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Abstract. Let G be a one-ended group acting discretely and
co-compactly on a CAT(0) space X . We show that ∂X has no
cut points and that one can detect splittings of G over two-ended
groups and recover its JSJ decomposition from ∂X .

We show that any discrete action of a group G on a CAT(0)
space X satisfies a convergence type property. This is used in the
proof of the results above but it is also of independent interest.
In particular, if G acts co-compactly on X , then one obtains as a
Corollary that if the Tits diameter of ∂X is bigger than 3π

2
then

it is infinite and G contains a free subgroup of rank 2.

1. Introduction

The purpose of this paper is to generalize results about boundaries
and splittings of hyperbolic groups in the case of CAT (0) groups. Be-
fore stating our results we summarize what is known in the hyperbolic
case.

Bestvina and Mess ([5]) showed that if the boundary of a one-ended
hyperbolic group does not have a cut point then it is locally connected.
They asked whether the boundary of a one-ended hyperbolic group
can contain a cut point. The negative answer to this is mainly due
to Bowditch ([6], [7], [8]) with contributions by Swarup and Levitt (
[26], [18]). Bowditch [6] further showed that the boundary of a one-
ended hyperbolic group has local cut points if and only if either the
group splits over a 2-ended group or it is a hyperbolic triangle group.
He deduced from this a canonical JSJ decomposition for hyperbolic
groups (compare [25]).

We remark that in the CAT(0) case boundaries are not necessarily
locally connected (e.g. if G = F2 × Z, where F2 is the free group
of rank 2, the boundary is a suspension of a Cantor set, hence it is
not locally connected). However the question whether the boundaries
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have cut points makes sense in this case too. Indeed the second author
showed that boundaries have no cut points under the assumption that
the group does not contain an infinite torsion subgroup ([27]).

To state our results we recall some terminology. An action of a group
G on a space X is called proper if for every compact K ⊂ X, the set
{g ∈ G : g(K) ∩ K 6= ∅} is finite. An action of a group G on a space
X is called co-compact if the quotient space of X by the action of
G, X/G is compact. An action of a group G on a metric space X is
called geometric if G acts properly, co-compactly by isometries on X.
It follows that G is quasi-isometric to X, that is they have the same
coarse geometry. If Z is a compact connected metric space we say that
c is a cut point of Z if Z − c is not connected. We say that a pair of
points {a, b} is a cut pair of Z if Z − {a, b} is not connected.

We show the following.

Theorem 1. Let G be a one-ended group acting geometrically on the
CAT(0) space X. Then ∂X has no cut points.

We note that as Croke-Kleiner ([14]) showed it is possible for a 1-
ended group G to act geometrically on CAT(0) spaces X, Y such that
∂X, ∂Y are not homeomorphic. So one can not talk about ‘the’ bound-
ary of a CAT(0) group as in the case of hyperbolic groups.

We remark that if a one ended hyperbolic group G splits over a two
ended group C then the limit points of C separate the boundary of G.
This holds also for CAT (0) groups.

We show that the inverse also holds, so one can detect splittings of
CAT (0) groups from their boundaries:

Theorem 2. Let G be a one ended group acting geometrically on a
CAT(0) space X. If ∂X has a cut pair then either G splits over a
2-ended group or G is virtually a surface group.

We remark that in case ∂X is locally connected the theorem above
follows from [20]. Indeed in this case if ∂X has a cut pair, it is not
very hard to show that a quasi-line coarsely separates X.

We showed in [21] that if Z is a continuum without cut points then
we can associate to Z an R-tree T (called the JSJ tree of Z) encoding
all pairs of points that separate Z.

We show here that if G is a 1-ended CAT(0) group and Z is its
boundary then the R-tree T is simplicial and gives the JSJ decompo-
sition of G. More precisely we have:

Theorem 3. Let G be a one ended group acting geometrically on a
CAT(0) space X. Then the JSJ-tree of ∂X is a simplicial tree T and
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the graph of groups T/G gives a canonical JSJ decomposition of G over
2-ended groups.

We note that the JSJ decomposition in the previous Theorem is
closely related to the JSJ decomposition constructed by Scott-Swarup
([24]).

Our strategy for obtaining these results is similar to the one of
Bowditch in the case of hyperbolic groups. For example to show that
∂G has no cut point Bowditch associates a tree T to ∂G and studies
the action of G on T via Rips theory.

A main difficulty in the case of CAT (0) groups is that G does not
act on the boundary as a convergence group so it is not immediate, as
it is in the hyperbolic case, that the action on the trees we construct
has no global fixed point. To deal with this difficulty we show that in
the CAT(0) case the action has a convergence type property:

Theorem 4. Let X be a CAT(0) space and G a group acting properly
on X. For any sequence of distinct group elements of G, there exists
a subsequence (gi) and points n, p ∈ ∂X such that for any compact set
C ⊂ ∂X − B̄T (n, θ), gn(C) → B̄T (p, π − θ) (in the sense that for any
open U ⊃ B̄T (p, π − θ), gi(C) ⊂ U for all i sufficiently large).

We denote by B̄T (n, θ) the closed Tits ball with center n and radius
θ. See [27] and [17] for partial results of this type.

The above Theorem plays a crucial role in our proofs. We think it
is also of independent interest as it is a useful tool to study actions of
CAT(0) groups on their boundaries. Indeed we obtain the following
improvement of a result of Ballmann and Buyalo [2]:

Theorem 5. If the Tits diameter of ∂X is bigger than 3π
2

then G con-
tains a rank 1 hyperbolic element. In particular: if G doesn’t fix a point
of ∂X and doesn’t have rank 1, and I is a minimal closed invariant set
for the action of G on ∂X, then for any x ∈ ∂X, dT (x, I) ≤ π

2
.

It follows from this Theorem that if the Tits diameter of ∂X is bigger
than 3π

2
then G contains a free subgroup of rank 2. We remark that the

Tits alternative is not known for CAT(0) groups. In fact Ballmann-
Buyalo ([2]) conjecture that if G acts geometrically in X and the Tits
diameter of ∂X is bigger than π then G contains a rank 1 element (so
G contains a free subgroup or rank 2). In the remaining case of Tits
diameter π they conjecture that X is either a symmetric space or a
Euclidean building or reducible. We note that the Tits alternative is
known in the case of symmetric spaces and Euclidean buildings, so it
would be implied by an affirmative answer to the above conjectures.
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1.1. Plan of the paper. In section 2 we give a summary of our earlier
paper [21]. We explain how can we produce trees from cut points and
cut pairs. More precisely we show that if Z is a compact connected
metric space then there is an R-tree T ‘encoding’ all cut points of Z. I
particular if Z has a cut point then T is non trivial. The construction
of T is canonical, so the homeomorphism group of Z acts on T . If Z
has no cut points we show that there is an R-tree T ‘encoding’ all cut
pairs of Z (the ‘JSJ tree’ of Z). The JSJ tree is also canonical.

In section 3 we recall background and terminology for CAT(0) groups
and spaces. In section 4 we show that actions of CAT(0) groups on
boundaries satisfy a convergence type property (π-convergence). Sec-
tions 5 and 6 are devoted to the proof that CAT(0) boundaries of one
ended groups have no cut points. In section 5 we apply the machinery of
section 2 to construct an R-tree on which G acts. Using π-convergence
we show that the action is non trivial. In section 6 we show that the
action is stable and we apply the Rips machine to show that T is in
fact simplicial. From this we arrive at a contradiction. In section 7 we
assume that ∂X has a cut pair. We apply the construction of section
2 and we obtain the JSJ R-tree for ∂X. Using π convergence again we
show that the action is non trivial and applying the Rips machine we
show that the tree is in fact simplicial. We deduce that G splits over a
2-ended group unless it is virtually a surface group. We show further
that the action on the tree gives the JSJ decomposition of G.

We would like to thank the Max Planck institute for its hospitality
while this work was being completed in the fall of 2006.

2. Trees and continua

2.1. From cut points to trees. Whyburn ([28]) was the first to study
the cut point set of a locally connected metric space and to show that
it is ‘treelike’ (a dendrite). Bowditch ([8]) showed how to construct
R-trees for boundaries of hyperbolic groups while Swenson ([27]) gave
a more direct construction. In [21] we showed how to associate to a
continuum Z an R-tree T encoding the cut points of Z. We recall here
the results and terminology of [21].

In the following Z will be a (metric) continuum.

Definition . If a, b, c ∈ Z we say that c ∈ (a, b) if a, b lie in distinct
components of Z − {c}.

We call (a, b) an interval and this relation an interval relation. We
define closed and half open intervals in the obvious way i.e. [a, b) =
{a} ∪ (a, b), [a, b] = {a, b} ∪ (a, b) for a 6= b and [a, a) = ∅, [a, a] = {a}.
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We remark that if c ∈ (a, b) for some a, b then c is a cut point.
Clearly (a, a) = ∅ for all a ∈ Z.

Definition . We define an equivalence relation on Z. Each cut point
is equivalent only to itself and if a, b ∈ Z are not cut points we say that
a is equivalent to b, a ∼ b if (a, b) = ∅.

Let’s denote by P the set of equivalence classes for this relation. We
can define an interval relation on P as follows:

Definition . For x, y, z ∈ P we say that z ∈ (x, y) if for all a ∈ x, b ∈
y, c ∈ z we have that

[a, c) ∩ (c, b] = ∅

We call elements of P which are not cut points maximal inseparable
sets.

If x, y, z ∈ P we say that z is between x, y if z ∈ (x, y). It is shown
in [21] that P with this betweeness relation is a pretree.

The R tree T is obtained from P by “connecting the dots” accord-
ing to the pretree relation on P. We proceed now to give a rigorous
definition of T .

We have the following results about intervals in pretrees from [8]:

Lemma 6. If x, y, z ∈ P, with y ∈ [x, z] then [x, y] ⊂ [x, z].

Lemma 7. Let [x, y] be an interval of P. The interval structure induces
two linear orderings on [x, y], one being the opposite of the other, with
the property that if < is one of the orderings, then for any z, w ∈ [x, y]
with z < w, (z, w) = {u ∈ [x, y] : z < u < w}. In other words the
interval structure defined by one of the orderings is the same as our
original interval structure.

Definition . If x, y are distinct points of P we say that x, y are adjacent
if (x, y) = ∅. We say x ∈ P is terminal if there is no pair y, z ∈ P with
x ∈ (y, z).

We recall the following Lemma from [27].

Lemma 8. If x, y ∈ P, are adjacent then exactly one of them is a cut
point and the other is a nonsingleton equivalence class whose closure
contains this cut point.

We have the Theorem (see [27], Theorem 6):

Theorem 9. A nested union of intervals of P is an interval of P.
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Corollary 10. Any interval of P has the supremum property with re-
spect to either of the linear orderings derived from the interval struc-
ture.

Proof. Let [x, y] be an interval of P with the linear order ≤. Let A ⊂
[x, y]. The set {[x, a] : a ∈ A} is a set of nested intervals so their union
is an interval [x, s] or [x, s) and s = sup A. �

Definition . A big arc is the homeomorphic image of a compact con-
nected nonsingleton linearly ordered topological space. A separable
big arc is called an arc. A big tree is a uniquely big-arcwise connected
topological space. If all the big arcs of a big tree are arcs, then the big
tree is called a real tree. A metrizable real tree is called an R-tree. An
example of a real tree which is not an R-tree is the long line (see [16]
sec.2.5, p.56).

