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Abstract
New formulas for the complexity and the rank of an arbitrary ho-
mogenecous space of a reductive group are given. These ones com-
pletely reduce the problem to finding of stabilizers of general position
of linear representations of reductive groups. As an application the
description of spherical (i.e. of complexity zero) nilpotent orbits is
obtained.

(0.1) Let G be a reductive algebraic group, defined over algebraically
closed field & of the characteristic zero. A famous problem in the theory
of algebraic transformation groups is to describe normal G-equivariant em-
beddings of homogeneous spaces G/H, where H is an arbitrary algebraic
subgroup of G. The important role of two numerical parameters of homo-
geneous spaces hase been recognized during the last decade. These ones are
the rank r(G/H) and the complezity (G/H). (See [LV), [K], [P1]). These
are non-negative integers and the problem of classification of embeddings
becomes complicated, if they increase. For instance, if 7(G/H) = 0, then
H is a parabolic subgroup of G and hence ¢(G/H) = 0 [P1]. In this case
G/ H is a projective variety, which does not admits non-trivial G-equivariant
embeddings.

If (G/H) = 0, then G/H 1s called spherical. This condition means that
a Borel subgroup of (¢ has an open orbit on G/H. The theory of spherical
embeddings is already very extensive and the remarkable theory of toric
varieties may be regarded as a particular case of it.

(0.2) In [P1] a method of computation of the complexity and the rank of
quasi-affine homogeneous spaces in terms of co-isotropy representation of H
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has been proposed. However, if H is not reductive (i.e. G/H is not affine),
then this method is not very effective in practical computations. In this case
the idea, which is due to M.Brion, appears to be fruitful. It is well-known
that for any subgroup H C G there exists a parabolic subgroup P such that
H C P and H* C P*. An inclusion, which satisfies the last condition, is
said to be right. In [B] a criterion of sphericality of G/H in terms of a right
inclusion of H has been obtained. In ch.1 we shall show that combining
ideas of [P1} and [B] it is possible to produce general formulas for the rank
and the complexity of an arbitrary homogeneous space in terms of a right
inclusion of H. Even in the spherical case our formula seems to be better,
than the one in [B]. The advantage of this approach is that the problem under
consideration is completely reduced to the problem of finding of a stabilizer
of general position (=s.g.p.) of linear representations of reductive groups.
But the latter is quite easy.

(0.3) Conjugacy classes of nilpotent elements in semisimple Lie algebras,
or simply nilpotent orbits, give us the best possible example of non-affine’
homogeneous spaces such that a right inclusion of the stabilizer is naturally
arises.

It is known (see e.g. [SS]) that nilpotent orbits in semisimple Lie algebras
are classified by their characteristics, i.e. the Dynkin diagrams with numer-
ical labels. (We recall the construction of the characteristic in ch.2.) Let
{aq,...,q;} be the set of simple roots of g and m,,..., m; be the numerical
labels of the characteristic, i.e. m; stands near the node, which corresponds
to the root «;. 1 do not know whether it is possible to find a general formu-
lae, which determines the complexity and the rank of a nilpotent orbit via its
characteristic. Nevertheless it turns out that for spherical orbits the answer
is rather simple. In ch.3,4 we shall prove the following statement.

Theorem. Let A = !, njoy be the highest root. Then a nilpotent orbit

Ge is spherical iff ht(e) := Ti_, nim; < 3.
Proof of this theorem is almost completely satisfactory, i.e. case-by-case con-
sideration are reduced to a minimum. Namely, it follows from the definition
of the characteristic that ht(e) > 2. We shall give an a priori proof of the
following:

1. If ht(e) = 2, then Ge is spherical;

2. If ht(e) > 4, then Ge is not spherical.

Only in the case ht(e) = 3 we have to use case-by-case consideration. Nev-
ertheless I believe that this trouble may be eliminated and this should be



related with some interesting properties of stabilizers of these orbits.

For classical Lie algebras the preceding theorem admits a nice reformula-
tion. Namely,

(1) Suppose e is a nilpotent matrix in s[(V) or sp(V). Then the orbit of e is
spherical iff e? = 0.
(2) If e € s0o(V), then the orbit of e is spherical iff rank(e?) < 1.

(0.4) As usual the Lie algebras of algebraic groups are denoted by the cor-
responding small German letters. Notation (A : B) means that an algebraic
group A acts regularly on an algebraic variety B.

Acknowledgments. The author thanks Max-Planck-Institut fiir Math-
ematik for hospitality and support during the preparation of this paper.

