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Abstract

New formulas for the complexity and the rank of an arbitrary ho­
mogenCOllS spacc of a reductive group are given. These ones COffi­

pletely reduce the problem t.o finding of stabilizers of general position
of linear representations of reductive groups. As an application the
description of spherical (Le. of complexity zero) nilpotent orbits is
obtained.

(0.1) Let Ci be a reductive algebraic group, defined over algebraically
closed field k of the characteristic zero. A famous problem in the theory
of algebraic transfornlation groups is to describe normal G-equivariant eln­
beddings of hOlnogeneous spaces G/ H, where H is an arbitrary algcbraic
subgroup of G. The ilnportant role of two nlunerical parameters of homo­
geneous spaces hase been recognized cltlring the last decade. These ones are
the rank 1'(G/JI) and the c017zplexity c(G/H). (See [LV), [K], [PI]). These
are non-negative integers anel the problenl of classification of eInbeddings
becomes conlplicated, if they increase. For instance, if 1'(G/ H) = 0, then
H is a parabolic subgroup of G anel hence c(G/II) = °[PI]. In this case
G/ H is a projective variety, which does not adnlits non-trivial G-equivariant
embeddings.

If c( G/11) = 0, theu G/ JI is calleel spherical. This condition Ineans that
a Borel subgroup of Cl has an open orbit on G/ !f. Thc theory of spherical
enlbeddings is already very extensive allel the remarkable theory of toric
varieties Inay be regardeel as a particular case of it.

(0.2) In [PI] a method of computation of the complexity anel the rank of
quasi-affine hOlllogeneous spaces in ternlS of co-isotropy representation of H
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has been proposecl. However, if H is not reductive (i.e. G/ H is not affine),
then this method is not very effective in practical computations. In this case
the idea, which is due to M.Brion, appears to be fruitful. It is well-known
that for any subgroup H c G there exists a parabolie subgroup P such that
H C Panel HU C PU. An inc1usion, whieh satisfies the last condition, is
said to be 1'ight. In [B) a eriterion of spherieality of G/ H in terms of a right
inclusion of H has been obtained. In eh.1 we shall show that eombining
ideas of [PI) and [B) it is possible to produee general formulas for the rank
and the cOInplexity of an arbitrary h0I11ogeneous space in terms of a right
inclusion of H. Even in the spherical case our formula seems to be bettel',
than tohe one in [B]. The advantage of this approach is that the problem under
eonsieleration is eOinpletely reduced to the problem of finding of a stabilizer
0/ general position (=s.g.p.) of linear representations of reductive groups.
But the latter is quite easy.

(0.3) Conjugacy classes of nilpotent elelnents in semisimple Lie algebl'as,
or siInply nil]JOtent orbits, glve us the best possible example of non-affine'
hOInogeneous spaces such that CL right inc1usion of the stabilizer is nattlrally
anses.

It is known (see e.g. [88]) that nilpotent orbits in semisilnple Lie algebras
are classified by their characteristies, i.e. the Dynkin diagrams with numer­
ieal labels. (We recall the eonstruction of the eharaeteristic in ch.2.) Let
{al' ... , eq} be the set of sinlple roots of 9 anel ml, ... ,m, be the nUlnerical
labels of the charaeteristic, i.e. mi stands neal' the node, which corresponds
to the root ai. I do not know whether it is possible to find a general formu­
lae, whieh detennines the cOlnplexity anel the rank of a nilpotent orbit via its
characteristic. Nevertheless it turns out that for spherical orbits the answer
is rather sinlple. In eh.3,4 we shall prove the following statenlent.

Theorem. Let A = L~:;;:l niaj be the highest root. Then CL nilpotent orbit
Ge is spherical iff ht(e) := L~=l nimi ::; 3.
Proof of this theorenl is almost completely satisfactory, i.e. case-by-case con­
sideration are reducecl to a minilnum. Nalllely, it follows frOIn the definition
of the characteristic that ht.( e) ~ 2. We shall give an apriori prüof of the
following:

1. If ht( e) = 2, then Ge is spherical;
2. If ht( e) ~ 4, then Ge is not spherical.

Only in the case ht(e) = 3 we have to use case-by-case eonsideration. Nev­
ertheless I believe that this t.rouble may be elilninated and this should be
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related with sOlne interesting properties of stabilizers of these orbits.
For classical Lie algebras the preceding theorem admits a nice refornulla­

tion. Nanlely,
(1) Suppose eis a nilpotent Inatrix in s~V) 01' sp(V). Then the orbit of e is
spherical iff e2 = O.
(2) If e E so(V), then the orbit of e is spherical iff rank( e2

) :s; 1.
(0.4) As usual the Lie algebras of algebraic groups are denoteel by the cor­

responding slna.11 Gennan letters. Notation (A : B) means that an algebraic
group A acts regularly on an algebraic variety B.

