Generic smoothness of the moduli of rank two stable bundles over an algebraic surface
 by
 Kang Zuo

Max-Planck-Institut
für Mathematik
Gottfried-Claren-Str. 26
D5300 Bonn3
F. R. Germany

Generic smoothness of the moduli of rank 2 stable bundles over an algebraic surface

§0. Introduction

Let X be a complex algebraic surface with canonical line bundle K, and V be a rank 2 vector bundle over X. We fix an ample line bundle H on X. Recall that V is H-stable, if for all sub-line bundles $L \rightarrow V$ we have

$$
c_{1}(L) c_{1}(H)<c_{1}(V) c_{1}(H) / 2
$$

We denote by $M(k)$ the moduli space of all isomorphic classes of H-stable rank 2 vector bundles with fixed determinant bundle D and second Chern class k. It is well known that $M(k)$ is a quasi projective variety, and is not empty if k is sufficently large (see [G] and [M]).

The local structure of $M(k)$ is precisely described by the Kuranishi deformation theorem in the following way. Suppose $V \in M(k)$ and let $\psi: H^{1}\left(\operatorname{End}_{0}(V)\right) \rightarrow H^{2}\left(E n d_{0}(V)\right)$ be Kuranishi map, then the stalk of the structure sheaf $\mathcal{O}_{M(k)}$ at V is naturally isomorphic to the germs of holomorphic functions at $0 \in H^{1}\left(E n d_{0}(V)\right)$ divided by the ideal generated by the components of ψ. In particular, if $H^{2}\left(E n d_{0}(V)\right)=0$, then $M(k)$ is smooth at V, and the tangent space $T(M(k))_{V}$ is identified with $H^{1}\left(E n d_{0}(V)\right)$. The Hirzebruch-Riemann-Roch theorem gives the dimension formula

$$
\operatorname{dim} M(k)_{V}=-\chi\left(E_{n}(V)\right)=4 k-D^{2}-3 \chi\left(\mathcal{O}_{X}\right)
$$

The next step is naturally to study the locus of all $V \in M(k)$ with $\quad H^{2}\left(E n d_{0}(V) \simeq\right.$ $H^{0}\left(E n d_{0}(V) \otimes K\right)^{\vee} \neq 0$. It is a closed subvariety of $M(k)$. This can be seen by applying the upper semicontinuous theorem to the local universal bundle of $M(k)$. More precisely, Donaldson proved recently the following theorem for the case $D=0$.

Theorem 1. (Donaldson)
Suppose X is an algebraic surface with canonical line bundle K. Let $M(k)$ be the moduli space of H-stable rank 2 bundles with the trivial determinant bundle and second Chern class k. Then subvariety $\boldsymbol{\Sigma}(k):=\left\{V \in M(k) \mid H^{0}\left(E n d_{0}(V) \otimes K\right) \neq 0\right\}$ has dimension

$$
\operatorname{dim} \boldsymbol{\Sigma}(k) \leq 3 k+A \sqrt{k}+A
$$

here A is a positive number which depends on the linear system $|2 K|$, the Chern classes of X, H only.

Corollary 1.

Every irreducible component of $M(k)$ is reduced, and has dimension $-\chi\left(\operatorname{End}_{0}(V)\right)$, if k is sufficently large.

Corollary 1 has the following important application in the study of the differentiable structure of 4-manifolds (see [D])

Corollary 2.

The k-th $S U(2)$-invariant on an algebraic surface does not vanish, if k is sufficently large.

In this paper we use the original idea of Donaldson $[\mathrm{D}]$ and the important technique due to Friedman [F] and generalize theorem 1 for any case.

Theorem 2.

Let X and K be same as in theorem 1. Let $M(k)$ be the moduli space of H-stable rank 2 bundles with the fixed determinant bundle D and second Chern class k. Then the subvariety $\boldsymbol{\Sigma}(k):=\left\{V \in M(k) \mid H^{0}\left(\operatorname{End}_{0}(V) \otimes K\right) \neq 0\right\}$ has dimension at most $3 k+A \sqrt{k}+A$, here A is a positive number which depends on the linear system $|2 K|$ the Chern classes of X, H and D only.

Similar as corollary 2 theorem 2 implies immediately the non-vanishing property for the $S O(3)$ invariants on algebraic surfaces. (see [D] and [OV])

The outline of proof for theorem 2 as follows. First, we divide $\boldsymbol{\Sigma}(k)$ into two subsets:
$\boldsymbol{\Sigma}_{1}(k):=\left\{V \in \boldsymbol{\Sigma}(k) \mid \exists s_{\neq 0} \in H^{0}\left(\operatorname{End}_{0}(V) \otimes K\right), \quad \exists t \in H^{0}(K)\right.$ s.t. $\left.\operatorname{det}(s)+t^{2}=0\right\}$, and $\boldsymbol{\Sigma}_{\mathbf{2}}(k):=\boldsymbol{\Sigma}(k) \backslash \boldsymbol{\Sigma}_{1}(k)$.
It is easy to see, $\boldsymbol{\Sigma}_{1}(k)$ is a closed subvariety of $\boldsymbol{\Sigma}(k)$ by looking at the local universal bundle of $M(k)$.