Definition . A pretree R is complete if every closed interval is complete
as a linearly ordered topological space (this is slightly weaker than the
definition given in [8]). Recall that a linearly ordered topological space
is complete if every bounded set has a supremum.

Let R be a pretree, an interval I ⊂ R is called preseparable if there is
a countable set Q ⊂ I such that for every nonsingleton closed interval
J ⊂ I, J ∩ Q 6= ∅. A pretree is preseparable if every interval in it is
preseparable.

We recall now the construction in [21]. Let R be a complete pretree.
Set

T = R∪
⊔

x,y adjacent

Ix,y

where Ix,y is a copy of the real open interval (0, 1) glued in between x
and y. We extend the interval relation of R to T in the obvious way
(as in [27]), so that in T , (x, y) = Ix,y. It is clear that T is a complete
pretree with no adjacent elements. When R = P, we call the T so
constructed the cut point tree of Z.

Definition . For A finite subset of T and s ∈ T we define

U(s, A) = {t ∈ T : [s, t] ∩ A = ∅}

The following is what the proof of [27, Theorem 7] proves in this
setting.

Theorem 11. Let R be a complete pretree. The pretree T , defined
above, with the topology defined by the basis {U(s, A)} is a regular big
tree. If in addition R is preseparable, then T is a real tree.

We recall now the Theorem [21]
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Theorem 12. The pretree P is preseparable, so the cut point tree T
of Z is a real tree.

The real tree T is not always metrizable. Take for example Z to be
the cone on a Cantor set C (the so called Cantor fan). Then Z has
only one cut point, the cone point p, and P has uncountable many
other elements qc, one for each point c ∈ C. As a pretree, T consists of
uncountable many arcs {[p, qc] : c ∈ C} radiating from a single central
point p. However, in the topology defined from the basis {U(s, A)},
every open set containing p contains the arc [p, qc] for all but finitely
many c ∈ C. There can be no metric, d, giving this topology since
d(p, qc) could only be non-zero for countably many c ∈ C. In [21] we
showed that it is possible to equip T with a metric that preserves the
pretree structure of T . This metric is ‘canonical’ in the sense that any
homeomorphism of Z induces a homeomorphism of T . We recall briefly
how this is done. The idea is to metrize T in two steps. In the first
step one metrizes the subtree obtained by the span of cut points of P.
This can be written as a countable union of intervals and it is easy to
equip with a metric.

T is obtained from this tree by gluing intervals to some points of T .
In this step on might glue uncountably many intervals but the situation
is similar to the Cantor fan described above. The new intervals are
metrized in the obvious way, e.g. one can give all of them length one.

So we have the following:

Theorem 13. There is a path metric d on T , which preserves the pre-
tree structure of T , such that (T, d) is a metric R-tree. The topology
so defined on T is canonical (and may be different from the topology
with basis {U(s, A)}). Any homeomorphism φ of Z induces a homeo-

morphism φ̂ of T equipped with this metric.

Since T has the supremum property all ends of T correspond to
elements of P, and these elements will be terminal in P and in T . We
remove these terminal points to obtain a new tree which we still call
T . Clearly the previous Theorem holds for this new tree too.

2.2. JSJ trees for continua. In [21] we showed how to associate to
cut pairs of a continuum an R-tree which we call the JSJ-tree of the
continuum. The construction is similar as in the case of cut points
but for JSJ-trees a new type of vertices has to be introduced which
corresponds to the hanging orbifold vertex groups in the group theoretic
setting. We recall briefly now the results of [21].
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Let Z be a metric continuum without cut points. The set {a, b} is a
cut pair of Z separating p ∈ Z from q ∈ Z if there are continua P 3 p
and Q 3 q such that P ∩ Q = {a, b} and P ∪ Q = Z.

Definition . Let Z be a continuum without cut points. A finite set S
with |S| > 1 is called cyclic subset if S is a cut pair, or if there is an
ordering S = {x1, . . . xn} and continua M1, . . .Mn with the following
properties:

• Mn ∩ M1 = {x1}, and for i > 1, {xi} = Mi−1 ∩ Mi

• Mi ∩ Mj = ∅ for i − j 6= ±1 mod n
•

⋃

Mi = Z

The collection M1, . . .Mn is called the (a) cyclic decomposition of Z
by {x1, . . . xn}. (For n > 2, this decomposition is unique.) If S is
an infinite subset of Z and every finite subset A ⊂ S with |A| > 1
is cyclic, then we say S is cyclic. Every cyclic set is contained in a
maximal cyclic set. We call a maximal cyclic subset of Z with more
than 2 points a necklace.

Let S be a cyclic subset of Z. There exists a continuous function
f : Z → S1 with the following properties:

(1) The function f is one to one on S, and f−1(f(S)) = S
(2) For x, y ∈ Z and a, b ∈ S :

(a) If {f(a), f(b)} separates f(x) from f(y) then {a, b} sepa-
rates x from y.

(b) If x ∈ S and {a, b} separates x from y, then {f(a), f(b)}
separates f(x) from f(y)

Furthermore if |S| > 2 (if S is a necklace for example), this function
can be chosen in a canonical fashion up to isotopy and orientation.
This function will be called the circle function for S and denoted fS.

Definition . Let Z be a metric space without cut points. A non-empty
non-degenerate set A ⊂ Z is called inseparable if no pair of points in
A can be separated by a cut pair. Every inseparable set is contained
in a maximal inseparable set.

We define P to be the collection of all necklaces of Z, all maximal
inseparable subsets of Z, and all inseparable cut pairs of Z.

If two elements of P intersect then the intersection is either a single
point, or an inseparable pair. There is a natural pre-tree structure on
P (given by separation). The pre-tree P has the property that every
monotone sequence in a closed interval of P converges in that interval.

Distinct points of P are adjacent if there there are no points of P
between them. If A, B ∈ P, with A ⊂ B (thus A is an inseparable pair
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and B is maximal cyclic or maximal inseparable) then A and B are
adjacent. The only other way two points of P can be adjacent is if one
of them, say A, is a necklace and the other, B, is maximal inseparable
and |∂A ∩ B| ≥ 2. The Warsaw circle gives an example of this.

Recall that a point of P is called terminal if it is not in any open
interval of P. Terminal points of P do arise in CAT(0) boundaries
even when the action on P is nontrivial (see [14] for example). We first
remove all terminal points from P, and we then glue open intervals
between the remaining adjacent points of P to form a topological R-
tree T . We call T the JSJ-Tree of the continuum Z. Notice that in
the case where Z is a circle, P has only one element, a necklace, and
so T is empty. This and similar issues will be dealt with by reducing
to the case where G doesn’t fix an element of P, in which case T will
be non-trivial.

3. CAT(0) Groups and boundaries

We give a brief introduction to CAT(0) spaces (see [9], [3] for details).
Let Y be a metric space, and I be an interval of R. A path γ : I → X
is called a geodesic if for any [a, b] ⊂ I,

`b
a(γ) = b − a = d(γ(a), γ(b))

where `b
a(γ) is the length of γ from a to b, defined as

`b
a(γ) = sup

{

n
∑

i=1

d (γ(xi−1), γ(xi)) : {x0, . . . xn} is a partition of [a, b]

}

If I is a ray or R then we refer to γ (or more precisely its image) as a
geodesic ray or geodesic line respectively. If I is a closed interval, we
refer to γ as a geodesic segment.

A metric space is called proper if every closed metric ball is compact.
In a proper metric space, closed and bounded implies compact.

A CAT(0) space X is a proper geodesic metric space with the prop-
erty that every geodesic triangle (the union of three geodesic segments
meeting in the obvious way) in X is a least as thin as the comparison
Euclidean triangle, the triangle in the Euclidean plane with the same
edge lengths. Every CAT(0) space is contractible.

The (visual) boundary ∂X is the set of equivalence classes of rays,
where rays are equivalent if they fellow travel. Given a ray R and a
point x ∈ X there is a ray S emanating from x with R ∼ S. Fixing
a base point 0 ∈ X we define a Topology on X̄ = X ∪ ∂X by taking
the basic open sets of x ∈ X to be the open metric balls about x. For
y ∈ ∂X, and R a ray from 0 representing y, we construct basic open
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sets U(R, n, ε) where n, ε > 0. We say z ∈ U(R, n, ε) if the unit speed
geodesic, S : [0, d(0, z)] → X̄, from 0 to z satisfies d(R(n), S(n)) < ε.
These sets form a basis for a topology on X̄ under which X̄ and ∂X
are compact metrizable. Isometries of X act by homeomorphism on
∂X.

For three points a, b, p ∈ X a 6= p 6= b the comparison angle ∠p(a, b)
is the Euclidean angle at the point corresponding to p in the comparison
triangle in E2. By CAT(0), for any c ∈ (p, a) and d ∈ (p, b), ∠p(a, b) ≥
∠p(c, d). This monotonicity implies that we can take limits. Thus the

angle is defined as ∠p(a, b) = lim ∠p(an, bn) where (an) ⊂ (p, a) with
an → p and (bn) ⊂ (p, b) with bn → p. By monotonicity this limit
exists, and this definition works equally well if one or both of a, b are
in ∂X. Similarly we can define the comparison angle, ∠p(a, b) even if
one or both of a, b are in ∂X (the limit will exist by monotonicity). By
[9, II 1.7(4)], ∠p(a, b) ≥ ∠p(a, b).

On the other hand for a, b ∈ ∂X, we define ∠(a, b) = sup
p∈X

∠p(a, b).

It follows from [9] that ∠(a, b) = ∠p(a, b) for any p ∈ X. Notice that
isometries of X preserve the angle between points of ∂X. The angle
defines a path metric, dT on the set ∂X, called the Tits metric, whose
topology is finer than the given topology of ∂X. Also ∠(a, b) and
dT (a, b) are equal whenever either of them are less than π.

The set ∂X with the Tits metric is called the Tits boundary of X,
denoted TX. Isometries of X extend to isometries of TX

The identity function TX → ∂X is continuous, but the identity
function ∂X → TX is only lower semi-continuous. That is for any
sequences (yn), (xn) ⊂ ∂X with xn → x and yn → y in ∂X, then

lim dT (xn, yn) ≥ dT (x, y)

Definition . An action of a group H on a space Y is called proper
if for every compact K ⊂ Y , the set {h ∈ H : h(K) ∩ K 6= ∅} is
finite. An action of a group H on a space Y is called cocompact if the
quotient space of Y by the action of H, Y/H is compact. An action of
a group H on a metric space Y is called geometric if H acts properly,
cocompactly by isometries on Y . It follows that H is quasi-isometric
to Y , that is they have the same coarse geometry.

A hyperbolic isometry g of a CAT(0) space X is an isometry which
acts by translation on a geodesic line L ⊂ X. The line L is called the
axis of g and the endpoints of L (in ∂X) are denoted by g+ and g−,
where g+ is the endpoint in the direction of translation. If a group
acts geometrically on a CAT(0) space, then the non-torsion elements
are exactly the hyperbolic elements.
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If a group G acts geometrically on a non-compact CAT(0) space X,
then G has a hyperbolic element, and ∂X is finite dimensional ([27]).

