RAMIFICATION FILTRATION OF THE
GALOIS GROUP OF A LOCAL FIELD. II1

Victor A. ABRASHKIN
Max-Planck-Institut Max-Planck-Arbeitsgruppe
fiir Mathematik »Algebraische Geometrie und
Gottfried-Claren-Str. 26 Zahlentheorie"
53225 Bonn an der Humboldt Universitiit zu Berlin
Jigerstrae 10-11
GERMANY 10117 Berlin
GERMANY

MPI 96-103

!
l‘-‘

t






RAMIFICATION FILTRATION OF THE
GALOIS GROUP OF A LOCAL FIELD. III

VICTOR A. ABRASHKIN

ABSTRACT. Let I{ be a complete discrete valuation field of characteristic p > 0 with
a finite residue field and let T'(p) be the Galois group of its maximal p-extension.
The main result of the paper describes the image of the ramification filtration of the
Galois group of the field K in I'(p) modulo its subgroup of commutators of order > p
in terms of generators of the group I'(p).

Throughout all this paper K is a complete discrete valuation field of character-
istic p > 0 with a finite residue field ¥ ~ F,~,. We fix a uniformising element #¢ of
the field K and use the identification K = k((¢9)). Choose a separable closure Kgep
of K and set I' = Gal(Kyep/K): ‘This group has the decreasing filtration {T'(")},5¢
of its normal higher ramification subgroups in upper numbering, cf. [Se, Ch.III}. If
I'(p) is the Galois group of the maximal p-extension of the field I, then T'(p) is a
free pro-p-group [Sh], and there appears the problem of description of the induced
ramification filtration {T'(p)(*},>0 in terms of generators of the group T'(p). In this
paper we develop the methods from [Ab1,2] to obtain this description modulo the
closure Cp(T'(p)) of the subgroup of commutators of order > p.

For this purpose we construct, cf. n.5.1, the profree Lie algebra L% over Z, and
the identification

% : T(p)/Cy(T(p)) ~ G(L),

where £0 = L°/Cp(L?) is the maximal quotient of nilpotency class < p, and G(EO)

is the pro-p-group obtained from elements of Lo by the Campbell-Hausdorff compo-
sition law. The construction of this identification is based on the nilpotent version
of Artin-Schreier theory from [Ab2] and depends on the choice of a uniformising
element ¢ and a € W(k) such that Tra = 1.

The profinite Lie W(k)-algebra £ = L°®W (k) has a natural system of generators
D,,, where a € Z%p) = {n € N| (n,p) = 1} U {0}, n € Z, Dy nt+nNo, = Dan and
0D4n = D4 nt1 (o 1s the Frobenius automorphism of W(k)). If A C Z%p) is a finite
subset, consider a free Lie W(k)-subalgebra £(A) of £, which is generated by all D,,
with @ € A. Then £ = lim£(4) and £% = imL%(A4), where L°(A) = L2 N L(A) is

iy iy ,
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Lie Z,-subalgebra of £L°. For v > 0 and N € N, we define in n.2 the ideals £,(4,v)
of the Lie algebra £L°(A4) as the minimal ideals containing the ideal of commutators
of order > p and such that £,(4,v)® W(k) contains elements F., —n for all v > v.
These elements F, _n are defined by explicit expressions as linear combinations
with some p-adic coeflicients of commutators [...[Dgyn,, Dagngls---»Da,n,] such
that 1 < s < p, a1,...,as €E A, ny 2 --- 2 ny > —N and a1p™ + -+ + a,p™ =
7. We also show in n.2 that the sequence of ideals {L}(A,v)}n stabilizes and
therefore, determines the ideal £°(A,v). This gives for all v > 0, the ideals £L°(v) =
lim L%(A,v) of the Lie algebra £%; and we obtain, ¢f. Theorem A of n.5.3, the
ACZ(p)
following description of the ramification filtration modulo pth commutators: for
any v > 0,

P(T(p) mod Cy(T(p))) = G(L°(v)),

where £0(v) = L(v)/Cy(L"). The Theorem B of n.5.3 gives also a construction of
the above ideals Eo(v), which does not use the operation of projective limit.

This result is a consequence of the main theorem of n.4, which gives a description
of the image of the ramification filtration {T(*},5¢ under a group epimorphism
I' — G(L), where L is a finite Lie algebra over Z, of a nilpotency class < p
and G(L) is the p-group obtained from- L-by-the Campbell-Hausdorff composition
law. This theorem is proved by induction on values of the nilpotency class and the
exponent of L and by transfinite decreasing induction on v > 0. The main trick
is related to the following special property of local fields of characteristic p: if K’
is a totally ramified finite extension of K in Kyep, then K ~ K' and therefore,
there exists an isomorphism Gal(Ksep/K) =~ Gal(Ksep/K') which is compatible
with ramification filtrations. After a suitable choice of the auxillary field K’ the
induction step (modulo some technical computations with the Campbell-Hausdorff
formula from n.3) uses only well-known information about ramification of Artin-
Schreier extensions of degree p of the field K'.

The arguments of this paper are based completely on constructions from the
papers {Abl,2]. In n.1.2 we give some commentaries about equivalence of the cat-
egories of Lie Z,-algebras and p-groups with class of nilpotency < p. In papers
[Ab1,2] there was studied the ramification filtration modulo I?C,(I) and modulo
C3(I), respectively, where T = |J T'* is the higher ramification subgroup of T.

v>0

The general result about the ramification filtration modulo C,(I) was only claimed
in the paper [Ab2] and was applied for a description of the image of the ramification
filtration in the group I'(p)/C,(T'(p)). In this paper we apply our method directly
to the group I'(p)/Cp(T'(p)) (the modulo Cp(I) description can be now easily re-
covered). In fact, our approach works also in the case of a ground field K with
arbitrary perfect residue field, but in this case the choice of generators of the Lie
algebra L% is more complicated.

1. Preliminaries.

1.1 Construction of liftings.
We use the following construction of liftings from [Ab2], which is a particular
case of the general construction from the paper [B-Mj.

2



For a field € such that X C £ C Kgep and a natural number N consider the
Z/pNZ-algebra
ON(E) = Wn(aV ')t ] € W (E),

where Wy is the functor of Witt vectors of length N, ¢ is the Frobenius, and
t = [to] € Wn(K) C Wn(E) is the Teichmiiller representative of ty. The algebra
On(€) is a lifting of the field £ modulo p¥, i.e. On(€) is a flat Z /pVZ-algebra such
that On(E)/pON(E) = £, and its construction essentially depends on the initial
choice of the uniformising element of the field K. For any N € N, we have the
algebra epimorphisms of reduction modulo pV

On+1(E) — ON(E) = On11(E) ® Z/p"E.

If O(€) = lim On (&) with respect to these epimorphisms, then O(£) is the valuation

ring of an absolutely unramified field with the residue field £. The Frobenius of
Witt vectors induces the system of Frobenius morphisms o = o¢ : O(€) — 0O(€),
which is compatible on fields £. We note, that O(K) = W(k){((t)) and ot = 7.
Clearly, there is a natural action of I' on O(Kep). If H is an open subgroup in T’
and KH =& then O(Keep)' = O(E).

sep

1.2. Groups and Lie algebras.

Let L(X,Y') be the completion of the free Lie algebra with the generators X and
Y with respect to its lower central series. Denote by A(X,Y’) the Magnus algebra
in variables X and Y with integral coefficients (this is the completion by powers
of the augmentation ideal of the free associative algebra generated by X and Y').
Then we have a natural inclusion L(X,Y) C A(X,Y) and in A(X,Y)®Q by the
Campbell-Hausdorff formula it holds

exp(X)exp(Y) = exp(X oY),

where X oY = X + Y + (X, Y]+ - € L(X,Y)®Q. We note that if ¢;(X,Y) is
the component of X oY of total degree 7, then ¢;(X,Y’) is p-integral for 1 < i < p.

Consider the category Lie(p) of finite Lie algebras over Z, of class of nilpotency
< p and the category Gr(p) of finite p-groups with the same condition for nilpo-
tency class. If s > 1 and L € Lie(p), we use the notation C,(L) for the ideal of
commutators of order > s in L. Similarly, if G € Gr(p), then C4(G) will denote the
normal subgroup of commutators of order > s in G. So, with the above notation
we have always Cp(L) = 0 and Cp(G) = e.

