
Moduli spaces of irreducible symplectic manifolds

V. Gritsenko, K. Hulek and G.K. Sankaran

February 15, 2008

Abstract

We study the moduli spaces of polarised irreducible symplectic mani-
folds. By a comparison with locally symmetric varieties of orthogonal
type of dimension 20, we show that the moduli space of polarised de-
formation K3[2] manifolds with polarisation of degree 2d and split type
is of general type if d ≥ 12.
MSC 2000: 14J15, 14J35, 32J27, 11E25, 11F55

0 Introduction

A simply-connected compact complex Kähler manifold is called an irre-
ducible symplectic manifold if it has an everywhere nondegenerate 2-form.
Irreducible symplectic manifolds are also known as irreducible hyperkähler
manifolds, and for brevity are frequently referred to simply as symplectic
manifolds, omitting the word “irreducible”. They have been extensively
studied by Beauville, Bogomolov, Debarre, Fujiki, Huybrechts, Markman,
Namikawa and O’Grady among others. Irreducible symplectic manifolds
have even complex dimension: in the surface case they are the K3 surfaces.
However, relatively few examples are known. Backgound, and considerable
detail, may be found in Huybrechts’ lecture notes [Huy3].

The second cohomology H2(X,Z) of a symplectic manifold X carries a
nondegenerate quadratic form qX of signature (3, b2(X) − 3), called the
Beauville form, or Beauville-Bogomolov form. Usually the lattice L =(
H2(X,Z), qX

)
is not unimodular, nor is it known to be necessarily even,

although it is even in all known examples. A polarisation on X is a choice
of ample line bundle on X, or equivalently the cohomology class h of an
ample line bundle. The (Beauville) degree of the polarisation is defined to
be d = qX(h): it is positive. There is a period map for symplectic mani-
folds: the global Torelli theorem, however, is known to fail in some cases
(see [Deb], [Nam1]).

Our aim in this paper is to study the moduli of polarised symplectic man-
ifolds by means of the period map. In Section 1 we describe this construction
precisely, prove that the moduli spaces exist and show how they are related
to locally symmetric varieties of orthogonal type: see Theorem 1.5. These
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varieties are associated with the orthogonal complement Lh of h in L. What
lattice Lh is depends in general on the choice of h, not just on the degree as
in the case of K3 surfaces.

In Section 2 we specialise to the case of deformation K3[n] manifolds:
that is, symplectic manifolds deformation equivalent to Hilbn(S) for a K3
surface S. In this case L = 3U ⊕ 2E8(−1) ⊕ 〈−2(n− 1)〉. Here one has
a better understanding of the map from the moduli space to the locally
symmetric variety, thanks to the work of Markman [Mar3]. We show in
Theorem 2.3 that in this case one may consider the quotient by the group
Õ(L, h) of automorphisms of L that fix h and act trivially on the discriminant
group L∨/L.

To continue further we need to study the orthogonal groups that can
arise. We do this in Section 3, where we mainly study the lattice L2t =
3U ⊕ 2E8(−1)⊕ 〈−2t〉. This leads us to a description of the possible types
of polarisation for deformation K3[n] manifolds. There are two special types,
having only one orbit of polarising vectors.

For the rest of the paper we are concerned with the case n = 2 and with
with the simplest polarisation, namely the split type, where the lattice Lh
is L2,2d = 2U ⊕ 2E8(−1)⊕ 〈−2〉 ⊕ 〈−2d〉. Our main theorem, Theorem 4.1,
states that every component of the corresponding moduli space is of general
type as long as d ≥ 12. There seems to be only one previous result about
dimension 20 moduli spaces of orthogonal type. Voisin [Vo1] proved that
one of them is birational to the moduli space of cubic fourfolds, and thus
unirational, but the type of the polarisation in that case is not split. In
the split case there are only nine possibly unirational moduli spaces (for
d = 9 and d = 11 the Kodaira dimension is non-negative): for polarised K3
surfaces there are still forty-three such possibilities.

The proof of Theorem 4.1 is similar in style to the corresponding result for
K3 surfaces proved in [GHS1] (see also [Vo2]), but there are many differences.
We use the low-weight cusp form trick, which guarantees that once the stable
orthogonal group Õ(L2,2d) has a cusp form with suitable vanishing of weight
less than the dimension of the moduli space then the components are of
general type.

We construct the cusp form by means of the quasi pull-back of the
Borcherds form, as in [GHS1]. To do so one requires a vector in E7 or-
thogonal to at least 2 and at most 14 roots, of length 2d.

Here there is a significant technical difficulty. The proof that these vectors
exist involves estimating the number of ways of representing certain integers
by various root lattices of odd rank. In Theorem 5.1 we give a new, clear,
formulation of Siegel’s formula for this number in the odd rank case. It
may be expressed either in terms of Zagier L-functions or in terms of the
H. Cohen numbers. This analytic estimate shows that the vectors we want
exist for d ≥ 20, and we can improve this bound slightly by means of a
computer search.
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1 Irreducible symplectic manifolds

In this section we collect the necessary results concerning symplectic mani-
folds and their moduli. The main aim is to relate moduli spaces of polarised
symplectic manifolds to quotients of homogeneous domains by an arithmetic
group.

We begin with the basic definitions and facts about irreducible symplectic
manifolds.

Definition 1.1 A complex manifold X is called an irreducible symplectic
manifold if the following conditions are fulfilled:

(i) X is a compact Kähler manifold;

(ii) X is simply connected;

(iii) H0(X,Ω2
X) ∼= Cσ where σ is an everywhere nondegenerate holomor-

phic 2-form.

Irreducible symplectic manifolds are also known as irreducible hyperkähler
manifolds, and very often simply as symplectic manifolds. The symplectic
surfaces are the K3 surfaces. In higher dimension the known examples are
the Hilbert schemes Hilbn(S) of a K3 surface S and deformations of them;
generalised Kummer varieties and their deformations; and two examples of
dimensions 6 and 10, constructed by O’Grady using moduli spaces of sheaves
on abelian surfaces and K3 surfaces respectively ([OG1], [OG2]).

It follows immediately from the definition that X must have even dimen-
sion 2n and that its canonical bundle ωX is trivial. Moreover h2,0(X) =
h0,2(X) = 1 and h1,0(X) = h0,1(X) = 0. By a result of Bogomolov [Bog],
the deformation space of X is unobstructed. This result was generalised to
Ricci-flat manifolds by Tian [Ti] and Todorov [Tod], and algebraic proofs
were given by Kawamata [Kaw1] and Ran [Ran] (see also [Fuj]). Since

T[0] Def(X) ∼= H1(X,TX) ∼= H1(X,Ω1
X)

the dimension of the deformation space is b2(X)− 2.
The main discrete invariants for symplectic manifolds are the Beauville

form (also known as the Beauville-Bogomolov form) and the Fujiki constant
or Fujiki invariant. The Beauville form is an indivisible integral symmetric
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bilinear form on H2(X,Z) of signature (3, b2(X)− 3). Its role in the theory
of irreducible symplectic manifolds is similar to the role of the intersection
form for K3 surfaces. To define it, let σ ∈ H2,0(X) be such that

∫
X(σσ)n = 1

and define

q′X(α) =
n

2

∫
X
α2(σσ)n−1 + (1− n)

(∫
X
ασn−1σn

)(∫
X
ασnσn−1

)
.

After multiplication by a positive constant γ the quadratic form qX =
γq′X defines an indivisible, integral, symmetric bilinear form ( , )X on
H2(X,Z): this is the Beauville form. Clearly (σ, σ)X = 0 and (σ, σ)X > 0.
Let v(α) = α2n be given by the cup product. Then, by a result of Fujiki [Fuj,
Theorem 4.7], there is a positive rational number c, the Fujiki invariant such
that

v(α) = cqX(α)n

for all α ∈ H2(X,Z).
In [OG3] O’Grady introduced the notion of numerical equivalence among

symplectic manifolds. Two symplectic manifolds X and X ′ of dimension
2n are said to be numerically equivalent if there exists an isomorphism
f : H2(X,Z) ∼−→ H2(X ′,Z) of abelian groups with

∫
X α

2n =
∫
X′ f(α)2n

for all α ∈ H2(X,Z). The equivalence class of X is called the numerical
type of X, denoted by N. Clearly, two symplectic manifolds are numeri-
cally equivalent if they have the same Beauville form and Fujiki invariant.
O’Grady [OG3, Section 2.1] showed that the converse is also true unless
b2(X) = b2(X ′) = 6 and n is even, in which case the numerical type deter-
mines cX but a priori one only has qX = ±qX′ . (There are, however, no
known examples of irreducible symplectic manifolds with b2 = 6.)

We fix an abstract lattice L which is isomorphic to H2(X,Z) equipped
with the Beauville form ( , )X (the Beauville lattice) and consider its
associated period domain

ΩL = {[w] ∈ P(L⊗ C) | (w,w) = 0, (w,w) > 0}

which, since the signature is (3, b2(X) − 3), is connected. A marking of
a symplectic manifold X is an isomorphism ψ : H2(X,Z) ∼−→ L of lattices.
We can associate to each marked symplectic manifold (X,ψ) its period point
[ψ(σ)] ∈ ΩL. Now let f : X → U be a representative of Def(X). This means
that U is a polydisc, X0 := f−1(0) ∼= X and f is a proper submersive map
whose Kodaira-Spencer map

Tf,0 : TU,0 −→ H1(X,TX)

is an isomorphism. We can use the marking ψ to define an isomorphism
ψU : R2f∗(Z) ∼−→ LU (we shall tacitly shrink U wherever necessary) and

4



thus a period map

ϕU : U −→ ΩL

t 7−→ [ψt(σXt)].

The local Torelli theorem for symplectic manifolds, proved by Beauville [Be],
says that φU is a local isomorphism (in the complex topology).

The surjectivity of the period map was proved by Huybrechts in [Huy1,
Theorem 8.1]. To formulate his result we consider a fixed lattice L which
appears as the Beauville lattice of some symplectic manifold. Let ML be the
corresponding moduli space of marked symplectic manifolds, i.e. as a set
ML = {(X,ψ : H2(X,Z) ∼−→ L}/ ≈ where the equivalence relation ≈ is in-
duced by ±f∗ with f : X → X ′ a biholomorphic map. The space ML admits
a natural smooth complex structure which, however, is not Hausdorff. The
period map ϕ : ML → ΩL is a holomorphic map and Huybrechts has shown
that every connected component of ML maps surjectively onto ΩL. For a
discussion of moduli of marked symplectic manifolds see the paper [Huy6]
by Huybrechts.

The situation improves considerably when one considers moduli of po-
larised symplectic manifolds. A polarisation on a symplectic manifold X is
the choice of an ample line bundle L on X. Since the irregularity of X is 0
this is the same as the choice of a class h ∈ H2(X,Z) representing an ample
line bundle on X. Clearly qX(h) > 0. Conversely, Huybrechts has shown
([Huy1, Theorem 3.11]: see also [Huy2, Theorem 2]) that a symplectic mani-
fold X is projective if and only if there exists a class h ∈ H2(X,Z)∩H1,1(X)
with qX(h) > 0. It should be noted, however, that neither line bundle asso-
ciated to ±h need be ample. There is, however, a small deformation of the
pair (X,h) with this property.