In section 1 we find some special sub-line bundles L of $V \in \boldsymbol{\Sigma}_{1}(k)$ so that the absolut values $|L H|$ are bounded by a constant depending on $K H$ and $D H$ only. By standard arguments we estimate dimension of the moduli of all extensions

$$
0 \longrightarrow \mathcal{O}_{X}(L) \longrightarrow V \longrightarrow \mathcal{O}_{X}(-L+D) \otimes I_{z} \longrightarrow 0
$$

hence we get the upper bound of dimension for $\boldsymbol{\Sigma}_{1}(k)$.
The second section is more interesting. Inspired by the idea of R. Friedman ([F]), and using the spectral surface technique ([BNR], [D] and [Hi]), we show that for any pair (V, s) of $V \in \boldsymbol{\Sigma}_{2}(k)$ and $s_{\neq 0} \in H^{0}\left(E n d_{0}(V) \otimes K\right)$, there exists the following exact sequence on the blowing up $\sigma: \widehat{X} \rightarrow X$ at the singularities of the zero locus $(\operatorname{det}(s))_{0}$

$$
0 \longrightarrow W \longrightarrow \sigma^{*} V \longrightarrow Q \longrightarrow 0
$$

here W is a rank 2 vector bundle coming from the direct image of a line bundle on a double covering $Y^{\prime} \rightarrow \widehat{X}$ ramified along some components of $\sigma^{*}(\operatorname{det}(s))_{0}$, and Q is a torsion sheaf, its scheme theoretically support is also some components of $\sigma^{*}(\operatorname{det}(s))_{0}$.
Using the deformation theorem of torsion sheaves due to Friedman ([F]) we bound dimension of the moduli of all the above extensions, therefore we obtain the upper bound for $\boldsymbol{\Sigma}_{2}(k)$.

In section 3 we complete proofs of the claims which are used in the previous sections.
In our paper the symbol A always means a constant positive number which depends on the linear system $|2 K|$, the Chern classes of X, H and D only.

Acknowledgment. I thank Professor C. Okonek for drawing my attention to this problem, valuable discussions and encouragement. Also I am very grateful to Professor F. Hirzebruch and the Max-Planck-Institut for the hospitality in the preparation of this paper.

§1. To bound $\operatorname{dim} \Sigma_{1}(k)$

The goal of this section is to prove the following

Lemma 1.

$$
\operatorname{dim} \boldsymbol{\Sigma}_{1}(k) \leq 3 k+A \sqrt{k}+A
$$

1.1. The eigen-line bundles of (V, s) from $\boldsymbol{\Sigma}_{1}(k)$

Suppose $V \in \boldsymbol{\Sigma}_{1}(k)$; taking a non-zero section $s \in H^{0}\left(E n d_{0}(V) \otimes K\right)$ with $\operatorname{det}(s)+t^{2}=0$, $t \in H^{0}(K)$ we get the non-trivial maps

$$
\begin{aligned}
& V \xrightarrow{s-I \otimes t} V \otimes K \\
& V \xrightarrow{s+I \otimes t} V \otimes K
\end{aligned}
$$

Because their determinant maps are zero map, the kernel $\mathcal{O}_{X}\left(L_{ \pm}\right)$of the maps are line bundles on X. Their fibres at a point p are just the eigen-vectors of the linear map $s_{p}: V_{p} \rightarrow V_{p} \otimes K_{p}$, so they will be reasonable called as the eigen-line bundles of (V, s). we have the following exact sequence

$$
\begin{equation*}
0 \longrightarrow \mathcal{O}_{X}\left(L_{ \pm}\right) \longrightarrow V \longrightarrow \mathcal{O}_{X}\left(-L_{ \pm}+D\right) \otimes I_{z_{ \pm}} \longrightarrow 0 \tag{1.1}
\end{equation*}
$$

where $I_{z_{ \pm}}$are ideal sheaves which define the 0 -dimensional subschemes $z_{ \pm}$of X. A calculation of Chern classes gives

$$
\begin{equation*}
-\left(L_{ \pm}\right)^{2}+\left(L_{ \pm}\right) D+\left|z_{ \pm}\right|=k \tag{1.2}
\end{equation*}
$$

We consider the following commudative diagram

Noting the composition map $(s+I \otimes t)(s-I \otimes t)=\left(s^{2}-I \otimes t^{2}\right)=-I \otimes\left(\operatorname{det}(s)+t^{2}\right)=0$, we get the non-trivial factor map

$$
\mathcal{O}_{X}\left(-L_{+}+D\right) \rightarrow \mathcal{O}_{X}\left(L_{-}+K\right)
$$

This implies that $\left(-L_{+}+D\right) H \leq\left(L_{-}+K\right) H$. And the stability of V gives $L_{+} H<D H / 2$. We put these inequalities together and obtain

$$
\begin{equation*}
-K H \leq\left(L_{+}-D / 2\right) H<0 \tag{1.3}
\end{equation*}
$$

Of course, we have also the above inequality for L_{-}. In the rest of this section we are just interested in one eigen-line bundle of (V, s), so we write $L_{ \pm}$as L simplely. From (1.2) and (1.3) we have

Claim 1.1

For all $V \in \boldsymbol{\Sigma}_{1}(k)$, and all $s \in H^{0}\left(E n d_{0}(V) \otimes K\right)$, with $\operatorname{det}(s)+t^{2}=0$, let L be an eigen-line bundle of (V, s). Then we have

1) $(L-D / 2) K \leq A \sqrt{k}+A$
2) $(L-D / 2)^{2} \leq A$
3). $h^{0}(-2 L+D+K)+h^{0}(2 L-D) \leq A$
3) The subset $\left\{c_{1}(L)\right\} \subset H^{2}(X, Z)$ is finite.