Definition . If X is a CAT(0) space and A ⊂ X we define ΛA to be
the set of limit points of A in ∂X. If H is a group acting properly
by isometries on the CAT(0) space X we define ΛH = ΛHx for some
x ∈ X. Observe that ΛH does not depend on the choice of x.

For the remainder of the paper, G will be a group acting
geometrically on the non-compact CAT(0) space X

Lemma 14. If h ∈ G is hyperbolic and the centralizer Zhn is virtually
cyclic for all n, then for some n, stab(h±) = Zhn

Proof. By [27] hyperbolic elements with the same endpoints have a
common power. Thus we may assume that h has the minimal trans-
lation length of any hyperbolic element with endpoints h±. Let H =
stab(h±). Let Z be the union of all lines from h+ to h−. By [9]
W = R × Y where R is an axis of h and Y is a convex subset of X,
and stab(h±) acts on W preserving the product structure. Since h has
minimal translation length |h|, every element of H translates the R
factor by a multiple of |h|.

By [27] stab(h±) =
⋃

n

Zhn. Since Zhn ∪ Zhm < Zhnm it suffices to

bound the number of cosets Zhn/〈h〉. We do this by finding a section
of the map ρ : Zhn → Zhn/〈h〉 whose image generates a finite group
(There being only finitely many conjugacy classes of finite subgroups
of G). Since Zhn is virtually cyclic, Zhn/〈h〉 = {[g1], [g2], . . . [gp]} and
multiplying by a multiple of h, we may assume that gi fixes the R factor
of W . Thus K = 〈g1, g2, . . . gp〉 is a subgroup of the virtually cyclic Zhn

which doesn’t translate along the R direction. It follows that no power
of h lies in K, and so K is finite. �

Lemma 15. Let K be a group acting geometrically on a CAT(0) space
U . If H < K with ΛH finite then H is virtually cyclic.

Proof. We assume that H is infinite. Passing to a finite index subgroup,
we may assume that H fixes ΛH pointwise.

We first show that H contains a hyperbolic element. Suppose not,
then from [27, Theorem 17] there is a convex set Y ⊂ U with dim ∂Y <
dim ∂U such that Y is invariant under the action of H and the action of
H on Y can be extended to a geometric action on Y . Since dim ∂U < ∞
([27]), we get a contradiction by induction on boundary dimension.

Thus there exists h ∈ H hyperbolic. By [27] stab(h±) =
⋃

n

Zhn, and

so H <
⋃

n

Zhn. The union W of axis of from h− to h+ decomposes as
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W = R × Y where R is an axis for h and Y is convex in U . Since H
fixes {h±}, then H acts on W preserving this product structure.

Suppose that H/〈h〉 is infinite. Let ε be the translation length
of h. Choose one element gi from each coset with the translation
distance of gi on the R factor less than ε. Choose m larger than
|{g ∈ K | g(B(u, ε)) ∩ B(u, ε) 6= ∅}| for any u ∈ U . Choose n such
that g1, . . . gm ∈ Zhn. Notice that the minset of hn is min(hn) = R×Z
where Z is a convex subset of Y . Now consider the images ĝ1, . . . ĝm of
g1, . . . gm in the quotient Zhn/ < hn >= J which acts geometricly on
Z. Notice that ĝ1, . . . ĝm are distinct elements of J . By choose of m
the subgroup F = 〈ĝ1, . . . ĝm〉 doesn’t fix a point of Z. It follows that
F is infinite. Notice that ΛF ⊂ ∂Z is finite (in fact ΛF ⊂ ΛH). It
follows by the above that F contains a hyperbolic element ĝ. Let g be
a preimage of ĝ in H. Clearly g is hyperbolic and {g±} ∩ {h±} = ∅.
However g ∈ Zhj for some j, so 〈g, hj〉 ∼= Z2 and has limit set a circle.
This contradicts the fact that ΛH is finite.

�

4. Convergence actions

4.1. π-Convergence Action. Notice that ∠p(a, b) is a function of

d(a, b), d(p, a) and d(b, p) it follows that the function ∠ is continuous
on the subset of X3 , {(a, b, p) ∈ X3 : a 6= p, b 6= p}.

Lemma 16. Let p, q ∈ X p 6= q and a ∈ ∂X. ∠p(q, a) + ∠q(p, a) ≤ π.

Proof. Suppose not, then by the definition of these angles as mono-
tone limits, there exists p′ ∈ [p, a) and q′ ∈ [q, a) such that ∠p(q, p

′) +

∠q(p, q
′) > π. We may also assume that d(p, p′) = d(q, q′). By con-

vexity of the metric applied to the rays [p, a) and [q, a) we have that
d(p′, q′) ≤ d(p, q).

By [9, II 1.1], for any quadrilateral (in our case pp′q′q) in X there is
a comparison quadrilateral (p̄p̄′q̄′q̄) in E2 having the same edge lengths
(d(p, p′) = d(p̄, p̄′), d(p′, q′) = d(p̄′, q̄′) ,d(q, q′) = d(q̄, q̄′) and d(q, p) =
d(q̄, p̄)) with diagonals no shorter than the in the original quadrilateral
(d(p, q′) ≤ d(p̄, q̄′) and d(q, p′) ≤ d(q̄, p̄′) ). It follows that ∠q(p, q

′) ≤
∠q̄(p̄, q̄

′) and that ∠p(q, p
′) ≤ ∠p̄(q̄, p̄

′). Thus ∠q̄(p̄, q̄
′) + ∠p̄(q̄, p̄

′) >
π. Using high school geometry we see that d(p̄′, q̄′) > d(p̄, q̄) which
contradicts the fact that d(p′, q′) ≤ d(p, q). �

Lemma 17. Let X be a CAT(0) space, θ ∈ (0, π), q ∈ ∂X, and K a
compact subset of ∂X − B̄T (q, θ). Then for any x ∈ X, there is a point
y ∈ [x, q) and ε > 0 with ∠y(q, c) > θ + ε for all c ∈ K.
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Proof. We first find y ∈ [x, q) such that ∠y(q, c) > θ for all c ∈ K.
Suppose there is not such y, then by [9, II 9.8 (2)], there is a sequence
of points (ci) ⊂ K and a monotone sequence (yi) ⊂ [x, q) such that
yi → q with ∠yi

(q, ci) ≤ θ. By the monotonicity of (yi) and [9, II 9.8
(2)]

∠yi
(q, cn) ≤ θ

for all n ≥ i. By compactness of K, passing to a subsequence we
may assume that ci → c ∈ K. For any fixed i ∈ N, the sequence
of rays ([yi, cn)) converges to the ray [yi, c). Thus by [9, II 9.2(1)]
∠yi

(q, cn) → ∠yi
(q, c) ≤ θ and this is true for each i ∈ N. It follows

from [9, II 9.8 (2)] that ∠(q, c) ≤ θ which is a contradiction since
c 6∈ BT (q, θ). Thus we have y ∈ [x, q) such that ∠y(q, c) > θ for
all c ∈ K. Since the function ∠y is continuous on its domain, by
compactness of K, there is a d ∈ K with ∠y(q, d) ≤ ∠y(q, c) for all
c ∈ K. We let ε < θ − ∠y(q, d) and the result follows. �

Lemma 18. Let X be a CAT(0) space and G a group acting properly
on X. Let x ∈ X, θ ∈ [0, π] and (gi) ⊂ G with the property that
gi(x) → p ∈ ∂X and g−1

i (x) → n ∈ ∂X. For any compact set K ⊂
∂X − BT (n, θ), gn(K) → BT (p, π − θ) (in the sense that for any open
U ⊃ BT (p, π − θ), gi(K) ⊂ U for all i sufficiently large).

The case where θ = π
2

was done independently by Karlsson [17].

Proof. It suffices to consider the case θ ∈ (0, π).
Let K ⊂ ∂X − BT (n, θ) be compact, and U an open set in ∂X

containing the closed ball B(p, π − θ).
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Fix x ∈ X. By Lemma 17, there is a y ∈ [x, n) and ε > 0 with
∠y(n, c) > θ + ε for all c ∈ K.

Notice that the sequence segments
(

[x, g−1
i (x)]

)

converges to the ray

[x, n). For each i ∈ N let yi be the projection of y onto [x, g−1
i (x)].

Passing to a subsequence, we may assume that d(yi, g
−1
i (x)) ≥ 1. Let

zi ∈ [yi, g
−1
i (x)] such that d(yi, zi) = 1. It follows that zi → z ∈ [y, n)

where d(y, z) = 1.
Now comparison angles are continuous in all three variables for points

on X and lower semi-continuous for points on ∂X. That is if D =

{(u, v, w) ∈ X
2
× X| u 6= w 6= v} then the comparison function ∠ :

D → [0, π] is continuous on the third variable, it is continuous on
D′ = {(u, v, w) ∈ X3| u 6= w 6= v} and it is lower semicontinuous on
the first 2 variables. This is not true for the function ∠ : D → [0, π]
as it is only upper semicontinuous. However it is always that case that
∠w(u, v) ≥ ∠w(u, v). Thus for any c ∈ K,

∠yi
(zi, c) → ∠y(z, c) ≥ ∠y(z, c) = ∠y(n, c) > θ + ε

It follows that for i � 0, ∠yi
(zi, c) > θ + ε for all c ∈ K.

Now consider the segments gi([x, g−1
i (x)]) = [gi(x), x] and note that

[gi(x), x] → (p, x] the ray. Notice that for any c ∈ K and i � 0,
∠gi(yi)(gi(zi), gi(c)) = ∠yi

(zi, c) > θ + ε.
Let u ∈ (p, x], for each i, let ui be the projection of u to [gi(x), x].

For i � 0, ui ∈ [gi(zi), x] and d(ui, gi(zi)) > 1. For i � 0 choose
vi ∈ [gi(zi), ui] with d(vi, ui) = 1. By Lemma 16 and the monotonicity
of the comparison angle,

∠gi(yi)(gi(zi), gi(c)) + ∠ui
(vi, gi(c)) ≤ π

for all c ∈ K and i � 0. Thus for i � 0

∠ui
(vi, gi(c)) < π − θ − ε

for all c ∈ K.
Notice that vi → v ∈ (p, u] where d(v, u) = 1. Using the continuity

of ∠, we can show that for i � 0, π − θ > ∠u(v, gi(c)) ≥ ∠u(p, gi(c)).
So for any u ∈ (p, x] there is I ∈ N such that for all i > I and for all
c ∈ K, ∠u(p, gi(c)) < π − θ.

Claim: gi(K) ⊂ U for all i � 0. Suppose not, then passing to a
subsequence, for each i, there exists ci ∈ K, such that gi(ci) 6∈ U .
Passing to a subsequence we may assume that gi(ci) → ĉ ∈ ∂X −
BT (p, π − θ). Since ∠(ĉ, p) > π − θ, there exists w ∈ (p, x] such that
∠w(ĉ, p) > π − θ. However this contradicts the fact that for i � 0,
∠w(p, gi(ci)) < π−θ. This proves the claim, and with it the Lemma �
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Theorem 19. Let X be a CAT(0) space and G a group acting properly
on X. For any sequence of distinct group elements of G, there exists
a subsequence (gi) and points n, p ∈ ∂X such that for any θ ∈ [0, π]
and for any compact set K ⊂ ∂X − BT (n, θ), gn(K) → BT (p, π − θ)
(in the sense that for any open U ⊃ BT (p, π − θ), gi(K) ⊂ U for all i
sufficiently large).