Acknowledgments. The author t.hanks Max-Planck-Institut für 11ath­
ematik for hospitality aud support during the preparation of this paper.

1 General formulas

(1.1) If an irreducible variety X is acted on by a reductive group C, then
the complexity of X (relative to G) is the integer cc(X) = miuxExcoelimBx,
where B is a Borel sllbgroup of C. In order to define the rank of X (relative
to G), one has to consider thc characters of all B-seIniinvariants in the field
of rational functions on X. Obviously these characters form a free abelian
group. The rank of this group rc(X) is calleel the rank of X. Clearly,
rc(X) ::; rkG'.

Let H be an algebraic subgroup of G. Suppose 11 = !(Hti be a Levi
elecoInposition (i.e. 1/11. is the unipotent radical of H allel J( is a Illaximal
reductive (=Levi) subgroup of H). There exists a parabolic subgroup P c G
with a Levi decoillposition P = Lpu 1 such that H C P and HU C pu (Ru].
Then one can also asslIIl1e that ]( C L. An inclusion that satisfies all these
conditions is said to be rigld.

Our purpose is to find a 111ethod of determination of the rank and the
cOlnplexity of G/ H in ternlS of a right inclusion of lJ. Let us recall some
necessary rcsults. Let tel be the indusion of Lie algebras, which corre­
sponds to J{ C Land m be the orthogonal cOll1plell1ellt to t in r relative to
aL-invariant scalar product on I. The natural representation of ]( in m is
said to be thc co-isotropy representation. Since!{ is reductive, a s.g.p. S of
this representation is also reductive. Being a subgroup of ](, S act linearly
on pU/HU(~ pti/I)u as a K-Il1odule). By B(S) denote a Borel subgroup of S.

(1.2) Theorem. (i) cc(G'/H) = c[)L/I{) + cs(PU / Hti);
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(ii) rc( GI H) = TL(LI J() + 7'S(PUIHU);
(iii) // B. is n s.g,p. fOT the action (B(S) : puI l/U), then B. is also (L s.g.p,
fOT the action (B : GI H).

Proof. (i),(iii). Let HS consider G-equivariant fibering 7r : GIH --+ GIP.
By definition of cOluplexity we have cG(GIH) = minrEG/HcodimBx, where
BeG is a Borel subgroup. The action of B on GIP is locally-transitive
and having replaced B on a conjugatecl subgroup in Gone Inay assurne that
B-orbit of the point {P} E GIP is open and B n P =: B(L) is a Borel
subgroup in L. Whence cG( C;IH) = 11linYE1f- 1 ({P})codimB{p}y. Obviously
7r-

1 ({P}) ~ PlI] allel B{p} = B(L). Thus we have already proveel that
ca(GIH) = CL( PI /1). There is a natural L-equivariant fibering T : PI /1 --+

L11( anel T-1({J(}) ~ PUI1]u. Again we mayassurne that {](} E LI]( is
a generic point relative to the B (L )-aetion, that is coditTIL/K B (L )1(1]( =
cL(LI](). Let i3 C B(L) be the stabilizer of {J(}, Then arguing as before,
we get cL(PIIJ) = cL(LIJ() + minzEPU/Hueodill1Bz. Dur key observation
is the following. It has been proveel in [P, ch.2] that iJ = B(S) is a Borel
subgroup of 8. Therefore the last ternl of the sunl is equal to cs(PU IHU) and
the proof of (i) is cOlupleteel. The preceding chain of argunlents also prove
(i ii ) .

