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Generic smoothness of the moduli of rank 2 stable bundles over an algebraic surface

§0. Introduction

Let X be a complex algebraic surface with canonical line bundle K, and V be a rank 2 vector
bundle over X. We fix an ample line bundle H on X. Recall that V is H-stable, if for all sub-line

bundles L — V we have

a(L)en(H) < ex(V)er (H)/2

We denote by M (k) the moduli space of all isomorphic classes of H-stable rank 2 vector bundles
with fixed determinant bundle D and second Chern class k. It is well known that M (k) is a quasi

projective variety, and is not empty if k is sufficently large (see [G] and [M]).

The local structure of M(k) is precisely described by the Kuranishi deformation theorem in the
following way. Suppose V € M(k) and let ¢ : H}(Endo(V)) — H?(Endo(V)) be Kuranishi map,
then the stalk of the structure sheaf Opzxy at V' is naturally isomorphic to the germs of holomorphic
functions at 0 € H'(Endo(V)) divided by the ideal generated by the components of . In particular,
if H%(Endo(V)) =0, then M(k) is smooth at V, and the tang’éx;t space T(M(k))y is identified
with H'(Endo(V)). The Hirzebruch-Riemann-Roch theorem gives the dimension formula

dim M(k)y = —x(Endo(V)) = 4k — D? — 3x(0Ox)

The next step is naturally to study the locus of all V € M (k) with H 24(Endo(V) ~
HO(Endy(V)® K)V # 0. It is a closed subvariety of M(k). This can be seen by applying the upper
semicontinuous theorem to the local universal bundle of M (k). More precisely, Donaldson proved

recently the following theorem for the case D = 0.

Theorem 1. (Donaldson)

Suppose X is an algebraic surface with canonical line bundle K. Let M (k) be the moduli space
of H-stable rank 2 bundles with the trivial determinant bundle and second Chern class k. Then
subvariety (k) := {V € M (k)| H°(Endo(V) ® K) # 0} has dimension

dimS(k) <3k + AVE+ A

here A is a positive number which depends on the linear system |2K|, the Chern classes of X, H

only.



Corollary 1.

Every irreducible component of M (k) is reduced, and has dimension —x(Endy(V)), if k is suffi-
cently large.

Corollary 1 has the following important application in the study of the differentiable structure of
4-manifolds (see [D] )

Corollary 2.

The k-th SU(2)-invariant on an algebraic surface does not vanish, if k is sufficently large.

In this paper we use the original idea of Donaldson [D] and the important technique due to Friedman

[F] and generalize theorem 1 for any case.

Theorem 2.

Let X and K be same as in theorem 1. Let M(k) be the moduli space of H-stable rank 2
bundles with the ﬁ}ged determinant bundle D and second Chern class k. Then the subvariety
B(k) = {V € M(k) | H*(Endo(V) ® K) # 0} has dimension at most 3k + AvVE + A, here A is a
positive number which depends on the linear system |2K| the Chern classes of X, H and D only.

Similar as corollary 2 theorem 2 implies immediately the non-vanishing property for the SO(3)-

invariants on algebraic surfaces. (see [D] and [OV])

The outline of proof for theorem 2 as follows. First, we divide (k) into two subsets:

B1(k) :={V € B(k)|Tsgo € H'(Endo(V)® K), 3t€ H(K) s.t. det(s)+t>=0}, and
(k) == Z(k) \ By (k).

It is easy to see, Xy(k) is a closed subvariety of X(k) by looking at the local universal bundle of
- M(k).

In section 1 we find some special sub-line bundles L of V € (k) so that the absolut values |LH|
are bounded by a constant depending on KH and DH only. By standard arguments we estimate

dimension of the moduli of all extensions

0—O0x(L) -V —0x(-L+D)®I, —0 ,

hence we get the upper bound of dimension for ¥, (k).

The second section is more interesting. \Inspired by the idea of R. Friedman ([F]), and using the
spectral surface technique ([BNR], [D] and [Hi]), we show that for any pair (V,s) of V € (k) and
sz0 € H°(Endo(V) ® K), there exists the following exact sequence on the blowing up o : X-X

at the singularities of the zero locus (det(s))o



0— W —o'V—o5Q—0 |,

here W is a rank 2 vector bundle coming from the direct image of a line bundle on a double
covering Y’ — X ramified along some components of o*(det(s))o, and @Q 1is a torsion sheaf, its
scheme theoretically support is also some components of o*(det(s))o.