Proof. For any sequence of distinct elements of G, using the compact-
ness of X = X ∪ ∂X, there exists a subsequence (gi) and points
n, p ∈ ∂X such that gi(x) → p, g−1

i (x) → n for some x ∈ X, but
this implies that gi(y) → p. �

We will refer to the results of Lemma 18 and Theorem 19 collectively
as π-convergence.

Corollary 20. Let G act properly by isometries on X, a CAT(0) space.
If τ : ∂X → Z is a G-quotient map, with the property that for any
a, b ∈ ∂X with dT (a, b) ≤ π

2
, τ(a) = τ(b), then the induced action of G

on Z is a convergence action.
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Proof. Let (gi) be a sequence of distinct elements of G. By π-convergence,
passing to a subsequence there exists n, p ∈ ∂X such that for any com-
pact K ⊂ ∂X − BT (n, π

2
) and any open U ⊃ BT (p, π

2
), gi(K) ⊂ U for

all i � 0. Now let p̂ = τ(p) and q̂ = τ(q). For any compact K̂ ⊂ Z

with n 6∈ K̂, and any open Û 3 p̂, τ−1(Û) = U is an open set containing

BT (p, π
2
) and τ−1(K̂) = K is a compact set missing BT (n, π

2
). Thus for

i � 0, gi(K) ⊂ U and so gi(K̂) ⊂ Û as required.
�

In the later sections we will be using the following result of Ballmann-
Buyalo ([2, Proposition 1.10])

Theorem 21. If the Tits diameter of ∂X is bigger than 2π then G
contains a rank 1 hyperbolic element. In particular: If G doesn’t have
rank 1, and I is a minimal closed invariant set for the action of G on
∂X, then for any x ∈ ∂X and m ∈ I, dT (x, m) ≤ π.

Definition . We say a hyperbolic element g has rank 1, if no axis of g
bounds a half flat (isometric to [0,∞)×R). In particular if dT (g+, g−) >
π then the hyperbolic element g is rank 1. If G contains a rank 1
hyperbolic element, then we say G has rank 1. The endpoints of a
rank 1 hyperbolic element have infinite Tits distance from any other
point in ∂X [1].

Now if G has rank 1, then for any open U , V in ∂X, there is a rank
1 hyperbolic element g with one endpoint in U and the other in V
satisfying g(∂X − U) ⊂ V and g−1(∂X − V ) ⊂ U [3, Theorem A]. If
G has rank 1, then the only nonempty closed invariant subset of ∂X is
∂X.

Using π-convergence we obtain the following strengthening of the
Theorem above.

Theorem 22. If the Tits diameter of ∂X is bigger than 3π
2

then G con-
tains a rank 1 hyperbolic element. In particular: if G doesn’t fix a point
of ∂X and doesn’t have rank 1, and I is a minimal closed invariant set
for the action of G on ∂X, then for any x ∈ ∂X, dT (x, I) ≤ π

2
.

Proof. Let I be a minimal closed invariant set for the action of G on
∂X. If radiusT (I) < π

2
, then by [9, II 2.7], I has a unique centroid

b ∈ ∂X. Since I is invariant, G fixes b, and it follows by a result of
Ruane [23] (see also Lemma 24 of the present paper) that G virtually
splits as H × Z. But then diamT (∂X) = π. Thus we may assume
that for any a ∈ ∂X and any δ > 0 there is a point of y ∈ I with
dT (a, y) > π

2
− δ.
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Assume that dT (x, I) = π
2

+ ε for some x ∈ ∂X and some ε > 0. Let
gn ∈ G such that gnt → x for some (hence for all) t ∈ X. We may
assume by passing to a subsequence that g−1

n t → n ∈ ∂X. There is
some y ∈ I such that dT (y, n) > π

2
− ε

2
.

We apply now π-convergence to the sequence gn and the point y.
Clearly y does not lie in the Tits ball of radius π

2
− ε

2
and center n.

Passing to a subsequence, we have that gny → z ∈ B̄T (x, π
2

+ ε
2
). Since

z ∈ I we have that dT (x, I) ≤ π
2

+ ε
2
, a contradiction.

�

5. The action on the cut-point tree is non trivial

Setting . For the remainder of the paper G will be a one-ended group
acting geometrically on the CAT(0) space X.

Assume that ∂X has a cut point. We apply the construction of
Section 1 to Z = ∂X, and we obtain a non-trivial R-tree T encoding
the cut-points of ∂X. Since the construction of T is canonical, G acts
on T .

Lemma 23. The action of G on the R-tree T is non-nesting. That is
for any closed arc I of T , there is no g ∈ G with g(I) ( I.

Proof. Suppose not, then by the Brouwer fixed point Theorem, there
is an A ∈ T with g(A) = A.

Replacing g with g2 if need be, we may assume that I = [A, B] with
g(B) ∈ (A, B). We may also assume that A, B ∈ P. Similarly we
may assume that |(g(B), B)| > 2, so dT (g(B), B) > 0. Since G acts
by isometries on the Tits boundary, it follows that dT (B, A) = ∞,
moreover all limit points of the sequence of sets (giB), are at infinite
Tits distance from all limit points of the sequence of sets (g−iB). So
by π-convergence g is a rank 1 hyperbolic element.

Now by [1] every point of ∂X is at infinite Tits distance from both of
the endpoints, g± ∈ ∂X, of g. By π-convergence g+ ∈ A. We consider
g−iB and we note that as i → ∞ it converges either to a point C of
T or to an end of T corresponding to an element C of P. We remark
that g− lies in C and that B ∈ (A, C)

Since A is not terminal in P, there is a D ∈ P with A ∈ (D, C).
Thus by π-convergence g−iD (for some i > 0) lies in the component of
T − A containing C. This is however impossible since A is fixed by g.

�

By the construction of T if G fixes a point of T then G fixes a point
of P. Points of P are of one of the following two types: i) cut points
and ii)maximal inseparable sets of ∂X.
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We deal now with the first type, i.e. we assume that G fixes a cut
point. We need the following unpublished result of Ruane. We provide
a proof for completeness

Lemma 24. If G virtually stabilizes a finite subset A of ∂X, then G
virtually has Z as a direct factor.

Proof. Clearly there is a finite index subgroup H < G which fixes A
pointwise. Let {h1, . . . hn} be a finite generating set of H. By [23], the
centralizer Zhi

acts geometrically on the convex subset Min(hi) ⊂ Y .
By [27] A ⊂ ΛMin(hi) = ΛZhi

for all i. Since Zhi
is convex, we have

by [27] that the centralizer of H, ZH = ∩Zhi
is convex and

⋂

ΛZhi
= Λ

[

⋂

Zhi

]

⊃ A

Thus A ⊂ ΛZH , so ZH is an infinite CAT(0) group, and by [27] ZH has
an element of infinite order. Thus H contains a central Z subgroup.
By [9, II 6.12], H virtually has Z as a direct factor. �

From this Lemma it follows that if G fixes a point of ∂X then G is
virtually K × Z. Thus ∂X is a suspension and |ΛK| 6= 1 ([27], Cor.
p.345) so ∂X has no cut points, a contradiction.

We now prove the following:

Theorem 25. G fixes no maximal inseparable subset.

It follows from Theorem 22 [3, Theorem A] that if G fixes a maximal
inseparable set then the Tits diameter of ∂X is at most 3

2
π.

Let’s assume that G fixes the maximal inseparable set B. We remark
that if x ∈ B then Gx is contained in B so the closure of Gx is contained
in B̄. Thus B̄ contains a minimal invariant set that we denote by I.
By Theorem 22, X ⊂ NbhT (B̄, π

2
), the π

2
Tits neighborhood of B̄.

If c is a cut point of ∂X we have X−{c} = U∪V with U, V open and
B is contained, say, in U . With this notation we have the following:

Lemma 26. There is a 2π geodesic circle contained in V̄ .

Proof. Let α be a geodesic arc of length smaller than π contained in
V . Let m be the midpoint of α and let a, b be its endpoints. Fix
t ∈ X and consider the geodesic ray γ from t to m. Construct an
increasing sequence (ni) ⊂ N and (gi) ∈ G such that gi(γ(ni)) →
y ∈ X, gi(m) → m′ ∈ ∂X, gi(a) → a′ ∈ ∂X and gi(b) → b′. By
[9] ∠y(a

′, b′) = dT (a, b) ≥ dT (a′, b′) ≥ ∠y(a
′, b′). Thus ∠y(a

′, b′) =
dT (a′, b′) which implies by the flat sector Theorem ([9], p.283, cor.9.9)
that the sector bounded by the rays [y, a′) and [y, b′) is flat. Let’s
denote the limit set of this sector by α′.
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By passing to a subsequence if necessary we have that gi(y) converges
to some p ∈ ∂X. Notice that by construction g−1

i (y) → m. We remark
that dT (p, m′) ≥ π, so by π-convergence g−1

i (α′)∩V 6= ∅ for i >> 0. So
there is a flat sector Q (based at v ∈ X) whose limit set is contained
in V .

To simplify notation we denote the limit set of this sector again by
α (and a, b, m its endpoints and midpoint respectively).

Repeating this process (by pulling back along the ray [v, m)) we
obtain a sequence (hi) ⊂ G and a flat F with hi(Q) → F (uniformly
on compact subsets of F ), and so a geodesic 2π-circle γ = ΛF with
hi(α) converging to an arc of γ. As before, using π-convergence, we
show that for i >> 0, h−1

i (γ) ∩ V 6= ∅ and since γ is a simple closed
curve, h−1

i (γ) ⊂ V̄ . �

Since no geodesic circle can lie in a Tits ball of radius less than π
2
,

and X ⊂ NbhT (B, π
2
), it follows from Lemma 26 that:

• c ∈ B̄
• ∃p ∈ V such that dT (p, B̄) = π/2.

Notice that we have shown that every cut point of X is adjacent to B
(in the pre-tree structure) and so every cut point is contained in B̄.

Fix t ∈ X and consider a sequence (gi) ∈ G such that gi(t) →
p ∈ ∂X. By passing to a subsequence we may assume that g−1

i (t) →
n ∈ ∂X. Since G does not virtually fix c, there are distinct translates
h1(c), h2(c) 6= n which do not separate B from n. Thus dT (h1(p), n) >
π
2

and dT (h2(p), n) > π
2
. By π-convergence gi(h1(p)), gi(h2(p)) lie in V

for sufficiently large i. Since all cut points are adjacent to E, we have
gi(h1(c)) = gi(h2(c)) = c for sufficiently big i. This is impossible as
h1c, h2c are distinct. �

Corollary 27. The action of G on X is rank 1, so ∂X has infinite
Tits diameter.

Proof. The action of G on the R-tree T is non-nesting and without
global fixed points. It follows from [21, Proposition 35] that G has
an element h which acts by translation on a line of T . Thus there is
a cut point c such that c separates h−1(c) from h(c). It follows by
π-convergence that dT (h+, h−) = ∞. �

6. Cat(0) groups have no cut points

We study now further the action of G on T .