(ii) It is known [P, eh.l], that ca( G'I J{) +TG(GIR) = minzEG/HcodilllUx,
where U is the unipotent radical of B. Now the arguments, which are parallel
to the ones frolll (i), give us: cG(GI H) +7'G(GI1J) = cL(LIJ() + rL(LIJ() +
minz EPU/H u coelilnUz, where (; is the stabilizer in U(L) of {J(}. By [P, eh.l]
we know that Ü is a ruaxirual unipotent subgroup of S, that is the last tenn
is equal to cs(pu IRU) + 7'S(PU IRU). Whence cOlnparing with (i) we get the
assertion. 0

(1.3) Rema7'k. The advantage of this theorel11 is that the problell1 under
consideration is eOlllpletely reduced to finding of s.g. p. of linear representa­
tions of reductive groups! It was lnentioned before that S is a S.g.p. of co­
isotropy representation for J( C L anel in order to compute cs(PUI lJU) anel
7'S(P1L / RU) one have to find a s.g.p. for linear action (8: puIHUffi(PU / HU t)
[PI], where the asterisk denote the dual representation.

(1.4) Corollary. GI lJ is sphedca[ iff LI]( is sphe7'ica[ and a Bore!
subgroup 0/ S has au open orbit on puIl)u. 0
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2 Generalities on nilpotent orbits

(2.1) Let 9 be a seInisinlple Lie algebra, G be its adjoint group, and 'Jt c 9
be the cone of nilpotent elenlents. Take an arbitrary e E 'Jt \ {O}. By the
Morozov's theorenl there exists 5 ~-triple {e, h, f}, containing e (i.e. (e, f] =
h, (h, e] = 2e, [h, f] = -2/). Semisimple element h determines a natural
gradation on g. Put

g(i)={xEg I [h,x]=ix}.

Then g(O) is a reductive subalgebra of 9 of the same rank and ß = EBiEZg(i)
is a Z-grading of O. Put P = ffii2:00 (i). This is a parabolic subalgebra of
ß, EBi2: l 0(i) is its llilpotent radieal, and [ := g(O) is a Levi subalgebra of
p. Denote Ge C G to be the stabilizer and Ge c g to be the G-orbit
(eonjugaey dass) of e. Given e, all 5 ~-triples, eontaining e, form a single Cie ­

orbit. Therefore propertics of Z-grading uuder eonsideration reflect rea11y
properties of the orbit Ge only.

Definition. Thc integer Blax{ i I g(i) =I O} is said to be the height of e

(01' the orbit (-,le) allel wOllld be denoted by ht( e).
Sinee e E g(2), we have ht(e) 2: 2 for any e E 'Jt \ {O}. There also is the

other way to define the height of e. Choose Cl. Cartan subalgebra l) anel a Borel
subalgebra b :> l) in such a way that l) C [ anel b C p. Let E+ be the set of
positive roots with respect of (b, 1)) and TI = {al,'" ,ar} be the set of sirnple
roots. Then a(h) 2: 0 for any 0' E E+. The integers mi = O'i(h), O'i E TI is
said to be n1lm,el'iclll labels of h. The Dynkin diagram of g with numerical
labels, attachcd to thc eorresponding Boeles, is said to be the charaeteristic
of e. It is known (see e.g. [58]) that

(a) mj E {O, 1, 2};
(b) e, e' E 'Jt lie in the saBle G-orbit iff their characteristics coincide.

Let A E E+ be the highest root, A = L~=I niO'i. The fo11owillg assertion is
evident now:

f

ht(e) = A(h) = Emini
i=l

(1)

Remark. It is worth to Inention that not every diagraIn with ntnnericallabels,
satisfying to condition (a), is rea11y eorresponds to a nilpotent orbit.

The following proposition contains a11 neeessary results on structure of
the stabilizer Ge anel the eentralizer Oe (see e.g.[88]). As a Illatter of fact,
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a11 the assertions concerning ge are immediate consequences of the theory of
.5 ~-representations.

(2.2) Proposition. (i) Lie algebra ge (resp. 91) is positively (l'esp.
negatively) graded; ge = EBi>0(ge)i, where (ge)i C 9(i) and similarily for 9j;
(ii) t := (ge)0 = (9j)0 is a Levi subalgebra 0/ both ge and 9j;
(iii) For every i thel'e al'e the K -invariant. direct sum decompositions:

g(i) = (De)i + [f, g(i + 2)), 9(i) = (9j)i + [e, 9(i - 2)]

In partieulal', adf: g( i) ----7 g( i - 2) is injective, if i 2:: 1 and s7./.rjecti1Jc, if
i ::; 1;
(iv) [I, e] = 9(2) and J( := Le is (l Levi subgroup 0/ Ge;
(v) dilnGe = dio19(O) + dilng(1), diIll(Ge )" = diIllg(l) + diolg(2).
o

It fo11ows frOIn the proposition that paraholic subgroup P with LieP = p
yields a right inclusion Ge C P.