1 General formulas

(1.1) If an irreducible variety X is acted on by a reductive group G, then
the complezily of X (relative to G) is the integer cg(X) = mingexcodimBz,
where B is a Borel subgroup of G. In order to define the rank of X (relative
to (3}, one has to consider the characters of all B-semiinvariants in the field
of rational functions on X. Obviously these characters form a free abelian
group. The rank of this group rg(X) is called the rank of X. Clearly,
TG'(/Y) S I'kG'.

Let f be an algebraic subgroup of G. Suppose H = KH" be a Levi
decomposition (i.e. H™ is the unipotent radical of H and K is a maximal
reductive (=Levi) subgroup of H). There exists a parabolic subgroup P C G
with a Levi decomposition P = LP*, such that H C P and H* C P* [Hu].
Then one can also assume that X' C L. An inclusion that satisfies all these
conditions is said to be right.

Our purpose is to find a method of determination of the rank and the
complexity of G/H in terms of a right inclusion of H. Let us recall some
necessary results. Let © C | be the inclusion of Lie algebras, which corre-
sponds to K C L and m be the orthogonal complement to € in [ relative to
a L-invariant scalar product on I. The natural representation of X in m is
said to be the co-isotropy representation. Since K is reductive, a s.g.p. S of
this representation is also reductive. Being a subgroup of K, § act linearly
on P*/H*(= p*/h* as a K-module). By B(S) denote a Borel subgroup of S.

(1.2) Theorem. (i) cc{G/H) = ¢(L/K) + cs(P*/H");



(i) ro(G/H) = ro(L/K) + rs(P*/H*),
(iii) If B, is o s.g.p. for the action (B(S): P*/H"), then B, is also a s.¢.p.
for the action (B : G/H).

Proof. (i),(iii). Let us consider G-equivariant fibering = : G/H — G/P.
By definition of complexity we have co(G/H) = min,eq/ucodimBz, where
B C G is a Borel subgroup. The action of B on G/P is locally-transitive
and having replaced B on a conjugated subgroup in G one may assume that
B-orbit of the point {P} € G/P is open and BN P =: B(L) is a Borel
subgroup in L. Whence ¢g(G/H) = minyer-1¢{pyycodimBipyy. Obviously
7~ ({P}) & P/H and Bpy = B(L). Thus we have already proved that
cq(G/H) = ¢ (P/H). There is a natural L-equivariant fibering 7 : P/H —
L/K and 77'({K}) = P*/H*. Again we may assume that {K} € L/K is
a generic point relative to the B(L)-action, that is codimyx B(L)K/K =
c,(L/K). Let B C B(L) be the stabilizer of {/{}. Then arguing as before,
we get ¢(P/H) = c(L/K) + rnin,epu/HucodimBz. Our key observation
is the following. It has been proved in [P, ch.2] that B = B(S) is a Borel
subgroup of §. Therefore the last term of the sum is equal to cg(P*/H*) and
the proof of (i) is completed. The preceding chain of arguments also prove
(i11).

(ii) It is known [P, ch.1], that cg(G/H) +1¢(G/H) = mingeg/ncodimlUz,
where U is the unipotent radical of B. Now the arguments, which are parallel
to the ones from (i), give us: eg(G/H) +ra(G/H) = e (L/K) +r(L/K) +
min,eps/gucodimlz, where U is the stabilizer in U(L) of {K}. By [P, ch.1]
we know that [J is a maximal unipotent subgroup of S, that is the last term
is equal to cs(P*/H*) + rs(P*/H"). Whence comparing with (i) we get the
assertion. [

(1.3) Remark. The advantage of this theorem is that the problem under
consideration is completely reduced to finding of s.g.p. of linear representa-
tions of reductive groups! It was mentioned before that S is a s.g.p. of co-
isotropy representation for X' C L and in order to compute cg(P*/H") and
rs(P*/H") one have to find as.g.p. for linear action (S : P*/H*®(P*/H")*)
[P1], where the asterisk denote the dual representation.