We now fix an abstract lattice L of rank b2 = b2(X) such that H2(X,Z) ∼=
L and let h ∈ L be a primitive element with h2 > 0. Then the lattice

Lh = h⊥L < L

has signature (2, b2 − 3). It defines a homogeneous domain, which in this
case has two connected components

ΩLh
= D(Lh) ∪ D′(Lh). (1)

If (X,h) is a pair with h ∈ H2(X,Z) ∩ H1,1(X) and ψ : H2(X,Z) → L is
a marking then the period point [ψ(σ)] ∈ ΩLh

. Hence for every deforma-
tion X → U of the pair (X,h) the period map defines a holomorphic map
ϕU : U → ΩLh

.
In this paper we are interested in the moduli spaces of polarised symplec-

tic manifolds. We shall fix the dimension 2n and the numerical type N of
the symplectic manifolds that we consider. We have already remarked that
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this determines the Beauville lattice and Fujiki invariant unless b2 = 6 and n
is even, in which case the quadratic form is only determined up to sign. We
shall consider polarised symplectic manifolds (X,h) of fixed numerical type
and given value qX(h) = d > 0. The degree of the associated line bundle L
is deg(L) = h2n = cdn where c is the Fujiki invariant. Instead of working
with the (geometric) degree of a polarisation we prefer to work with the
number d, which we will call the Beauville degree of the polarisation. We
first note the following variant of a result of Huybrechts [Huy4, Theorem
4.3], which is itself an application of the finiteness theorem of Kollár and
Matsusaka [KM, Theorem 3].

Proposition 1.2 For fixed numerical type there are only finitely many de-
formation types of polarised symplectic manifolds (X,h) of dimension 2n
and given Beauville degree d = qX(h) > 0.

Proof. Since the numerical type determines the Fujiki invariant c our choices
also fix the degree h2n = cqX(h)n > 0. The result follows immediately
from [Huy4, Corollary 26.17]. 2

Now we define the moduli spaces we are interested in. We first fix a
possible Hilbert polynomial, say P (m). Note that this is more than fixing
the degree of the polarisation. By Matsusaka’s big theorem we can find
a constant m0 such that for all polarised manifolds (X,L) with Hilbert
polynomial P (m) the line bundles L⊗m are very ample for m ≥ m0 and
have no higher cohomology. Then we have embeddings ϕ|L⊗m0 | : X → PN−1

where N = h0(X,L⊗m0) = P (m0). Such an embedding depends on the
choice of a basis of H0(X,L⊗m0). Let H be an irreducible component of
the Hilbert scheme HilbP (PN−1) that contains at least one point η ∈ H
corresponding to a symplectic manifold Xη. We denote by H0 the open
part of H parametrising smooth varieties.

Lemma 1.3 H0 has the following properties:

(i) Every point in H0 parametrises a symplectic manifold;

(ii) H0 is smooth.

Proof. The universal family X 0 over H0 is a flat family of projective man-
ifolds and thus every X in X 0 is a compact Kähler manifold, is simply
connected and has trivial canonical bundle, since this is true for Xη. More-
over, since the second Betti number is constant in X 0, we have h2,0(X) = 1
for every X in X 0, by semi-continuity. Thus (i) follows from Beauville’s
classification theorem [Be, §5, Théorème 2].

To prove (ii) we proceed along the lines of [Sz, Theorem 1.3]. Let X ⊂
PN−1 correspond to a point in H0. It follows from the restriction of the
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Euler sequence on PN−1 to X that

H1(X,TPN−1 |X) ∼= H2(X,OX) ∼= C.

The long exact sequence of the normal bundle sequence yields

· · · −→ H0(X,NX/PN−1) α−→ H1(X,TX) −→ H1(X,TPN−1 |X) −→ · · ·

The image of α is contained in the hyperplane Vh = h⊥ ⊂ H1(X,TX) ∼=
H1(X,Ω1

X), which corresponds to deformations of the pair (X,h) where h
is the class of L = OX(1). Since H1(X,TPN−1) is 1-dimensional the image
of α is equal to Vh and hence the Hilbert scheme is unobstructed and thus
smooth. 2

Definition 1.4 Let L be a lattice. We denote the discriminant group of L
by D(L) = L∨/L. The stable orthogonal group Õ(L) is defined by

Õ(L) = ker(O(L)→ O(D(L))). (2)

For a primitive element h ∈ L with h2 = d > 0, we define the groups

O(L, h) = {g ∈ O(L) | g(h) = h} (3)

and
Õ(L, h) = {g ∈ Õ(L) | g(h) = h}. (4)

For any subgroup Γ ⊂ O(L) we define the projective group

PΓ = Γ/(±1). (5)

We can consider O(L, h) and Õ(L, h) as subgroups of O(Lh), where Lh is, as
usual, the lattice perpendicular to h in L. We shall discuss the relationships
among these three groups in Section 3.

Note that in our case the lattice L has signature (3, b2 − 3) and hence
Lh has signature (2, b2 − 3). Thus the lattice Lh determines a homoge-
neous domain Ωh = ΩLh

of type IV on which the three groups described in
Definition 1.4 act.

The following theorem is crucial for the rest of the paper as it allows
us to compare moduli spaces of polarised symplectic manifolds to suitable
quotients of type IV homogeneous domains by an arithmetic group.

Theorem 1.5 There exists a quasi-projective coarse moduli space M2n,N,d

parametrising primitively polarised symplectic manifolds of dimension 2n,
numerical type N and Beauville degree d. We choose any one of the irre-
ducible components of M2n,N,d and denote it by Md. Such a choice deter-
mines a primitive vector h ∈ L (or possibly h ∈ L(−1) if b2 = 6 and n is
even) with q(h) = d such that there is a map

ϕ : Md −→ (O(L, h) \ Ωh)0 .
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Here (O(L, h) \ Ωh)0 is a connected component of O(L, h) \ Ωh. The map
ϕ is a morphism of quasi-projective varieties which is dominant and finite
onto its image.

Proof. We first note that by Proposition 1.2 there are only finitely many
possible Hilbert polynomials for a given choice of the discrete data 2n, N
and d. Hence it is enough to know that quasi-projective moduli spaces of
symplectic manifolds for fixed Hilbert polynomial exist. This is a conse-
quence of Viehweg’s general theory: see [Vi, Theorem 1.13] and the discus-
sion there. Indeed, every componentMd of M2n,N,d is a quotient of the form
SL(N,C)\H0 for some component H of a suitable Hilbert scheme (see the
discussion of Lemma 1.3).

We now want to relate the components Md to quotients of the form
O(L, h)\Ωh. For this we want to construct a map ϕ̃ : H0 → O(L, h)\Ωh

and then argue that it factors through the quotient by SL(N,C). We first
observe that every component H0 determines an O(L)-orbit of primitive
vectors h ∈ L with q(h) = d. Indeed, choosing a local marking ψt near a
given point in H0 we obtain a vector ht = ψt

(
c1(OXt(1))

)
with q(ht) = d,

and any two local markings differ by an element of O(L). Since H0 is
connected and the number of O(L)-orbits is finite this associates to each H0

a unique O(L)-orbit.
Let h be a representative of the orbit defined by H0. We shall be in-

terested only in h-markings, that is, markings ψ with ψ
(
c1(OX(1))

)
= h.

They exist locally on all of H0, and an h-marking on an open set U ⊂ H0

defines, via the period map, a holomorphic map ϕU : U → Ωh. Two h-
markings differ by an element O(L, h), so we obtain a holomorphic map
ϕ̃ : H0 → O(L, h)\Ωh.

If M ∈ SL(N,C) maps (X,OX(1)) to (X ′,OX′(1)), it induces an isomor-
phism

M∗ :
(
H2(X ′,Z), c1(OX′(1))

) ∼−→
(
H2(X,Z), c1(OX(1))

)
.

If ψ : H2(X,Z) → L and ψ′ : H2(X ′,Z) → L are h-markings then there
exists an element g ∈ O(L, h) with ψ ◦M∗ = g ◦ ψ′. This shows that the
map ϕ̃ factors through the quotient by SL(N,C), giving the required map

ϕ : Md −→ (O(L, h)\Ωh)0 .

Our next aim is to show that the map ϕ is a morphism of quasi-algebraic
varieties. For this we use a theorem of Borel [Bl] which says the following:
if Y is a quasi-projective variety and f : Y → Γ\Ω a holomorphic map to an
arithmetic quotient of a homogeneous domain, where Γ is torsion free, then
f is a morphism of quasi-projective varieties. Here Γ\Ω carries the natural
structure as a quasi-projective variety, which comes from the Baily-Borel
compactification. We cannot apply this theorem immediately, as O(L, h)
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will in general not be torsion free. However, we can avoid this difficulty by
using level covers.

We shall proceed in close analogy to [Po, Proposition 2.17] and [Sz, Sec-
tion 2]. As the arguments are very similar to the ones used in these papers
we shall omit the details. Since every point in H0 parametrises a symplectic
manifold, and is thus in particular never ruled, it follows from [MM] that
the action of SL(N,C) on H0 is proper and that the stabiliser of any point is
finite and reduced. Let O(L, h)(l) be the congruence subgroup of O(L, h) of
level l, i.e. the intersection of O(L, h) with the full level-l subgroup O(L)(l)
of O(L). We shall assume l ≥ 3.

One can then construct a finite étale Galois cover H0(l) → H0 whose
fibres are in bijective correspondence with O(L, h)/O(L, h)(l). The action
of the group SL(N,C) on H0 lifts to H0

k(l). By construction we obtain a
commutative diagram (for details of this see [Po, 2.9]):

SL(N,C)\H0(l)
ϕ(l)−−−−→ O(L, h)(l)\Ωhyf yg

Md
ϕ−−−−→ O(L, h)\Ωh

where all varieties are quasi-projective and where the vertical maps are finite
surjective morphisms given by the action of a finite group. By Borel’s result
the holomorphic map ϕ(l) is a morphism and hence ϕ is also a morphism.

Finally we want to prove that ϕ is dominant and has finite fibres. Since it
is a morphism of quasi-projective varieties it is enough to show that ϕ has no
positive-dimensional fibres. As in [Sz, Lemma 2.7] one can construct a fur-
ther finite étale covering H0(ρ) → H0(l) with the property that SL(N,C)
acts freely on H0(ρ). Let X 0 → H0 be the universal family and denote
its pullback to H0(ρ) by X 0(ρ). The group SL(N,C) also acts on X 0(ρ).
Locally X 0(ρ) → H0(ρ) represents the Kuranishi family of the polarised
symplectic manifold, and by the infinitesimal Torelli theorem the period
map is a local isomorphism near every point of H0(ρ). Hence the induced
morphism SL(N,C)\H0(ρ) → O(L, h)\Ωh has no positive-dimensional fi-
bres, and since H0(ρ)→ H0 is finite the same also holds for ϕ. 2

The techniques used here give finiteness results for irreducible symplectic
manifolds similar to those proved by Szendrői (e.g. [Sz, Theorem 4.2]) for
Calabi-Yau manifolds.