1.2. The moduli of $\boldsymbol{\Sigma}_{1}(k)$

From 4) in claim 1.1 and by standard arguments we decompose $\boldsymbol{\Sigma}_{1}(k)$ into finitely many subvarieties

$$
\boldsymbol{\Sigma}_{1}(k)=\bigcup_{i} \boldsymbol{\Sigma}_{1, i}(k)
$$

so that for any $V \in \boldsymbol{\Sigma}_{1, i}(k) \quad V$ comes from the extension (1.1) with same $c_{1}(L)$.
The variety $\boldsymbol{\Sigma}_{1, i}(k)$ has a stratification

$$
\boldsymbol{\Sigma}_{1, i}(k)=\bigsqcup_{j} \boldsymbol{\Sigma}_{1, i, j}(k)
$$

$\boldsymbol{\Sigma}_{1, i, j}$ is a subvariety of $\boldsymbol{\Sigma}_{1}(k)$, and for any $V \in \boldsymbol{\Sigma}_{1, i, j}(k)$ the extension group $E x t_{\mathcal{O}_{X}}^{1}\left(\mathcal{O}_{X}(-L+D) \otimes I_{z}, \mathcal{O}_{X}(L)\right)$ has constant dimension j.
Locally see, the moduli $\boldsymbol{\Sigma}_{1, i, j}(k)$ at V is parametrized by two varieties. One is the extension group $E x t_{\mathcal{O}_{X}}^{1}\left(\mathcal{O}_{X}(-L+D) \otimes I_{z}, \mathcal{O}_{X}(L)\right)$. The another is the subvariety of all pairs $(z, L) \in H_{i l b^{|z|}}(X) \times \operatorname{Pic}(X)$ satisfying $\operatorname{dim} E x t_{\mathcal{O}_{X}}^{1}\left(\mathcal{O}_{X}(-L+D) \otimes I_{z}, \mathcal{O}_{X}(L)\right)=j$.
Hence we have roughly the following estimate

$$
\begin{array}{rlr}
& \operatorname{dim} \Sigma_{1, i, j}(k) & \\
\leq & \operatorname{dim} E x t^{1}\left(\mathcal{O}_{X}(-L+D) \otimes I_{z}, \mathcal{O}_{X}(L)\right)+2|z|+q(X) & \\
= & h^{1}\left(\mathcal{O}_{X}(-2 L+D+K) \otimes I_{z}\right)+2|z|+q(X) & \text { by Serre-Duality } \tag{1.4}\\
\leq & h^{1}(-2 L+D+K)+3|z|+q(X) & \text { by standard exact sequence }
\end{array}
$$

Applying Riemann-Roch-theorem to the line bundle $\mathcal{O}_{X}(-2 L+D+K)$, we have

$$
\begin{array}{rlr}
& h^{1}(-2 L+D+K) & \\
= & -2(L-D / 2)^{2}+(L-D / 2) K & \\
& +h^{0}(2 L-D)+h^{0}(-2 L+D+K)-\chi\left(\mathcal{O}_{X}\right) & \\
\leq & -2(L-D / 2)^{2}+A \sqrt{k}+A & \tag{1.5}\\
=(L-D / 2)^{2}-3 D^{2} / 4+A \sqrt{k}+A+3 k-3|z| & & \text { by }(1.2) \\
\leq & 3 k+A \sqrt{k}+A-3|z| . & \text { by } 2) \text { in claim claim } 1.1
\end{array}
$$

Finally we put (1.4) and (1.5) together and complete lemma 1.

Remark 1.

In fact, we can prove $\operatorname{dim} \boldsymbol{\Sigma}_{1}(k) \leq 3 k+A$. But it needs more complicated technical lemmas. For example, the lemma about dimension of varieties of 0 -dimensional subschemes in the special position respect to a linear system ([Z], lemma 1).

§2. To bound $\operatorname{dim} \boldsymbol{\Sigma}_{2}(k)$

We will prove the following

Lemma 2.

$$
\operatorname{dim} \boldsymbol{\Sigma}_{2}(k) \leq 3 k+A
$$

The proof will be divided into two parts.
2.1. The spectral surface of (V, s) from $\boldsymbol{\Sigma}_{2}(k)$ (see [BNR], [D] and [Hi])

We take a section $s \in H^{0}\left(E n d_{0}(V) \otimes K\right)$ with the non zero determinant $\operatorname{det}(s) \in H^{0}(2 K)$. Its zero locus is a curve C in the linear system $|2 K|$. We blow up successivelly the singularities of C

$$
\begin{equation*}
\widehat{X} \xrightarrow{\sigma} X \tag{2.1}
\end{equation*}
$$

which satisfies the following

Condition 2.1

1) All reduced irreducible components of the pull back $\sigma^{*} C=\sum_{i}\left(2 p_{i}+1\right) C_{i}+\sum_{j} 2 q_{j} C_{j}$ are smooth curves, and they transversally intersect each other.
2) The irreducible components with the odd multiplicities are disjoint.

Of course, such a blowing up does exist. Its numerical invariants depend on the numerical invariants of the singularities of C only.
We denote by, $\tilde{V}:=\sigma^{*} V, \tilde{K}:=\sigma^{*} K, \tilde{H}:=\sigma^{*} H$ and $\tilde{s}:=\sigma^{*} s$. It is easy to see that $\operatorname{det}(\tilde{s})$ has the zero locus $\sigma^{*} C$.