Using the deformation theorem of torsion sheaves due to Friedman ([F]) we bound dimension of the

moduli of all the above extensions, therefore we obtain the upper bound for Xy(k).
In section 3 we complete proofs of the claims which are used in the previous sections.

In our paper the symbol A always means a constant positive number which depends on the linear

system |2K|, the Chern classes of X, H and D only.

Acknowledgment. I thank Professor C. Okonek for drawing my attention to this problem, valuable
discussions and encouragement. Also I am very grateful to Professor F. Hirzebruch and the Max- -

Planck-Institut for the hospitality in the preparation of this paper.

§1. To bound dim X, (k)

The goal of this section is to prove the following

Lemma 1.

dim (k) < 3k+ AVE + A

1.1. The eigen-line bundles of (V,s) from (k)

Suppose V € X;(k), taking a non-zero section s € H*(Endo(V) ® K) with det(s) +12 =0,
t € H(K) we get the non-trivial maps

s—IQ@t
V— VK |,

s+1
VﬂV@K

Because their determinant maps are zero map, the kernel Ox(L+) of the maps are line bundles on

X. Their fibres at a point p are just the eigen-vectors of the linear map sp : Vp — Vp, ® Kp, so they

will be reasonable called as the eigen-line bundles of (V,s). we have the following exact sequence
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(1.1) 0-—+OX(L1~)—->V—>OX(—Lt +D)®I,, —0 ,

where I, are ideal sheaves which define the 0-dimensional subschemes z4 of X. A calculation of

Chern classes gives

(1.2) | —(L+)?+(L+)D+ 24| =k

We consider the following commudative diagram

0 ——s Ox(Ly) _ 1% —— Ox(-Ly + D)I,, —— 0
ls—f@t

0 —— I, Ox(~L_+D+K) —— VoK —— Ox(I_-+K) ——0
J'S+I®t
V® (2K)

Noting the composition map (s+I®1t)(s — I ®t) = (s* — I ®t?) = —I ® (det(s) +1*) = 0, we get

the non-trivial factor map

. Ox(—L4 + D) - Ox(L- + K).

This implies that (=L, + D)H < (L_- + K)H. And the stability of V gives L+ H < DH/2. We

put these inequalities together and obtain

(1.3) ~KH < (Ly —D/2)H <0

“Of course, we have also the above inequality for L_. In the rest of this section we are just interested

in one eigen-line bundle of (V,s), so we write L+ as L simplely. From (1.2) and (1.3) we have

Claim 1.1

For all V € X1(k), and all s € HY(Endy(V) ® K), with det(s) +t*> = 0, let L be an eigen-line
bundle of (V,s). Then we have

1) (L-D/2)K < AVE+ A
2) (L-D/2)*< A



3) W%(-2L+D+ K)+h°(2L-D)< A
4) The subset {c1(L)} C H%(X, Z) is finite.

1.2. The moduli of 3, (k)

From 4) in claim 1.1 and by standard arguments we decompose X;(k) into finitely many subvarieties

(k) = U 2a(k)

so that for any V € X, ;(k) V comes from the extension (1.1) with same c¢;(L).
The variety X, ;(k) has a stratification

(k) = U (k)
j

X1, is a subvariety of X;(k), and for any V € X, ; j(k) the extension group

Ezty (Ox(—L+ D)®I,,0x(L)) has constant dimension j.

Locally see, the moduli ¥ ;;(k) at V is parametrized by two varieties. One is the extension group
Ezty, (Ox(—L+ D)®I,,0x(L)). The another is the subvariety of all pairs

(2, L) € Hilb*(X) x Pic(X) satisfying dim Ezty (Ox(-L+D)®I,,0x(L)) = j.

