(t) − I) > 0 for all t ∈ [0, t′] hence Σ(t)∆ ∩ ∆ 6= 0 as
t varies from 0 to 1. It follows from the fact that µ	

∆ is locally constant on
{s	∞ : s	∆ ∩ ∆ = 0} that the function t 7−→ µ	

∆(s	∞(t)) is constant, and hence

µ	

∆(s	∞) = µ	

∆(s	∞(0)) = µ	

∆(s	∞(1)) = µ	

∆(s′	∞)

which was to be proven.
Formula (38) not only defines iCZ(Σ) when the endpoint of Σ lies in Sp0(n);

it actually makes sense for arbitrary paths Σ ∈ CI(Sp(n)).
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5.2 A product formula

If s ∈ Sp∗(n) then s − I is invertible and we may define

Ms =
1

2
J(s + I)(s − I)−1. (41)

One verifies without difficulty that Ms is a symmetric matrix; in [16] we called
Ms the symplectic Cayley transform of s. (It plays an important role in deter-
mining the (covariant) Weyl symbol of metaplectic operators, as we showed in
[16]). The notion has been generalized in Giambò and Girolimetti, elaborating
on our joint work with Piccione [19].

We will write
τ	

∆ (s	, s′	) = τ	(∆, s	∆, s	s′	∆).

Theorem 15 Let Σ, Σ′ ∈ CI(Sp(n)) and define ΣΣ′ ∈ CI(Sp(n)) by ΣΣ′(t) =
Σ(t)Σ′(t) for t ∈ [0, 1]. (i) We have

iCZ(ΣΣ′) = iCZ(Σ) + iCZ(Σ′) + 1
2τ	

∆ (s	, s′	) (42)

where s = Σ(1) and s′ = Σ(1). (ii) If s and s′ are in Sp∗(n) then

iCZ(ΣΣ′) = iCZ(Σ) + iCZ(Σ′) + 1
2 sign(Ms + Ms′) (43)

where Ms = 1
2J(s + I)(s − I)−1.

Proof. (i) Formula (42) immediately follows from (39) applying property (33a)
to µ	

∆. Assume that the endpoints s, s′ are in Sp∗(n). (ii) To prove (43) we
need to show that when det(s − I) 6= 0 and det(s′ − I) 6= 0 then

τ	(∆, s	∆, s	s′	∆) = sign(Ms + Ms′).

This can be done in the following way (we only sketch the argument since we
gave a detailed proof ([18])). In view of (39) and the product property (33a) we
have

ν(s∞s′∞) = ν(s∞) + ν(s′∞) + 1
2τ	

∆ (s	, s′	)

where s	 = I ⊕ s, s′	 = I ⊕ s′. One then uses the properties of the Wall–
Kashiwara signature to calculate explicitly τ	

∆ (s	, s′	); one finds (after some
rather long calculations) that it is the signature of the quadratic form Q(z) =〈
(Ms + Ms′)−1z, z

〉
on R

2n that is sign(Ms + Ms′).

5.3 Relation with Morse’s index of concavity

Assume that the endpoint s of Σ ∈ CI(Sp(n)) satisfies the condition (34), that

is sX∗ ∩X∗ = 0 and identify again s with

(
A B
C D

)
. The quadratic form W on

X × X defined by

W (x, x′) = 1
2DB−1x2 −

〈
B−1x, x′

〉
+ 1

2B−1Ax′2
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is called the generating function of s; in fact it is easy to check that the relation
(x, p) = s(x′, p′) is equivalent to p = ∂xW (x, x′) and p′ = −∂x′W (x, x′).

In [18] we proved the following result:

Theorem 16 Assume that the endpoint s =

(
A B
C D

)
of Σ ∈ CI(Sp(n)) is such

that det B 6= 0. Then

iCZ(Σ) = 1
2 (µX∗(Σ) + signWxx) (44)

where
Wxx = DB−1 − B−1 − (BT )−1 + B−1A (45)

is the Hessian matrix of the quadratic form x 7−→ W (x, x).

The proof of formula (44) is rather lengthy, and makes repeated use of the
properties of the signature cocycle τ so we do not duplicate it here.

The index of inertia Inert Wxx of the quadratic form x 7−→ W (x, x) is called
index of concavity ; it appears in Morse theory.

6 Concluding remarks

In addition to their simplicity, the constructions of the various intersection in-
dices I have exposed have a conceptual appeal, in the sense that they do not
make use of any supplementary hypothesis on the paths that are considered. In
particular, there is no need to use any property of differentiability: the approach
using Leray’s index µ is purely combinatorial and topological. It is precisely the
combinatorial property (16a) which makes it easy to use in all forms of practical
calculations.

Clerc and Ørsted [3], Clerc [4], Clerc and Koufany [5] have extended the
Leray index (and the associated Kashiwara signature) to Shilov boundary of
Hermitian symmetric spaces of tube type. These constructions are highly non-
trivial, and deserve to be studied further. For instance, is there an analogue of
a Conley–Zehnder index in their context?

Professor Chaofeng Zhu (Nankai) has suggested that the methods used in
this paper can be extended to the case of infinitely dimensional symplectic
Hilbert spaces. We will come back to this possibility in future work; for pro-
gresses in the infinite-dimensional case see the paper [9] by Furutani.
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