If L € Lie(p), denote by G(L) the p-group given by the composition law (I, 1) —
l1 ol on elements [y, l; of the Lie algebra L. The correspondence L — G(L) gives
the functor G : Lie(p) — Gr(p), and this functor is an equivalence of categories,
cf. [La]. For our purposes we give below an interpretation of this equivalence in
terms related to envelopping algebras of Lie algebras from Lie(p). Our arguments
use information about ”dimension subgroups modulo n” from the paper [Mo)].

Let H € Gr(p) and let Jz{H] be the augmentation ideal of the group ring Z[H].
By the main result of the paper [Mo], we have for 1 < s < p that

HN(1+ Jz[H]*) = Cs(H).
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If J[H] is the augmentation ideal of the group ring Z,[H], then Jz[H]* = J[H]* N
Z[H] for s € N, because Z,, is a flat module over Z. This gives for 1 < s < p, that
(1) HnN (14 J[H)®) = C,(H).

In particular, H N (1 + J[H]?) = 1 and we can identify H with its image in the
Z,-algebra Z,(H]/J[H]?.
Clearly the truncated logarithm

log(1+2)= Y (-1)*'a"/n
I<n<p
induces a one-to-one map from (1 + J[H])mod J[H]? to J[H]|/J[H]?. The inverse

map is induced by the truncated exponential

exp(z) = Y z"/n.

ogn<y

We note that loﬁé induces for 1 < s < p, an isomorphism of the multiplicative group
(1+ J[H}*) mod J[H]**! and the additive group J[H}* mod J[H]**!.

Consider the set L(H) = IBE(H) C Z,|H]/J[H]P. Then L(H) is a Lie subalgebra
of the algebra Z,[H|/J[H]?, i.e. the set L(H) is closed under linear operations and
the Lie bracket in the algebra Z,[H]/J[H]P. |

Indeed, if | = logh, where h € H C Z,[H]/J[H]?, then for any t € Z,, we have
tl = tlogh = log(h') € L(H).
If I, = log(hy), Iz = log(hs) € L(H) and t € Z,, then

log(h!ht) = log(&Rp(th)eD(th)) = ¥ teilly, o) € L(H).
1€i<p

This gives c1(l1,12) =l +1p € L(H) and ¢3(1, 1) = 1[l, ;) € L(H).
If L € Lie(p) and H = G(L), then the map

log: L =H — L(H)

is an isomorphism of Lie algebras. Therefore, the functor H — L(H) is inverse to
the functor L — G(L).

Let A(L) be the envelopping algebra of L. By its universal property the above
embedding of L in Z,[H]/J[H]? induces the algebra morphism

a: A(L) — Z,[H]/J[HP.
If J(L) is the augmentation ideal of A(L), then for 1 < s < p,
a(J(L)") = J{H]*/T[H],

(in fact, o mod J(L)P is the isomorphism of algebras A(L)/J(L)? and Z,[H]/J[H]?)
and the above equality (1) implies for 1 < s < p that

LNJ(L)® = Cy(L).
This gives the following proposition:



Proposition 1. If L € Lie(p), then
(a) the natural embedding L — A(L) induces for s > 1, injective morphisms

Co(L)/Csy1(L) — J(L)*/J(L)*+;

(b) the truncated exponential exp induces the injective map

&P : L — A(L)/I(L);

(c) the correspondence L — exp(L)mod J(L)? gives a construction of the equiva-
lence G : Lie(p) — Gr(p) in terms of envelopping algebras of Lie algebras from
Lie(p).

Remarks. 1) The parts (b) and (c) of the above proposition are formal consequences
of the part (a). If all C4(L) are direct summands in the Z,-module L, then (a) can
be proved immediately by the special choice of a system of generators of L, cf. [Kn]
where the case of Lie algebras over a field was considered; the same argument was
also applied in [Ab1].

2) It can be shown that in notation of the above proposition, the group exp(L)

is the group of “diagonal elements moddegp”, i.e. the multiplicative group of
a € A(L)mod J(L)? such that

Aé=éa®amod J(L & L)?,

where A : A(L) — A(L & L) = A(L) ® A(L) is the diagonal morphism and
a € A(L) is such that amod J(L)? = a.

We need also a slight generalization of the above construction.

Assume that R is a commutative ring with unity which is a flat Z-module. If
L € Lie(p), then A(Lr) = A(L)® R is the envelopping algebra of the Lie R-algebra
Lr=L®R,and J(Lg) = J(L)® R is its augmentation ideal. The flattness of R
with the above proposition 1 gives

Proposition 2.
(a) The natural maps Co(LRr)/Csy1(Lr) — J(Lr)*/J(Lpr)**! are injective;

(b) exp induces the embedding exp : Lp — A(LRr)/J(Lg)?;

(c¢) if Lp« is the Lie algebra over Z, obtained from Lg by restriction of scalars
Z, — R, then exp(Lr) ~ G(LR) and eéxp induces a bijection between the set of
ideals of the Lie algebra Ly, and the set of normal subgroups of the group exp(Lg).

1.3. Nilpotent Artin-Schreier theory.

Let L be a finite Lie algebra over Z, of a nilpotency class < p. The nilpotent
version of Artin-Schreier theory from [Ab2] gives the following properties:

a) If ¥ € Hom(T', G(L)), then there exist f € G(L ® O(Ksp)) and e € G(L ®
O(K)) such that of = foeand ¥(7) = (vf)o(—f) for any 7 € T;

b) If e; € G(L ® O(K)), then there exists fi € G(L ® O(Ksep)) such that
oft = fi1 oey, and the correspondence 7 — (7f;) o (—f1) determines the group
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homomorphism 3, : T — G(L). The conjugacy class of 3; does not depend on
the choice of fi;

¢) In the above notation, ¥ = #; if and only if there exists ¢ € G(L ® O(K))
such that fy = focand ¢ =(—c)oeo(oc).

Let Z*(p) = { a € N | (a,p) =1 } and Z%p) = Z*(p) U {0}. Choose & € W (k)
such that Try(x/z, (@) = 1.

Lemma. Ife € G(L @ O(K)), then there exists ¢ € G(L ® O(K)) such that
(—c)oeo(oc) = Z t~ % Dyo,
a€Z’ (p)

where all Do € L @ W(k), a™' Dy € L and the set

A={a€Zp)| Dao#0}

is finite.

Proof. We use induction on s > 1 to prove this statement modulo Cs(L) ® O(K).
If s =1 there is nothing to prove.
Suppose that

(=c)oeo(oc) Zt_“Dao mod C,(L),
where s > 1, ¢ € G(L® O(K)) and the elements Do mod C,(L ® W(k)) satisfy the

statement of our lemma. Then

(~c)oeo(oc)= > t™*Dy+ Y tlhmodConi(L®W(K)),
e €Z°(p) b>—o0

where all [y € C,(L @ W(k)).
fl=> 0 t¥ly, then I, = all, — I, where

lil- = Z Jnl+

n>0

Consider I- = 7, t81,. This sum is finite. If b < 0, then there exist the unique
ay € ZT(p) and ny € Zyo:= {n € Z | n > 0} such that —b = ap™. Let

9= e gnomg,
0<n<ny

Then t%1, = ar(lg’)) —1® t™® (a7 ™). So, if I =3, ¢ I then

o=l =14+ 7% (0" ),
6<0

If Iy = 37, wiloi, where all w; € W(k) and ly; € L, then
w; = aTrw; + crwz — w:«
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for some w} € W(k), because H*(Gal(k/F,), W(k)) = 0.
So, if I = 3, wilos, then Iy = olfy — Iy + a 3, Tr(w;)lp;.
Thus, for ¢' = ¢+ I}y + 1 +1_, we have

—cNoeolad) = t—ep! mod Cy4q1(L),
al
a€z°(p)

where a™'Djy = a ' Dyg + ¥ ;(Trw;i)ly; € L and for a € Z*(p),

Dgo = Do + Z o™ .

ar=a

The lemma is proved.

In the notation of the above lemma we set Dy = a~!Dg. For any o €
Hom(T', G(L)), the above lemma implies the existence of f € G(L ® O(Ksep))

such that
of =fo( Y t"Dao)
e€Z°(p)

and (r) = (7f) o (—f) for any 7 € T. Choose a basis a1,..:,an, of W(k) =~
W(F,~, ) over W(F,). If for 1 < < Ny and a € Z1(p), the elements D,(;) € L are
such that Dgo = leisNo ain:), then the group Imy C G(L) is generated by Dy
and all Df,", where 1 < < Ny and a € Z*(p). Thus, ¢ is a group epimorphism
iff the above elements Do and D generate the Lie algebra L (or equivalently,

the elements Dy and 0™ D,o, where a € Z+(p) and 0 € n < Ny, generate the Lie
W(k)-algebra L ® W(k)).