Corollary 1.6 Let X be an irreducible symplectic manifold. Given a pos-
itive integer k there exist only finitely many minimal models of X which
possess a polarisation whose degree is bounded by k.

Proof. We first note that any minimal model Y of X is again smooth.
The following argument for this is due to D. Huybrechts: given Y there is a
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birational map between X and Y which is an isomorphism in codimension 1.
Choose a generic ample line bundle L on Y and consider the corresponding
line bundle M on X. Then (c1(M), D) > 0 for every divisor D on X. By
[Huy3, Proposition 27.4], there is a third birationally equivalent pair (Z,N )
where Z is smooth and N is ample. But this implies that the birational
map between Y and Z is an isomorphism, by [Huy5, p. 501]. Alternatively
we can use Kawamata’s recent general result [Kaw2] that any two minimal
models are connected by flops, and Namikawa’s observation [Nam2] that
flops of symplectic manifolds preserve smoothness.

Since the degree of the polarisation is bounded, the results of Kollár
and Matsusaka [KM] imply that the minimal models in question have only
finitely many possible Hilbert polynomials. Thus they belong to finitely
many components of moduli spaces of polarised symplectic manifolds. Since
all minimal models are smooth and birationally equivalent they are defor-
mation equivalent by Huybrechts [Huy1, p. 65], and hence have the same
numerical type. Moreover their Hodge structures are isomorphic. In other
words all minimal models define the same period point and since every such
period point corresponds to at most finitely many polarised symplectic man-
ifolds in a given component of moduli the result follows. 2

Remark 1.7 The map ϕ : Md → (O(L, h)\Ωh)0 will in general not be sur-
jective as there are period points in Ωh which parametrise pairs (X,h) where
h is not ample.

This phenomenon already occurs for K3 surfaces. Unlike in the K3 case it is,
however, not clear which open part of the period domain belongs to ample
divisors. There are some results about this in special cases, due to Hassett
and Tschinkel [HT].

We shall use Theorem 1.5 in Section 4 to prove general type results for
some moduli spaces of symplectic manifolds by proving that the quotients
O(L, h)\Ωh are of general type.

2 Deformation K3[n] manifolds and monodromy

For the remainder of the paper we concentrate on a special case.

Definition 2.1 A deformation K3[n] manifold is a symplectic manifold that
is deformation equivalent to Hilbn(S) for some K3 surface S.

(Compare the definition of numerical K3[2] in [OG3].) If X is a deformation
K3[n] manifold then H2(X,Z) ∼= L2n−2 (as a lattice with the Beauville form),
where for any t ∈ N we put

L2t = 3U ⊕ 2E8(−1)⊕ 〈−2t〉. (6)
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For deformation K3[n] manifolds, the numerical type is determined com-
pletely by the dimension 2n, and the (Beauville) degree of a polarisation is
always even. The Fujiki invariant is (2n)!

2nn! .
We study deformation K3[n] manifolds by using monodromy operators,

whose theory was developed by Markman [Mar1], [Mar2], [Mar3]. We con-
sider a flat family π : X → B of compact complex manifolds with fibre X
over the point b ∈ B. Associated to such a family we obtain a monodromy
representation

π1(B, b) −→ Aut(H∗(X,Z)).

We define the group of monodromy operators to be the subgroup Mon(X)
of Aut(H∗(X,Z)) generated by the image of all monodromy representa-
tions. If we restrict to the second cohomology, we obtain a representation
π1(B, b) → Aut(H2(X,Z)) and correspondingly a subgroup Mon2(X) ⊂
Aut(H2(X,Z)). If X is a symplectic manifold then monodromy transfor-
mations preserve the Beauville form and we obtain a subgroup Mon2(X) ⊂
O(H2(X,Z)). Let Ref(X) be the subgroup of O(H2(X,Z)) generated by
±2 reflections.

Theorem 2.2 (Markman [Mar3, Theorem 1.2].) If X is a deformation
K3[n] manifold then

Mon2(X) = Ref(X).

Using a marking ψ : H2(X,Z) ∼−→ L we can think of Mon2(X) as a subgroup
of O(L2n−2). Since Mon2(X) is a normal subgroup we obtain a well-defined
subgroup Mon2(L2n−2) = Ref(L2n−2) = Ref(X) ⊂ O(L2n−2).

It follows from a result of Kneser [Kn, Satz 4] that the groups satisfy

Ref(L2n−2) = Õ(L2n−2). (7)

Note that the assumptions of Kneser’s theorem are fulfilled since L2n−2

contains three copies of U .
Unlike in the case of K3 surfaces, for fixed degree 2d there is not a unique

O(L2n−2)-orbit of primitive vectors h with h2 = 2d. We shall address this
question in Section 3. Hence the moduli space of deformation K3[n] mani-
folds with a primitive polarisation of degree 2d will in general have more
than one component.

Theorem 2.3 Let M[n]
2d be an irreducible component of the moduli space

of deformation K3[n] manifolds with a primitive polarisation of degree 2d.
Then the map ϕ from Theorem 1.5, above, factors through the finite cover
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Õ(L2n−2, h)\Ωh → O(L2n−2, h)\Ωh: that is, there is a commutative diagram

M[n]
2d

ϕ̃ //

ϕ

&&NNNNNNNNNNNN Õ(L2n−2, h)\Ωh

��
O(L2n−2, h)\Ωh

Proof. Note first of all that Õ(L2n−2, h)\Ωh is connected, since Õ(L2n−2, h)
contains +2 reflections, and these interchange D(Lh) and D′(Lh).

Recall from the proof of Theorem 1.5 that M[n]
2d = SL(N,C)\H0 for

some suitable open part of a component H of the Hilbert scheme. We
choose a base point in H0 and denote the corresponding symplectic variety
by X0. Choose an h-marking ψ0 :

(
H2(X0,Z), c1(OX0(1))

)
→ (L2n−2, h).

Now let Y be a variety corresponding to another point in H and choose
a path σY from X0 to Y . Transporting the marking ψ0 along this path
we obtain an h-marking ψσY :

(
H2(Y,Z), c1(OY (1))

)
→ (L2n−2, h). Clearly

this marking will depend on the path σY . Let τY be another path from X0

to Y and ψτY the corresponding marking. Then τY ◦ σ−1
Y is a closed path

based at Y and induces an automorphism f∗ = ψ−1
σY
◦ ψτ ∈ Mon2(Y ). Let

f ′ = ψσY ◦ f∗ ◦ ψ−1
σY
∈ Mon2(L2n−2). Then f ′ ◦ ψσY = ψσY ◦ f∗ = ψτY . This

shows that we have a morphism

ϕ′ : H0 −→ (Mon2(L2n−2) ∩O(L2n−2, h))\Ωh = Õ(L2n−2, h)\Ωh

where the last equality follows from Theorem 2.2 and equation (7).
We next claim that ϕ′ factors through M[n]

2d . For this let g ∈ SL(N,C)
be an element which maps Y to Z. Let σY and σZ be paths from X0

to Y and Z respectively, with corresponding markings ψσY and ψσZ . We
now consider the path σZ ◦ σ−1

Y from Y to Z. Using the element g to
identify Y and Z makes this a closed path. We can now argue as above and
conclude that ψσY ◦g∗ ◦ψσZ

−1 ∈ Mon2(L2n−2)∩O(L2n−2, h) = Õ(L2n−2, h).
(Strictly speaking we need a complex family to argue that this element is
in Mon2(L2n−2), but this can easily be achieved by a complex thickening of
the closed path.) 2

Remark 2.4 The lifting of the map ϕ to ϕ̃ is not unique. Two mark-
ings ψ0 and ψ1 define the same lifting if and only if ψ0 ◦ ψ1

−1 is trivial in
PO(L2n−2, h)/PÕ(L2n−2, h), so the quotient PO(L2n−2, h)/PÕ(L2n−2, h)
classifies the different liftings. We shall compute the index of Õ(L2n−2, h)
in O(L2n−2, h) below (Proposition 3.11), in almost all cases.

Theorem 2.3 should also be compared to Markman’s consideration of the
non-polarised case in [Mar3, Section 4.2].
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Remark 2.5 As in [Mar3] we can conclude from Theorem 2.3 that the
global Torelli theorem for polarised deformation K3[n] manifolds fails when-
ever [PO(L2n−2, h) : PÕ(L2n−2, h)] > 1. This can occur: see Proposi-
tion 3.11, below.

With Remark 2.5 in mind we pose the following question.

Question 2.6 Is it true that for every O(L2n−2)-orbit of some primitive
vector h with h2 = 2d > 0 the part of the moduli space M2n,N,2d corre-
sponding to polarisations in the orbit of h is irreducible and that the map
ϕ̃ has degree 1?

A positive answer to both parts of Question 2.6 could be viewed as the
correct version of the global Torelli theorem for deformation K3[n] manifolds.

Remark 2.7 For every class of symplectic manifolds, Theorem 1.5 remains
true if we consider the monodromy group instead of the orthogonal group.

3 Orthogonal groups

Let L be an even lattice. By lattice (or sublattice) we always mean a non-
degenerate lattice (or sublattice). If g ∈ O(L) we denote by ḡ its image in
O(D(L)).

Let S be a primitive sublattice of L: we are mainly interested in the case
S = Lh for some h ∈ L with h2 6= 0, but we want to consider this more
general situation. Analogously to Definition 1.4 we define the groups

O(L, S) = {g ∈ O(L) | g|S ∈ Õ(S)} and Õ(L, S) = O(L, S) ∩ Õ(L).

Note that O(L,Zh) = O(L, h) if h2 6= ±2.
Let S⊥ be the orthogonal complement of S in L. We have

S⊥ ⊕ S < L < L∨ < (S⊥)∨ ⊕ S∨.

The overlattice L is defined by the finite subgroup

H = L/(S⊥ ⊕ S) < (S⊥)∨/S⊥ ⊕ S∨/S = D(S⊥)⊕D(S)

which is an isotropic subgroup of D(S⊥)⊕D(S). Following [Nik] we consider
the projections

pS : H → D(S), pS⊥ : H → D(S⊥).

Using the definitions and the fact that the lattices S and S⊥ are primitive in
L one can show (see [Nik, Prop. 1.5.1]) that these projections are injective
and moreover that if dS ∈ pS(H) then there is a unique dS⊥ ∈ pS⊥(H) such
that dS + dS⊥ ∈ H.
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Lemma 3.1 α ∈ O(S⊥) can be extended to O(L) if and only if

ᾱ(pS⊥(H)) = pS⊥(H)

and there exists β ∈ O(S) such that p−1
S ◦ β̄ ◦ pS = p−1

S⊥
◦ ᾱ ◦ pS⊥ .