Hence we have roughly the following estimate

dim 3y ; ;(k)
<dim Ezt'(Ox (=L + D) ® I, Ox (L)) + 2|z + ¢(X)
(14) =AY (Ox(-2L+ D+ K)Q® L) +2|2| + ¢(X) by Serre-Duality
ghl(—2L + D+ K) + 3|z| + ¢(X) by standard exact sequence

Applying Riemann-Roch-theorem to the line bundle Ox(—2L + D + K), we have

h'(-2L + D + K)
=-2(L-D/2)*+ (L - D/2)K
+h°(2L — D) + h°(=2L + D + K) — x(Ox)
(1.5) <-2L-D/2?+AVE+ A by 1), 3) in claim 1.1
=(L - D/2)? - 3D%/4+ AVk+ A+ 3k —3|z] by (1.2)
<3k +AVE+ A—3|z| . by 2) in claim 1.1



Finally we put (1.4) and (1.5) together and complete lemma. 1.

Remark 1.

In fact, we can prove dimX;(k) < 3k + A. But it needs more complicated technical lemmas. For
example, the lemma about dimension of varieties of 0-dimensional subschemes in the special position

respect to a linear system ([Z], lemma 1).

§2. To bound dim X,(k)

We will prove the following

Lemma 2.

dim $5(k) < 3k + A

The proof will be divided into two parts.

2.1. The spectral surface of (V,s) from X;(k) (see [BNR], [D] and [Hi])
We take a section s € H°(Endo(V)® K) with the non zero determinant det(s) € H°(2K). Its zero

locus is a curve C in the linear system |2K|. We blow up successivelly the singularities of C

(2.1)

<)
S

which satisfies the following

Condition 2.1
1) All reduced irreducible components of the pull back ¢*C = 3 ,(2p;+1)Ci+3"; 29;C; are smooth

curves, and they transversally intersect each other.

2) The irreducible components with the odd multiplicities are disjoint.

Of course, such a blowing up does exist. Its numerical invariants depend on the numerical invariants
of the singularities of C only.
We denote by, V := ¢*V, K := ¢*K, H := 0*H and § := o*s. It is easy to see that det(5) has

the zero locus o*C.

By taking the square root /—det(5) we get a double covering



with the direct image of the structure sheaf

.0y ~ 05 & 0(K™1)

The surface Y is reduced, and in our case is also irreducible, otherwise the section s would have
the property det(s) +12 = 0. In general, Y is not normal, it has exactly the singularities along the
curve 773, piCi + 35 ¢;Cj)-

By taking the normalization of ¥ we obtain

)

Y’ > Y

with
POy =050 05K +> piCi+ ) 4;Cy)
g S
=05 @ 0x(K'™)

The surface Y’ is already smooth by the condition 2.1. In fact, it can be also constructed by taking

the square root of a section from H?(2K’) with the simple zero locus Y, C;.

Looking at the direct image

W*W'I%zf{@m(’)y ~KeoKe@K™!

we get naturally a section z € Ho(ar*IE'). The Galois-group of the covering operats on z just as

multiplies it by -1. It holds det(7*3) + 22 = 0 (see [BNRY)).

The twisted endomorphism §: V — V ® K gives V an O @ O)?(f{"l) (~ 7Oy ) module
structure. By the general theorem (see [Ha], Chapter 2, prop. 5.2 and [BNR], prop. 3.6) there is a
bijective correspondence between isomorphic classes of torsion free sheaves M of rank 1 on Y and
isomorphic classes of pairs (V,5) where V is a rank 2 bundle over X, and §: V — V ® K with
Tr(5) =0 and (det(5))o = 6*C. The correspondence is given by associating to any M to the sheaf
m.M on X and the natural map M — 7, (M ® 7r*I§') ~ m.M ® K induced by the direct image
ofthemap IQz: M - M@ K.

Fixing X, we see that the moduli of (\7, §) is parametrized by the family of the coverings ¥ — X
plus the family of the torsion free sheaves M on Y. But unfortunately, the second family is not
easy to describe. To overcome this difficulty, we replace M by a suitable invertibar sheaf Oy (L)

on Y’, and use its p, direct image to approach V in the following sense



Claim 2.1 (compare [F], Chapter 5)
There exists an invertibar subsheaf Oy (L) < p*V with the following properties

1)Let W := p*(Oy/(L)) ® K', then on X there is an exact sequence

0——>W—>1~/—+Q—>0 ,

Q@ 1is a torsion sheaf, and its scheme theoretically support E is some components of the zero locus
of det(5).