1.4. The structural constants n(n,...,n,).

If1<s<pandng,...,n, €Z, define constants n(ny,...,ns) € Z, as follows.

If there exist 1 < 8y < 52 < --- < 8y = s such that ny = - =ny > ng,41 =

C =My, > e D> Mgy 41 = - = Ny, (= n,), then we set

1
N1y...,Mg) = ,
77( ! ’ 3) 31!(32—31)!...(31—3(_])!

otherwise we set n(ny,...,n,) = 0. We extend this definition by setting for s = 0,
n(ny,...,ns) =n(d) = 1.
Lemma.

(a) If 0 < s7 £ s < p, then for any n4,...,n, € Z, we have the identity

(1, e N(May 41,00y Ng) = Z N(Mn(1)s - -+ (s )s

ﬂ'EIala
where I, 4 is the subset of substitutions = of order s such that #=1(1),...,771(s1)
and #=1(s1 + 1),...,771(s) are increasing sequences in [1,s] (i.e. I, , is the set of

all “insertions” of the set {1,...,s,} into the set {s, +1,...,5});
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(b f0<s<pandny,...,n, € Z, then

> (=D (), ) = S0,

0<t<s

where 6 is the Kronecker symbol.

Proof. Assume that a < ny,...,ny < b for some a,b € Z. Consider the free
Lie algebra L over Z, with generators D,, where a < n < b. Denote by A
the envelopping algebra of L and by J its augmentation ideal. Any element
of Amod J? can be uniquely presented as a linear combination over Z, of the
products Dy, ...D;,, where 0 < s < p and i;,...,7, € [a,b]. Similarly, any el-
ement of A @ Amod(1 ® J + J ® 1)? can be uniquely presented as a Z,-linear
combination of Dj, ... D;, ® Dj, ... D;, , where sy,s2 2 0, s1 + 82 < p and
ila"wisnjla""j-’z € [a’b]'
Consider the diagonal algebra morphism

A:AmodJ? — AQ Amod(1Q® J + J ®1)?

given by the correspondences Dy, = 1 Q® D, + D, ® 1 for all n € [a, b)].

Let ¢ = exp(Ds)exp(Dp—1)...exp(Da), where exp(z) = Y ocic, z' /il is the
truncated exponential. From the above definition of the constants n(n,,...,n,) it
follows, that

emod J? = Zn(nl,.. 1) Dy .. Dy,

where the sum is taken for 0 < s < p and ni,...,n, € [a,b].
The identity of the part (a) is implied now by the property

Ace=e®emod(1®@J+J@1)P.
The identity (b) follows from the expansion

e~ =&xp(~Da)...exp(—Dp)mod JP = > (=1)*n(n,,...,n1)Dn, ... Dy
0<s<p

and the property e~ 'e = 1mod J?.

1.5. The field K(N,r*).
Let N € N, ¢ = p" and let r* > 0 be such that 7*(¢ — 1) = * € Z*(p). We use
the following generalization of the Artin-Hasse exponential

(o, X) = exp (aX + (0a)X? [p+ -+ + (') X7 [t 4. ) e W(R)[[X],

where o« € W(k).



Proposition. There exists an extension K(N,7*) of the field K such that
(a) [K(N,r*): K] =g;

(b) The Herbrandt function 3 of the extension K(N,7*)/K equals

z, for0 <z <r*
(z—1%)/qg+r*, forz>r*

v ={

(c) There exists a uniformising element t{, of the field I{(N,r*) such that

to = t{]qE(l, tab‘ )_1 .

Proof. Let v* = m/n, where m,n € Nand (m,n) = 1. Then m,n € Z*(p), n|(¢—1)
and m|b*. Take ug € Keep such that uff =to. Then L = K(ug) is a totally ramified
extension of K and [L : K] = n. Take U € Kgep such that U +r*U = u; ™. Then
L' = L(U) is a totally ramified extension of L, [L' : L} = q and L' = K(U). Set
K'=K(U"™) Cc L'. We want to verify that the field K' can be taken as I{(N,r*),
i.e. it satisfies the properties (a)-(c) of our proposition.

Lemma. [L': K'|=n. = -

Proof. Denote by K,; the maximal unramified extension of I in Kgp and set
Ly = LKy, K|, = K'K,; and L. = L'K,,;. Because L is totally ramified over K

ur

it is sufficient to prove that [L, : K] =n.
Clearly, L, is a Galois extension of K, and there exists 7 € Gal(L{,/ K}, ) such
that 7" = id and Tug = yug, where v € I{y, is a primitive root of unity of order n.
Because n|(¢ — 1), we have v? = v and therefore 7U = 4y™™U + a, where o € Ky,
is such that o? + r*a = 0. We can assume that n > 1. If § = o/(y~" — 1), then
B+ 7r*B =0 and for Uy = U + B, we have U{ + r*Uy = u; ™ and 7U; = vy~ "U;.

Therefore, L) = Ly(U;) = Ky(U1) has the degree n over Ky (UJ'). Applying
an automorphism of the group Gal(L} /K,;) which transforms U; to U we obtain

[Li, : K};] = n. The lemma is proved.

The above lemma implies that K' is a totally ramified extension of I of degree

q.
The extensions L/K and L'/K' are tamely ramified extensions of degree n,

therefore their Herbrandt functions are equal ¥, (z) = % /i (2) = z/n for
z > 0. For the extension L'/L, we have

b _{3’, for0<z<m
B (z—m)/qg+m, forz>m.

By the composition property of the Herbrandt function we obtain, that
(@) =Yk W () = (/n)r ()

and

i k() =P x (o k0 (x)) = x(z/n).
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Therefore for z > 0, we have

b w2) = S i) = { for 02 <7
KT RGP T (@ =) g 0%, for @2t

Note that U™ = »[™, where u, is a uniformising element of K'. This gives
U1 =" and '
1

urmq (1 + :r'"ull") =t,".

Therefore Lo
aud (1 + r*ull") =tg

for some « € K’ such that o™ = 1. Because (m,¢) = 1, there exists a3 € K’ such
that af = a. If u2 = aju; then up is a uniformising element of K', ud" = %

(because m|b*), and
—-1/r"
=1g.

ud (1 + r*ug‘)

This gives
to = ul(l—ud) = wIB(~1,u8 Y modul™® .

Now a suitable version of the Hensel Lemma gives the existence of ¢; € I’ such
that t) = ug modud ™' and ¢y = tf B(—1,t%").

The proposition is proved.

1.6. A characterization of the ideal H(I'(¥0)) = L{¥o),

Choose M € Z>q such that pM*'L = 0. Clearly, L ® O(K) = L @ Opr41(K)
and L @ O(Kgep) = L ® Onmr+1(Koep). As earlier, suppose that ¢ : I' — G(L) is
given by the correspondence 7 +— 7f o (—f), where 7 € T, f € G(L ® O(Ksep)),
€= ezt "Dao EGLBO(K)) and of = foe.

We can use the uniformizer £ of the field o™ K to construct the lifting
On1(0MK) = Wi (e*M K"
of the field oM I and the lifting
Om11(0M Koop) = War 1 (02 Koep )17 ]

of the field JMKsep. For any n € Z, we also use the notation 6" D,g = D,,,.

With the above notation we obviously have
oMe = Yzt Damt € L® Oppi(oMK), oM f € L@ Opgr(oMKeep),
o(e™Mfy=(cMf)o(oMe) and (1) = r(6M f) o (—oM f) for any 7 € T

Let vy be a positive real number. For the ramification subgroup I'(*®) of T, we

set
I(ve) — ‘d)(F(”")).

Clearly, L(®) is an ideal of the Lie algebra L.
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Choose N* € N and 0 < r* < wvp such that r*(¢ — 1) = b € Z™(p), where
q=p"". Consider the field K' = K(N*,r*) C K,ep and its uniformising element ),
cf. n.1.5, to construct for any N € N, the liftings of K’ and K, , = K¢, modulo p".
We use the following notation for these liftings: O\ (K') = Wn(oV 1 K")[t)] and
O'v(Keep) = Wa (0N 1 Kgep )[t1], where t; = [th] € Wa(K'), O'(K') = lim Oy (K")
and O'(Ksep) = ¥i1_n0f,\,(ffsep). Clearly, the embedding K C K’ and the identifica-

tion Keep = K¢

induce the embeddings
Op4+1(c™ K) C W1 (oM K) C Warsa (6™ K') C Ol g (K') € Wi (K'),

OM+1(UMKSEP) - I'VM-H(UMKSEP) - OiM+1(K98p) C W1 (Kep ).