(1.4) Corollary. G/H is spherical iff L/K is spherical and « Borel

subgroup of S has an open orbit on p*/h*. O






2 Generalities on nilpotent orbits

(2.1) Let g be a semisimple Lie algebra, G be its adjoint group, and M1 C g
be the cone of nilpotent elements. Take an arbitrary e € 91\ {0}. By the
Morozov’s theorem there exists sL-triple {e, k, f}, containing e (i.e. [e, f] =
h, [h,e] = 2e, [h, f] = —2f). Semisimple element A determines a natural
gradation on g. Put

8(i)={z €p | [h =] =iz}

Then g(0) is a reductive subalgebra of g of the same rank and g = &,.70(?)
is a Z-grading of g. Put p = Pi>00(z). This is a parabolic subalgebra of
g, @i»>19(7) is its nilpotent radical, and I := g(0) is a Levi subalgebra of
p. Denote G, C G to be the stabilizer and Ge C g to be the G-orbit
(conjugacy class) of e. Given e, all sh-triples, containing e, form a single G-
orbit. Therefore properties of Z-grading under consideration reflect really
properties of the orbit Ge only.

Definition. The integer max{: | g(¢) # 0} is said to be the height of e
(or the orbit Ge) and would be denoted by ht(e).

Since e € g(2), we have ht(e) > 2 for any e € 91\ {0}. There also is the
other way to define the height of e. Choose a Cartan subalgebra b and a Borel
subalgebra b D b in such a way that h C [and b C p. Let £, be the set of
positive roots with respect of (b, h) and Il = {ay,..., o} be the set of simple
roots. Then a(h) > 0 for any o € Z,. The integers m; = a;(h), o; € Il is
said to be numerical labels of h. The Dynkin diagram of g with numerical
labels, attached to the corresponding nodes, is said to be the characteristic
of e. It is known (see e.g. [SS]) that

(a') m; € {07112}; .

(b) e, e’ € M lie in the same G-orbit iff their characteristics coincide.

Let A € &, be the highest root, A = ¥!_, nje;. The following assertion is

=1
evident now: l

ht(e) = A(R) = >_mn; (1)
i=1
Remark. It is worth to mention that not every diagram with numerical labels,
satisfying to condition (a), 1s really corresponds to a nilpotent orbit.
The following proposition contains all necessary results on structure of
the stabilizer (i, and the centralizer g. (see e.g.[SS]). As a matter of fact,
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all the assertions concerning g. are immediate consequences of the theory of
sh-representations.

(2.2) Proposition. (i} Lie algebra g. (resp. ;) is positively (resp.
negatively) graded; g. = @i>o(@e)i, where (g.); C p(1) and similarily for g;;
(i1) € := (ge)o = (9s)o is a Levi subalgebra of both g. and gy;

(i) For every 1 there are the K-tnvariant direct sum decompositions:

9(i) = (8.): + [f, 8(: + 2)), 8(2) = (8y)i + [e, 8( — 2))]

In particular, adf : g(z) — g{z — 2) s injective, if + > 1 and surjective, if
t < 1
(iv) [l,e] = 9(2) and K := L. s a Levi subgroup of G.;
(v) dimG. = dimg(0) + dimg(1), dim(G.)* = dimg(1) + dimg(2).
0

It follows from the proposition that parabolic subgroup P with LieP = p
yields a right inclusion G, C P.

(2.3) Now let us reformulate theorem 1.2 for nilpotent orbits. Keep the
previous notation.

Theorem. Suppose e € M\ {0}, L = G(0), K = (G.)o, and S is a 5.9.p.
for the linear action (K : g§(2)). Then

ci(Ge) = ci, (LK) + cs(Bi>38(7)),

ra(Ge) = (LK) + rs(Bi»30(2)).

Proof. The groups K and L here have the same sense as in 1.2. Since K
is the stabilizer of a point from the open L-orbit in g(2), the representation
(K : g(2)) is nothing else but the co-isotropy representation of the pair
K C L. Whence S also has the same sense as in 1.2. Finally S C G.NGy = K
and it follows from 2.2(iii) that the application of ad f yields the isomorphism
of K- and S-modules p*/g¥ and @;»38(¢). O
Recall that a nilpotent element e is called distinguished, if g, does not contain
semisimple elements, 1.e. € = {0}.

(2.4) Corollary. Suppose e is « distinguished nilpotent element. Then
cc(Ge) = dimGe — dimB and rg(Ge) = rkg.

Proof. It immediately follows that s = {0}. Therefore rg(Ge) = r (L) =
rkL = rkG. Also cg(Ge) = ¢, (L) +dim(@i»38(¢)). Then applying 2.2(v) one

get the assertion for the complexity. O
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3 Spherical nilpotent orbits

(3.1) Let us formulate the main result of the paper.

Theorem. Let e be ¢ non-zero nilpotent ‘element in a semistmple Lie
ulgebra g. Then cq(Ge) =0 iff ht(e) = 2 or 3.