By taking the square root $\sqrt{-\operatorname{det}(\tilde{s})}$ we get a double covering

$$
Y \xrightarrow{\pi} \hat{X}
$$

with the direct image of the structure sheaf

$$
\pi_{*} \mathcal{O}_{Y} \simeq \mathcal{O}_{\widehat{X}} \oplus \mathcal{O}_{\widehat{X}}\left(\tilde{K}^{-1}\right)
$$

The surface Y is reduced, and in our case is also irreducible, otherwise the section s would have the property $\operatorname{det}(s)+t^{2}=0$. In general, Y is not normal, it has exactly the singularities along the curve $\pi^{-1}\left(\sum_{i} p_{i} C_{i}+\sum_{j} q_{j} C_{j}\right)$.
By taking the normalization of Y we obtain

with

$$
\begin{aligned}
\rho_{*} \mathcal{O}_{Y^{\prime}} & \simeq \mathcal{O}_{\widehat{X}} \oplus \mathcal{O}_{\widehat{X}}\left(\tilde{K}^{-1}+\sum_{i} p_{i} C_{i}+\sum_{j} q_{j} C_{j}\right) \\
& =: \mathcal{O}_{\widehat{X}} \oplus \mathcal{O}_{\widehat{X}}\left(K^{\prime-1}\right) .
\end{aligned}
$$

The surface Y^{\prime} is already smooth by the condition 2.1. In fact, it can be also constructed by taking the square root of a section from $H^{0}\left(2 K^{\prime}\right)$ with the simple zero locus $\sum_{i} C_{i}$.

Looking at the direct image

$$
\pi_{*} \pi^{*} \tilde{K} \simeq \tilde{K} \otimes \pi_{*} \mathcal{O}_{Y} \simeq \tilde{K} \oplus \tilde{K} \otimes \tilde{K}^{-1}
$$

we get naturally a section $x \in H^{0}\left(\pi^{*} \tilde{K}\right)$. The Galois-group of the covering operats on x just as multiplies it by -1 . It holds $\operatorname{det}\left(\pi^{*} \tilde{s}\right)+x^{2}=0$ (see [BNR]).

The twisted endomorphism $\tilde{\boldsymbol{s}}: \tilde{V} \rightarrow \tilde{V} \otimes \tilde{K}$ gives \tilde{V} an $\mathcal{O}_{\widehat{X}} \oplus \mathcal{O}_{\widehat{X}}\left(\tilde{K}^{-1}\right) \quad\left(\simeq \pi_{*} \mathcal{O}_{Y}\right)$ module structure. By the general theorem (see [Ha], Chapter 2, prop. 5.2 and [BNR], prop. 3.6) there is a bijective correspondence between isomorphic classes of torsion free sheaves M of rank 1 on Y and isomorphic classes of pairs (\tilde{V}, \tilde{s}) where \tilde{V} is a rank 2 bundle over \hat{X}, and $\tilde{s}: \tilde{V} \rightarrow \tilde{V} \otimes \tilde{K}$ with $\operatorname{Tr}(\tilde{s})=0$ and $(\operatorname{det}(\tilde{s}))_{0}=\sigma^{*} C$. The correspondence is given by associating to any M to the sheaf $\pi_{*} M$ on \widehat{X} and the natural map $\pi_{*} M \rightarrow \pi_{*}\left(M \otimes \pi^{*} \tilde{K}\right) \simeq \pi_{*} M \otimes \tilde{K}$ induced by the direct image of the map $I \otimes x: M \rightarrow M \otimes \pi^{*} \tilde{K}$.

Fixing \widehat{X}, we see that the moduli of (\tilde{V}, \tilde{s}) is parametrized by the family of the coverings $Y \rightarrow \widehat{X}$ plus the family of the torsion free sheaves M on Y. But unfortunately, the second family is not easy to describe. To overcome this difficulty, we replace M by a suitable invertibar sheaf $\mathcal{O}_{Y^{\prime}}(L)$ on Y^{\prime}, and use its ρ_{*} direct image to approach \tilde{V} in the following sense

Claim 2.1 (compare [F], Chapter 5)
There exists an invertibar subsheaf $\mathcal{O}_{Y^{\prime}}(L) \hookrightarrow \rho^{*} \tilde{V}$ with the following properties

1) Let $W:=\rho^{*}\left(\mathcal{O}_{Y^{\prime}}(L)\right) \otimes K^{\prime}$, then on \widehat{X} there is an exact sequence

$$
0 \longrightarrow W \longrightarrow \tilde{V} \longrightarrow Q \longrightarrow 0
$$

Q is a torsion sheaf, and its scheme theoretically support E is some components of the zero locus of $\operatorname{det}(\tilde{s})$.
2) On Y^{\prime} there exists a commudative diagram

2.2. The moduli of pairs (\tilde{V}, \widehat{X})

In 2.1. we have constructed the blowing up \widehat{X} and the spectral surface $Y^{\prime} \rightarrow Y \rightarrow \widehat{X}$ for any pair (V, s), of $V \in \boldsymbol{\Sigma}_{2}(k)$, and $s_{\neq 0} \in H^{0}\left(E n d_{o}(V) \otimes K\right)$.
Let $M(\widehat{X}, \tilde{V})$ be the moduli of all such pairs (\hat{X}, \tilde{V}). We want to show

Lemma 3

$$
\operatorname{dim} M(\widehat{X}, \tilde{V}) \leq 3 k+A
$$

Lemma 2 is a direct consequence from lemma 3 by the surjective map $M(\widehat{X}, \tilde{V}) \rightarrow \boldsymbol{\Sigma}_{2}(k)$.
First by standard arguments we have obviously the following

Lemma 2.2.