This is a reformulation of [Nik, Corollary 1.5.2]. The following is a particular
case.

Lemma 3.2 Let S be a primitive sublattice of an even lattice L.

(i) g ∈ O(L, S) if and only if g(S) = S, ḡ|D(S) = id and ḡ|p
S⊥ (H) = id.

(ii) α ∈ O(S⊥) can be extended to O(L, S) if and only if ᾱ|p
S⊥ (H) = id.

(iii) If pS⊥(H) = D(S⊥) then O(L, S)|S⊥ ∼= Õ(S⊥).

(iv) Assume that the projection O(S⊥)→ O(D(S⊥)) is surjective. Then

O(L, S)|S⊥/Õ(S⊥) ∼= {γ̄ ∈ O(D(S⊥)) | γ̄|p
S⊥ (H) = id}.

Remark 3.3 Let g ∈ O(L, S). Then ḡ|p
S⊥ (H) = id is equivalent to ḡ|H = id

or to ḡ|H∨ = id, where H∨ = ((S⊥)∨ ⊕ S∨)/L∨. The condition ḡ|H∨ = id is
equivalent to the following: for any v ∈ (S⊥)∨ we have g(v)−v ∈ (S⊥)∨∩L∨.
But (S⊥)∨ ∩ L∨ might be larger than S⊥. This shows in terms of the dual
lattices that ḡ|p

S⊥ (H) = id is weaker than g|S⊥ ∈ Õ(S⊥).

Corollary 3.4 If |H| = |detS⊥| then O(L, S)|S⊥ ∼= Õ(S⊥).

Proof. This follows from the injectivity of pS⊥ onH and from Lemma 3.2(iii).
For example, the condition of the corollary is true if L is an even unimodular
lattice and S is any primitive sublattice of L. 2

If l ∈ L its divisor div(l) is the positive generator of the ideal (l, L) ⊂ Z.
Therefore l∗ = l/div(l) is a primitive element of the dual lattice L∨ and
div(l) is a divisor of det(L). We recall the the following classical criterion of
Eichler (see [E, §10]).

Lemma 3.5 Let L be a lattice containing two orthogonal isotropic planes.
Then the Õ(L)-orbit of a primitive vector l ∈ L is determined by two invari-
ants: by its length l2 = (l, l) and its image l∗ + L in the discriminant group
D(L).

We consider the special lattice L2t = 3U ⊕ 2E8(−1) ⊕ 〈−2t〉 defined in
Equation (6) above. We shall need this for the application in Section 4. It
has signature (3, 20). We denote a generator of the 1-dimensional sublattice
〈−2t〉 by lt, so l2t = −2t. In what follows we study the groups O(L2t, hd)

14



and Õ(L2t, hd) where hd is a primitive vector of length 2d. In the next
proposition we study the Õ(L2t)-orbits of the polarisation vectors hd. We
note that div(hd) is a common divisor of 2d and 2t = −det(L2t).

Proposition 3.6 Let hd ∈ L2t be primitive of length 2d > 0 and div(hd) =
f . We put

g = (2t
f ,

2d
f ), w = (g, f), g = wg1, f = wf1.

Then

2t = fgt1 = w2f1g1t1 and 2d = fgd1 = w2f1g1d1

where (t1, d1) = (f1, g1) = 1.

(i) If g1 is even, then such an hd exists if and only if (d1, f1) = (f1, t1) = 1
and −d1/t1 is a quadratic residue modulo f1. Moreover the number of
Õ(L2t)-orbits of hd with fixed f (if at least one hd exists) is equal to

w+(f1)φ(w−(f1)) · 2ρ(f1),

where w = w+(f1)w−(f1) and w+(f1) is the product of all powers of
primes dividing (w, f1), ρ(n) is the number of prime factors of n and
φ(n) is the Euler function.

(ii) If g1 is odd, and f1 is even or f1 and d1 are both odd, then such
an hd exists if and only if (d1, f1) = (t1, 2f1) = 1 and −d1/t1 is a
quadratic residue modulo 2f1. The number of Õ(L2t)-orbits of such
hd is equal to

w+(f1)φ(w−(f1)) · 2ρ(f1/2) if f1 ≡ 0 mod 2

and to

w+(f1)φ(w−(f1)) · 2ρ(f1) if f1 ≡ d1 ≡ 1 mod 2.

(iii) If g1 and f1 are both odd and d1 is even, then such an hd exists if
and only if (d1, f1) = (t1, 2f1) = 1, −d1/(4t1) is a quadratic residue
modulo f1 and w is odd. The number of Õ(L2t)-orbits of such hd is
equal to

w+(f1)φ(w−(f1)) · 2ρ(f1).

(iv) For c a suitable integer, determined mod f and satisfying (c, f) = 1,
and b = (d+ c2t)/f2, we have

(hd)⊥L2t
∼= 2U ⊕ 2E8(−1)⊕B with B =

(
−2b c2t

f

c2t
f −2t

)
.

The form B is a negative definite binary quadratic form of determinant
4dt/f2. The greatest common divisor of the elements of B is equal to
g1( 2b

g1
, w).
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Proof. A primitive vector hd with (hd, L2t) = fZ acn be written

hd = fv + clt

where v ∈ 3U ⊕ 2E8(−1). The coefficient c is coprime to f because hd is
primitive. According to Eichler’s criterion (Lemma 3.5) the Õ(L2t)-orbit of
hd is uniquely determined by h∗d ≡

c
f lt mod L2t. Therefore it is determined

by c mod f because the discriminant group of L2t is cyclic.
We put v2 = 2b. Then 2d = 2bf2 − 2c2t, or

2f1b = g1(d1 + c2t1) (8)

with (f1, g1) = (t1, d1) = (c, f1) = 1. If a c coprime to f and satisfying
Equation (8) exists, then because (f1, t1)|g1d1 we must have (f1, t1) = 1,
and similarly we must have (f1, d1) = 1.
(i) First we consider the case when g1 is even. Equation (8) is equivalent
to the congruence

t1c
2
1 ≡ −d1 mod f1, c1 ≡ c mod f1. (9)

If g1 is even, then f1 is odd. Since (t1, f1) = (d1, f1) = 1 then −d1/t1
mod f1 is invertible modulo f1. If −d1/t1 is not a quadratic residue modulo
f1 then the congruence (9) has no solutions, so we assume that −d1/t1 is a
quadratic residue modulo f1. Because f1 is odd, the number of solutions c1

of (9) taken modulo f1 is equal to

#{x mod f1 | x2 ≡ 1 mod f1} = 2ρ(f1).

Let us calculate the number of solutions c modulo f where f = wf1. Any
solution c1 is coprime to f1. Let us put

c = c1 + (x+ yw−(f1))f1

where x is taken mod w−(f1) and y is taken mod w+(f1).
We note that (f1, w−(f1)) = 1. We have (c, wf1) = 1 if and only if

(c1 + xf1, w−(f1)) = 1. For any fixed c1 the numbers c1 + xf1 form the full
residue system modulo w−(f1) if x runs modulo w−(f1). Therefore for any
fixed c1 there are exactly w+(f1)φ(w−(f1)) solutions c modulo f = f1w such
that c ≡ c1 mod f1 and (c, f) = 1. This finishes the proof of (i).
(ii) Consider the case when g1 is odd. In this case t1 is also odd, since
(g1, 2f1) = 1 so d1 + c2t1 ≡ 0 mod 2f1: so if t1 is even then d1 is also even.

If f1 is even, then because f2
1 is divisible by 2f1 Equation (8) is equivalent

to the congruence

t1c
2
1 ≡ −d1 mod 2f1, c1 ≡ c mod f1. (10)
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Since (f1, d1) = 1 we know that d1 is odd. Therefore

#{c1 mod f1 | c2
1 ≡ −d1/t1 mod 2f1} = 2ρ(f1/2)

if −d1/t1 is a quadratic residue mod 2f1. The rest is similar to the case (i).
If f1 and d1 are both odd, then Equation (8) is equivalent to the con-

gruence

t1c
2
1 ≡ −d1 mod 2f1, c1 ≡ c mod 2f1. (11)

The residue −d1/t1 mod 2f1 is invertible and it is always 1 modulo 2.
Therefore the number of solutions modulo 2f1 is equal to 2ρ(f1) and they
are all different modulo f1. We put

c = c1 + (x+ yw−(2f1)2δ2(w)−1)2f1

taking x mod w−(2f1) and y mod w−(2f1)2δ2(w)−1, where 2δ2(w) is the 2-
factor of w for w even and is 2 if w is odd (so the factor 2δ2(w)−1 only appears
if w is even). For even or odd w we obtain the same formula for the number
of solutions c. This proves (ii).
(iii) Consider the case when g1 and f1 are both odd, and d1 is even.
Equation (8) is equivalent to the congruence (11) and c1 is always even, i.e.,
c1 = 2c2 and

c2
2 ≡ −(d1/2)/(2t1) mod f1

and c2 is considered modulo f1. In particular w must be odd since otherwise
2|(c, w). For odd w we choose

c = 2c2 + (x+ w−(f1)y)2f1

with x taken mod w−(f1) and y taken w−(f1), and this completes the proof
of (iii).
(iv) Fix a representative of the Õ(L2t)-orbit of hd of the form

hd = fe1 + fbe2 + clt ∈ U ⊕ 〈−2t〉 (12)

where e1 and e2 form a usual basis of the hyperbolic plane U (e2
1 = e2

2 = 0
and e1 · e2 = 1). The orthogonal complement of hd in U ⊕ 〈−2t〉 is a lattice
LB of rank 2

LB = (hd)⊥U+〈−2t〉 = 〈e1 − be2, c
2t
f e2 + lt〉. (13)

with the quadratic form B as in (iv). Both vectors are orthogonal to hd:
they form a basis because using them one can reduce to zero the coordinates
at e1 and at lt. In the notation above we obtain

B = g1

(
−2b/g1 cwt1
cwt1 −w2f1t1

)
.

We have (cwt1, w2f1t1) = wt1(c, wf1) = wt1. The greatest common divisor
of the elements of B is equal to g1( 2b

g1
, w) because 2b/g1 and t1 are coprime.

2
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Corollary 3.7 Let us assume that w = 1. If there exists a primitive vector
hd ∈ L2t such that h2

d = 2d and div(hd) = f , then all such vectors belong to
the same O(L2t)-orbit.

Proof. The natural projection O(L2t)→ O(D(L2t)) is surjective (see [Nik]).
Furthermore (see [GH])

O(D(L2t)) ∼= {x mod 2t | x2 ≡ 1 mod 4t }.