These embeddings allow us to relate constructions of the nilpotent version of the
Artin-Schreier theory for different liftings O(X') and O'(K").

Lemma. With respect to the above embedding Op41(c™K) C O}y 1 (K') we
have M M M
2 =1 B(1,¢5 )P

Proof. Denote by V : W1 (K'Y — Wars1(K') the “Verschiebung”, i.e. the o7*-
linear morphism given by the correspondence (ay, asz,...,ap+1) — (0,a1,...,apnm).
Clearly,

t = tE(1,1) 7 mod VW (K7),

and for any s > 0, we have
2" =19 (1,857 mod VI Wy (K).

The lemma is proved, because VM1 Wy, 1(K') = 0.

Let e; = Zaez"(p) t7°Da,—N+ € G(LRO'(I")) and choose fi € G(LYO'(Ksep))
such that of, = f1 0o e;. Because oM f € G(L ® O(¢M Kyep)) C G(L @ O'(Ksep),
there exists X € G(L ® O'(Ksep)) such that

oMf=(eMtN" f)o X.

If J is an ideal of the Lie algebra L, denote by K';(X) the field of definition
of X mod(JO'(Ksep)) over K'. By definition, K}(X) = KBIZS(X), where H ;(X)
is the subgroup of I'' = Gal(Ksep/K'), which consists of 7 € I such that 7X =
X mod(JO'(Ksep))-

Denote by v(X) the maximal upper ramification number for the extension
K%(X)/K'. By definition, v/;(X) is the number such that the ramification sub-
groups I"(*) of the group I' act trivially on K%(X) if and only if v > v;(X) (the
existence of v';(X) follows from left-continuity of the ramification filtration).

Forv > 0, let J,(X) be the set of ideals J of the Lie algebra L such that v/;(X) <
v. If Ji,J2 € Jy(X), then o)) ;. (X) = max(v] (X), 0] (X)) and therefore J; N
J2 € J,(X). Therefore, the set J,(X) has the minimal element J)(X).
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Proposition. L(*o) =J' _ (X).

qvo

Proof. If J is an ideal of L denote by K ;(f) the field of definition of the element
fmod(JO(Ksep)) and by vy(f) the maximal upper ramification number of the
extension K ;(f)/K. Clearly, L(**} is the minimal element in the set J,,(f) of
ideals J of L such that v (f) < vg.

Our proposition will be proved if we verify, that Ju,(f) = J;,, _s- (X).

Let J be an arbitrary ideal of L. Note, that the correspondences o™V" : k — k,
to = ty, t — t1, e — e; and f — fi determine an isomorphism of the extension
Kj(f)/K with the extension K'%(f)/K’, where K')(f1) is the field of definition
of fimod(JO'(Ksep)) over K'. Therefore, vy(f) = v'(f1), where v;(f1) is the
maximal upper ramification number of the extension K'/(f,)/K'. We also note,
that v}y f1) is the last edge point of the graph of the Herbrandt function ¢y (s,) /-
Then the equality Yx s,y x = Yr,(f1)/50 © Picoryic Gives for the maximal upper
ramification number v;(f1) of the extension K’,(f;)/K, that

@5(f1) =) q+r~, ifoi(fr) 27
vy(fi) = { ) s .
r*, if v (fr) <™.

In the both cases, we have vy(fi) < max{r*,v;(f)} and vs(fi) > vy implies
v7(f) > vs(fi) (we remind that 7* < vp).

Because, K (o™ f) = K;(f) and K'(eM*N" f;) = K (f1), the equality X =
(—oMAN" f1) o (oM f) gives K)(X) C K j(f)K'(f1). Therefore, if J € Jpy(f) and
vy(X) is the maximal upper ramification number for the extension K;}(X)/ K, then
vy(X) < max{vs(f),vs(f1)} < vo. This is equivalent to the inequality v'}(X) <
quo — b*,ie. J € Ty, e (X).

IfJe J;vo_b.(X) and v(f1) = vo, then vy(f) > vy(fi) = max{vy(f1),vs(X)}.
This contradicts to the embedding K ;(f) C K'(f1)K(X). Therefore, v;(fi) < vo,
vi(f) = max{vs(f1),v5(X)} < vy and J € J,,(f). The proposition is proved.

2. The Lie algebra £°(A) and its filtration {£%(4,v)},>0.

2.1. Let A C Z%p) be a finite subset and A*™ = A\ {0}. Denote by £(A) the
free Lie algebra over W(k) with the set of generators

{D™ | ae A%, me Z/NZYU { Dy |if 0 € A}.

Let o be the Frobenius automorphism of W(k). Define o-linear automorphism o

of L{A) by correspondences o : ’ng) s DY i € Z*(p) and m € Z/NoZ,
and oz : Do — Dy if 0 € A. We shall use later the simpler notation o, = 0. Fix
o € W(k) such that Try )z, @ = 1.

Ifnce Z’ we set D,, = Dgand No) fae A+, and Do = (O'nCB)D(), if 0 € A.
Clearly, 0Dyn = Dy nt1 for any a € Z%p) and n € Z.
It is easy to see that

LOA)={leL(A)|ol=1}
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is a free Lie algebra over Z, and L%(A4) @ W(k) = L(A).

In this section the set A will be fixed, so we can use the simpler notation:
L(A) = L and L°(A) = L°.

We use the following notation:

(a,7) = (a1,n1,...,a4,n4), where 1 < s < p, a,...,a, € Aand ny,...,n, € Z;

if N € Z, then 7 > N means ny,...,n, > N (in the same way we use the
notation # < N, 7 > N etc.);

(@, ) = a1p™ + - + ap™;

if n € Z, then n* =n for n > 0, and n* = —oo for n < 0 (in this case p™ =0).

For v > 0 and N € Z, consider the element

Fy-N= Z(—l)’n(nl, v o315)a10™ [ [Daynys Daginabs - - - » Payn)

of the Lie algebra £, where the sum is taken for

(3,7) € My -n(4) i= { (87) (@ 7) = voms 2 -+ > 1y > =N }

(it is easy to see that this sum has only a finite number of nonzero summands).
For v > 0, denote by Ln(A,v) = Ln(v) the minimal o¢-invariant ideal of L,

which contains all 7, _n with v > v, and the ideal Cp(L) of commutators of order

> p. Forany N € Z, L(v) := Ln(v) N LP(A) is an ideal of the Lie algebra £° and

we have LY (v)W(k) = LY (v) @ W(k) = Ln(v).

2.2. For 4 > 0, consider the set
M(AY)={(a,n) |a1,...,as € A*\ny 2 2 n,,¥(a,7) =7 }.
It 1s easy to see that M,(A%) is a finite set. Therefore, we can define
N(y,AT)=min{ N€ Z |a >—-N ¥(gnr)e M, (A") }.

Definition. Let v > vy > 0. Then (,7) € M,(A4%) is (vo, A1)-bad, if for any
0<t<sand~y =7v(an):=ap"™ +- -+ ap™ we have either v, > vy and
N1 2 _N('Yt_vA-l-)a or 7t_ < Yo.

The following properties are immediate consequences of the above definition:

a) if (@, n) = (a1,n1) and a;p™ > vy, then (@,n) is (vo, A1)-bad;

b) if (a,n) € My(AT), ¥ > vo and v — a,p™* < vy, then (a@,7) is (vg, A*)-bad;

c) if (@,n) is (vo,AT)-bad and v, , = a;p™ + -+ + ay—1p™* -t > vy, then
(e1,n1,...,a5-1,ns—1) is (vg, A1)-bad;

d) if (@,n) is not (vg, AT)-bad and v(@,n) > wvp, then there exists the unique
indice s1 < s such that (aj,n1,...,as,n4) is not (v, A*)-bad for 5; < s’ < 5, and
is (vo, A*)-bad for s' = s;. In particular, v, = a;p™ + -+ + a5, p"1 > vy and
“N(T;>A+) > N 41 200 2 N,

2.3. For M € Z, denote by By = Bas(vg, AT) the set of (vg, A1)-bad collections
(@,n) such that 7 < M. Clearly, By = @ for sufficiently small M.
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Proposition. The set By is finite.

Proof. If # = (a,n) € M,(AT), where vy > vy, set
mo(r) =max{ 0<t<s | v, =ap"' + - +as—p™ "t > v }.