Let $M\left(\widehat{X}, Y^{\prime}, E\right)$ be the moduli of all triples $\left(\widehat{X}, Y^{\prime}, E\right)$, where \widehat{X} is a blowing up of X at the singularities of a curve C from $|2 K|$ which satisfies the condition $2.1, Y^{\prime}$ is a smooth double
covering of \widehat{X} with the branching curve contained in $\sigma^{*} C$, and E is also a curve contained in $\sigma^{*} C$. Then $M\left(\hat{X}, Y^{\prime}, E\right)$ is a quasi projective variety.

Fixing the blowing up \hat{X}, we see that the moduli of (\hat{X}, \tilde{V}) comes from the following three parts by 1) in claim 2.1

1) The moduli $M(W)$ of the the vector bundles W
2) The moduli $M(Q)$ of the torsion sheaves Q
3) The extension group $E x t_{\mathcal{O}_{\widehat{x}}}^{1}(Q, W)$

In rest of this section we want to estimate their dimension separately.

1) The moduli $M(W)$
$M(W)$ is just the moduli of pairs $\left(L, Y^{\prime}\right)$ by the definition of W. All such Y^{\prime} form a subvariety $M\left(Y^{\prime}\right)$ of the moduli $M\left(\widehat{X}, Y^{\prime}, E\right)$ in lemma 2.2 , hence it has a bounded dimension

$$
\operatorname{dim} M\left(Y^{\prime}\right) \leq A
$$

Fixing Y^{\prime}, there is a stratification for the moduli of all L

$$
M(L)=\bigsqcup_{i} M_{i}(L)
$$

so that all L from one $M_{i}(L)$ have same Chern class $c_{1}(L)$. We see easily by lemma 2.2

$$
\operatorname{dim} M_{i}(L) \leq q\left(Y^{\prime}\right) \leq A
$$

Furthermore, we claim

Claim 2.2

$M(L)$ has only finitely many $M_{i}(L)$

The above inequalities and claim imply the following

Lemma 2.3

$$
\operatorname{dim} M(W) \leq A
$$

2) The moduli $M(Q)$

We start with reviewing the h-th Fitting ideal of a torsion sheaf Q on a surface S and its basic properties (see [F], Chapter 1, (d)).

The 0-th Fitting ideal is just the ideal of the scheme theoretically support E of Q.
The 1-th Fitting ideal $I_{z(Q)}$ is the ideal of a 0 -dimensional subscheme $z(Q)$. It can be defined by taking a presentation of Q, but we will not give here (see [F], definition 1.11). We are just interested in the following lemmas.

Lemma 2.4 (see [F], prop. 6.7)
Let $\rho: \tilde{S} \rightarrow S$ be a smooth double covering. Then $\rho^{*} z(Q)=z\left(\rho^{*} Q\right)$, and $|z(Q)|=\left|z\left(\rho^{*} Q\right)\right| / 2$.

In general, $|z(Q)|$ is not easy to compute. However, we have the following estimate

Lemma 2.5 (see [F], Chapter 1, (d))
Let I_{z} be an ideal sheaf of a 0-dimensional subscheme z of S, z is a locally complete intersection, $\mathcal{O}_{S}(-C) \subset I_{z}$ be an ideal sheaf of a curve $C \subset S$ and $\mathcal{O}_{S}(D)$ be an invertibar sheaf on S. If $Q \simeq\left(I_{z} / \mathcal{O}_{S}(-C)\right) \otimes \mathcal{O}_{S}(D)$, then $I_{z} \subseteq I_{z(Q)}$. In particular, $|z(Q)| \leq|z|$.

Using the Fitting ideals of Q we may describe the deformations of Q. This is the following lemma due to Friedman (see [F], Prop. 1.16).

Lemma 2.6

The local deformations of the sheaf Q with the fixed support E has dimension at most

$$
h^{1}\left(\mathcal{O}_{E}\right)+|z(Q)|
$$

Lemma 2.6 shows that the arbitrary local deformations of Q has dimension

$$
\operatorname{dim} \operatorname{Def}(Q) \leq h^{1}\left(\mathcal{O}_{E}\right)+|z(Q)|+\operatorname{dimension} \text { of the moduli of } E
$$

Going back to our case. All E have to be contained in some curves from the linear system $|2 \tilde{K}|$ by 1) in claim 2.1, hence applying lemma 2.2 to the moduli of E we get

$$
h^{1}\left(\mathcal{O}_{E}\right)+\text { dimension of the moduli of } E \leq A
$$

We want to bound $|z(Q)|$ in terms of k. The exact sequence in the bottem of 2) in claim 2.1 says that $\rho^{*} Q \simeq\left(I_{z} / \mathcal{O}_{Y^{\prime}}\left(-\rho^{*} E\right)\right) \otimes \mathcal{O}_{Y^{\prime}}\left(-L+\rho^{*} D\right)$. And applying Lemma 2.5 and 2.4 we obtain

$$
|z(Q)| \leq|z| / 2+A
$$

So we have to bound $|z|$.