(2.3) Now let us reformulate theoreIn 1.2 for nilpotent orbits. Keep the
previous notation.

Theorem. Suppose e E sn \ {O}, L = G(O), !( = (G'e)O, and S is a S.g.p.
/01' the linear action (!( : g(2)). Then

cc;(Ge) = cL(L/!() + CS(ffii~3g(i)),

7'C( Ge) = l'L(L / J() + T~(ffii23g( i)).

Proof. The groups J< and L here have the sallle sense as in 1.2. Since!(
is the stabilizer of a point frool the open L-orhit in g(2), the representation
(!( : g(2)) is nothing else hut. the co-isotropy representation of the pair
J( C L. Whence 5' also has the saOle sense as in 1.2. Fina.1ly S c Genej = J(

anel it fo11ows frolll 2.2(iii) that the application of adf yields the isolllorphism
of !(- and S-lnodules pU / g~ anel ffii~3g( i). 0

Reca11 that a nilpotent element e is ca11ed llistinguished, if ge does not contain
selnisimple elell1ents, i.e. t = {O}.

(2.4) Corollary. SU]JIJose e is a distinguishe(l nilpot.ent ele7nent. Then
ca(Ge) = dinlGe - dilnB and 7'c;(Ge) = rkg.

Proof. lt inlluediately fo11ows that .5 = {O}. Therefore rc;(Ge) = rL(L) =
rkL = rkG. Also cc;(Ge) = cL(L) +diIll(EBi~3g(i)). Then applying 2.2(v) one
get the assertion for the cOluplexity. 0
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3 Spherical nilpotent orbits

(3.1) Let us formulate the Inain result. of the paper.
Theorem. Let e be lL non-zero nilpotent 'element in a semisimple Lie

algebra g. Then cc(Ge) = 0 iffht(e) = 2 01' 3.
The proof of the theorenl consist.s of aseries of stat.ements for different

values of ht(e). We shall say e is spherical iff the orbit Ge is spherical.
(3.2) We start with an auxiliary assertion, which is an application of the

general fonnulas of eh.I. Suppose 9 is reductive and 9 = EBiEZ g(i) is an
arbitrary Z-grading, not necessarily arising [rom a nilpotent element of g. It
has been shown in [Vi] that G(O) has finitely l11any orbits in g( i) for any i EZ.
Whenee every g(i) eontains an open G(O)-orbit. Put d = max{ i I g( i) #- O}.

Proposition. /f i > dJ2 J theu the open C;(O)-o1'bit in g(i) is spherical.
Proof. Passing to the reduetive Z-graded subalgebra g(-i) EB g(O) El1 g(i) E

g, one inlInediately reduces to the case i = d = 1. Therefore without loss of
generality assume that 9 = g( -l)EBg(O)EBg(l). Define Cl linear transformation
oof gasfollows: () !O(-l)ffig(l)= -id, 0 10(0)= id. Clearly this is a Lie algebra
automorphisIll. Therefore 9(0) is a sY1nl1~ef1'ic subalgebra of 9 and henee
Gj G(O) is spherical. Making apply theorenl 1.2 t.o the right inclusion G(O) C
P, where p = 9(0) EB g(l), one get: 0 = cc(GjG(O)) = CC(O)(PjG(O)) =
cG(Q)(9(1)). But the last tenn is equal to the complexity of the open G(O)­
orbit in g(l). 0

(3.3) Keep the notation of ch.2.
Proposition. Suppose ht( e) ::; 3. Then t is asymmetrie subnlgebra of lJ

in particular] cL(Lj]() = O.
Proof. Since e E g(2) anel Le is dense in 9(2), the seeonel assertion

al ready follows [rom 3.2. In order t.o prove the first one we use the 5~-triple,

eontaining e. Since both ]( and L are reductive, we have the direct SUITI
deeOlTIposition l = t El1 m, where m is the orthogonal complement to t in I. It
suffiees to prove that this one is a ZTgrading of I , i.e. [m, m] C t By 2.2(iii)
we know that m = (adf) 9(2) and t = (ge)O' Henee the following relation
sholild be derived. For any XI, X2 E g(2)

[[[I, xJl, [I, X2]], e] = O.