We want to show that there exists only finitely many m € Bjs with a given value
of mg(m).

Lemma. There exists

6(U0,A+) = rniu{ Vo —M | N < UUsM‘h (A+) # 0 }

Proof of lemma. For 1 < sp < p, denote by M, ,,(A") the subset of M, (A1),
which consists of collections (@, 7) of length s < sg. We use induction on sy > 1 to
prove the existence of

bay = Sual0y AT) 1= min{ 00 — 71 | 71 < v, Moy so(A*) 70 ).

The existence of §; is obvious. Assume that sg > 2 and 65, exists. Clearly, there
exists yo € (vo — 859—1,v0) such that My o (AT) # 0. It is sufficient to prove the
existence of only finitely many v’ € (70,v9) such that M., (A1) # 0.

Let (@,n) € My 4(AT). Then ay,,p™o > 49 — (vo — ds9—1) = &' > 0. This gives
the existence of N* = N*(A*,§') such that ny, > N*. Therefore, (a, ) belongs to
the finite set

{(a,n) | 1<s<s0,n1,...,ns 2 N* y(a,n) <wo }

The lemma is proved, because §(vy, A7) = 6,_.

Continue the proof of proposition by induction on mo(w).
Let mo(n) = 0, i.e. v — ay,p™ < vp. Then agp™ > §(vg, AT) and all 7 € By
with mg(7) = 0 belong to the finite set

{ (@,7) | N*(4%,6(vo, AY)) < ny,...,ne <M Y.
Assume finiteness of 7' € By with mo(7') < m*, where m* > 1. Let
N(m*,vo, AT) = min{—N(y', AT)| 37" € ByNM, (A") such that me(7') < m* }.
If # = (a,n) € By and mo(n) = m*, then m; = (a1,n1,...,a0s-1,7s—1) € By and
mo(m) = m* —1. Therefore, n, > —N(v(m1), AT) > N(m*, v, A1), and 7 belongs

to the finite set { (a,n) | N(m*,vo, A7) <ny,...,ns <M }.
The proposition is proved.

2.4, Let T'g ={ v(a,n) | (a,n) € By for some M € Z }.
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Proposition. There exists max{ N(vy,A%)|vye g }.

Proof. Consider My = My(At,v) € N such that apM° > vo for all @ € AT.
Let M > My and (@,7) € By \ Bym—-1. It follows easily from the definition of a
(vg,A+)—ba(1 collection that (a1, Mo — M + ni,...,as, My — M + n,) € By,, and
therefore

max{ N(v,A") | v € Tp } = max{ N(v,AT) | v = +(a,7),(a,7) € Bu, }

exists. The proposition is proved.
2.5. Let Ng(vo, AT) = max{ N(y,A%) | y€T'p }.
Proposition. If N > Np(vo, A1), then Ln(A4,v0) = Ly (vo,4+) (4, v0).
Proof. For v € I'p, consider the set B, C M,(A™") of all (vg, AT)-bad collections
(a,n) such that y(a,n) = 7.
Define the subset M(By) C M, y(4,4+)(A) consisting of collections (@,7n) such

that if we remove from (a,n) all {ai,n; | 1 <1 < s,a; = 0 }, then we obtain a
collection (a@',7') € B,. So, for all v € I'g, we can define the elements

fB7 = Z(—l)s_lﬁ(m, - ;ns)alpﬂ; [ v [Dmﬂwpaznz]a v ﬂDﬂa"-]

of the Lie algebra £, where the sum is taken for (d,7) € M(B,).
Denote by £Lp the minimal o¢-invariant ideal of £, which contains all Fp, , where
v € ', and Cp(L£). We want to prove, that Ly(A,v) = Lp for N > Np(vg, AT).

Lemma 1. For any v > vo, we have F., _n(y. a+) € Ln(A,v0).

Proof of lemma. If (a,n) € Myn(A), then there exists the unique indice s; <
s such that (a1,n1,...,a4,7s) € My _N(y,a4)(A), ts;41 = -+ = ay = 0 and
—N(v,AT) > ng 41 2 -+ 2 ny, > —N. This gives

Fy-N= (id—l— Z(—l)tn(ml, co.,my)ad Dy, 0+ 0 ad'DO,mt) F o = N(,A+)s

where the sum is taken for t > 1 and all —-N < m; < -+ <my < =N(y,4%).
Now the lemma follows, because the operator in brackets of the above equality is
invertible.

The following two lemmas can be proved similarly by applying the property d)
of (vg, A1)-bad collections from n.2.2.

Lemma 2. For any v > vy, we have Fy _ny € Lp.
From the above nn.2.3-2.4 it follows, that 'z = { 41,72,--- }, where vg < 11 <
v2 < ... (in the archimedian topology v, — +00, in_the p-adic:topology=y;.— 0).

For n € N, denote by E(Bm) the ideal of £ generated by {Fp, |1 <¢<m } and by
Cp(L).

15



Lemma 3. For any m € N we have
f?ml_N(TmyA‘i-) = fBﬁ'm mOCIEgTI)'

The lemma 2 gives that Ly(A4,v0) C Lp.

By the lemma 3, the ideal Lp is the minimal o-invariant ideal of £ such that
F o =N(vm,a+) € L for all m € N. So, the lemma 1 implies that L5 C LN (A, vo).

The proposition is proved.

2.6. Now we can set L(A4,v0) = Ln(A,v0) and L%(A4,v0) = LY(4,v0) =
Ln(A,v0)N LY where N > Np(vp, AT). We also define the integer

N(vo, AV =min{ N € Z | LY (4,v0) = L2(A4,v0) }.

The filtration {L£(A,v)}y>0 is a decreasing filtration of o-invariant ideals of the
Lie algebra £. The filtration {£°(4,v)}y>0 is a decreasing filtration of ideals of
the Lie algebra £° The set of jumps of this filtration is contained in the set
{~v]| M,(AT) # 0 }. The lemma of n.2.3 gives, that for any vy > 0, there exists
§ = &(vo, AT) > 0 such that £(A,v) = L(A4,vp) and L%(4,v) = LY(4,v0) for any
v € (vg — ,vp). In particular, the filtration {£°(A,v)},>0 is left-continuous.

3. Estimations in the envelopping algebra A(L) @ O(K').

In this section A is a fixed finite subset of Z%p). We use the notation from
n.2.1 with omitted indication to the set A. The main result of this section is the
proposition of n.3.10. We use this proposition for the study of the ramification
filtration of the group I' in the section 4.

3.1. Notation and agreements.

Fix a positive real number vy.

If §(vg, A) is the rational number from the lemma of n.2.3, choose 0 < § <
min{§(vy, A1), v0/3} such that vg — § € Z[1/p).

Choose 0 < € < v9/3 such that vg + ¢ € Z[1/p].

We choose N € N and r* € @ such that if N* = N +1and q=p"", then

N > max{ N(vo, A%), N(vo + ¢, A1) }, ¢f. notation of n.2.6;
a*:=q(vo—8) € pN and q(vp +¢) € N;

b*i=r*(q - 1) € Z*(p);

(vo — 6)(q +P)/(g — 1) < r* < vo.

We note that £L%(vy) = Eﬂﬁ(vo), Lvo+e) = C%(vg +e¢), and the above inequality
for r* gives g(b* — a*) > pa*, in particular, b* > a*.

Consider the field K' = K(r*, N*) and the element ¢, = [t;] € O'(K'), where
ty is the uniformising element of K', ¢f. n.1.5. For N < N and arbitrary v, we
have either 7, _n = 0, or ¢y € pN. In particular, the expression F, _nt] 77 is
well-defined in the Lie algebra £° ® O'(K'). We note also that tl_q“"’_l ) tl_q(”"“) €
O'(K").

We use the following abbreviated notation:

O, = O'(K") = W(k)((t1)), Oo = W(k)[[1]};
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A = A(L") is the envelopping algebra of the Lie algebra £° = L°(4), and
J = J(L°) is its augmentation ideal;

In the algebra A; := A® Oy we set J, = JO; and Jo = JOy;

Ai(vo) and Ay(vo + €) will denote the minimal 2-sided ideals in the O;-algebra
Ai, which contain £%(vg) and £%(vg + ¢€), respectively;

For s € N, we set C,{A1(v)) = EOS31<8 Jf1A1(Uo)Jf_l_al.
Af (vo) = Ca(As(v0)) + Ar(vo + €) + pAi(vo);

As in n.2, (@,n) = (a1,n1,...,0a4,n,), where 0 < s < p, a1,...,as € A and
Ny,...,Ns € &;

For a € A, n € Z and | € Z 3¢, we define the power series ex;(a,n) € Zy[[X]] as
follows: :
exp(ap" ! XP), forn >

exi(a,n) = exi(a,n)(X) = E(a,X”J), forn =1
1, forn < I,
where F is the function from n.1.5.