2) On Y' there exists a commudative diagram

Oy:(L) _— Oy:(L)
0 —— W " vV — pQ —— 0

0 —— OYI(—-L-*-p*ﬁ—p*E) —— 0y1(~—L+p*ﬁ)®Iz R —— p*Q — 0
0

0

2.2. The moduli of pairs (V,X)

In 2.1. we have constructed the blowing up X and the spectral surface Y/ - Y — X for any pair
(V,s), of V € B5(k), and szo € H'(End,(V) ® K).
Let M(X, V) be the moduli of all such pairs ()?, V). We want to show

Lemma 3
dimM(X,V) <3k + A

Lemma 2 is a direct consequence from lemma 3 by the surjective map M (f , 17) — 3y(k).

First by standard arguments we have obviously the following

Lemma 2.2.

Let M()?,Y',E’) be the moduli of all triples ()?,Y',E), where X is a blowing up of X at the

singularities of a curve C from |2K| which satisfies the condition 2.1, Y' Is a smooth double
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covering of X with the branching curve contained in o*C, and E is also a curve contained in

0*C. Then M()?,Y’, E) is a quasi projective variety.

Fixing the blowing up X, we see that the moduli of ()? ,V) comes from the following three parts
by 1) in claim 2.1

1) The moduli M (W) of the the vector bundles W
2) The moduli M(Q) of the torsion sheaves Q
3) The extension group Ezt}_(Q,W)

X

In rest of this section we want to estimate their dimension separately.

1) The moduli M (W)

M(W) is just the moduli of pairs (L,Y’) by the definition of W. All such Y’ form a subvariety
M(Y') of the moduli M(X,Y’, E) in lemma 2.2, hence it has a bounded dimension

dmM(Y')< A

Fixing Y’, there is a stratification for the moduli of all L
M(L) =| | Mi(L)
i
so that all L from one M;(L) have same Chern class ¢;(L). We see easily by lemma 2.2

dimM;(L)<q(Y')< A
Furthermore, we claim

Claim 2.2
M(L) has only finitely many M;(L)

The above inequalities and claim imply the following

Lemma 2.3

dimM(W) < A

2) The moduli M(Q)

We start with reviewing the h-th Fitting ideal of a torsion sheaf @ on a surface S and its basic

properties (see [F], Chapter 1, (d) ).



The 0-th Fitting ideal is just the ideal of the scheme theoretically support £ of Q.
The 1-th Fitting ideal I,(q) is the ideal of a 0-dimensional subscheme z(Q). It can be defined by
taking a presentation of @, but we will not give here (see [F], definition 1.11). We are just interested

in the following lemmas.

Lemma 2.4 (see [F], prop. 6.7)

Let p: § — S be a smooth double covering. Then p*z(Q) = z(p*Q), and |2(Q)| = |2(p*Q)|/2.
In general, |2(Q)| is not easy to compute. However, we have the following estimate

Lemma 2.5 (see [F], Chapter 1, (d))

Let I, be an ideal sheaf of a O-dimensional subscheme z of S, z is a locally complete intersection,
Os(—=C) C I, be an ideal sheaf of a curve C C S and Os(D) be an invertibar sheaf on S. If
Q ~ (I,/0s(-C)) ® Os(D), then I, C I,(qy. In particular, |2(Q)] < |z

Using the Fitting ideals of @) we may describe the deformations of Q. This is the following lemma
due to Friedman (see [F], Prop. 1.16).

Lemma 2.6

The local deformations of the sheaf () with the fixed support E has dimension at most

W (0p) +12(Q)

Lemma 2.6 shows that the arbitrary local deformations of @ has dimension

dim Def (Q) < h*(Og) + |2(Q)| + dimension of the moduli of E

Going back to our case. All E have to be contained in some curves from the linear system |2K]|

by 1) in claim 2.1, hence applying lemma 2.2 to the moduli of E we get

h'(Og)+ dimension of the moduli of £ < A

We want to bound |z(Q)| in terms of k. The exact sequence in the bottem of 2) in claim 2.1 says

that p*Q ~ (I,/Oy/(—p*E)) ® Oy:«(—L + p*D). And applying Lemma 2.5 and 2.4 we obtain

l2(@)I < lzl/2+ A

So we have to bound |z|.
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Claim 2.3

2| <2k + A

The above four inequalities imply the following

Lemma 2.7

dmMQ)<k+A

3) The extension group Ezt},_ (Q,W)
X

The following two lemmas are due to Friedman ( [F], lemma 6.9, 6.10 and 6.11)

Lemma 2.8

dim Ezt},_(Q,W) — dim Ext%_(Q, W) = x(Oy') = x(Ov/(=p*E)) + |2| ,
X X
here z is the subscheme of Y’ in 2) in claim 2.1.