Lemma 28. If an interval I ⊂ P is infinite then the stablizer of I in
G is finite.
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Proof. Assume that I is fixed (pointwise) by an infinite subgroup of G,
say H. Let (hi) ⊂ H be an infinite sequence of distinct elements of
H. By passing to a subsequence we may assume that hi(t) → p ∈ ∂X,
h−1

i (t) → n ∈ ∂X for any t ∈ X.
The interval I contains infinitely many cut points, so by Corollary

27 we can find x ∈ ∂X, dT (n, x) = ∞, with the property that x is
separated from p by two cut points c, d ∈ I. We may assume that d
separates c from p. By π-convergence hi(x) → p. There exist subcon-
tinua B 3 p and A 3 c, x with X = A∪B and A∩B = d. Furthermore,
since (hi) fixes c which separates x from d, it follows that c separates
hi(x) from d. Thus {hi(x)} ⊂ A, contradicting hi(x) → p ∈ B − {d}.

�

Lemma 29. The action of G on the R-tree T is stable.

Proof. We recall that a non-degenerate arc I is called stable if there
is a (non degenerate) arc J ⊂ I such that for any non degenerate arc
K ⊂ J , stab(K) = stab(J).

An action is called stable if any closed arc I of T is stable.
We remark that by construction, arcs of T that correspond to adja-

cent elements of P are stable. Further if an arc contains a stable arc it
is itself stable, so every unstable arc contains infinitely many elements
of P.

Suppose now that an arc I is not stable. Then there is a properly
decreasing sequence I = I1 ⊃ I2 ⊃ ... so that stab(I1) ⊂ stab(I2) ⊂ ...
where all inclusions are proper. Notice that Ii ∩ P is infinite for each
i, and so stab(Ii) is finite by Lemma 28. On the other hand there
is a uniform bound on the size of a finite subgroup of G, which is a
contradiction.

�

Lemma 30. T is discrete.

Proof. Suppose that T is not discrete. Then by [18] there is an R-
tree S and a G-invariant quotient map f : T → S such that G acts
non-trivially on S by isometries. Furthermore for each non-singleton
arc α ⊂ S, f−1(α) ∩ P is an infinite interval of P, and the stabilizer
of an arc of S is the stabilizer of an arc of T . It follows that the arc
stabilizers of S are finite (Lemma 28) and that the action of G on S is
stable (Lemma 29).

Since G is one-ended, by the Rips machine applied to S, there is
an element h ∈ G which acts by translation on a line in S such that
G virtually splits over h. This implies that {h±} is a cut pair of ∂X,
however since h acts by translation on a line in S, it acts by translation
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on a line in T , and so h± will correspond to the ends of this line
(by π-convergence). Thus {h±} lie in terminal elements of P. This
contradicts the fact that {h±} separates. Thus T is discrete.

�

The following is easy and well known, but we provide a proof for
completeness

Lemma 31. If H < G then the centralizer ZH fixes ΛH in ∂X.

Proof. Let α ∈ ΛH ⊂ ∂X. By definition there exists a sequence of
elements (hn) ⊂ H with hn(x) → α for any x ∈ X. Since G acts by
homeomorphisms on X̄ = X ∪ ∂X, g(hn(x)) → g(α) for any g ∈ ZH .
Notice however that g(hn(x)) = hn(g(x)), and hn(g(x)) → α. It follows
that α = g(α). �

Lemma 32. Let H < G with H fixing the adjacent pair {c, B} of P
(so c is a cut point, c ∈ B̄, h(c) = c and h(B) = B for each h ∈ H).
Then ΛH ⊂ B̄.

Proof. Let (hi) ⊂ H be a sequence with hi(x) → p ∈ ΛH − B̄ for any
x ∈ X. Passing to a subsequence we have h−1

i (x) → n ∈ ΛH.
The adjacent pair {c, B} gives a separation of ∂X− B̄ in the obvious

way namely: Let U = {β ∈ ∂X − B̄ : c ∈ ([β], B)} and V = {β ∈
∂X − B̄ : B ∈ ([β], c)}. Using the definition of P one can show that
both U and V are open in ∂X (being the union of open sets). Using
the pretree axioms we see that U ∩V = ∅ and U ∪V = ∂X − B̄. Since
H leaves B and c invariant, hi(U) = U and hi(V ) = V for all i.

Without loss of generality let p ∈ U . Since G is rank 1 in its action
on X, there is a point α ∈ V with dT (α, n) > π. It follows by π-
convergence that hi(α) → p. This contradicts the fact that p ∈ U and
hi(α) ∈ V (in particular hi(α) 6∈ U) for all i. Thus ΛH ⊂ B̄. �

Lemma 33. Suppose that we have adjacent pairs {B, c} and {B̂, c} in

P with B 6= B̂ with the stabilizer of {B, c} infinite and the stabilizer

of {B̂, c} infinite. Then there is a hyperbolic g ∈ G with g(B) = B,

g(B̂) = B̂, and g(c) = c.

Proof. Since there are only finitely many conjugacy classes of finite
subgroups in G, there are infinite finitely generated subgroups H =
〈h1 . . . hn〉 and Ĥ = 〈ĥ1 . . . ĥm〉 stabilizing {B, c} and {B̂, c} respec-

tively. Since hi(c) = c = ĥj(c) for all i, j it follows from the [27] that
c ∈ ΛZhi

and c ∈ ΛZĥj
for all i, j. Since Zhi

and Zĥj
are convex, it

follows from [27, Theorem 16] that ZH =
⋂

i

Zhi
and ZĤ =

⋂

i

Zhi
are
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convex and that c ∈ ΛZH and c ∈ ΛZĤ . Thus by [27, Theorem 16]
Z = ZH ∩ ZĤ is convex and c ∈ ΛZ = ΛZH ∩ ΛZĤ .

Since Z is convex, it is a CAT(0) group, and by [27, Theorem 11]
there is an element g ∈ Z of infinite order. For any K < G, ΛK is not
a single point [27, Corollary to Theorem 17]. Since H is infinite, ΛH
is non-empty with more than one point. By Lemma 32 ΛH ⊂ B̄. By
Lemma 31, g fixes ΛH. It follows that g(B) = B. Similarly g(B̂) = B̂.
It follows that g(c) = c as required. �

Theorem 34. Let G be a one-ended group acting geometrically on the
CAT(0) space X. Then ∂X has no cut points.

Proof. Assume that ∂X has a cut point. Let T be the cut point tree
of ∂X. By Lemma 30 T is a simplicial tree. Since G is one-ended
all edge stabilizers are infinite. By Lemma 33 there is a hyperbolic
element g ∈ G stabilizing two adjacent edges of {B, c} and {c, D} of
T . Thus by Lemma 32, {g±} ⊂ B̄ and {g±} ⊂ D̄. This is absurd since
the intersection of B̄ and D̄ is a single points (namely c). �

7. The action on the JSJ-tree is non-trivial

Setting . For the remainder of the paper G will be a one-ended group
acting geometrically on the CAT(0) space X. As we showed in the
previous section, ∂X has no cut points.

Let T be the JSJ-tree of Z = ∂X constructed in section 1. Since the
construction of T is canonical, G acts on T .

Lemma 35. The action of G on the R-tree T is non-nesting. That is
for any closed arc I of T , there is no g ∈ G with g(I) ( I.

Proof. The proof is basically the same as that of Lemma 23. We sketch
it here. Suppose not, then we may assume that:

• I = [A, B]
• A, B ∈ P
• g(A) = A
• g(B) ∈ (A, B)
• |(g(B), B)| > 2, so dT (g(B), B) > 0

Using π-convergence we see that :

• dT (B, A) = ∞.
• g is a rank 1 hyperbolic element.
• g+ ∈ A.
• B separates A from g−
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No element of P is a singleton, so let a ∈ A − {g+}. Notice that g is
rank 1 so dT (a, g+) = ∞. Thus by π-convergence g−i(a) → g−. Since
A is fixed by g, then g− ∈ Ā. This contradicts the fact that B separates
A from g−

�

By lemma 24 if the action of G on T has a global fixed point, then
G is virtually H × Z for some finitely presented group, H, with more
than one end.

By the construction of T if G fixes a point of T then G fixes a point
of P. Points of P are of one of the following types:

• inseparable cut pairs of ∂X
• maximal cyclic subsets of ∂X which we call necklaces
• maximal inseparable subsets of ∂X.

We deal now with the first type, i.e. we assume that G fixes an
inseparable cut pair.

Setting . For the remainder of the paper, we assume that G doesn’t
virtually have Z as a direct factor, that is there is no finite index
subgroup H of G with H ∼= K × Z, for some group K. Thus by
Lemma 24 G doesn’t virtually leave a finite set invariant, in
particular G doesn’t leave a cut pair invariant.

7.1. G doesn’t leave a maximal inseparable set of ∂X invariant.

Lemma 36. If the Tits diameter of ∂X is more than 3π
2
, then G fixes

no maximal inseparable set or cut pair.

Proof. If A is a cut pair, then there are nonempty disjoint open subsets
U and V such that U∪V = ∂X−A. Choose a rank 1 hyperbolic element
g ∈ G with g− ∈ U and g+ ∈ V . By π-convergence, it follows that
g(A) ⊂ V and g(A) separates A from g+. Thus G fixes no cut pair. By
π-convergence every maximal inseparable set will lie ”between” gi(A)
and gi+1(A) for some i ∈ Z, and so will not be fixed by G. �

Let’s assume now that G fixes a maximal inseparable subset of ∂X,
say D, so the Tits diameter is at most 3π

2
. Let a, b be a pair of points

separating ∂X.
Let B be the closure of the component of ∂X−{a, b} which contains

D, and I be a minimal non-empty closed invariant set for the action
of G of necessity contained in D. By [9, Proposition II 2.7] if the Tits
radius of I were less than π

2
, then I would have a unique centroid (in

∂X) which would be fixed by G. Since G fixes no point of ∂X, it
follows that the Tits radius of I is at least π

2
. Also I must be infinite

otherwise a finite index subgroup of G fixes a point of I and we are
done again by Lemma 24.
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7.1.1. C-geodesics. Let {c, d} ∈ ∂X be a cut pair and C ⊂ ∂X the
closure of a component of ∂X − {c, d}. Consider the path metric of C
using the Tits metric dC

T (x, y) = inf{`T (α) : α is a path in C from x to
y}. For e, f ∈ C, let ε > 0, consider the sets Fε = ∪{ paths α ⊂ C with
f ∈ α and with Tits length `T (α) ≤ ε} and Eε = ∪{ paths α ⊂ C with
e ∈ α and with Tits length `T (α) ≤ ε}. Using lower semi-continuity
of the (identity) function from the Tits boundary TX to the boundary
∂X, we see that Fε and Eε are closed connected subsets of the continua
C. The Tits diameter of ∂X is at most 3π

2
. It follows that for some

ε, C = Eε ∪ Fε, so there exists a path α ⊂ C of finite Tits length
from f to e. Using lower semi-continuity of the identity map (from the
Tits boundary to the regular boundary) and a limiting argument, we
can show that there is a shortest path in C from f to e which we call
C-geodesic from f to e.

Local geodesics of length ≤ π are geodesics, [9], so if dC
T (d, e) < π,

then the C-geodesic from d to e is the Tits geodesic from d to e and
therefore unique.

Theorem 37. G doesn’t leave a maximal inseparable set invariant.