If0<t<sand(an)=(a,n1,...,0,n,s), we set

exu(a,n) = exi(aeq1,nes1) . .. exi(ag, ny)
(by definition, exjs(a,n) = 1). If ¢ = 0 we use the simpler notation ex;(a,n) =
exyo(a, ).

The results of the substitution X = ¢! in the above power series we denote by
&(a,n) = ex)(a@,n)(td ) € O and (@, ) = exu(@, 7)) € Oo.

Dan = Dayny -+ Da,n,, where Dy, pn, for 1 <1 < s, are the generators of the Lie
algebra £ from n.2.

Proposition. For any v, we have

(a) F,_5t7 77 € Ai(vo) + 17 Jo;

(b) f'r.—f\"ftl_ﬂ € Ai(vg +¢)+ t;q(”°+‘)JO_

Proof. If v > vg, then .7-'1 _I-\;tl—‘” € Ai(vg). If v < vy, then ¥ < vo — 6 and

F, i€ tfa' Jo, because a* = ¢(vg — §). The part (a) is proved. Similar

arguments prove the part (b).

3.2. Let v(@, %) = a;p™ + - + a,p™ = 2 nizo @p™, and for 0 <t < s, set
voi(a, ) = at+1p":+1 + -+ a,p™ (¢f. n.2.1 for the definition of n*, where n € Z).

Proposition. For any v > 0 and N € Z,

Foen =3 (=1 n(ne, . man(nert, - ne)v0:(@, 7) Dan,
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where the sum is taken for 1 < s < p, 0 <t < s and all (a,7) such that vy(a,n) = v
andn > —N.
Remark. If 0 € A then the right-hand sum contains infinitely many summands. In

this and similar cases we set

F‘f’_N = liI‘Il f*j,—N,l)
I—+4o00

where F. _n is the part of the right-hand sum which contains terms with n < [.
In our case it is easy to see (by applying the identity of the part (b) of the lemma
from n.1.4, cf. also the proof of lemma from n.3.3 below), that if lp = lp(y,4) € N
is such that p'oa > v for any a € AT, then Fo-npy =Fy-nyi, if il 2 1g(A, 7).

Proof. For 1 < s < pand 1 €t < 3 consider the subset &4 of substitutions 7 of
order s such that 7(1) = ¢ and for any 1 <! < s the subset {n(1),...,7(])} of [1,s]
is “connected”, i.e. there exists n(!) € N such that

{r(1),...,7(D)} = {n(D,n(D)+1,...,n() +1-1}.

By definition, we set @49 = P, 441 = 0.
Set B,(n) = Eﬂed,” N(Mr(1)s -+ () for 0 < ¢ < 5. We note that Bo(n) =
Bst+1(7) =0, By(7) = n(na,...,n,) and B,(7) = n(n,,...,n1).

Lemma 1. For any 0 <t < s, the set ®,, U @, 41 is the set of all insertions of
the set {t,...,1} into the set {t +1,...,s}, i.e. m € @50 U B, 141 if and only if the
sequences {r~1(¢),..., 771 (1)} and {=~ (¢t +1),...,77*(s)} are increasing.

The proof of this lemma follows easily from the above definition of the set ®,;.

The following lemma is implied by the property a) of lemma of n.1.4 of the
structural constants 7(#).

Lemma 2. For 0 <t < s, we have

By(n) + Bit1(n) = n(ne, . .. yn)n(negr, .. -y s)-
Lemma 3. For indeterminates X,,..., X, we have the identity

(_ﬂl)t—lxﬂ.—l(l) e Xﬂ.-1(3) = { . [XI:XZ], . ,Xs].

We omit the proof, which can be obtained by simple combinatorial arguments.
Now we can rewrite the right-hand side of the equality of our proposition in the
form
> (DB (0,1(3, ) = 0u(@, 7)) Das =

1<tLs<p
y(a,n)=+y,n2—N

Z (=1)° Z (_1)t+1Bt(ﬁ)atPn:'Daﬁ =

1<s<p 1<1<s
7(&)7—1):71171;“’1\"
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Z (_1)3 Z (—'1)£+]77(n1r(1)a o anﬂ(s))atpn:Dﬁﬁ =

1gs<p 1€t
y(a,f)=v,~iz2—N TER,
T {+1
Z (=1)"n(n1, ..., ng)arp™ Z(“l) D"rl(n)’"z—l(x)"'D"’x-lca)'"r-l(-)'
1€s<p 1€tLs
v(a,n)=v TEP,.

AZ—N
By the above lemma 3 the last expression equals F., _x. The proposition is proved.

3.3. For v > 0 and N,! € Z such that — N < [, we set

Cl =8+ Y (- n)Dan, Ch _ny =650+ Y _(—1)'n(n1,. .., ne)Dan,

Frong= Y (1) > (=D)'5(ne- - sna)n(nets, ., ns)v0(@ 7)Daa,

0gtgs
where § is the Kronecker symbol, all three sums are taken for 1 < s < p and
collections (@, #) such that y(a,7) =y and -N <n < L.
Lemma. For+y > 0 and N,! € Z such that —N < I, we have

I H
F. —N = f‘y,—N,l -+ Z C')![,-N,lf‘)"y’C'y;,—N,lInOd J]p

T+Y Fv2=y

Proof. We have

‘F‘Y,‘—N bl .7'— —N1= Z (—-1)"&(&,1‘1)1%,—.,

y(a,r)=~y
max fi 2{

where a(@,7) = 3 5, (1) - )0(Megr, - ) v06(@, 7).
Let t; = t1y(7) = min{ ¢t | ny > 1 } and ¢t = {3(A) = max{ ¢t | ny 2 [ }. Then
from the part (b) of the lemma from n.1.4, it follows that

o(a,n) =

STCTRTRUUTTS T PRURUUUE 0 § Y G § L1 PR 0 1 RTUUPO N ST € 20

where v(¢,4,)(@, ) = at+1p":+l +-- -—}—at,p":z and the sum is taken for t; —1 < ¢t < #5.
From the definition of the structural constants 7(72) it follows that «(a,n) # 0
implies ny > { for all ¢; <t <t,.

It is easy to see now that the above expression for a(a, ) gives the statement of
our lemma.
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Proposition. N
(a) Ifl € Zyo and —N <7 <, then

—qg~(a.7 —atp— i
Dﬁﬁtl fI‘Y(a,n) e Al(vo) + Z (tl P ljo) + le;
121

(b) If 1 € N, then Fp 7?7 € Ai(vo) + Ty (t;“"’"‘Jo) +J7.

Proof. We use induction on 2 < 39 < p to prove the formulae (a) and (b) modulo
J7e. :
' Let sq = 2.

If s > 2, then Dz € Co(L). If s =1, ie. (a,n) = (a,n) with a € Z*(p) and
~N<n< l, then Dy, = (1/a)o™(Fa,—n)mod Co(L), with arbitrary N > —n. If
we take N = I’\VT, then for ¢ > vy, we have Dy, € L(vp) + C2(L) and Dant]_q"'(a’") €
Ai(vo) + JE. If @ < vy, then a < vg — § and Dantl_ﬁ(a’n) € t]-a*pl-IJo, because
n < 1. So, the formula (a) is proved modulo J3.

Let [ > 1. If v ¢ p'N, then F,; = 0. Otherwise, F,; = F. _n mod Co(L), with
arbitrary —N < [. Therefore, if v > vy then Fy 27?7 € A1(vo) + JE. If v < vy then
v <wvo—6and Fyt; % €7 Jo. So, the formula (b) is proved modulo J2.

Assume that the relations (a) and (b) are proved modulo J;°, where 5o > 2.