This is a trivial exereise on tbc .Jacobi ielentit.y. The only point, where the
condition ht(e) ~ 3 is used, is that [:c, y] = 0 for any x, y E g(2). (Hence it
suffiees to assuIlle that 9(4) = 0.) 0
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Corollary. Ifht.(e) = 2, then e is spherical and 7'C(Ge) = 7'L(L/J<). 0

(3.4) Proposition. If ht(e) 2:: 4, then e is not spherical.
Proof. By 2.3 it suffices to prove tbat cs(EBi~3g( i)) > 0,

(a) First suppose d = ht(e) ~ 5. Then g(d) and [I, g(d)] C g(d - 2) are two
isoillorphic 8-lllodules, which are contained in EBi~3g(i). Therefore a Borel
subgroup of S has a non-constant invariant rational function on ffii~3g(i), i.e.

CS(EBi~3g(i)) 2: 1.
(b) Assurne d = 4. Again the application of adf give us a J(-submodule
in g(2), which is isolnorphic to g(4). Hence g(2) ~ g(2) EB W, where W is
a complementary J(-subilloduie. By definition S is a S.g. p. for the linear
action (J< : g(2)) (cf 2.3), i,e. J( (g(2)5) i8 clense in g(2). Whence g(4)5 -# 0,
But the laUer clearly itnplies C5(g(4)) ~ 1. 0

Corollary (0/ lhe P7'OOf.). If ht( e) 2: 5 (lnd g(4) -# 0, then cc(Ge) 2: 2.
o

(3.5) It ren1ains to elaborate the case ht(e) = 3. After 3.3 we know that
c(L/J() = 0, i.e. in order to finish our consideration we have to prove that
cs(g(3)) = O. Unfortunately at this point our arguments use case-by-case
consideratiol1s. We check directly this condition for all nilpotent orbits of
the height 3 in silnple Lie algebras. First we shall consider tbe exceptional
siInple Lie algebras, while the case of t.he classical olles would be postponed
until ch.4.

(3.6) Inspecting the Elashvili's tables of the characteristics of nilpotent
orbits in exceptional Lie algebras [E], one easily finds by using (1) all e E ')1\0
with ht( e) :::; 3. Let us indicat.e the ntunbers of orbits obtained (in the
brackets the nun1ber8 of e with ht(e) = 3 are given).
G 2 - 2(1), F 4 - 3(1), E 6 - 3(1), E 7 - 5(2), Es - 4(2).
The necessary infoflnation cOllcerning the orbits of t.he beight 3 is gatherecl
in the table below. We draw the Dynkill diagranl in such a way that the

lelt node always corresponds to a short root. A reIllarkable aposteriori fact
is that the representation (8 : g(3)), nl0dulo uneffectivity kernei, always
appears ta be the sun1 of copies of 2-dimensional representations of different
groups 8L2 • This clearly iInplies that. B(8) has an open orbit. in g(3), i.c.
cs(g(3)) = O. In the coltnnn (S : (g(3)) the highest weights of irreducible
S-submodules of g(3) are indicated. The Lie algebra of an n-climensional
torus is denoted by tn .
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Tablt
Group Characteristic t s (8 : g(3)) r(Ge)

G2 1-0 Al Al <PI 2
F 4 0-0-1-0 Al X Al Al <PI 4

0
E6 0-0-1-0-0 A 2 X Al Al X h <PI 4

0 (1)E7 0-0-0-0-1-0 C3 X Al (Ad 4
<PI 4

1
(1) + (2) + (3)1-0-0-0-0-0 C 3 (Ad3

<PI <PI <PI 7
0

Es 0-1-0-0-0-0-0 F 4 X Al D 4 X Al 1 0 <PI 4
1 (1) (4)0-0-0-0-0-0-0 C4 (AI)4 <PI + ... + <PI 8

4 Spherical nilpotent orbits in classical Lie
algebras

(4.1) In s~V), sp(V), so( V) it is more natural to describe nilpotent matrices
by the sizes of the blocks in the Jordan normal fanll. vVe shall identify the
nilpotent orbits anel the associated partitions (al, . .. ,ad, where (LI 2': a2 2':
... 2': at anel L~=I (Li = dilllV. The only restriction is that for sP(V) the blocks
of odd size occur pairwise a.nel for S o( V) the blocks of even size occnr painvise.
There is also a delicate point for so(V), dirnV = 0(mod4). Partitions with
a11 blocks of even sizes (occnrring pairwise) COllles from two different SO(V)­
orbit. But the inner autolnorphislll of SO(V) permutes these orbits anel
therefore they have the salne rank anel c0I11plexity.