Proof. Let’s assume that G fixes a maximal inseparable subset of ∂X,
say D. If I is a minimal invariant set for the action of G on ∂X then
I is contained in the closure of D. It follows that ∂X has finite Tits
diameter.

D is a point of T . We remark that if R is a component of T − D
then the closure of R (where we see now R as a subset of ∂X) in the
Tits topology (i.e. the topology defined by dT ) intersects D at either
one or two points.

We distinguish two cases:

(1) There is no element of P contained in R adjacent to D.
(2) There is an element of P contained in R adjacent to D.

In the first case there is a non trivial loop contained in R (again we see
R as subset of ∂X) separated from D by infinitely many elements of
P. We homotope this loop to a geodesic circle w separated from D by
infinitely many elements of P. Thus we have {â, b̂}, a cut pair disjoint
from w and D, separating w from D.

Then we claim that for some e ∈ w, dT (e, {â, b̂}) ≥ π
2
. Indeed if

every point on w is at Tits distance less than π
2

from â, b̂ then there
are two antipodal points on w, both at Tits distance less than π

2
from

one of â, b̂. This contradicts the fact that w is geodesic. It follows now
that dT (e, I) > π

2
which is a contradiction.
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We deal now with the second case. Since the Tits diameter of ∂X
is at most 3π

2
, it follows that the element of P adjacent D in R is a

cut pair, {a, b}. All translates (there are infinitely many of them) of
{a, b} are adjacent to D. Let p be a point of ∂X separated from D by
{a, b}, and let gi ∈ G such that for some (hence for all) x ∈ X, gi(x)
converges to p. By passing to a subsequence we may assume that g−1

i x
converges to some n ∈ ∂X.

By [19], X has almost extendable geodesics, and this implies that
there is q ∈ ∂X with dT (n, q) = π, and by π-convergence gi(q) → p.
It follows that there are translates a1, b1 of a, b respectively so that q
is separated from D by {a1, b1}. Further we claim that gi{a1, b1} =
{a, b} for all i big enough. Indeed since {a, b} is a cut pair there
is a neighborhood U of p with ∂U = {a, b}. On the other hand if
gi{a1, b1} 6= {a, b}, gi(q) 6∈ U . We have in fact shown that every point
of ∂X at Tits distance ≥ π from n is separated from D by {a1, b1}.

Let B1 be the component of ∂X − {a1, b1} containing D and C1 the
component of ∂X−{a1, b1} containing q. We claim that n ∈ B1. Indeed
suppose that n lies in another component, say B2 of ∂X −{a1, b1}. By
Theorem 22, every point is at Tits distance less than π

2
from I, so there

is a B2-geodesic γ1 of length less than π from a1 to b1. It follows that
if γ2 is a B1 geodesic from a1 to b1 the length of γ2 is at least π. This
is because γ1 ∪ γ2 is a non-contractible loop. It follows that there is
some point on γ2 at distance more than π from n. This contradicts
our earlier observation that all such points are separated from D by
{a1, b1}.

Now consider the loop S consisting of the B1-segments [n, a1], [n, b1]
and a C1-segment [a1, b1], which we may assume contains q since S is
non-contractible so some point of S is at Tits distance ≥ π from n.
The B1-segments [n, a1] and [n, b1] (having length less than π will be
Tits geodesics and, since every point of ∂X is within π

2
of I ⊂ D, so

will the C1-segment [a1, b1].
Since every essential loops of ∂X has Tits length at least 2π one

can show that only finitely many translates of {a, b} separate a subarc
of S from D. Let {a2, b2}, C2, B2 be translates of {a1, b1}, C1, B1

respectively so that {a2, b2} doesn’t separate a subarc of S from D.
As before let S ′ be the union of the B2-segments [n, a2], [n, b2] and
a C2-segment [a2, b2], and as before these three segments will be Tits
geodesics. Notice that since S ′ is not contractible, there is a point of
S ′ at distance ≥ π from n, and so some point of S ′ is separated from
D by {a1, b1}
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Notice by construction that for every s ∈ S, S contains a Tits geo-
desic from s to n and similarly for S ′. Then S, S ′ both contain a1, b1,
have length at least 2π. Let S1, S

′
1 be respectively the subarcs of S, S ′

from n to a1 contained in B1 and similarly let S2, S
′
2 be respectively the

subarcs of S, S ′ from n to b1 contained in B1 Then as we note before all
have length smaller than π. On the other hand at least one of S1 ∪ S ′

1,
S2 ∪ S ′

2 runs through C2 once, and so is a non contractible loop. This
is a contradiction.

�

7.2. Stabilizers of necklaces of ∂X.

Theorem 38. Let H be a group of homeomorphisms of the circle S1,
and let A be a nonempty closed H-invariant subset of S1. Either A
is countable and H virtually fixes a point of A, or there is an H-
equivariant cellular quotient map q : S1 → S1 such that q(A) = S1.

Proof. Recall that a compact Hausdorff space E is called perfect if each
point of E is a limit point of E. We note that every perfect space is
uncountable.

Let

B = {a ∈ A : ∃ an open U 3 a with U ∩ A countable }

and let C = A − B. Since A is Lindeloef, and B is a subset of A, B is
countable. Since B is an open subset of A, C is compact, and it follows
that C is perfect since every neighborhood of a point of C contains
uncountably many points of A, and therefore a point of C (since B is
countable). Thus A is the union of a countable set B, and a perfect
set C.

First consider that case where A is countable, (C = ∅). We remark
that if A ⊃ A1 ⊃ A2 ⊃ ... and Ai are closed H-invariant sets then ∩Ai

is non-empty and H-invariant. By Zorn’s Lemma there is a minimal,
closed, non-empty, H-invariant subset of A. Let’s call this set A′. If
a ∈ A′ then A′ is the closure of the orbit of a under H, Ha. If A′

is infinite then there is some limit point b in A′. Since A′ is minimal
closed H-invariant set, and Hb ⊂ A′ we have that Hb = A′. It follows
that a is a limit point of A′. Since A′ = Ha, every point of A′ is a limit
point of A′, so A′ is perfect, a contradiction. Therefore A′ is finite and
H virtually fixes a point of A.

Now consider the case where A is uncountable, so C 6= ∅.
Let I be a closed interval of R and let D be a perfect subset of I.

For x, y ∈ I define x ∼ y if there is no point of d strictly between them.
This is an equivalence relation (transitivity follows from the perfection
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of D). The linear order of I extends to a linear order on the quotient
I/ ∼. It follows that I/ ∼ is a compact connected separable linearly
ordered topological space, as known as a closed interval. Since the
image of D in I/ ∼ is compact and dense, it follows that the image is
the entire quotient I/ ∼.

Of course S1 is just the quotient space of a closed interval which
identifies exactly the endpoints. We now say that x, y ∈ S1 are equiv-
alent if there is an open arc in S1 − C from x to y. It follows from
the previous paragraph that this is an equivalence relation on S1 and
that S1/ ∼= S1. Let q : S1 → S1 be the quotient map. Since C
is H-invariant, it follows that q is H-equivariant, and by the previous
paragraph q(C) = S1. By constuction, the inverse image of a point is
a closed arc, so q is cellular. �

Lemma 39. If G leaves a necklace N of ∂X invariant, then the action
of G on X is rank 1.

Proof. Suppose not. Since the Tits diameter of ∂X is at most 3
2
π, N

is contained in a geodesic circle α of length at most 3π. If any arc of
α−N has length at least π, then the endpoints of that arc are virtually
stabilized by G which contradicts our hypothesis. Thus α is the unique
geodesic circle containing N , and so G stabilizes α.

Since G acts on the Tits boundary by isometries, there is a homo-
morphism ρ : G → Isom(α)( which is virtually the Lie group S1 and so
virtually abelian). Since G doesn’t virtually fix any point of ∂X, ρ(G)
is infinite. Since G is finitely generated, the virtually abelian group
ρ(G) contains an element of infinite order, ρ(g). That is g(or g2) ro-
tates α by an irrational multiple of `T (α). It follows by π-convergence
that dT (s, g+) = dT (s, g−) = π

2
for all s ∈ α. Thus every point of N is

joined to g+ by a Tits geodesic of length exactly π
2
. However since N

is a necklace and g+ 6∈ N , there must be a, b, c ∈ N such that {a, b}
separates c from g+, and so dT (c, g+) > min{dT (a, g+), dT (b, g+)}, a
contradiction. �

Corollary 40. The action of G on X is rank 1.

Proof. By Lemma 39 we may assume that G doesn’t leave a necklace
of ∂X invariant. Thus G acts on P without fixing a point, so T 6= ∅
and G acts on T without fixed points. By [21] that there is h ∈ G
which acts as a hyperbolic element on T , that is h acts by translation
on a line L ⊂ T . Let A ∈ L ∩ P. For some n > 0, dT (hn(A), A) > 0.
It follows by π-convergence that dT (h+, h−) = ∞, and by definition h
is rank 1 in its action on X. �
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Theorem 41. Let B be a necklace of ∂X, and let H be the stabilizer
of B, so H = {g ∈ G : g(B) = B}. Then one of the following is true:

(1) H is virtually cyclic and there is at most one gap J of B with
the stabilizer of J in H infinite .

(2) H acts properly by isometries on H2 with limit set the circle at
infinity. Furthermore for any gap J of B, the stabilizer of J
in H is finite or it is a peripheral subgroup of H (as a Fuch-
sian group). Distinct gaps correspond to distinct peripheral sub-
groups.

Proof. Let fB : ∂X → S1 be the circle function for B (see Theorem
22 of [21]). Thus the action of H on B extends to an action of H on

S1. By Theorem 38 either H virtually fixes a point in fB(B), or by
composing fB with an H-invariant cellular quotient map q, we have an
H invariant π : ∂X → S1. We may assume that H is infinite.

Case I. We first deal with the case where H virtually fixes a point
r ∈ fB(B). Passing to a finite index subgroup, we assume H fixes r.

First consider the case where an infinite subgroup K < H fixes three
points a, b, c ∈ B. We have the unique cyclic decomposition U, V, W ,
continua with U ∪ V ∪ W = ∂X and U ∩ V = a, V ∩ W = b, and
W ∩ U = c. With no loss of generality there is p ∈ ΛK − U . Choose
(ki) ⊂ K with ki(x) → p and k−1

i (x) → n for some n ∈ ∂X and for
all x ∈ X. Since G is rank one, there exists q ∈ U with dT (q, n) = ∞.
Thus ki(q) → p 6∈ U , but since K fixes a, b, c, by uniqueness of the
cyclic decomposition K leaves U invariant, a contradiction. Thus no
infinite subgroup of H fixes three points of B; in particular no hyperbolic
element of H fixes more than two points of B.

We remark now that fB(B) − p is linearly ordered so a finite order

element of H either fixes all points of fB(B) or its square fixes all points

of fB(B). If H is torsion, then passing to an index two subgroup, we

may assume that H fixes fB(B), so H fixes B. As noted above, this is
not possible, so H contains a hyperbolic element.

Since H fixes a point in S1, the action of H on S1 comes from an
action on a closed interval. Thus there exists b ∈ B and hyperbolic
h ∈ H such that {b, h2(b)} separates h−1(b) from h(b).