Therefore for w = 1 all solutions c mod f of the congruences (9) and (10)
are equivalent modulo the action of this abelian 2-group. 2

Example 3.8 Let f = 1. From the Proposition 3.6 it follows that for any t
and d there is only one Õ(L2t)-orbit of primitive vectors hd with div(hd) = 1.
Moreover c = 0 and so

(hd)⊥L2t
∼= L2t,2d = 2U ⊕ 2E8(−1)⊕ 〈−2t〉 ⊕ 〈−2d〉. (14)

A polarisation determined by an hd with div(hd) = 1 is called split. We note
that this is the only case when the matrix B is diagonal because c can be
zero and coprime to f only if f = 1. This case will be the main subject of
much of the rest of this paper.

Example 3.9 Let f = 2. In this case c is odd, so we may take c = 1. A
constant b and a vector hd exist if and only if d + t ≡ 0 mod 4. Moreover
the Õ(L2t)-orbit of hd is unique because D(L2t) is cyclic and thus contains
only one element of order 2.

If f > 2, then Proposition 3.6 shows that the number of orbits is zero or
strictly greater than one. Thus the cases f = 1 and f = 2 are the most
natural polarisation types.

Example 3.10 Let d and t be coprime. Examples 3.8 and 3.9 give us the
full classification of possible hd ∈ L2t (in particular if t = 1 or d = 1), since
if (t, d) = 1 then f = div(hd) = 1 or 2.

In the next proposition we show that if w = 1, then the groups Õ(L2t, hd)
and O(L2t, hd) have rather clear structure.

Proposition 3.11 Let hd ∈ L2t be a primitive vector such that h2
d = 2d

and div(hd) = f . Assume that w = 1, i.e. f and (2t
f ,

2d
f ) are coprime. Then

(i) Õ(L2t, hd) ∼= Õ((hd)⊥L2t
).
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(ii) The factor group O(L2t, hd)/Õ(L2t, hd) is an abelian 2-group, which is
of order 2ρ(t/f) if f is odd. If f is even the order is equal to 2ρ(2t/f)+δ,
where

δ =


0 if (2t/f) ≡ 1 mod 2 or (2t/f) ≡ 4 mod 8,
−1 if (2t/f) ≡ 2 mod 4,

1 if (2t/f) ≡ 0 mod 8.

Proof. We may take hd in the form (12). We can fix a basis k1, k2 of L∨B
given by

k1 =
f

2d
hd − e2 =

f

2d
(
fe1 + bfe2 + clt

)
−e2,

k2 =
c

2d
hd +

1
2t
lt =

f

2d
(
ce1 + cbe2 +

bf

t
lt).

Up to sign, this is dual to the basis fixed in (13). We put

k3 = fk2 − ck1 = ce2 +
f

2t
lt.

If v ∈ L∨ we shall denote by v̄ the corresponding element in the discriminant
group D(L) = L∨/L. We note that the orders of k̄1 and of k̄3 in D(LB) =
D((hd)⊥L2t

) (see (13)) are equal to 2d
f and 2t

f respectively. Moreover k̄1·k̄3 = 0.
Let us calculate the order of the intersection of the subgroups generated by
k̄1 and k̄3 in D(LB). If nk̄1 ∈ 〈k̄3〉 then n = g1d1n1 because mk̄3 does not
contain the e1-component. Therefore nk̄1 ≡ (n1c

w lt + xe2) mod LB where
x ∈ Z (see (13)), and |〈k̄1〉 ∩ 〈k̄3〉| = w. It follows that k̄1 and k̄3 form a
basis of D(LB) if w = 1.

As in the beginning of the section we consider the following series of
lattices

〈hd〉 ⊕ h⊥d < L2t < L∨2t < 〈h∨d 〉 ⊕ (h⊥d )∨,

where h∨d = 1
2dhd and h⊥d = (hd)⊥L2t

∼= 2U ⊕ 2E8(−1) ⊕ LB. The subgroup
H = L2t/(〈hd〉 ⊕ h⊥d )) < D(hd) ⊕ D(LB) has order 2d

f . It is generated by
the element k̄1 − fh̄d/2d. Therefore the projection

p(H) = ph⊥d
(H) = 〈k̄1〉

is the subgroup generated by k̄1. It follows if w = 1 the discriminant group
is

D(h⊥d ) = 〈k̄1〉 ⊕ 〈k̄3〉 = p(H)⊕ 〈k̄3〉.

According to Lemma 3.2

O(L2t, hd) ∼= {γ ∈ O(h⊥d ) | γ̄|p(H) = id}.
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Let us consider an element γ ∈ O(h⊥d ) satisfying γ̄|p(H) = id as an element of
O(L2t, hd) (i.e., we put γ(hd) = hd). According to the decomposition above
γ ∈ Õ(L2t, hd) if and only if γ̄(k̄3) = k̄3. Therefore Õ(L2t, hd) ∼= Õ(h⊥d ).

We note that the natural projection O(h⊥d ) → O(D(LB)) is surjective
(see [Nik]). Therefore according to Lemma 3.2

O(L2t, hd)/Õ(L2t, hd) ∼= {γ ∈ O(h⊥d ) | γ̄|p(H) = id}/Õ(h⊥d ) ∼= O(〈k̄3〉),

where 〈k̄3〉 = {nk̄3 | n mod 2t
f } and k̄2

3 ≡ −
f2

2t mod 2. Therefore

O(〈k̄3〉) ∼= {x mod 2t
f | x

2k̄2
3 ≡ k̄2

3 mod 2}

= {x mod 2t
f | x

2f ≡ f mod 22t
f }

We supposed that w = 1. Therefore f = f1 and g = g1 are coprime. We
have 2t

f = g1t1 with (f1, t1) = 1 (see Proposition 3.6). It follows that the
group O(〈k̄3〉) is isomorphic to the group

{x mod 2t
f | x

2 ≡ 1 mod 2ε(f) 2t
f },

where ε(f) = 1 if f is odd (in this case 2t
f is even) and ε(f) = 0 is f is even.

The last group is well-known (compare with [GH]). 2

Corollary 3.12 We have that O(L2t, hd) ∼= Õ(L2t, hd) in the following
three cases: f is odd and f = t; or f = 2t; or f = t and 2d/f is odd.

Proof. If f = t or f = 2t, then g = (2t
f ,

2d
f ) = 1 or 2. If g = 1, then w = 1.

If g = 2 then w = (f, g) = 1 for odd f and for even f such that (2d)/f
is odd. In all these case the index [O(L2t, hd) : Õ(L2t, hd)] = 1 according
Proposition 3.11. 2

Remark 3.13 The condition w = 1, i.e., that f and (2t
f ,

2d
f ) are coprime, is

valid for any f if (2t, 2d) is square free. In particular this condition is true
for any vector hd if 2t is square free.

Remark 3.14 The finite group O(D((hd)⊥L2t
)) is cyclic for any hd with

div(hd) = f if g1 = (2t
f ,

2d
f ) = 1. If g1 > 1 the discriminant group is

not cyclic, but it is the orthogonal sum of two cyclic groups if w = 1.
Proposition 3.11 shows that we can consider this rather general case as a
regular one.

Since the classification of polarisation types in this section depends only
on the discriminant group it immediately gives and indentical classification
for polarisations of deformations of generalised Kummer varieties.
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4 Modular forms and root systems

For the rest of the paper we restrict to a special class of symplectic 4-folds.
We consider the case of deformation K3[2] manifolds with polarisation of
degree 2d of split type, as in Example 3.8 above. We denote an irreducible
component of the corresponding moduli space by M[2],split

2d . (We do not
know whether there is only one irreducible component: see Question 2.6.)
According to Theorem 2.3 we have a dominant map

M[2],split
2d −→ Õ(L2, hd)\Ωhd

.

In this case, where t = 1, we have

Õ(L2,2d) = Õ(L2, hd) = O(L2, hd)

by Proposition 3.11(i) and Corollary 3.12, where L2,2d is as defined in Equa-
tion (14). In particular the vertical map in Theorem 2.3 is of degree 1, and
an affirmative answer to Question 2.6 would imply that global Torelli holds
for deformation K3[2] manifolds with polarisation of split type.

It is more convenient to express this quotient in terms of the symmetric
domainD(L2,2d) defined in Equation (1) above. Let Õ

+
(L2,2d) be the index 2

subgroup of Õ(L2,2d) that preserves D(L2,2d). Then

Õ(L2, hd)\Ωhd
= Õ

+
(L2,2d)\D(L2,2d).

In the rest of this paper we study the Kodaira dimension of the locally
symmetric variety Õ

+
(L2,2d)\D(L2,2d) and of the moduli space M[2],split

2d .

Theorem 4.1 The variety M[2],split
2d is of general type if d ≥ 12. Moreover

its Kodaira dimension is non-negative if d = 9 and d = 11.

Let L be an even integral lattice of signature (2, n) with n ≥ 3. A modular
form of weight k and character χ : Γ → C∗ for a subgroup Γ < O+(L) of
finite index is a holomorphic function F : D•L → C on the affine cone D•L
over DL such that

F (tZ) = t−kF (Z) ∀ t ∈ C∗ and F (gZ) = χ(g)F (Z) ∀ g ∈ Γ.

A modular form is a cusp form if it vanishes at every cusp. For applications,
we require the order of vanishing to be at least 1 (both here and in [GHS1],
although it is not stated explicitly there). In general this is a slightly stronger
requirement because the order of vanishing might be a rational number
less than 1. However, it is easy to check that for trivial character and
character det, which are the cases used here and in [GHS1], the vanishing
order at any cusp is an integer.

We denote the linear spaces of modular and cusp forms of weight k and
character χ for Γ by Mk(Γ, χ) and Sk(Γ, χ) respectively.

The next theorem follows from the results obtained in [GHS1].
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Theorem 4.2 Suppose there exists a non-zero cusp form Fa of some weight

a < 20 and character det with respect to the modular group Õ
+

(L2,2d). Then

the modular variety M[2],split
2d is of general type.

If there exists a non-zero cusp form F20 of weight 20 and character det
then M[2],split

2d has non-negative Kodaira dimension.

Proof. M[2],split
2d is a quasi-projective variety of dimension 20. It has a

toroidal compactification having only canonical singularities, by [GHS1,
Theorem 2]. By [GHS1, Theorem 1.1], the variety M[2],split

2d is of general

type if there exists a non-zero cusp form Fa ∈ Sa(Õ
+

(L2,2d)) of weight
a < 20 that vanishes along the ramification divisor of the projection

π : D(L2,2d) −→ Õ
+

(L2,2d)\D(L2,2d).

We note that according to [GHS1, Corollary 2.13] the ramification divisor is
determined by the elements σ ∈ Õ(L2,2d) such that σ or −σ is a reflection
with respect to a vector r ∈ L2,2d. We classified those reflections using the
results of [GHS1, §3].

Let Fa ∈ Sa(Õ
+

(L2,2d),det) be of weight a < 20 and suppose that σ ∈
Õ(L2,2d) defines a component of the ramification divisor. Then

Fa(±σ(Z)) = det(±σ) · Fa(Z) = −Fa(Z)

because det(−σ) = (−1)20 det(σ) = −1. Therefore the cusp form Fa with
character det automatically vanishes on the ramification divisor.