There exist simple algoritllll1s how to produce the characteristic of a nilpo­
tent matrix fronl its Jordan nornlal form [SS, chA]. Making use this way we

derive alllore transparent characte1'ization of spherical nilpotent orbits.
(4.2) g = S~,+I = An 01' g = sllln = C no

Characteristics of nilpotent Inatrices in .5 ~+l are invariant with respect of
the autoll1orphislll of the Dynkin diagranl and the ones in sP2n have even
nUlnericallabel on the long silllpie root. Whence a direct computation allow
us to derive the following cnrious fa.ct.

Assertion. There are no nilpotent elenlents of the height 3 in An anel C no

Let HS consider nilpotent orbits of the height 2.
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(a) An' lf a nilpotent I11atrix has the height 2, then its characteristic have
to look as folIows:

( )
. n+l

h i = ~O ...O~ , 1 ~ z < -2- or

h!l:±1. = (0 ... 020 ... 0). These are really characteristics and the associated
2 ..

partition is ei = (21
, 1n-21+1 ). Evidcntly a11 nil potent matrices without blocks

of the size > 2 occur in this way. By using 3.2 Corollary it is easy to
determine the rank of Gei. Here L = (5Ld 2

X SL2n-2i+l X (k"')2 anel I< =
5Li X SL2n-2i+l X k"', where I< :J 5Li ~ ß C (5Ld 2 C L. Therefore
ra(Gei) = l'L(LjJ<) = 1: = rank(ed (the obvious rank of a Inatrix).

(b) Cn' [f a nilpotent Inatrix has the height 2, t.hen its characteristic is
of the fonn

hi =(~O ... 0), i < n 01' hn = (0 ... 02).
i

The corresponding nilpotent Illatrix ei has the Jordan fonTI (2i , 12n- 2i ). Here
L = 5Li X SP2n-2i X k'" and J< = Gi X SP2n-2i. Therefore Tc(G'ei) =
1'L(LjK) = i = rank( Ei)' Again these are all nilpotent synlplcctic Inatri­
ces without blocks of the size > 2. Sununarazing we get

Theoreln. Let e be a ni/potent maf.1'ix in 5~V) 01' sp(V).
1. The following conditions (l1'e eqll.iva/cnt:

(i) e 1:8 sphe1'ica/j
(ii) e2 = 0 (the obvious l1UL17'ix 1nultip/ication)j
(iii) ht(e) = 2.

2. If e = eiJ then ',.(Gei) = i. 0

(4.3) 9 = 5c\V) anel elinlV ~ 7, i.e. 9 = B n 01' Dn .

Straightforward cOlnputations give HS:

(a) ht(e)::; 3 iJJe has at tIlost 1 block of the size 3 anel all others have the
size ::; 2 ilf rank( e2

) ::; 1.
(b) ht( e) = 3 ilf e has exactly 1 block of the size 3 anel at least 2 blocks of
the size 2 ilT rank(e2

) = 1 and rank(e) > 2.
In order to finish t.he proof of theorem 3.1 we explicitly describe the

situation around nilpotent 111atrices of the height 3. Suppose e = (3, 22t
, 1/)

and t > O. If / = 2$, then e E B 2t+.'J+l and the numerical la.bels of the

10



eharacteristic are:

{
I, i f i = 1, 2t + 1

1TIj =
0, otherwise

If I = 2s + 1, then e E D 2t+6 +2 and in the case s > 0 the numericallabels are
the same as for B. If s = 0, then

1nj = { 1, if i = 1., 2/, + 1, 2t + 2
0, otherwlse

However by using [88, ch.4] it is easy to write explicitly the diagonal Illatrix
hand to detertlline the subalgebra 1= g(O) and g(O)-ll1odules g(i).