The proof of the theorem consists of a series of statements for different
values of ht(e). We shall say e is spherical iff the orbit Ge is spherical.

(3.2) We start with an auxiliary assertion, which is an application of the
general formulas of ch.l. Suppose g is reductive and g = @,.76(z) is an
arbitrary Z-grading, not necessarily arising {rom a nilpotent element of g. It
has been shown in [Vi] that G(0) has finitely many orbits in g(¢) for any ¢ €Z.
Whence every g(z) contains an open G(0)-orbit. Put d = max{z | g(z) # 0}.

Proposition. If: > d/2, then the open G(0)-orbit in g(z) is spherical.

Proof. Passing to the reductive Z-graded subalgebra g(—:)® g(0)® g(z) €
g, one immediately reduces to the case 1 = d = 1. Therefore without loss of
generality assume that g = g(—1)®g(0)®g(1). Define alinear transformation
0 of g as follows: 8 |g_1)gg(1)= —1d, 0 |g(0)= id. Clearly this is a Lie algebra
automorphism. Therefore g(0) is a symmetric subalgebra of g and hence
G/G(0) is spherical. Making apply theorem 1.2 to the right inclusion G(0) C
P, where p = g(0) @ g(1), one get: 0 = c(G/G(0)) = cay(P/G(0)) =
cc(0)(8(1)). But the last term is equal to the complexity of the open G(0)-
orbit in g(1). O

(3.3) Keep the notation of ch.2.

Proposition. Suppose ht(e¢) < 3. Then t is ¢ symmetric subalgebra of |,
in particular, e (L/K) = 0.

Proof. Since e € g(2) and Le is dense in g(2), the second assertion
already follows from 3.2. In order to prove the first one we use the sh-triple,
containing e. Since both K and L are reductive, we have the direct sum
decomposition [ = ¥ @ m, where m is the orthogonal complement to €in I. It
suffices to prove that this one is a Z,-grading of I | i.e. {[m, m] C &. By 2.2(ii1)
we know that m = (adf)g(2) and & = (g.)o. Hence the following relation
should be derived. For any z,,z; € g(2)

[[[f1$1]1 [f1-'32]],6] = 0.

This is a trivial exercise on the Jacobi identity. The only point, where the
condition ht(e) < 3 is used, is that [z,y] = 0 for any =,y € g(2). (Hence it
suffices to assume that g(4) =0.) O



Corollary. Ifht(e) = 2, then e is spherical and rq(Ge) = r(L/K). O

(3.4) Proposition. Ifht(e) > 4, then e is not spherical.

Proof. By 2.3 it suffices to prove that cs(@®:>38(¢)) > 0.

(a) First suppose d = ht(e) > 5. Then g(d) and [f, g(d}] C g(d — 2) are two
isomorphic S-modules, which are contained in @;538(¢). Therefore a Borel
subgroup of S has a non-constant invariant rational function on ®;>38(z), i.e.
cs(Diza8(z)) 2 1.

(b) Assume d = 4. Again the application of adf give us a K-submodule
in g(2), which is isomorphic to g(4). Hence g(2) = g(2) @ W, where W is
a complementary K-submodule. By definition S is a s.g.p. for the linear
action (K : §(2)) (cf 2.3), i.e. K(8(2)%) is dense in g(2). Whence g(4)% # 0.
But the latter clearly implies cg(g(4)) > 1. O

Corollary (of the proof.). If ht(e) > 5 and g(4) # 0, then cg(Ge) > 2.
0O

(3.5) It remains to elaborate the case ht(e) = 3. After 3.3 we know that
co(L/K) =0, 1.e. in order to finish our consideration we have to prove that
cs(8(3)) = 0. Unfortunately at this point our arguments use case-by-case
considerations. We check directly this condition for all nilpotent orbits of
the height 3 in simple Lie algebras. First we shall consider the exceptional
simple Lie algebras, while the case of the classical ones would be postponed
until ch.4.

(3.6) Inspecting the Elashvili’s tables of the characteristics of nilpotent
orbits in exceptional Lie algebras {E], one easily finds by using (1) all e € 9T\0
with ht(e) < 3. Let us indicate the numbers of orbits obtained (in the
brackets the numbers of e with ht(e) = 3 are given).

G, - 2(1), Fy - 3(1), Eg - 3(1), E7 - 5(2), Eg - 4(2).