If a = 20 and F20 vanishes along the ramification divisor of π then F20

determines a section of the canonical bundle by a well-known result of Frei-
tag [Fr, Hilfssatz 2.1, Kap. III]. 2

One can estimate the obstructions to continuing of the pluricanonical
forms across the ramification divisor using the exact formula for Mumford–
Hirzebruch volume of the corresponding orthogonal groups (see [GHS2]).
But this approach only gives good results for locally symmetric varieties
of orthogonal type if the dimension is quite large: at least 33 in the cases
considered in [GHS3].

If the dimension of the modular variety is smaller than 26 we can use
the quasi pull-back (see Equation (15) below) of the Borcherds modular
form Φ12 to construct cusp forms of small weight. The Borcherds form is
a modular form of weight 12 for O+(II2,26), where II2,26 is the unimodular
lattice 2U ⊕ 3E8(−1).

Φ12(Z) = 0 if and only if there exists r ∈ II2,26 with r2 = −2 such that
(r, Z) = 0. Moreover, the multiplicity of the rational quadratic divisor in the
divisor of zeros of Φ12 is 1 (see [Bo]). This form generates very important
functions on the moduli spaces of polarised K3 surfaces (see [BKPS], [Ko]
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and [GHS1]). In the context of the moduli space of symplectic manifolds we
can use the following specialisation of the quasi pull-back.

The Weyl group of E8 acts transitively on the roots of E8. If v is a root of
E8(−1) then v⊥E8(−1)

∼= E7(−1). Let l ∈ E7(−1) satisfy l2 = −2d. The choice
of v and l determines an embedding of L2,2d into II2,26. The embedding of
the lattice also gives us an embedding of the domain D(L2,2d) ⊂ P(L2,2d⊗C)
into D(II2,26) ⊂ P(II2,26 ⊗ C).

We put Rl = {r ∈ E7(−1) | r2 = −2, (r, l) = 0}, and Nl = #Rl. (It is
clear that Nl is even.) We note that Rl is the set of roots orthogonal to the
sublattice 〈v〉 ⊕ 〈l〉 in E8(−1). Then the quasi pull-back of Φ12 is given by
the following formula (see [BKPS]):

Fl =
Φ12(Z)∏
{±r}∈Rl

(Z, r)

∣∣∣∣∣
DL2,2d

∈M
12+

Nl
2

(Õ
+

(L2,2d), det). (15)

It is a non-trivial modular form of weight 12 + Nl
2 . By [GHS1, Theorem 6.2]

it is a cusp form if Nl is non empty. In [GHS1] we proved this for l ∈ E8(−1).
But in the proof we used only the fact that any isotropic subgroup of the
discriminant form of the lattice 2U ⊕ 2E8(−1)⊕〈−2d〉 is cyclic (see [GHS1,
Theorem 4.2]). The same is true for L2,2d because its discriminant group is
cyclic (see §2). The weight of Fl is smaller than 20 if Nl < 16.

The problem therefore is to determine the d for which such a vector exists.
Sufficient conditions are given in Theorem 4.5 below. We apply the method
used in the proof of [GHS1, Theorem 7.1]. We first need some properties of
the lattice E7.

Lemma 4.3 The Weyl group W (E7) acts transitively on the sets of sub-
lattices of E7 of types A1 ⊕A1 or A2.

Proof. W (E7) acts transitively on the roots. Moreover (A1)⊥E7
∼= D6 and

W (D6) acts transitively on its roots. This proves the A1 ⊕A1 case.
Let A(1)

2 , A(2)
2 be two different copies of A2 in E7. Without loss of gener-

ality we can assume that they have a common root a, i.e. A(1)
2 = A2(a, c) =

Za + Zc and A
(2)
2 = A2(a, d), where a · c = a · d = −1. Any A2-lattice

contains six roots

R(A2(a, c)) = {±a, ±c, ±(a+ c) }

and it is generated by any pair of linearly independent roots. If c · d = −1
then (a + d) · c = −2, c = −(a + d) and A2(a, c) = A2(a, d). Therefore
c · d = 0 or 1. (We recall that for any two non-collinear roots u and v one
has |u · v| ≤ 1.)
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If c · d = 1 then (c− d)2 = 2 and (c− d) · a = 0. The reflection σc−dwith
respect to the root (c− d) transforms A(1)

2 into A(2)
2 :

σ(c−d)(c) = c− (c · (c− d))(c− d) = d, σ(c−d)(a) = a.

If c · d = 0 then A2(a, c) + A2(a, d) is a root lattice of type A3 with 12
roots:

R(A3(a, c, d)) = ±{a, c, d, a+ c, a+ d, a+ c+ d}.

The roots ±(a+ c+ d) are the only roots in A3(a, c, d) orthogonal to a. We
have σa+c+d(c) = −(a + d). To find a reflection σ such that σ(a) = a and
σ(−(a+d)) = d we have to go outside of A3 = A2(a, c)+A2(a, d). We recall
that E7 contains 126 roots (see [Bou]):

R(E7) ={±(e7 − e8) } ∪ {±ei ± ej | 1 ≤ i < j ≤ 6 }

∪ {±1
2(e7 − e8) + 1

2

6∑
i=1

(−1)ν(i)ei |
6∑
i=1

ν(i) is even }

where ei form the usual Euclidian basis in Z8. Without loss of generality we
can assume that a = e7 − e8. Since a · d = −1, we see that

d = −1
2(e7 − e8) + 1

2

6∑
i=1

(−1)ν(i)ei.

We put rj = (−1)ν(j)ej + (−1)ν(j+1)ej+1 for j = 1, 3 and 5. We obtain

σr5 ◦ σr3 ◦ σr1(d) = d− r1 − r3 − r5 = −(a+ d).

2

Corollary 4.4 We have

(i) The Weyl group W (E8) acts transitively on all its sublattices of types
3A1 and A1 ⊕A2 in E8.

(ii) The class number of the lattices A5 and A1 ⊕D4 is equal to one.

(iii) The sublattices 4A1 in E8 form two orbits with respect to W (E8).

Proof. (i) follows from the fact that (A1)⊥E8
∼= E7. To prove (ii) we note

that A1 ⊕D4 is a maximal lattice because its discriminant group does not
contain any isotropic vectors. (The square of any element in D∨4 /D4 is equal
to 1/2 modulo 2.) Furthermore

(A1)⊥E7
∼= D6, (A1)⊥D6

∼= A1 ⊕D4, (A2)⊥E7
∼= A5. (16)
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To see these one has to use the extended Dynkin diagram of the corre-
sponding root lattice and to take into account the maximality of D6, A5

and A1⊕D4. The discriminant quadratic form is the invariant of the genus
of an even quadratic lattice. Therefore if M is a lattice in the genus of
A1 ⊕D4 then we can consider M ⊕ 2A1 as a sublattice of E7. All such M
are isomorphic according to the lemma. The same argument works for A5.

To prove (iii) we remark that (3A1)⊥E8
∼= A1⊕D4. The last lattice contains

two orbits of roots. 2

Theorem 4.5 There exists a vector l in E7 of length 2d orthogonal to at
least 2 and at most 14 roots if

30NA1⊕D4(2d) + 16NA5(2d) < 5ND6(2d) (17)

or to at least 2 and at most 16 roots if

30NA1⊕D4(2d) + 16NA5(2d) < 6ND6(2d), (18)

where NL(2d) denotes the number of representations of 2d by the lattice L.

Proof. Suppose that any vector l ∈ E7 of length 2d is orthogonal to at least
16 roots if it is orthogonal to any. Let us fix a root a in E7 orthogonal to l.
Therefore l ∈ a⊥E7

= D
(a)
6 . The others roots orthogonal to l are some roots

in D(a)
6 (60 roots) or roots in R(E7) \R(D(a)

6 ) (66 roots). The last 66 roots
form a bouquet Qa(16A2) of 16 copies A2(a) of A2 centred in ±a. If l is
orthogonal to any root from A2(a) different from a, then l is orthogonal to
the whole lattice A2(a) and l ∈ (A2)⊥E7

∼= A5. If l is orthogonal to a root in

D
(a)
6 then l ∈ (2A1)⊥E7

∼= A1 ⊕D4. Therefore we have

l ∈
30⋃
i=1

(A1 ⊕D4)(i) ∪
16⋃
j=1

A
(j)
5 . (19)

Denote by n(l) the number of components in (19) containing the vector l.
We have calculated this vector exactly n(l) times in the sum

30NA1⊕D4(2d) + 16NA5(2d).

We need to estimate n(l). We shall consider several cases.
1. Let l · c 6= 0 for any c ∈ Qa(16A2) \ {±a}. Then l is orthogonal to at

least 7 copies of A1 in D
(a)
6 and n(l) ≥ 7.

Now we suppose that there exist c ∈ Qa(16A2) \ {±a} such that l · c = 0.
Then l is orthogonal to A2(a, c) which is one of the 16 subsystems of the
bouquet Qa.
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2. If l is orthogonal to only one copy of A2 in Qa, A
(i)
2 (6 roots) then l is

orthogonal to at least 5 copies of A1 in D
(a)
6 . Thus n(l) ≥ 6.

3. If l is orthogonal to exactly two copies of A2 in Qa, A
(i)
2 and A(j)

2 , then
l is orthogonal to A3 = A

(i)
2 + A

(j)
2 having 12 roots. Thus l is orthogonal

to another 2A1 in D
(a)
6 . But A3 contains one more copy A1 from D

(a)
6

orthogonal to a (see the proof of Lemma 4.3). Therefore n(l) ≥ 5.

4. If l is orthogonal to three or more A(i)
2 then their sum contains at least

three A1 < D
(a)
6 and n(l) ≥ 6.

Therefore we have proved that if any l ∈ E7 with l2 = 2d is orthogonal
to at least 16 roots then n(l) ≥ 5 and

30NA1⊕D4(2d) + 16NA5(2d) ≥ 5ND6(2d).

If we replace 16 roots by 18 roots in the last condition then we obtain the
second inequality of Theorem 4.5

30NA1⊕D4(2d) + 16NA5(2d) ≥ 6ND6(2d).

2

5 Representations by quadratic forms of odd rank

To estimate the values of d for which the inequality of Theorem 4.5 is true
we need exact formulae for the numbers NA1⊕D4(2d) and NA5(2d).

Let A be a symmetric even integral positive definite m × m matrix of
determinant detA = |A|, and

S(X) =
1
2
A[X] =

1
2
tXAX

be the corresponding quadratic form taking integral values on Zm. The
genus genS of S contains a finite number of classes Si. The integral or-
thogonal group O(Si) is finite of order |O(Si)|. One defines the mass of the
genus by

mass(S) =
∑

Si∈genS

|O(Si)|−1

and the weight wi of the class Si in the genus of S by

wi = |O(Si)|−1/mass(S).