Claim 2.3

$$
|z| \leq 2 k+A
$$

The above four inequalities imply the following

Lemma 2.7

$$
\operatorname{dim} M(Q) \leq k+A
$$

3) The extension group $E x t_{\mathcal{O}_{\widehat{x}}}^{1}(Q, W)$

The following two lemmas are due to Friedman ([F], lemma 6.9, 6.10 and 6.11)

Lemma 2.8

$$
\operatorname{dim} E x t_{\mathcal{O}_{\widehat{x}}}^{1}(Q, W)-\operatorname{dim} E x t_{\mathcal{O}_{\widehat{x}}}^{2}(Q, W)=\chi\left(\mathcal{O}_{Y^{\prime}}\right)-\chi\left(\mathcal{O}_{Y^{\prime}}\left(-\rho^{*} E\right)\right)+|z|
$$

here z is the subscheme of Y^{\prime} in 2) in claim 2.1.

Noting z is also a subschem of $\rho^{*} E$, this induces the natural map

$$
\mathcal{O}_{\rho^{*} E} \otimes \mathcal{O}_{Y^{\prime}}\left(\rho^{*} E\right) \otimes K_{Y^{\prime}} \rightarrow \mathcal{O}_{z} \otimes \mathcal{O}_{Y^{\prime}}\left(\rho^{*} E\right) \otimes K_{Y^{\prime}}
$$

Lemma 2.9

$E x t_{\mathcal{O}_{\widehat{x}}}^{2}(Q, W)$ is dual to the kernel of the natural map

$$
H^{0}\left(\mathcal{O}_{\rho^{*} E} \otimes \mathcal{O}_{Y^{\prime}}\left(\rho^{*} E\right) \otimes K_{Y^{\prime}}\right) \rightarrow H^{0}\left(\mathcal{O}_{z} \otimes \mathcal{O}_{Y^{\prime}}\left(\rho^{*} E\right) \otimes K_{Y^{\prime}}\right)
$$

Using lemma 2.2 we see that for all pairs $\left(Y^{\prime}, E\right)$ the numbers $\chi\left(\mathcal{O}_{Y^{\prime}}\right), \quad \chi\left(\mathcal{O}_{Y^{\prime}}\left(-\rho^{*} E\right)\right)$ and $H^{0}\left(\mathcal{O}_{\rho^{*} E} \otimes \mathcal{O}_{Y^{\prime}}\left(\rho^{*} E\right) \otimes K_{Y^{\prime}}\right)$ are bounded by a constant A. Hence from the lemma 2.8, 2.9 and claim 2.3 we have

Lemma 2.10

$$
\operatorname{dim} E x t_{\mathcal{O}_{\widehat{x}}}^{1}(Q, W) \leq 2 k+A
$$

Lemma 2.3, 2.7 and 2.10 together give lemma 3.

§3. To complete proofs of the claims

Proof of claim 1.1

1) We write

$$
\begin{equation*}
c_{1}(L-D / 2)=r c_{1}(H)+c_{1}(L-D / 2)^{\perp} \tag{3.1}
\end{equation*}
$$

where $c_{1}(L-D / 2)^{\perp}$ is orthogonal to $c_{1}(H)$, and $|r|=\left|(L-D / 2) H / H^{2}\right|$ is bounded by a constant A by (1.3). Therefore we get

$$
\left|c_{1}(L-D / 2) c_{1}(K)\right| \leq\left|c_{1}(L-D / 2)^{\perp} c_{1}(K)^{\perp}\right|+A
$$

Because the intersection form is negative definite on the orthogonal complement of $c_{1}(H)$ in $H^{1,1}(X)$, we have

$$
\begin{aligned}
& \left|c_{1}(L-D / 2)^{\perp} c_{1}(K)^{\perp}\right| \\
\leq & \sqrt{-\left(c_{1}(L-D / 2)^{\perp}\right)^{2}} \sqrt{-\left(c_{1}(K)^{\perp}\right)^{2}} \\
\leq & A \sqrt{-\left(c_{1}(L-D / 2)^{\perp}\right)^{2}} \\
\leq & A \sqrt{-c_{1}(L-D / 2)^{2}+A} \\
= & A \sqrt{-L^{2}+L D-D^{2} / 4+A} \\
\leq & \text { by }(3.1) \\
\hline k+A & \text { by }(1.2)
\end{aligned}
$$

The above two inequalities imply 1).
2) By Hodge-index-theorem and (1.3) we have

$$
(L-D / 2)^{2} \leq((L-D / 2) H)^{2} / H^{2} \leq A
$$

3) First, the stability of V shows $(2 L-D) H<0$, hence $h^{0}(2 L-D)=0$.

Using (1.3) we see that the absolut values $|(-2 L+D+K) H|$ are bounded by a constant A^{\prime}. Because all cuvers $C \subset X$ with bounded degree $C H \leq A^{\prime}$ form a projective variety. In particular, all $h^{0}(C)$ are bounded by a constant A.
4) From the proof of 1) we see that $2 H^{2} c_{1}(L-D / 2)^{\perp}$ are integral classes in $H^{1,1}(X)^{\perp} \cap H^{2}(X, Z)$ with bounded norm $2 H^{2}(\sqrt{k}+A)$, hence thay are finitely many. This implies all $c_{1}(L-D / 2)^{\perp}$ are also finitely many. Noting $c_{1}(L-D / 2)=r c_{1}(H)+c_{1}(L-D / 2)^{\perp}$ with $|r| \leq A$, we complete 4).