The necessary information concerning the orbits of the height 3 is gathered
in the table below. We draw the Dynkin diagram in such a way that the
left node always corresponds to a short root. A remarkable a posteriori fact
is that the representation (S : g(3)), modulo uneflectivity kernel, always
appears to be the sum of copies of 2-dimensional representations of different
groups SL;. This clearly implies that B(S) has an open orbit in g(3), i.e.
cs(9(3)) = 0. In the column (S : (g(3)) the highest weights of irreducible
S-submodules of g(3) are indicated. The Lie algebra of an n-dimensional
torus is denoted by t,.



Table

Group | Characteristic 3 E (5 :9(3)) r(Ge)
G, 1-0 A, Ay ©1 2
F4 0-0-1-0 A.] x Al A] Y1 4

0
Es 0-0-1-0-0 A.2 X A.1 Al X tz ©1 4
0
E; 0-0-0-0-1-0 | Cyx A, | (A))* olY 4
1
1-0-0-0-0-0 C, (A | oM+ P43 7
0
Es | 0-1-0-0-0-0-0 | Fy x A, | Dy x A, 1@ ¢, 4
1
0-0-0-0-0-0-0 | C, (A | oW ™| 8

4 Spherical nilpotent orbits in classical Lie
algebras

(4.1) In sl(V), sp(V'), so(V) it is more natural to describe nilpotent matrices
by the sizes of the blocks in the Jordan normal form. We shall identify the
nilpotent orbits and the associated partitions (a,,...,a;), where a; > a; 2>
... 2 ayand ¢, @; = dimV. The only restriction is that for sp(V') the blocks
of odd size occur pairwise and for so{ V') the blocks of even size occur pairwise.
There is also a delicate point for so(V), dimV = 0(mod4). Partitions with
all blocks of even sizes (occurring pairwise) comes from two different SO(V)-
orbit. But the inner automorphism of SO(V) permutes these orbits and
therefore they have the same rank and complexity.

There exist simple algorithms how to produce the characteristic of a nilpo-
tent matrix from its Jordan normal form [SS, ch.4]. Making use this way we
derive a more transparent characterization of spherical nilpotent orbits.

(4.2) g=5sl,, =A, or g=sp,, =C,.

Characteristics of nilpotent matrices in sl,;; are invariant with respect of
the automorphism of the Dynkin diagram and the ones in sp,, have even
numerical label on the long simple root. Whence a direct computation allow
us to derive the following curious fact.

Assertion. There are no nilpotent elements of the height 3 in A, and C,,.
Let us consider nilpotent orbits of the height 2.



(a) A,. If a nilpotent matrix has the height 2, then its characteristic have
to look as follows:

n4+1

or

h; =(0...010...010...0), 1 <2<

i 1

hag-_l = (0...020...0). These are really characteristics and the associated
partition is e; = (2¢,1"~%+1!), Evidently all nilpotent matrices without blocks
of the size > 2 occur in this way. By using 3.2 Corollary it is easy to
determine the rank of Ge;. Here L = (SL;)? X SLoyp_gi41 X (k*)* and K =
SL; X SLop_g;4y X k*, where K D SL; = A C (SL;)* C L. Therefore
rg(Ge;) = r (LK) =7 = rank(e;) (the obvious rank of a matrix).

(b) C,. If a nilpotent matrix has the height 2, then its characteristic is
of the form

hi=(0...010...0), i <norh, =(0...02).

The corresponding nilpotent matrix e; has the Jordan form (27, 12*~%). Here
L = SL; x Spaa-ai x k* and K = O; x Span_a. Therefore re(Ge;) =
ri(L/K) = ¢ = rank(e;). Again these are all nilpotent symplectic matri-
ces without blocks of the size > 2. Summarazing we get

Theorem. Let e be a nilpotent matriz in s V) or sp(V).
1. The following conditions are equivalent:

(1) e is spherical,

(i) €2 =0 (the obvious matriz multiplication);

(iii) ht(e) = 2.
2. Ife=¢;, then r(Ge;) =1. 0O

(4.3) g=s50V) and dimV > 7,1.e. g =B, or D,.
Straightforward computations give us:
(a) ht(e) < 3 iff e has at most 1 block of the size 3 and all others have the
size < 2 iff rank(e?) < 1.
(b) ht{e) = 3 iff e has exactly 1 block of the size 3 and at least 2 blocks of
the size 2 iff rank(e?) = 1 and rank(e) > 2.