Siegel’s main theorem on the quadratic forms (see [Si]) tells us that the
number of representations of t by the genus of S, defined by

r(t, genS) =
∑

Si∈genS

w(Si)r(t, Si)

26



where r(t, Si) is the number of the representation of t by the quadratic form
Si, can be written in terms of the local densities αp(t, S)

r(t, genS) = εm
∏
p≤∞

αp(t, S),

where εm = 1 for all m ≥ 2 except ε2 = 1/2. The local densities (or the
local measures of the representations of t by S) are defined as follows

αp(t, S) = lim
a→∞

p−a(m−1)#{X ∈ (Z/paZ)m | S(X) ≡ t mod pa }

if p is a finite prime and

α∞(t, S) = lim
V→t

volS−1(V )
volV

= (2π)
m
2 Γ(m2 )−1t

m
2
−1|A|−

1
2 ,

where |A| = det(A), V is a real neighbourhood of t and vol is the usual
Euclidian volume in R or Rm (see [Si, Hilfssatz 26 and (71)]).

If m ≥ 5 then the quantity r(t, genS) coincides up to the factor a∞(t, S)
with the singular series, which gives us a good asymptotic estimate of the
number of representations r(t, S).

If the genus of S contains only one class then the Siegel formula gives
us an exact formula for the number r(t, S) of representations of t by S. In
his first paper [Si] on the analytic theory of quadratic forms Siegel found
exact formulae for the local densities if the prime p is not a divisor of the
determinant of A. If the rank m ≥ 4 is even we have the following formula
(see [Iw, (11.74)])

r(t, genS) = a∞(t, S)L(
m

2
, χ4D)−1

(∑
a|t

χ4D(a)a1−m
2
)
·
∏
p|2D

αp(t, S) (20)

where D = (−1)m/2|A| is the discriminant of A and χ4D(a) =
(

4D
a

)
is the

quadratic character.
Usually the exact computation of the local densities for odd rank m is

said to be more complicated: see for example the introduction to [Sh]. Here
we give a well-organised formula for r(t, genS) for odd rank m. For this
purpose we use the Zagier L-function L(s,∆) and the H. Cohen numbers
H(n,∆) (see [C] and [Za]). In these terms, surprisingly, the exact formula
for odd rank is simpler that the formula (20) for even rank.

If ∆ ≡ 0, 1 mod 4 then ∆ = Df2, where D is the discriminant of the
quadratic field Q(

√
∆). By definition (see [Za, (7) and Proposition 3]) one

has

L(s,∆) =
ζ(2s)
ζ(s)

∞∑
n=1

bn(∆)n−s, (21)
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where bn(∆) = #{x mod 2n | x2 ≡ ∆ mod 4n}, and

L(s,∆) = L(s, χD)
∑
a|f

µ(a)
(
D

a

)
a−sσ1−2s

(f
a

)
,

where σs(t) =
∑

d|t d
s and µ(a) is the Möbius function. The main advantage

of L(s,∆) is the fact that it satisfies a simple functional equation.
The function

L∗(s,∆) =

{
π−

s
2 Γ( s2)∆

s
2L(s,∆) if ∆ > 0

π−
s
2 Γ( s+1

2 )|∆|
s
2L(s,∆) if ∆ < 0

has a meromorphic continuation to the whole complex plane and satisfies
the functional equation

L∗(s,∆) = L∗(1− s,∆)

(see [Za, Proposition 3]). Moreover L(s,∆) is entire except for a simple pole
(of residue 1

2 if ∆ = 0 and 1 otherwise) if ∆ is a square. This function is
very useful for calculation of Fourier coefficients of various Eisenstein series
(see [C], [Za] and [GS-P]).

To formulate our reorganisation of the Siegel formula for odd rank m we
introduce some notation. We write

t = tAt1t
2
2,

where t1 is square free, (t1t22, |A|) = 1 and tA divides some power of |A|. We
put

D = disc Q
(√

(−1)
m−1

2 2t|A|
)
.

We note that D > 0 if m ≡ 1 mod 4 and D < 0 if m ≡ 3 mod 4. The
determinant of A is always even if m is odd and A is even integral.

Theorem 5.1 Let m = 2m1 + 1 and S(X) = 1
2A[X]. Then we have

r(t, genS) =

(2π)
m
2 Γ
(m

2
)−1

t
m
2
−1|A|−

1
2L
(m− 1

2
, Dt22

)
ζ(m− 1)−1

·
∏
p| |A|

1− χD(p)p
1−m

2

1− p1−m αp(t, S) (22)
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and

r(t, genS) =(
tA
|DA|

)m1− 1
2

22m1− 1
2 |A|−

1
2

∣∣∣∣ 2m1

B2m1

∣∣∣∣ (−1)[m1/2]H(m1, Dt
2
2)

·
∏
p| |A|

1− χD(p)p
1−m

2

1− p1−m αp(t, S) (23)

where DA is the |A|-part of the discriminant D (i.e. DA divides some power
of |A|) and H(m1, Dt

2
2) = L(1−m1, Dt

2
2) are the H. Cohen numbers.

We should like to note that the variant of the Siegel formula given in
Theorem 5.1 is different from the formula given in [Sh]. Shimura used the L-
function with a primitive character. We are using the function L(s,∆) with
a non-fundamental discriminant, i.e., we put more p-factors inside the L-
function. As a result our formulae (see Examples 5.2–5.4 below) are shorter.

Proof. ¿From the definition of the local densities we see that

αp(t, S) = αp(2t, A) if p 6= 2, α2(t, S) = 2α2(2t, A). (24)

We assume that p is not a divisor of |A|. Let lp = ordp(t) and t = plptp̄.
According to [Si, Hilfssatz 16] the density αp(2t, A) is given by

αp(2t, A) =(1− p1−m)
(
1 + p2−m + · · ·+ p(2−m)

lp−1

2
)

for lp ≡ 1 mod 2 and

αp(2t, A) =(1− p1−m)
(

1 + p2−m + · · ·+ p(2−m)(
lp
2
−1) +

p(2−m)
lp
2

1− εA,t(p)p
1−m

2

)

for lp ≡ 0 mod 2, where εA,t(p) =
(

(−1)
m−1

2 |A|2tp̄
p

)
. If lp = 0 we take

only the last summand in the second bracket (see [Si, Hilfssatz 12]). The
numbers Dt22 and 2t|A| differ by a square f2 such that f divides some power
of |A|. Therefore if p does not divide |A| and lp is even then

εA,t(p) = χD(p) =
(
D
p

)
6= 0.

If lp is odd then p|D and χD(p) = 0.
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Let us reorganise the p-factors in the Siegel formulae for the local densi-
ties. We put

αp(t, S) =

(
1− p1−m

1− χD(p)p
1−m

2

)
p(2−m)b lp

2
c

(
1 +

∑
1≤j≤lp/2

p(m−2)j
)
·
(

1− χD(p)p
1−m

2 )
)
. (25)

This formula is valid for both even and odd lp. If lp = 1 (i.e. if p divides
only t1, not t2) then αp(t, S) = 1− p1−m.

Taking the product over all divisors of t2 we obtain the factor

t2−m2

∑
d|t2

dm−2
∏
p|d

(1− χD(p)p
1−m

2 ) =
∑
a|t2

µ(a)χD(a)a
1−m

2 σ2−m
(
t2
a

)
.

Using the functional equation we can express L(m1, Dt
2
2) in terms of

L(1−m1, Dt
2
2) = H(m1, Dt

2
2). Together with the formula for the Bernoulli

numbers

(−1)m1+1B2m1

2m1
= π−

1
2
−2m1Γ(m1)Γ(m1 + 1

2)ζ(2m1)

it gives us the second formula (23). We note that (−1)[m1/2]H(m1, Dt
2
2) are

positive rational numbers with bounded denominators. The denominators
are 120 for m1 = 2, 252 for m1 = 3, 240 for m1 = 4, etc. (see [C]). 2

The exact formulae for the local densities αp(t, S), S(X) = 1
2A[X], for

all prime divisors of the determinant of A including p = 2 were calculated in
many papers. See for example Malyshev [Mal], who used a classical method
of Gauss sums, and Yang [Ya], who calculated the local densities in terms
of local Whittaker integrals. In the examples below we use the formulae
of [Ya].

Example 5.2 The sum of five squares.

Let S5(X) = x2
1 + · · ·+x2

5. In this example we are finishing the calculation of
Siegel (see [Si, §10]) who found r(t, S5) for odd t. According to Theorem 5.1
we have

r(t, S5) = t3/2
120
π2

L(2, Dt22)
1− χD(2)2−2

1− 2−4
α2(t, S5),

where t = 2at1t22 with a = 2b or 2b+ 1 as in Theorem 5.1, D = disc Q(
√
t).

The formula for α2(t, S) (see [Ya, pp. 323–324]) is rather too long to give
here. After some tedious transformations we obtain that

α2(t, S5) = 1−
b∑

k=1

2−3k+1 + (−1)D2−3b−2 − χD(2)2−3b−3,

30



where χD(2) = 0 if D ≡ 0 mod 4 and χD(2) = 1 or −1 if D ≡ 1 mod 8
or D ≡ 5 mod 8 respectively. In terms of the Cohen numbers we have the
numerical formula

r(t, S5) =


−40H(2, Dt22) · 23b+2 + 3

7
if D ≡ 0 mod 4,

−120H(2, Dt22)
4 + χD(2)

·
(

5 · 23b+3 + 2
7

− χD(2)
)

if D ≡ 1 mod 4.

Let L be an even integral quadratic lattice and qL(x) and bL(x, y) be the
corresponding finite quadratic and bilinear forms on the discriminant group
D(L) = L∨/L. For qL we have the local decomposition

qL =
⊕
p

(qL)p =
⊕
p

qL⊗Zp ,

where qL⊗Zp is the finite quadratic form with values in Qp/Zp (p 6= 2) or
in Q2/2Z2 and (qL)p is the discriminant form on the p-component of the
finite abelian group L∨/L with values in Q(p)/Z ∼= Qp/Zp or in Q(2)/2Z
(Q(p) is the ring of fractions whose denominator is a power of p). A similar
decomposition is valid for bL. We recall that any quadratic form over the
p-adic integers Zp (p 6= 2) is equivalent to a diagonal form. For p = 2 it can
be represented as a sum of forms of types 2nux2 (u ∈ Z∗2/(Z∗2)2), 2n(2x1x2)
and 2n(x2

1 + 2x1x2 + x2
2).

Example 5.3 The root lattice A1 ⊕D4.

The quadratic form S1,4 of this lattice is similar to the sum of five squares.
More exactly

S1,4 = x2
1 +

1
2

(x2
2 + x2

3 + x2
4 + x2

5), where x2 + x3 + x4 + x5 is even.