From (a) it follows now that for s > 2 and _N <n <, we have

_ A.f _a- =1 H S0
(1) Dant; ™ € CaAi(v0)) + 3 (t, P JO) + gt
i>2

We obtain also from (a) that for any v > 0 and [ € Z >,

— - —a” =1 i s
(2) (C! g, = 8x0)tT ", (CY _g = 6o )tT " € Aswo) + 3 (47477 o) + .

i>1

Now the above lemma for | € N, and the inductive assumption (b) modulo J;°
give

(3) Fo st =F, _giti "+ Faaty

T

mOdCQ(Al(U())) + Z (ti—a-p’—lJO)i n Jigm-i_]-

i>2

If v € p'N, then fv,—ﬁl is a linear combination of D;; with s > 2, -N <n<l
and y(@,n) = v. So, we can apply the property (1) to estimate F., _fi - Because
[ > 1, we also have

Fo_ 7" € Ai(vo) + 7% Jo + I C Ai(vo) + 7P g 4+ JP
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Now the relation (3) gives the formula (b) modulo J**! in the case v € p'N. If
v ¢ p'N, then F,; = 0, and the formula (b) is valid by trivial reasons. We can use
also this argument in the case = 1 and v = a € Z*(p) to obtain from the above
relations (1) and (3) that

Daot; ™ € Ar(vo) + ) (t;“'Jo) 4 gt
i>1
Ifl € Z>p and n <, then

N
Dant] "™ = 0™ (Daot; %) € 0™ (Ai(vo) + > (tl‘“ Jo) + Jpothy ¢
i>1

JI—I(AI(UO) + Z (t;a‘ Jo)i + J130+1) C AI(UO) + 2 (t]_a‘pt—ljo)i n Jlso_H'
izl i>1

Together with the property (1) this gives obviously the formula (a) modulo Ji¢*!.
The proposition is proved.

Remark. If we apply the part (a) of the above proposition in the case sp = 1 and
(a,n) = (a,0), then the proposition 2 of n.1.2 gives, that
if a > svg, where 1 < s < p, then Dyp € L(vg) + Cos1(L).

3.4. We also need the following modification of the above proposition.

Proposition.
(a) If 1 > 0 and —N < @ < I, then

Daat; "™ € AF (o) 177 VG0 + 3 (577 o) + 71

i>2
(b) Ifl > 1, then

- —q(vo+e —a*pi~! :
Foatt®" € At (o) +477 V00 + 3 (5777 Jo) 4 JP.
i>2

Proof. We use the part (b) of the proposition of n.3.1 and that A] (vg) contains
Co(A1(vo)) + A1(vo +¢). If s > 2, then (a) follows from the formula (1) of n.3.3
for sp = p— 1. In the case s = 1, we can use arguments from the end of n.3.3. For
proving the property (b), we can assume that v € p'N. Then (b) follows from the
formula (3) of n.3.3, where sp = p— 1.

3.5. For v > 0, N € Z and 7 € N set (cf. remark of n.3.2)
Fo-n(t) = Z(—l)”“n(nz, o n)n(re, - ne)Y0e(@, 1) Dan,

Fy-n(0,2) = Z(—l)""tn(nt, e (g1 -1 )70(8, ) Y0:(@, ) Dan,
where the both sums are taken for 1 < s < p, 0 <t < s and (@,n) such that
y(a,i) =yand n > —N.

We note that F, _n(1) = Fy_n; if | 2 0, then F,(0,7) = vF,(2); and if
v ¢ N, then F, (7)) = 0.
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Lemma 1. For~y > 0 and N,: € N, we have

(a) Fy-n(2) = Z Clﬁ_, N,of*r‘,o(i)c—f;Q,—N,OmOd J7;
T4y Fye=7y

)  Fpew(0i)= Y Ol ot Fro()CY _yemod JT.
n+y" +va=y

The proof is analogous to the proof of the lemma from n.3.3.
Lemma 2. For N € Z,: € N and v > 0, we have

E f'h 1)-7'_7:, ( ) fv,—N(i + 1) - fw,—N(Oai) mod le-

Tttv2=7

Proof. From the part (b) of the lemma of n.1.4 it follows that for any (a,n)

Z (=) n(ngy ..., n)0(Regrs - - - 18 )70(@, 1) Dar = 0.
0<t<s

So, if for 0 <t < s, v5,(@,72) = yo(@, 1) — you(@, 1) = ap™ + -+ ap™, then

Fr,-n(1)=— Z (=1)* ' (ng, .o, m)n(nets - - 10 )75,(8, ) Dan

0Ly
(@,n)=m

For computing the left-hand side of the identity of our lemma, we can use the indices
(s',t"), where 1 < ¢’ < pand 0 <t <5, in the above expression for F,, _n(1),
and the indices (s,t"”), where ' < s < p and s’ <t < s, in the expression for
Frz,—n(2). Because vpo(@, 7)) = v0s(@,7) = 0, we can assume also that 1 <¢' <’
and s’ <" < s. Now we obtain the following congruence modulo J7

(1) Y Fren(D)Fp-n(i) =

Nt+72=7

— Z?] TL;I I 151 701;((1 ﬂ.)Rng( l) sht” (TLtIJ+1, . ,ns)’yoglf(a, ﬁ)iDﬁﬁ,
where the sum is taken for 2 < s < p,1 <t¢' <t" < s and (@,7) such that n > —N
and y(a,n) = v, and

Ry = Z (_1)81_t’n(nt’+1: SORERLTN )n(ni”: T !nsrl'l)'

¢ <o Stu

By the part (b) of the lemma from n.1.4, we have Ry = épyr, where 6 is the
Kronecker symbol. So, we can take t' = " = ¢ and after applying the identity
70_t(a’ ﬁ)70i(a9 ﬁ)i =% (C_l, ﬁ')'YO!(aa ﬁ)i - 7Ut(a: ﬁ)H—l 3
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we can rewrite the right-hand side of (1) in the form
- Z(_1)8+tn(nt7 SR NLY )n(nt+15 R :na)’ro(a‘v ﬂ)’YOt(a, ﬁ‘)i‘D&ﬁ

Z("l)s-l-tn(nh < 7n1)n(nt+1) v :ns)%t(aa ﬁ)i+1Dﬁﬁ)

where the both sums are taken for 2 < s < p,1 <t < sand (a,7) such that 2 > —N
and y(a,n) = v. Now we note, that in the above expression we can use summation
for the indices (s,t) such that 1 < s < p and 0 €¢ < 5. Indeed, for any 1 < s < p,
we have ygs(a,n) = 0, and for ¢ = 0 we have ~o(@, ) y0e (8, ) = y0u(@, 7)) HL.

So, the above expression is equal to —F, _n(0,¢)+ Fy,—n(i+ 1), and the lemma
is proved.

Proposition 1. Ifz: € N and vy > 0 then

. J
(a.) fv’_ﬁ(i)t;q'f € A] ('U()) -+ Z (tl_a JO) + J]p,
1<
—~glv £ —a” J
(b) fv,—ﬁ(i)tl_ﬁ € AT(UO) + Avot )JO + Z (tl Jo) + JL.
2K

(c) Fro(i)t 7 € Ar(vo) + Z (tl_a..fo)j Z (t]_“‘p_lJo)jl + JI.

1<t 120

Proof. If i = 1 the formulae (a) and (b) are proved, c¢f. proposition of n.3.1.
Assume by induction that (a) and (b) are proved for ¢ = ¢y > 1.
Now we assume that (c¢) is proved for ¢ = 7o modulo J;°, where 1 < 55 < p.
Then the property (2) of n.3.3 with I = 0, and the part (a) of lemma 1 imply that

fv'_ﬁ(io)t]—qv = f%g(io)tl—q'y

- J —_ *- - J
mod C(Ai(w)) + 3. (7%7J0) 3 (%77 o) + It
1€j<io izl
By the inductive assumption (a) for ¢ = iy, this gives the formula (¢) modulo J*!.
So, the part (c) is proved by induction on 1 < 89 < p for ¢ = 7g.
We apply it with the property (2) of n.3.3 and the part (b) of lemma 1 to obtain

- —a” J —a* -1 jl
1) F _500,i0)t77 € Ai(wo) + Y (tl JO) Z(t1 P Jo) + JP,
1€i<4 hz0
The inductive assumption (a) for : = ¢y gives
. L\
@ Y Fw(DF, )" e Gl + Y (7o) + L.
n+y2=y 2giCiot+]
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Now the above relations (1) and (2) with lemma 2 give the formula (a) for i =40 +1
J »
(we use that ( —a"p” Jo) 1 Ct;® Jofor1 <3 <p).

Proceeding in the same way we obtain

F, _mlo+ Nty = F., _7(0,i)ty Y = yF0(0,00)t, T = =F, _N(zg)t ”

mod Cao(Ar(w)) + 3. (t;ﬂ‘Jo) + P
2.€i$l‘o+l
(we use the lemma 2 for the first congruence and the lemma 1 for the second and

the third congruences). The above congruences give the part (b) for 1 = ¢¢ + 1.
The proposition is proved.