In order to finish the proof of theorem 3.1 we explicitly describe the
situation around nilpotent matrices of the height 3. Suppose e = (3,2%,1')
and t > 0. If Il = 2s, then e € Byy,41 and the numerical labels of the
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characteristic are:
e — 1, ife=1,2¢4+1
"7 1 0, otherwise

If ! =2s+1, then e € Dayy,42 and in the case s > 0 the numerical labels are
the same as for B. If s = 0, then

1, ife=1,2t 41,21+ 2
= { 0, otherwise

However by using [SS, ch.4] it is easy to write explicitly the diagonal matrix

h and to determine the subalgebra [ = g(0) and g(0)-modules g(z).

Ife = (3,2%,1'), then [ = sb, x so;, X t;, £ = sp,, x 50, and 5 =
(sk)* x s0_;. Here dimg(3) = 2t and the representation (S : g(3)) is the
direct sum of ¢ copies of the 2-dimensional representations of different SL;’s
(50;_; does not act on g(3)). Whence B(.S) has an open orbit in g(3). Thus
the proof of theorem 3.1 is completed.

Remark. For all nilpotent orbits of the height 3 representations (S : g(3))
always have the same structure (cf. also 3.6). I think there exists a reasonable
explanation of this phenomenon.

(4.5) There are no difficulties in computing the ranks of nilpotent SO(V)-
orbits; e.g. all data for the case of the height 3 are given above. Afterwards,
our results for G = SO(V) may be summarized as follows.

Theorem. Let e € so(V) be a nilpotent matriz.

1. The following conditions are equivalent;
(1) e is spherical,
(11) rank(e?) < 1.
2. If €2 = 0 and rank(e) = 2t, then r(Ge) = t.
3. Ifrank(e?) =1 and e = (3,2%,1"), then rank(e) = 2t + 2 and

ey [ 242, ifI>0
’(Ge)_{ 2t+1, ifl=0 O
5 Concluding remarks

(5.1) As usual in theory of semisimple Lie algebras, any problem on prop-
erties of adjoint orbits may be reduced to semisimple or nilpotent ones. Not
surprising that this is the case for the complexity and the rank.
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In this section it would be shown that complexity and rank are constant
along sheets of g. Recall that a sheet of g is an irreducible component of the
variety of adjoint orbits of a fixed dimension. Each sheet contains exactly
one nilpotent orbit [BK].

Let O C g\ 7N be an orbit. There are 2 ways to construct the nilpotent
orbit of the sheet that contains O. The first one uses the parabolic induction
[LS], while the second one, which we shall use, is more geometric (cf. [BK}).

Let us recall the related constructions. Put X = k*O C g. This is a
closed G-invariant cone and dimX = dimQ + 1. The algebra of G-invariant
regular functions on X is generated by a (homogeneous) polynomial 7. Let
7 : X — A' be the corresponding morphism. Denote X, to be the fiber of
mover T € Al

(5.2) Proposition. (cf. [BK])

(i) O = X, for some T # 0;

(il) Xo = X N,

(ii1) Xo is irreducible and contains a unique dense G-orbit, say O,.

0

It immediately follows from the proposition that O and O, belong to the
same sheet and O, is the nilpotent orbit of this sheet.

(5.3) Proposition. cg(X;) = cg(Xo) and ra(X;) = rg(Xo) for any
e Al {0}.

Proof. Since 7 is homogeneous, one can see that X, = X, if r, 7' €
A"\ {0}. Therefore, if B, is a s.g.p. for the action (B : X), then it also
is a s.g.p. for the action (B : X;), 7 # 0. Whence dimB, 2> dimB, for
any y € Xo and ¢g(X;) < cg(Xp). Having replaced B on U in preceding
arguments, one get cg(X;) + ra(X;) < eq(Xo) + ra(Xo). (cf. ch.1)

In order to prove the converse we compare the multiplicities of irreducible
G-modules in the algebras of regular functions on X, and X,. We let my(X)
denote the multiplicity of an irreducible G-module V in the algebra k[X]. In
the notations of [BK] we have Xy = KX, (the associated cone), and therefore
by lemma 3.2 in [loc. cit.]

my(X;) 2 my(Xo) (2)
for any V. This unequality implies r¢(X;) > rg(Xo). It has been shown in

[P2] that complexity is fully determined through the growth of multiplicities.
Whence (2) implies cq(X;) > cg(Xp). O
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(5.4) It easily follows from the definitions that the complexity and the
rank are birational characteristics of actions. Therefore 5.2 and 5.3 imply

Proposition. The rank and the complexity of orbits are constant along
the sheets of the adjoint representation (G : g). O
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