The determinant of A1 ⊕D4 is equal to 8. The discriminant form of D4 is
equal to the discriminant form of V (2) = 2(2x2

1 + 2x1x2 + 2x2
2). Using this

we obtain that over Z2

1
2

(A1 ⊕D4)⊗ Z2
∼= 〈2〉 ⊕

1
2

(
2 1
1 2

)
⊕
(

2 1
1 2

)
We use the notation of the previous example for t = 2at1t22, a = 2b or 2b+1.
Again using [Ya] we obtain

α2(t, S1,4) = 1−
b∑

k=1

2−3k + (−1)D2−3(b+1) − χD(2)2−3b−4. (26)
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The second formula (23) of Theorem 5.1 is

r(t, S1,4) =

−8H(2, Dt22) · 23b+3α2(t, S1,4), if D ≡ 0 mod 4,
−120H(2, Dt22)

4 + χD(2)
· 23b+4α2(t, S1,4), if D ≡ 1 mod 4.

The first formula (22) of Theorem 5.1 gives us an expression which we shall
use later in our estimations of NA1⊕D4(2d):

r(t, S1,4) = t3/216
ζ(2)
ζ(4)

L(2, Dt22)
1− χD(2)2−2

1− 2−4
α2(t, S1,4). (27)

See (21) in order to understand the form of the factors.

Example 5.4 The root lattice A5.

Let D = disc Q(
√

3t) and t = 2a3ct1t22. According to Theorem 5.1

r(t, 1
2A5) = t3/2

32√
3
ζ(2)L(2, Dt22)

ζ(4)

∏
p=2,3

1− χD(p)p−2

1− p−4
αp(t, 1

2A5).

The discriminant form of the lattice A5 is the cyclic group of order 6 gen-
erated by the element v̄ such that v̄ · v̄ ≡ 5

6 mod 2Z. For the local part of
the discriminant group we have

D(A5)3 = 〈2v̄〉, (2v̄)2 ≡ 1
3 mod Z3,

D(A5)2 = 〈3v̄〉, (3v̄)2 ≡ 3
2 mod 2Z2.

It follows that
A5 ⊗ Z3

∼= x2
1 + x2

2 + x2
3 + 2x2

4 + 3x2
5

and
A5 ⊗ Z2

∼= 2x1x2 + 2x3x4 + 6x2
5
∼= 2U ⊕ 〈6〉.

Put t′ = 2at1t22, so that t = 3ct′ and (3, t′) = 1. The formula for α3 (see [Ya,
p. 317]) after some transformations can be written as follows

α3(3ct′, 1
2A5) = 1−

3b c2 c+2∑
k=1

(
k

3

)
3−k +

(
t′

3

)
3−

3c+3
2 , (28)

where
(
k
3

)
is the Legendre symbol and we add the last term only if c is odd.

For p = 2, we put a = 2b or 2b+ 1 and obtain

α2(t, 1
2A5) = 1 +

b∑
k=1

2−3k−1 − (−1)D2−3b−4 + χD(2)2−3b−5. (29)
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In terms of the Cohen numbers we have

r(2t, A5) =
(
tA5

DA5

)3/2 1√
3

25 ·30(−H(2, Dt22))
∏
p=2,3

1− χD(p)p−2

1− p−4
αp(t, 1

2A5),

where tA5 = 2a3c and DA5 are the products of the powers of 2 and 3 in t
and D.

Proposition 5.5 The inequality

30NA1⊕D4(2m) + 16NA5(2m) < 5ND6(2m)

is true for any m ≥ 20 and for m = 17. The inequality

30NA1⊕D4(2m) + 16NA5(2m) < 6ND6(2m).

is true if m ≥ 12.

Proof. First we estimate ND6(2m) from below. By definition

D6 = {(xi) ∈ Z6 | x1 + · · ·+ x6 ∈ 2Z}.

Therefore the number ND6(2m) is equal to the number of representation of
2m by six squares. It is classically known (see [Iw, p. 187]) and it can be
easily proved using Eisenstein series or the Siegel main formula that

ND6(2m) = 64σ̃2(m,χ4)− 4σ2(m,χ4)

where χ4(m) =
(−4
m

)
is the unique non-trivial Dirichlet character modulo 4

and for any Dirichlet character χ we put

σk(m,χ) =
∑
d|m

χ(d)dk, σ̃k(m,χ) =
∑
d|m

χ
(m
d

)
dk.

Let ap = ordp(m). For any quadratic character χ modulo ∆ we have

σ̃k(m,χ) = mk
∑
p|m

1− (χ(p)p−k)(ap+1)

1− χ(p)p−k

≥ mk
∏

p|m, (p,∆)=1

(1− p−k).

This is because

σ̃k(m,χ) =
∑
d|m

χ(d)
(m
d

)k = mk
∑
d|m

χ(d)d−k
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and

1− (χ(p)p−k)(ap+1)

1− χ(p)p−k
≥ 1− p−k(ap+1)

1 + p−k
≥ 1− p−2k

1 + p−k
= 1− p−k.

If (m,∆) = 1 then σ̃k(m,χ) = χ(m)σk(m,χ) since χ is a real character.
Moreover for any prime divisor p of the module ∆ of χ

σ̃k(pam1, χ) = pakσ̃k(m1, χ), σk(pam1, χ) = σk(m1, χ).

Therefore

ND6(2m) ≥ 60σ̃2(m,χ4) > 60ζ(2)−1(1− 2−2)−1m2 =
480
π2

m2. (30)

Next we have to estimate from above the Dirichlet series∑
n≥1

bn(∆)
ns

=
ζ(s)L(s,∆)

ζ(2s)

(see (21)) for s = 2. If (n,∆) = 1 then

bn(∆) ≤ bn(1) = 2ρ(n),

where ρ(n) is the number of prime divisors of n, with equality if and only
if
(

∆
p

)
= 1 for any odd prime divisor of n and

(
∆
8

)
= 1 if n is even. If in

n there is at least one non-residue modulo ∆ then bn(∆) = 0. Therefore if
(p,∆) = 1 (it might be that p = 2) then the local p-factor of the Dirichlet
series is equal to

1 + 2
∑
m≥1

p−ms =
ps + 1
ps − 1

. (31)

Let us assume that ∆ = p2k∆′ (it might be that p = 2) with (p,∆′) = 1.
Considering the congruence class of bpm(p2k∆′) for all powers of p we see
that the local p-factor of the Dirichlet series equals

1 +
2k∑
m=1

pb
m
2
c

pms
+ 2pk

∑
m≥2k+1

p−ms. (32)

If ∆ = p2k+1∆′ then the local factor is smaller: the last term in 32,
2pk

∑
m≥2k+1 p

−ms, is replaced by one summand, pk−(2k+1)s. A direct cal-
culation shows that for s = 2 the regular factor (31) is larger than the
non-regular factor (32) for any prime p ≥ 2. Therefore

ζ(2)L(2,∆)
ζ(4)

≤
∏
p

p2 + 1
p2 − 1

=
ζ(2)2

ζ(4)
=

5
2
.
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The next step is an estimation from above of the 2-factor in NA1⊕D4(2m) =
r(m,S1,4) and the 2- and 3-factors in NA5(2m) = r(m, 1

2A5). Elementary
calculation using (26) gives us

1− χD(2)2−2

1− 2−4
α2(m,S1,4) ≤ 5

4
, (33)

with equality if D ≡ 5 mod 8 and m is odd.
For the local 3-factor in 1

2A5 we obtain (using (28))

1− χD(3)3−2

1− 3−4
α3(m, 1

2A5) ≤ 11
12

(34)

with equality if m = 3m′, where m′ ≡ 2 mod 3.
For the local 2-factor in 1

2A5 we obtain

1− χD(2)2−2

1− 2−4
α2(m,

1
2
A5) ≤ 10

7
. (35)

In this case we must analyse the case when m = 2am′ and b = ba2c goes to
infinity (see (29)). If D ≡ 0 mod 4 or ≡ 5 mod 8 then the local density
tends to its supremum as b tends to infinity. This value is equal to 15

14 .
Therefore the left-hand side of (35) is smaller than 10

7 . If D ≡ 1 mod 8
then α2 takes its maximal values 35

32 for b = 0. In this case the left-hand side
of (35) is equal to 7

8 .
Now we can combine all our estimates. We have

NA1⊕D4(2m) ≤ 50m3/2, NA5(2m) ≤ 2200
21
√

3
m3/2.

Using (30) we obtain that the inequalities (17) and (18) of Theorem 4.5 and
Proposition 5.5 are valid for m > 102 and for m > 71 respectively. For many
m smaller or equal to 102 we can write a better estimate for the number of
representations. But we can use the exact formulae for the theta series of
D6, A1 ⊕D4 and A5 in therms of Jacobi theta series in order to check the
inequality for m ≤ 102.

The theta series of the lattice An is given by the formula (see [CS, Ch.
4, (56)])

θA5(τ) =
∑5

k=0 ϑ3(τ, k6 )6

6ϑ3(6τ)
,

where
ϑ3(τ, z) =

∑
n∈Z

exp(πi(n2τ + 2nz)),

and ϑ3(τ) = ϑ3(τ, 0). For the lattice Dn one has (see [CS, Ch. 4, (87), (10)])
that

θDn(τ) =
1
2

(ϑ3(τ)n + ϑ3(τ + 1)n).
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d p λd
9 8 -1,2,3,1,2,1,3
11 8 3,3,0,-1,-2,-1,0
12 7 2,1,2,-2,0,0,1
13 7 2,3,-1,1,0,0,-1
14 6 2,0,3,0,2,1,1
15 7 1,-2,0,2,4,2,0
16 6 1,0,-1,3,0,0,-2
18 5 3,2,3,2,0,0,-2
19 6 2,3,2,-3,-4,-2,1

Table 1: Short vectors in E7 orthogonal to few roots

Using these formulae we can compute (using PARI) the first 102 Fourier
coefficients of the function

5θD6 − 30θA1⊕D4 − 16θA5 .

We find that these coefficients are negative exactly for d < 20 and d 6= 17.
Hence the first inequality of the proposition holds as stated. Repeating the
same calculation with 6 instead of 5 we obtain the second inequality. 2

We have now proved a slightly weakened version of Theorem 4.1. To
obtain the full result we need the following observation.

Proposition 5.6 For d = 12, 13, 14, 15, 16, 18 and 19 there exist vectors
ld ∈ E7 that satisfy l2d = 2d that are orthogonal to at least 2 and at most 14
roots. For d = 9 and d = 11 there exist vectors of length l2 = 2d that are
orthogonal to exactly 16 roots.

Proof. These were found by a computer search. We give one example in
each case. We express the vectors in terms of the simple roots vi, 1 ≤ i ≤ 7
which are given in terms of the standard basis e1, . . . , e8 of Q8 by

vi = ei+2 − ei+1 for 1 ≤ i ≤ 6,
v7 = 1

2(e1 + e2 + e3 + e4)− 1
2(e5 + e6 + e7 + e8)

(see [Bou]). The examples are shown in Table 1: the vector ld =
∑
λd,ivi

with λd = (λd,1, . . . , λd,7) ∈ Z7 is orthogonal to exactly 2pd roots of E7 =∑7
i=1 Zvi ⊂ Q8. There are other vectors with the required properties (for

instance, we found one with d = 19 and p = 7), but none for smaller d. 2
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