Proof of claim 2.1

The general correspondence gives a sheaf M on Y with $\pi_{*} M \simeq \tilde{V}$.
Since π is affine, the natural map $\pi^{*} \pi_{*} M \rightarrow M$ is surjective, and it induces the exact sequence

$$
0 \longrightarrow M^{\prime} \longrightarrow \pi^{*} \pi_{*} M \longrightarrow M \longrightarrow 0 \text {. }
$$

Taking the direct image π_{*} for the above exact sequence, noting π is affine we get again an exact sequence on \widehat{X}

$$
0 \longrightarrow \pi_{*} M^{\prime} \longrightarrow \pi_{*} \pi^{*} \pi_{*} M \longrightarrow \pi_{*} M \longrightarrow 0
$$

The Galois-group $G\left(Y^{\prime} / \widehat{X}\right)$ operats on $\pi_{*} \pi^{*} \pi_{*} M$ and induces the ${ }_{-}$1-eigen spaces decompositiom

$$
\pi_{*} \pi^{*} \pi_{*} M \simeq \pi_{*} M \otimes \pi_{*} \mathcal{O}_{Y} \simeq \pi_{*} M \oplus \pi_{*} M \otimes \tilde{K}^{-1}
$$

The image of the natural map $\pi_{*} M \hookrightarrow \pi_{*} \pi^{*} \pi_{*} M$ is just the 1 -eigen space $\pi_{*} M$ in the decomposition. And this map is also a section of the projection $\pi_{*} \pi^{*} \pi_{*} M \rightarrow \pi_{*} M$. Hence these show that the composition map

$$
\begin{equation*}
\pi_{*} M^{\prime} \longrightarrow \pi_{*} \pi^{*} \pi_{*} M \longrightarrow \pi_{*} M \otimes \tilde{K}^{-1} \tag{3.2}
\end{equation*}
$$

is an isomorphism.
On the other hand, we look at the pull back $\nu^{*} M^{\prime} \hookrightarrow \nu^{*} \pi^{*} \pi_{*} M$ on the smooth surface Y^{\prime}. It induces the diagram

here $\mathcal{O}_{Y^{\prime}}\left(L_{1}\right)$ is an invertibar subsheaf of $\nu^{*} \pi^{*} \pi_{*} M$ with the torsion free cokernel.
Taking the direct image ν_{*} for the diagram we obtain the diagram on Y

Furthermore, we take π_{*} for the above diagram, and get

The last vertical map splits, it maps 1-eigen space $\pi_{*} M$ to 1-eigen space $\pi_{*} M$ identically, and maps -1-eigen space $\pi_{*} M \otimes \tilde{K}^{-1}$ to -1-eigen space $\pi_{*} M \otimes K^{\prime-1}$ as the identical map multiplied by the natural map $\tilde{K}^{-1} \rightarrow K^{\prime-1}$ of the zero locus $\sum_{i} p_{i} C_{i}+\sum_{j} q_{j} C_{j}$. Therefore, the above diagram and (3.2) induce the following diagram

Twisting the diagram by K^{\prime}, and let $W_{1}=: \rho_{*}\left(\mathcal{O}_{Y^{\prime}}\left(L_{1}\right)\right) \otimes K^{\prime}$ we obtain

$$
\begin{equation*}
0 \longrightarrow W_{1} \xrightarrow{\varphi_{1}} \tilde{V} \longrightarrow Q_{1} \longrightarrow 0 \tag{3.3}
\end{equation*}
$$

Q_{1} is a torsion free sheaf, and its scheme theoretically support is some components of the curve $2\left(\sum_{i} p_{i} C_{i}+\sum_{j} q_{j} C_{j}\right)$.
We see that L_{1} is a line bundle which satisfies property 1) in claim 2.1.
Consider the pull back ρ^{*} for (3.3), noting the flatness of ρ, it is againg exact. Hence the natural map $\rho_{*}\left(W_{1}\right) \rightarrow \mathcal{O}_{Y^{\prime}}\left(L_{1}+\rho^{*} K^{\prime}\right)$ induces the following diagram

here $\mathcal{O}_{Y^{\prime}}\left(L_{2}\right)$ is an invertibar subsheaf of $\rho^{*} \tilde{V}$ with the torsion free cokernel.
We take againg the direct image ρ_{*} for the diagram

and get

Similar as (3.2), the upper composition map in the above diagram is an isomorphism, therefore we obtain the diagram

Generally, we repeat the above process $n+1$ times, and get the diagrams (3.4) and (3.5) for the pair of line bundles $\left(L_{n}, L_{n+1}\right)$ on Y^{\prime}. Hence there is an increased sequence of line bundles with the upper bound

$$
\operatorname{det}\left(\tilde{V} \otimes \tilde{K}^{-1}\right) \hookrightarrow \operatorname{det}\left(\rho_{*} \mathcal{O}_{Y^{\prime}}\left(L_{1}\right)\right) \hookrightarrow \operatorname{det}\left(\rho_{*} \mathcal{O}_{Y^{\prime}}\left(L_{2}\right)\right) \ldots \hookrightarrow \operatorname{det}\left(\rho_{*} \mathcal{O}_{Y^{\prime}}\left(L_{n}\right)\right) \ldots \hookrightarrow \operatorname{det}\left(\tilde{V} \otimes K^{\prime-1}\right)
$$