Noting z is also a subschem of p*E, this induces the natural map

Oan ® Oyl(p*E) Ky — 0, Oyl(p*E) ® Ky

Lemma 2.9

Ezxt3_(Q,W) is dual to the kernel of the natural map
oX

HO(OP-E ® Oyl(p*E) ® .Kyl) — HO(Oz ® Oyl(p*E) ® I\’y:)

Using lemma 2.2 we see that for all pairs (Y, E) the numbers x(Oy/), x(Oy:(—p*E)) and
H%Opg ® Oy:(p*E) ® Ky:) are bounded by a constant A. Hence from the lemma. 2.8, 2.9 and

claim 2.3 we have

Lemma 2.10
dim Ezt}_ (Q,W) <2k + A
X

Lemma 2.3, 2.7 and 2.10 together give lemma 3.
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§3. To complete proofs of the claims
Proof of claim 1.1

1) We write

(3.1) ei(L — D/2) = rey(H) + ei(L — D/2)*

where ¢;(L — D/2)* is orthogonal to ¢i(H), and |r| = |(L — D/2)H/H?| is bounded by a constant
A by (1.3). Therefore we get
les(L — D/2)er (K| < les(L = D/2)*ex(K)* |+ A

Because the intersection form is negative definite on the orthogonal complement of ¢;j(H) in
HY(X), we have

lex(L = D/2)* ex (K|
<y/=(e(L - D22~ (ea(K) )
<Ay/~(er(L - D/2)4)?

<Av/—ci(L—-DJ2)2+ A by (3.1)

=A\/-L2+ LD - D?/4+ A
<AVE+A . by (1.2)

The above two inequalities imply 1).

2) By Hodge-index-theorem and (1.3) we have
(L-D/2)* <((L-D/2)H)*/H* < A

3) First, the stability of V shows (2L — D)H < 0, hence h°(2L — D) = 0.

Using (1.3) we see that the absolut values |(—2L + D + K)H| are bounded by a constant A’.
Because all cuvers C C X with bounded degree CH < A’ form a projective variety. In particular,
all h°(C) are bounded by a constant A.

4) From the proof of 1) we see that 2H?c;(L — D/2)% are integral classes in HV}(X)* NH?(X, Z)
with bounded norm 2H?2(vk + A), hence thay are finitely many. This implies all ¢; (L-D/2)* are
also finitely many. Noting ¢1(L — D/2) = rei(H) + 1 (L — D/2)* with |r| < A, we complete 4).
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Proof of claim 2.1

The general correspondence gives a sheaf M on Y with 7, M ~ V.

Since 7 is affine, the natural map #*7.M — M is surjective, and it induces the exact sequence

0 M mr.M M 0

Taking the direct image . for the above exact sequence, noting 7 is affine we get again an exact

sequence on X

06 — mM — m7 M — mM —— 0

The Galois-group G(Y’ /)? ) operats on ,7*m, M and induces the ¥ l-eigen spaces decompositiom

T Me~rn MmOy ~m MO M K™!

The image of the natural map m.M — w.7*m.M 1is just the l-eigen space 7«M in the decompo-
sition. And this map is also a section of the projection m,7*m M — w.M. Hence these show that

the composition map
(3.2) M — morT M — 7r,,M®I§’f1

is an isomorphism.

‘On the other hand, we look at the pull back v*M’' — v*7*x, M on the smooth surface Y'. It

induces the diagram

Oy (L1)

VM —s v*r*r .M,

here Oy/(L;) is an invertibar subsheaf of v*7*m, M with the torsion free cokernel.

Taking the direct image v for the diagram we obtain the diagram on Y

V,..OYI(Ll)

N

vu*M — vt M

I [

M & —_—— .M

Furthermore, we take m, for the above diagram, and get
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p+Oyi(L1) —— pup"mM — TMor,MQK' ™!