Since dT (b, g(b)) > 0, for each i, hi(b) is at infinite Tits distance
from any fixed point of h in ∂X, in particular from h±. It follows by
π-convergence that hi(b) → h+ and h−i(b) → h−. For m ∈ Z let Mm

be equal to the closure of the component of ∂X − {hm−1(b), hm(b)}
which doesn’t contain h±. Notice that h(Mm) = Mm+1, and that
dT (Mm, h±) = ∞. From π-convergence, the closure of M = ∪Mm is
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M ∪{h±}. It follows by [21, Lemma 15] that B ∪{h±} is cyclic subset
of ∂X, and by maximality, {h±} ⊂ B. Since h fixes at most 2 points
of B, h± are the only points of B fixed by h, and r ∈ fB(h±). Since
f−1

B (fB(h±)) = {h±}, it follows that H fixes one of h±. From [9], H
fixes both h±.

We now show that ΛH = {h±}. Suppose not, then there is (gi) ⊂
H with gi(x) → p 6∈ {h±} and g−1

i (x) → n for all x ∈ X. Notice
that (gi) leaves M invariant. Since (gi) fixes h±, by π-convergence,
n, p ∈ BT (h±, π). It follows that dT (Mm, n) = ∞ for all m ∈ Z. Thus
gi(M0) → p. However gi(M0) ⊂ M for all i and the closure of M is
M ∪ {h±} a contradiction. We have shown that ΛH = {h±} and by
Lemma 15, H is virtually 〈h〉. If there is a gap of B with sides h± then
that gap will be stabilized by 〈h〉 (there can be at most one such gap),
but no other gaps of B will be stabilized by a positive power of h, and
so will have finite stabilizer in H.

Case II. By Theorem 38 we are left with the case where there is an
H invariant function ρ : ∂X → S1 with ρ(B) = S1, where ρ = q ◦ fB,
and q is the quotient map of Theorem 38. Notice that ρ is a quotient
map, using the equivalence relation defined by x 6∼ y if there exists
uncountable many disjoint cut pairs {s, t} ⊂ fB(B̄) separating fB(x)
from fB(y). Since the map fB is canonical up to isotopy, this is an
equivalence relation, and so ρ is a H quotient.

We first show that the action of H on this quotient S1 is a conver-
gence action. Let (gi) be a sequence of distinct elements of G. Passing
to a subsequence we find n, p ∈ ∂X such that for any x ∈ ∂X, gi(x) → p
and g−1

i (x) → n. Since G is rank 1, every non-empty open set of ∂X
contains points at infinite Tits distance from n. Every arc of S1 con-
tains the image of a non-empty open subset of ∂X. Thus every open
arc of S1 contains the image of a point at infinite Tits distance from n.

Let p̂ = ρ(p) and n̂ = ρ(n). For v, u ∈ S1 we define the Tits distance
dT (u, v) = dT (ρ−1(u), ρ−1(v)). Since the action of G preserves Tits
distance on ∂X, it also preserves it on S1. Let U , open arc about of p̂.
There exists ε > 0 and, such that dT (p̂, J) > ε where J = S1 − U .

Let K be a closed arc of S1 with endpoints a and b and n̂ 6∈ K. It
suffices to show that gn(K) ⊂ U for all i >> 0. If ρ−1(K)∩BT (n, π) = ∅
then by π-convergence, gi(ρ

−1(K)) → B̄T (p, ε) so gi(K) ⊂ U for all
i >> 0. Thus we may assume that K ⊂ ρ(B̄T (n, π)). In fact we can
now reduce to the case where K = ρ(α) where α is a Tits arc of length
less that ε

2
. The arc α contains the image q of a point at infinite Tits

distance from n. Thus gi(q) → p. By the lower semi-continuity of the
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Tits metric on ∂X, for i >> 0, dT (gi(q), J) > ε
2
, and it follows that

gi(K) ⊂ U .
Thus H acts as a convergence group on S1, so H act properly on

H2 with the action of H on S1 coming the induced action of H on
∂H2 = S1. Clearly for any gap J of B, π(J) is a single point. Thus
stab(J) ∩ H < stab(π(J)). Since the stabilizer of single boundary
point in a Fuchsian group is either finite or peripheral, the proof is
complete. �

Corollary 42. If I is an interval of P which contains a necklace N ,
then stab(I) is virtually cyclic. If N is interior to I then stab(I) is
finite.

Proof. In any case the stab(I) will stabilize N and a gap of N , and so
be virtually cyclic. If N is interior to I, then the stab(I) stabilizes N
and two distinct gaps of N , and so stab(I) is finite. �

Corollary 43. If G leaves a necklace invariant, then G is virtually a
closed hyperbolic surface group.

Proof. By Theorem 41, G is virtually a Fuchsian group. Since G has
one end, G is virtually a closed hyperbolic surface group. �

For the remainder of the paper, we assume (in addition)
that G is not virtually a closed surface group, so G acts on T
without global fixed point.

7.3. T is discrete. The tree T we have constructed from the boundary
of X is a-priori a possibly non discrete R−tree. We recall that a G-tree
is termed minimal if it does not contain a G-invariant proper subtree.

Lemma 44. The tree T is minimal.

Proof. Suppose not, then we pass to the minimal subtree contained
in T , which we denote by Tm. Let Pm = P ∩ Tm (i.e. Pm are the
elements of P that correspond to points of Tm). Let A be a necklace
or an inseparable cut pair. Then there are open sets U and V of ∂X
separated by a cut pair contained in A with U ∩ A = ∅. Since the
action of G on X is rank 1, there is a rank 1 hyperbolic element h with
h− ∈ U and h+ ∈ V . It can be shown using π-convergence that h acts
by translation on a line L ⊂ T with A ∈ L. Thus A ∈ Pm and so every
cut pair and necklace is in Pm.

Recall by definition that we removed the terminal points of P before
we glued in intervals to form T . Notice that any non-terminal maximal
inseparable set is between two elements which are either necklaces or
inseparable cut pairs. Since all necklaces and inseparable cut pairs are



BOUNDARIES AND JSJ DECOMPOSITIONS OF CAT (0)-GROUPS 31

in Pm, all non-terminal elements of P are in Pm ⊂ Tm. It follows that
Tm = T . �

Theorem 45. T is discrete.

Proof. We first show that T is stable. Let I be an interval of P with
infinitely many elements. We will show that stab(I) is a finite group.
If I contains a necklace in its interior then stab(I) is finite by Corollary
42. Otherwise there are infinitely many inseparable cut pairs in I.

Assume that stab(I) is infinite and let gn ∈ stab(I) be an infinite
sequence of distinct elements. By passing to a subsequence we may
assume that gn(x) → p, and g−1

n (x) → n for some (all) x ∈ X. There
are inseparable cut pairs A, B ∈ I with A separating B from p ∈ ∂X.
Choose continua Y , Z with Y ∪ Z = ∂X and Y ∩ Z = B. We may
assume that A ⊂ Y , which forces p ∈ Y .

Since G is rank 1, there exists z ∈ Z with dT (z, n) = ∞. By π-
convergence gn(z) → p. Consider V =

⋃

n≥0

hn(Z). The set V is con-

nected since each set in the union contains B. Also A 6∈ V . But p ∈ V̄ ,
the closure of V . This contradicts the fact that A separates B from p.
Thus stab(I) is finite.

Since there is a bound on the size a finite subgroup in G, the action
of G on T is stable.

Suppose that T is not discrete. Then by [18] there is a R-tree S and
a G-invariant quotient map f : T → S such that G acts non-trivially
on S by isometries. Furthermore for each non-singleton arc α ⊂ S,
f−1(α) ∩ P is an infinite interval of P, and the stabilizer of an arc of
S is the stabilizer of an arc of T . It follows that the arc stabilizers of
S are finite and that the action of G on S is stable.

Since G is one-ended, by the Rips machine applied to S, there is a
element h ∈ G which acts by translation on a line in S such that G
virtually splits over h. This implies that {h±} is a cut pair, however
since h acts by translation on a line in S, it acts by translation on a
line in T , and so h± will correspond to the ends of this line (by π-
convergence). Thus {h±} is not an element of P, nor is it a subset of a
necklace of P. This contradicts the fact that {h±} is a cut pair. Thus
T is discrete. �

Lemma 46. Let A ∈ P be an inseparable cut pair and C ∈ P ∩ T
adjacent to A. Then A doesn’t separate C from a point of Λstab[C, A].
Furthermore Λstab[C, A] is contained in C.

Proof. Suppose that p ∈ Λstab[C, A] is separated from C by A. Choose
a (gi) ⊂ stab[C, A] with gi(x) → p and g−1

i (x) → n for some n ∈ ∂X.
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Since C ∈ P∩T , there is a necklace or cut pair E ∈ P with C ∈ (E, A).
Since G is rank one, there is a point q at infinite Tits distance from n
separated from C by E. It follows that gi(q) → p but this contradicts
A separating C from p.

To show that Λstab[C, A] is contained in C we argue similarly. Sup-
pose p ∈ Λstab[C, A] does not lie in C. Choose a (gi) ⊂ stab[C, A] with
gi(x) → p and g−1

i (x) → n for some n ∈ ∂X. Since A is not a terminal
point of T there is a point q at infinite Tits distance from n separated
from p by A. It follows that gi(q) → p. We note however that p is
separated from C by a cut pair c, d. So we can write ∂X = E ∪F with
E, F continua such that E ∩F = {c, d}. Let’s say A ⊂ F , p ∈ E. Now
since gi fixes A, gi(q) ∈ F for all i. So gi(q) does not converge to p, a
contradiction.

�

Theorem 47. If A is an inseparable cut pair then there is a hyperbolic
g with A = {g±}.

Proof. Suppose not. Let C, D be elements of P ∩ T adjacent to A.
Since G does not split over a finite group, there are infinite finitely
generated subgroups H = 〈h1 . . . hn〉 and Ĥ = 〈ĥ1 . . . ĥm〉 stabilizing
{C, A} and {A, D} respectively.

By passing to subgroups of index 2, if necessary, we may assume that
H and Ĥ fix A pointwise.

It follows from [27] that A ⊂ ΛZhi
and A ⊂ ΛZĥj

for all i, j. Since Zhi

and Zĥj
are convex, it follows from [27, Theorem 16] that ZH =

⋂

i

Zhi

and ZĤ =
⋂

i

Zhi
are convex and that A ⊂ ΛZH and A ⊂ ΛZĤ . Thus by

[27, Theorem 16] Z = ZH ∩ ZĤ is convex and A ⊂ ΛZ = ΛZH ∩ ΛZĤ.
Since Z is convex, it is a CAT(0) group, and by [27, Theorem 11]

there is an element g ∈ Z of infinite order [27, Corollary to Theorem

17]. Since H, Ĥ are infinite, ΛH, ΛĤ are non-empty.

By Lemma 46 ΛH is not separated from C by A and similarly ΛĤ
is not separated from D by A. By Lemma 31, g fixes ΛH and ΛĤ.
If either ΛH ⊂ A or ΛH ⊂ A, we are done by Lemma 15. Either
ΛH ⊂ C, in which case g(C) = C, or points of ΛH are separated from

D by C, and similarly for ΛĤ and D.
It could apriore happen that g acts by translation on a line of T

which contains A, C, D. In that case however, g is rank 1 (see proof of

Corollary 40). By Lemma 15 |ΛH|, |ΛĤ| ≥ 2 Thus ΛH ∪ ΛĤ 6⊂ {g±}
contradicting the fact that g fixes both and is rank 1.
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The only remaining posibility is that g(C) = C and g(D) = D,
so g(A) = A. It follows by Lemma 46 that g± ⊂ C and g± ⊂ D.
Therefore g± ∈ C ∩ D = A and so {g±} = A. �

Corollary 48. Let A, B, C ∈ P∩T with B ∈ (A, C) and B inseparable
cut pair. If A and C are both adjacent to B then the stabilizer of
the interval [A, C] is finite or virtually 〈g〉 where g is hyperbolic with
{g±} = B.