We see that in certain step, it has to be $\operatorname{det}\left(\rho_{*} \mathcal{O}_{Y^{\prime}}\left(L_{i}\right)\right) \simeq \operatorname{det}\left(\rho_{*} \mathcal{O}_{Y^{\prime}}\left(L_{i+1}\right)\right)$.
This implies $\rho_{*} \mathcal{O}_{Y^{\prime}}\left(L_{i}\right) \simeq \rho_{*} \mathcal{O}_{Y^{\prime}}\left(L_{i+1}\right)$ in (3.5), hence $\mathcal{O}_{Y^{\prime}}\left(L_{i}^{\prime}\right) \simeq \mathcal{O}_{Y^{\prime}}\left(L_{i+1}\right)$ in (3.4).
Let $L:=L_{i+1}$, then L has the both properties in claim 2.1.

Proof of claim 2.3

We look at the diagram 2) in claim 2.1. The middle vertical sequence gives

$$
\begin{align*}
|z| & =2 k+L^{2}-L \rho^{*} \tilde{D} \tag{3.6}\\
& =2 k+\left(L-\rho^{*} \tilde{D} / 2\right)^{2}-\tilde{D}^{2} / 2 .
\end{align*}
$$

Noting the determinant formula (see [F], chapter 5)

$$
\operatorname{det}\left(\rho^{*} W\right)=L+i^{*} L+\rho^{*} K^{\prime}
$$

here i is the involution on Y^{\prime}, the middle horizontal sequence gives

$$
L+i^{*} L-\rho^{*} \tilde{D}=-\rho^{*}\left(E+K^{\prime}\right)
$$

hence

$$
\begin{align*}
\left(2 L-\rho^{*} \tilde{D}\right) \rho^{*} \tilde{H} & =L \rho^{*} \tilde{H}+i^{*} L \rho^{*} \tilde{H}-\rho^{*} \tilde{D} \rho^{*} \tilde{H} \\
& =-\rho^{*}\left(E+K^{\prime}\right) \rho^{*} \tilde{H} \tag{3.7}\\
& =-2\left(E+K^{\prime}\right) \tilde{H}
\end{align*}
$$

Using Hodge-index-theorem and the above equality we get

$$
\begin{array}{rlr}
\left(2 L-\rho^{*} \tilde{D}\right)^{2} & \leq\left(\left(2 L-\rho^{*} \tilde{D}\right) \rho^{*} \tilde{H}\right)^{2} /\left(\rho^{*} \tilde{H}\right)^{2} & \\
& =2\left(E+K^{\prime}\right) \tilde{H} / \tilde{H}^{2} & \tag{3.8}\\
& \leq A & \text { by lemma } 2.2
\end{array}
$$

(3.6) and (3.8) imply claim 2.3 .

Proof of claim 2.2

For any such a line bundle L in claim 2.1, similar as in the proof of claim 1.1, we have the following orthogonal decomposition respect to $c_{1}\left(\rho^{*} \tilde{H}\right)$

$$
c_{1}\left(2 L-\rho^{*} \tilde{D}\right)=r c_{1}\left(\rho^{*} \tilde{H}\right)+c_{1}\left(2 L-\rho^{*} \tilde{D}\right)^{\perp}
$$

here $r=\left(2 L-\rho^{*} \tilde{D}\right) \rho^{*} \tilde{H} /\left(\rho^{*} \tilde{H}\right)^{2}$. Using (3.7) $|r|$ is bounded by a constant. And using (3.6) the integral class $\left(\rho^{*} \tilde{H}\right)^{2} c_{1}\left(2 L-\rho^{*} \tilde{D}\right)^{\perp}$ has bounded norm $A \sqrt{k}+A$ in $H^{1,1}\left(Y^{\prime}\right)^{\perp} \cap H^{2}\left(Y^{\prime}, Z\right)$. These show that there are only finitely many $c_{1}(L)$.

Reference

[BNR] A. Beauville, M. S. Narasimhhan and S. Ramann: Spectral curves and the generalised theta divisor. J. reine angew. Math. 398 (1989), 169-179.
[D] S. K. Donaldson: Polynomial invariants for smooth four-manifolds. Topology (to appear).
[F] R. Friedman: Rank two vector bundles over regular elliptic surfaces. Inv. Math. 96 (1989), 283-332.
[G] D. Gieseker: On the moduli of vector bundles on an algebraic surface. Ann. of Math. 106 (1977), 45-60.
[Ha] R. Hartshorne: Algebraic geometry. Graduate texts in Mathematics 52. Springer-Verlag New York Heidelberg Berlin 1977.
[Hi] N. Hitchin: Stable bundles and integrable systems. Duke Math. J. 57 (1988), 667-671.
[K] D. Kotschick: On manifolds homeomorphic to $C P^{2} \sharp 8 C \bar{P}^{2}$. Inv. Math. 95 (1989), 591-600.
[M] M. Maruyama: Stable vector bundles on an algebraic surfaec. Nagoya Math. J. 58 (1975), 25-68.
[OV] C. Okonek and A. Van de Ven: Γ-Type-Invariants associated to $P U(2)$-bundles and the differentiable structure of Barlow surface. Inv. Math. 95 (1989), 601-614.
[Z] K. Zuo: Regular 2-forms on the moduli of rank two vector bundles over an algebraic surface. MPI Preprint.