1 T T

M — T M —— T MO T M K!

The last vertical map splits, it maps 1-eigen space m, M to l-eigen space 7, M identically, and maps
-1-eigen space m M ® K~1 to -1-eigen space m, M ® K'~1 as the identical map multiplied by the
vl

natural map K~' — K'~! of the zero locus 3, p;C; + 2_; 3;C;j. Therefore, the above diagram and
(3.2) induce the following diagram

pxOy:(L1)

SN

(M@ K-! __, m(M)®K'"!

Twisting the diagram by K’, and let W) =: p.(Oy/(L1)) ® K’ we obtain

(3.3) 0 W, — ., v Q1 0

)

Q1 is a torsion free sheaf, and its scheme theoretically supporf is some components of the curve
222 piCi + 325 45 Cy)-
We see that L, is a line bundle which satisfies property 1) in claim 2.1.

Consider the pull back p* for (3.3), noting the flatness of p, it is againg exact. Hence the natural
map p.(W1) — Oy/(L; + p*K') induces the following diagram

0

!

0 —_— OYI(LII) —_— p*Wl . d Oy!(Ll'*‘p*I{I) —_— 0

! Lo |

(3.4) 0 —— Oyi(Ly) —— p*V —— p*V/Oyi(Ly) —— 0

!

p*Q1

!

0,

here Oy:(L,) is an invertibar subsheaf of p*V with the torsion free cokernel.

We take againg the direct image p. for the diagram
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Oy:(Ly) —— p'W1
l Jf"¢1
Oyt (Lz) _— p*f/

’

and get

P*OY’(LQ) - W1®P*OY' — W1®I(I_1

l Ptp'wlz‘Pl@Il lwi®1

p.0yi(Ly) —— V@p.Oyr —— VK1

p«Oy:(L1)

Similar as (3.2), the upper composition map in the above diagram is an isomorphism, therefore we

obtain the diagram

p+Oy:(L2)

(3.5) | / \

p,.Oyl(Ll) — 1% ® K'-!

Generally, we repeat the above process n + 1 times, and get the diagrams (3.4) and (3.5) for the
pair of line bundles (L,,Ln+1) on Y’. Hence there is an increased sequence of line bundles with

the upper bound

det(V @ K1) — det(p.Oy:(L1)) — det(p.Oyi(L2))... — det(pOy:(Ly))... — det(V @ K'~1).

We see that in certain step, it has to be det(p.Oy(L;)) ~ det(p«Oy+(Lit1)).
This implies p.Oy:(L;) =~ psOy:(Li41) in (3.5), hence Oy:(L}) =~ Oy (Li41) in (3.4).
Let L := L;;q, then L has the both properties in claim 2.1.

Proof of claim 2.3

We look at the diagram 2) in claim 2.1. The middle vertical sequence gives

(3.6) |z| = 2k + L? — Lp*D

=2k + (L — p*D/2)* — D*/2

Noting the determinant formula (see [F], chapter 5)

15



det(p*W) =L+ L+ p*K’

b

here ¢ is the involution on Y’, the middle horizontal sequence gives

L+i#L—p*D=—-p"(E+K"),
hence
(2L — p*D)p*H = Lp*H +i*Lp"H — p*Dp*H
(3.7 =—p"(E+K')p"H
=-2(E+K")H

Using Hodge-index-theorem and the above equality we get

(2L — p*D)? < ((2L - p*D)p*H)*/(p" H)?
(3.8) . =2E+K)HH/H?

<A . by lemma 2.2

(3.6) and (3.8) imply claim 2.3.

Proof of claim 2.2

For any such a line bundle L in claim 2.1, similar as in the proof of claim 1.1, we have the following

orthogonal decomposition respect to ¢ (p*f:I )

(2L — p*D) = rey (p* H) + ¢ (2L — p* D)

here r = (2L — p*D)p*H/(p* H)?. Using (3.7) |r| is bounded by a constant. And using (3.6) the
integral class (p*H)2¢1(2L — p*D)* has bounded norm AvE+A in HY(Y')XNH2(Y’, Z). These
show that there are only finitely many ¢;(L).
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