Proof. Let H = stab[A, C], so H = stab[A, B]∩ stab[B, C]. By Lemma
46, ΛH ⊂ A and ΛH ⊂ C, so ΛH ⊂ A ∩ C = B. If H is not finite, it
follows that H is virtually 〈g〉 where g is hyperbolic with {g±} = B. �

Let I ⊂ P ∩ T be an interval of P. Notice that if I contains three
elements of P which are not inseparable cut pairs, then stab(I) is finite.

7.4. G splits over a 2-ended group. We recall here some terminol-
ogy for group actions on trees and graphs of groups.

If Γ is a graph of groups and V is a vertex group of Γ then we say
that we can refine Γ at V if the following holds: There is a graph of
groups decomposition of V such that all edge groups of Γ adjacent to
V are contained in vertex groups of the graph of groups decomposition
of V . We obtain the refinement of Γ by substituting V by its graph
decomposition and joining the edges of Γ adjacent to V to the vertex
groups of the graph containing the corresponding edge groups. A vertex
v of a graph of groups labeled by a group V is called non-reduced if it
is adjacent to at most 2 edges and all edges adjacent to v are labeled by
V . A graph of groups which contains no such vertices is called reduced.
We say that a subgroup H < G is elliptic in Γ if it is contained in a
conjugate of a vertex group of Γ.

We proceed now to show that G splits over a 2-ended group. We
will show this considering the action of G on T . In the next section
we show that this action gives also the JSJ decomposition of G. We
remark that T has at least one vertex that corresponds either to an
inseparable cut pair or to a necklace. We will show in each case that
one can get a splitting of G over a 2-ended group.

We consider the graph of groups Γ obtained from the action of G on
T .

By Theorem 41 if a vertex v of Γ corresponds to a necklace then
the vertex is labeled either by virtually a subgroup of Z2 or it is a
fuchsian group. In the second case Γ has an edge labeled by a peripheral
subgroup of the fuchsian group. In the first case if the vertex is labeled
by Z2 then the limit set of the vertex stabilizer is a circle. Since this
limit set is a necklace we have that the boundary of G is a circle so G
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is virtually Z2. Otherwise the vertex is labeled by virtually Z. If the
vertex corresponds to a branch point we see that all edges adjacent to it
are labeled by 2-ended groups and the graph is reduced at this vertex.
Otherwise a vertex u adjacent to it is labeled by a group containing
the stabilizer of a maximal inseparable set which is a branch point of
T . The edge with endpoints [u, v] is labeled by a 2-ended group and
gives a splitting of G.

Let’s now consider a vertex v of T corresponding to an inseparable
pair {a, b}. We consider first the case that the stabilizer of v is a two
ended group. If v corresponds to a branch point of T then since the
edges adjacent to v are labeled by subgroups of the stabilizer of v all
these edges give reduced splittings of G over two ended groups. If
v does not correspond to a branch point then an edge adjacent to v
corresponds to a branch point of T . This edge is labeled by a two ended
group and gives a reduced splitting of G over a two ended group.

Let V be the stabilizer of the vertex v corresponding to a, b. By
theorem 47 there is a hyperbolic element g in V with {g∞, g−∞} =
{a, b}. By the algebraic torus theorem [11] to show that G splits over
a 2-ended group it suffices to show that X/ < g > has more than one
end.

Let X̄ = X∪∂X. Let L be an axis for g and let D be the translation
length of g. Let U, V be small neighborhoods around a, b respectively.
To fix ideas we define U, V as follows: we take a base point x on L and
we consider the ray from x to a. Let’s call this ray ca. Let’s call cy the
(possibly finite) ray from x to a point y ∈ X̄. We define U as follows:

U = {y ∈ ∂X : d(cy(10D), ca(10D)) < 1}

V is defined similarly. We claim that there is a K such that a K-
neighborhood of L union U ∪V separates any two components of ∂X−
a, b. Suppose that there are components C1, C2 of ∂X − {a, b} such
that for any n there is a component Tn of X̄ minus U ∪ V ∪ Nn(L)
such that Tn intersects both C1, C2. Without loss of generality we can
assume that the T ′

ns are nested. Then if T =
⋃

Tn, T ⊂ ∂X is closed,
connected and intersects both C1, C2. This is a contradiction since T
does not contain a or b.

We recall the fact (see [19]) that geodesics in X are ‘almost extend-
able’ i.e. there is an A > 0 such that if [a, b] is a finite geodesic in X
then there is an infinite ray [a, c] (c ∈ ∂X) such that d(b, [a, c]) ≤ A.

Let p : X → L be the projection map from X to L.
We claim that there is an M > 0 such that the M -neighborhood

of L separates X in at least two components Y1, Y2 such that Yi is not
contained in any finite neighborhood of L (i = 1, 2). This claim implies
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that G either splits over a 2-ended group or is virtually a surface group
by [11].

We prove now the claim. Let X1, X2 be two distinct components of
∂X − {a, b}. We claim that there are two infinite rays r1, r2 from x to
X1, X2 respectively which are perpendicular to L. Indeed we consider
rays from x to ,say, points on X̄1. The angle that these rays form with
L varies continuously and takes the values {0, π} at {a, b}. Therefore
some such ray r1 is perpendicular to L. We argue similarly for r2.

Given n > A, n ∈ N let R1 = r1(n + 1), R2 = r2(n + 1). If R1, R2

are not contained in the same component of X −Nn(L) then the claim
is proven. Otherwise there is a path p in X − Nn(L) joining R1 to
R2. For every y ∈ X we consider p(y) ∈ L and we pick an infinite
ray ry from p(y) such that d(ry, y) ≤ A. For R1, R2 we choose the
corresponding rays to be r1, r2 respectively. Clearly there are y1, y2 ∈ p
such that d(y1, y2) < 1 and the corresponding rays ry1

, ry2
define points

in distinct components of ∂X − {a, b}. Since < g > acts cocompactly
on L we may translate p(y1), p(y2) close to x, say

d(gk(p(y1)), x) < 2D, d(gk(p(y2)), x) < 2D

Then gk(ry1
), gk(ry2

) define points in distinct components of ∂X−{a, b}
and if n > K these two points are not separated by the K-neighborhood
of L union U ∪ V . This is a contradiction.

We have shown the following:

Theorem 49. Let G be a one ended group acting geometrically on a
CAT(0) space X. If a pair of points {a, b} separates ∂X then either G
splits over a 2-ended group or G is virtually a surface group.

7.5. JSJ decompositions.

Definition . Let G be a group acting on a tree T and let Γ be the
quotient graph of groups. We say that this action (or the decompo-
sition Γ) is canonical if for every automorphism α of G there is an
automorphism Cα of T such that α(g)Cα = Cαg for every g ∈ G.

Bowditch ([6]) constructed a canonical JSJ-decomposition for hy-
perbolic groups. Swarup-Scott ([24]) constructed a canonical JSJ-
decomposition for finitely presented groups in general. We show here
how to deduce a canonical JSJ-decomposition for CAT(0) groups using
their CAT(0) boundary. Our JSJ-decomposition is similar to the one
in [24].

To describe our decomposition we use the notation of the previous
sections. So G is a CAT(0) group acting on a CAT(0) space X. From
the pairs of cut points of the boundary of X we construct an R-tree
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T on which G acts non-trivially (unless G has no splittings over 2-
ended groups or G is virtually of the form H × Z, in these cases our
JSJ decomposition is trivial). As we showed in the previous section T
is discrete. Then the graph of groups decomposition Γ given by the
quotient graph of the action of G on T is the JSJ decomposition of G.

Vertex groups of this graph are either fuchsian or groups that have
no splitting over 2-ended groups in which the adjacent edge groups are
elliptic or groups that stabilize inseparable cut pairs. Edges incident
to fuchsian groups are labeled by 2-ended groups by Theorem 41. The
only other type of edges are edges joining an element C of P corre-
sponding to an inseparable subset of ∂X with infinite Tits diameter
and an inseparable pair {a, b} of P. These edges are not labeled neces-
sarily by 2-ended groups. So our decomposition might differ from the
one obtained by Rips-Sela [22] or Dunwoody-Sageev [12]. However we
claim that we can refine our decomposition to a JSJ decomposition over
2-ended group given in [12]. Let TJ be the tree corresponding to the
JSJ decomposition in [12]. To show that Γ can be refined it is enough
to show that edge groups of Γ act elliptically on TJ . This is clearly true
for the 2-ended vertex groups. Now let V be the stabilizer of an insep-
arable cut pair {a, b} and let e be an edge joining {a, b} to an element
C of P corresponding to an inseparable subset of ∂X with infinite Tits
diameter. If E is the edge stabilizer of e by lemma 46 ΛE is contained
in C. If E acts hyperbolically on TJ then there is a hyperbolic element
h ∈ E and the 2 points of Λ < h > are separated by any pair of points
of ∂X corresponding to limit points of an edge on the axis of h on
TJ . This is a contradiction since Λ < h >⊂ C. It follows that any
edge group of Γ fixes a point of TJ . We remark that the only vertex
groups of Γ that might act hyperbolically on TJ are vertex groups that
stabilize inseparable cut pairs. To refine Γ we let all such groups act
on TJ and we replace them in Γ by the decompositions we obtain in
this way. Doing this refinement we obtain a JSJ-decomposition of G
over 2-ended groups in the sense of Dunwoody-Sageev.

In order to show that our JSJ decomposition is canonical we observe
that if G splits over a 2-ended subgroup Z then the limit points of
Z is a separating pair for ∂X. So if α is an automorphism of G the
limit points of α(Z) is also a separating pair for ∂X. This observation
suffices to show that our JSJ decomposition is canonical. We explain
now this in detail.

Let α be an automorphism of G. If H is a fuchsian hanging subgroup
of Γ then the limit set of H on ∂X is a necklace and H fixes the vertex of
T corresponding to this necklace. α(H) is also a hanging fuchsian group
whose limit set is a necklace and α(H) fixes the corresponding vertex.
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A vertex V of Γ which is virtually of the form H × Z is the stabilizer
of an inseparable pair {a, b}. Clearly α(V ) is also a stabilizer of an
inseparable pair so it fixes also a vertex of T . Finally we remark that
π convergence implies that the stabilizer V of a maximal inseparable
set has a limit set which is contained in the maximal inseparable set.
So α(V ) fixes also a vertex of T .

We observe that adjacent vertex groups are mapped to adjacent ver-
tex groups by α. This is because splittings A ∗C B are mapped to
splittings α(A) ∗α(C) α(B) by α.

We have shown the following:

Theorem 50. Let G be a one ended group acting geometrically on a
CAT(0) space X. Then the JSJ-tree of ∂X is a simplicial tree T and
the graph of groups T/G gives a canonical JSJ decomposition of G over
2-ended groups.
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