If e = (3,2 2t ,l l
), then I = 5~t X 5°/+1 X t2 , t = S~t X SOl, and S =

(5~)t X SOl-I' Here clinlg(3) = 2t anel the representation (8 : g(3)) is the
direet sunl of t copies of the 2-dimensional representations of different SL 2 's
(801- 1 does Bot aet. on g(3)). Whence B(S) has an open orbit in g(3). Thus
the proof of theorenl 3.1 is cOlllpleted.

RerfUlTk. For all nilpotent orbits of the height 3 representations (8 : g(3))
always have the sa11le strueture (cf. also 3.6). I think there exists a reasonable
explanation of this phenOlllenon.

(4.5) There are 110 difficulties in COIllputing the ranks of nilpotent SO(V)­
orbits; e.g. all data for the ease of the height 3 are given above. Afterwards,
our results for G = 80(V) ITIay be sUllllnarized a..." follows.

Theorem. Let e E .5"V) be a ni/potent 1natrix.
1. The following conditions are equivalent:

(i) e is spherica/;
(ii) rank (e 2

) ::; 1.
2. 1f e2 = 0 (Lud rallk( e) = 2t, theu 1'( C;e) = t.
3. If rank(e2

) = 1 and e = (3, 22t
, l l

), then rank( e) = 21. + 2 (lnd

T ( Ge) = { 2t + 2, i f / > 0
2t + 1, if I = O. 0

5 Concluding remarks

(5.1) As usual in theory of seIllisiInple Lie algebras, any problenl on prop­
erties of adjoint orbits lllay be l'educed to selnisilllple or nilpotent Olles. Not
surprising that this is the case for the c011lplexity and tlte rank.
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In this Hcction it would be shown that. complexity and rank are constant
a.long sheets of g. Recall that a sheel of 9 is an irreducible component of the
variety of adjoint orbits of a fixed dimension. Each sheet eontains exactly
one nilpotent orbit (BK}.

Let 0 C 9 \ SJl be an orbit. There are'2 ways to eonstruet the nilpotent
orbit of the sheet that eontains O. The first one uses the parabolic induetion
[LS}, while the seeond one, whieh we shall use, is more geometrie (cf. (BK]).

Let us reeall the related eonstructions. Put X = k"'O c g. This is a
closed G-invariant eone anel dimX = elimO + 1. The algebra of G-invariant
regular functions on X is generated by a (homogeneous) polynOlnial 7r. Let
7r : X -+ Albe the eorresponding Inorphism. Denote X-r to be the fiber of
7r over T E A l

.

(5.2) Proposition. (cf. [BK])
(i) 0 = X-r for same T "# Oj
(ii) Xo = X n SJlj
(iii) Xo is irreelucible anel contains a unique dense G-orbit, say On­
o
It immediately follows frolll the proposition that 0 anel On belong to the
saUle sheet and On is the nilpotent orbit of this sheet.

(5.3) Proposition. cG(XT ) = cG(Xo) and TG(XT ) = rc(Xo) for any
TEA1\{O}.

Proof Since 7r is hOlnogeneous, Olle can see that X T ~ XTI, if T, T' E

Al \ {O}. Therefore, if B.. is a s.g.p. for the action (B : X), then it also
is a s.g.p. for the action (B : X T ), T "# O. Whence dimBy 2: dilnB", for
any y E X o anel cG(XT ) :S cG(Xo), Having replaceel B on U in preceding
arguments, one get cG(XT ) + 'fG(XT ) :S cG(Xo) + TC(Xo). (cf. eh.I)

In order to prove the converse we eOlnpare the 1nlllf.ip/icilies of irredueible
G-modules in the algebras of regula.r funetions on X T anel X o. We let 11l.V(X)
denote the llluitiplieity of an irredueible G-lnodule V in t.he algebra k[X}. In
the notations of [BK} we have X o = KXT (the associa.ted eone), and therefore
by lemnla 3.2 in [loc. cit.}

(2)

for any V. This unequality illlplies 1'G(XT ) 2: 7'O(Xo). It has been shown in
[P2} that e0I11plexity is fully eleterI11ined through the growth of Illultiplicities.
Whence (2) ilnplies cG(XT ) 2: cG(Xo), 0

12



(5.4) It easily follows froll1 the definitions that thc cOlnplexity and the
ra.nk are birational characteristics of actions. Therefore 5.2 and 5.3 imply

Proposition. The rauk and the cOlnplexity of orbits are constant alang
the sheets of the adJ'oint representation (G ; g). 0
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