Proposition 2. Ifl;: € N, then

n
(2)  Frali)t Wezpﬁ-ﬂ)cu](vo b 3 (T 0) "
7=1 1<J><1
Ji=21

(b) Fra(i)ty 7 € pEmDUT (vo) + Y U105 (A (vo))+

=2

. _ . —atp'~ 1
p(t—l)ltl Q(Uo+C)JO+ Z p(t—J)l’ (tl P 1']0) +JiTJ;
A
h2j

Proof. We use induction on z 2> 1.
If 2 =1, then

. 1 h
Foa(DE T = Foat7 ™ € Av(vo) + ) (ti"“ 4 lJo) +J7
nzl

by the part (b) of the proposition of n.3.3.
Assume that our proposition is proved for =79 > 1. Then

(1) Z }-’71 1 1)}-’72 3(20)t1 e
MNnty2=7v
. . —a* J1
Z ploH =IO (A, (vo)) + Z plio+1=i)1 (4 ( p'- JO) 4 g7
2$]\<‘tu+1 2<J<:D+l
nzJ

Clearly, F1(0,%0) = vF5,(20) and we have either v € p'N, or F. (ig) = 0. There-
fore,

. . N . —a® -1 jl
Faa@ia)tr™ € 3 p O (Aol + . pUt ) (5 o) 4T,
1<) <0 1<5<0
nzj

and we obtain the part (a) for ¢ = 79 + 1 from the above lemma 2 with —N = [ and
i =1g.

The part (b) for : = ig + 1, can be now obtained by the use of the above formula
(1), the lemma 2, and the inductive assumption (b) for ¢ = 1.
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Corollary. If:,l > 1, then

(a) Fai" € dw)+ Y (1572777 50) + 71

1<i<p
(B)  (Fral)iD™ € Af (vo) + 47 0o+ 3 (47777 Jo)j +J7.
2€j<p
Proof. Clearly, if 7 > I, then ~yo(@,72) € p'N for 0 < ¢t < s. Therefore,
Fea(D)/il € (p"/i1) A C Ay.
If i € N, then by the proposition 2, F ;(1)t]?" belongs to

.. ’ P P oy | J1
S M)+ > R o)
1< <min {i,p—1) 1<j < <mini,p—1)
~ - —a" {=1 jl
)+ Y (5P o)+
I€n<p

where 7 = max{0,i — (p — 1)}.

One can easily verify that v,(i!) < ¢ for 7 € N. Therefore, the “JP-part” of
Fya(2)t7 77 is also divisible by ¢! and we obtain the part (a) of the corollary.

The part (b) can be proved similarly.

3.6. We use the notation from n.3.1 to define for N < N and [ > 0 the following
clements of the algebra A @ O4[[X]]:

{
o =

Z(—I)H—t’?(”t? e :n1)7?(nt+1; RN )ein( ﬁ)tl_q,—r(aYﬁ)Dﬁﬁ H €Xn ((_1, ﬁ):

11 =1
where the sum is taken for 0 < s < p, 0 <t < s and (@, ) such that 72 > —N (the
part of this sum which corresponds to s = 0 is assumed to be equal to 1).

Remark. The meaning of the above right-hand sum can be clarified as follows. If
l, € N and lI’(l)N, is the part of this sum consisting of terms with n < Iy, then

L]:’UNI € A® Oty [[X]]. It is casy to see that, if {} > Iy > I, then
vy, = ¥y, modp" ™" A ® 0ot ][]

and therefore,

W0y = fim 9%, € 48 0:[X]) = 4 5o, OL[X]

For I, N € Z such that —N < [, set

o ,—-1+Z N(ne,y...,n1)D tl_‘”(a’n) H exy, (a,n),
1<t <1

Clyi=1+ Z (=1)n(n1,...,ns)Danty (@) H exy, (@, 1),
0<l <!

where the both sums are taken for 1 < s < p and (@,n) such that —N <7a < [
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Lemma 1. For{;,N € Z and | € Z3¢, we have
{ !
v =Ly, BC 4

The proof is similar to the proof of the lemma of the n.3.3. We only note that
exy,(a,n)=1ifn <.

Forl € Z»o and 0 <t < s, consider the expansions in powers of X

exi(a, i) = Y ¢)(@m)X",  exoa, i)=Y ¢\V(t,a,7)X7.
ji>0 j20

If | € Zxo, we set y(a,n) = arp{™i=D" 4 o 4 ap( =97 and note that this
definition coincides with the definition from the 1n.3.2 in the case | = 0, and for
i > I, we have y1(@,7) = p~'yo(a, 7).

Lemma 2.
(a) For1 < j < pand! € Z>q, we have

D, - - Ny
a,m) =m@ay /s,  &O,a,n) = v0lan) /il

(b) Forl € Z»o and @i > I, we have exy(a,n) = exp(m(&,ﬁ)X”l).

Proof. The part (a) follows, because the Artin-Hasse exponential E(1, X') coincides
with the standard exponential in degrees < p. The part (b) follows from the
definition of ex;(a,7), cf. n.3.1.

For any N < N and [ € Z o, we use the above expansions of exgi(a,n) and
exy, (@,7n), where 1 < I; <!, to obtain the expansion of \Il(_‘)N

ol =S ul (),
i>0
By the part (b) of the lemma of n.1.4, lIJ(_I)N(O) =1.1f0<l <land1 << phttl
then o .
Pin(@) = TN (),
because exy, +1(@,7) = - - = exq(@,7) = 1 mod(deg p"1).

Lemma 3. If1 <: < p, then

. J
() VL6 € Awo) + Y. (67 T0) + a1
158
—q(vpte —a* ]
(b) ¥OL(0) € AF (o) + 177 1o + Y (t] Jo) +JP.
A LS

Proof. Indeed, by the part (a} of the above lemma 2 for 1 <z < p, we have

O = (F, @)/,

and our lemma follows from the proposition 1 of n.3.5.
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Lemma 4. Ifl € N and p' <1 < p't!, then

Catyimt o \J
(a) v e Aol + > (54 o) + 00
1<5<p
—q(vote —atpi- J
) 2O AT o)+ o+ Yo (5 o) +
2<5<p

Proof. Consider the decomposition \Il(_f)ﬁ =C' 5,

let Cl—f\-’,l =D 30 C'_ﬁJl(i)Xi and Ci’_ﬁ’l =) i0 Cﬂﬁll(i)Xi. By the proposition
of n.3.3, we have for 1 > 1,

‘I’?”Cﬂﬁ l from the lemma 1 and

' . 1" . —atpi-t J
C_ﬁr,[(z)a C_ﬁ,,(l) € Ai(vo) + Z (tl P Jo) +J?.

izl

From lemma 2, it follows that for 1 < i < p'*1, ‘I’E’)(i) coincides with the
coefficient for X* of the expression

Z(—l)s'{'tv;(nt, oMt -y 1) exp(roe(@, ) X ) x

xDaﬁtl—q‘T(&’ﬁ) H exp ('y(&,ﬁ)X”u/p“)

1<ugd
bed xr g
=) exp [T (———, +---+—) (Fya()/iDG X7,
: p P
v€p N
izl

where the first sum is taken for 1 < s < p, 0 < ¢t < s and (@,7) such that

i > I. Therefore, \I’EI)(z') is a linear combination with p-integral coefficients of
> (Fya(5)/iDtr ™7, where j € N, and therefore belongs (cf. corollary of n.3.5) to

. l- J
Ai(wo) + Y (t;“ ? ’JO) L
1< <p
Now the part (a) of the lemma follows from the relation
n . : 1)/ n .
eWoiy= Y CLg nuGM)C" 5 ().
1+ 1=t
The part (b) can be obtained similarly by the use of the estimations
- —atp'- J
Ol (D, g (i), Foa i)/t € AF (w0) + 7o+ 37 (6777 o) + 1,
iz?

where ¢ > 1.
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Lemma 5. If I > 0 and i > p't!, then

! . _ao ! ]
(a) \I’(_)ﬁ(z) € Ay(vo) + Z (tl P Jo) + JT;
1<i<p
(b) ¥O6) € Af (o) + 47 Do+ 3 (5777 0) + 7.
2<i<p
i l .
Proof. Consider the decomposition ¥ ) = C' LR Eilc"NH_] Proceeding as

in the proof of the above lemma 4, we obtam the part (a) of our lemma, because
here we have

x» Xr
1)
\I!L_]: E exp{V(?"l'"'-l- p)

(Fyaar(G)/30E X7,

The part (b) of the lemma can be obtained similarly to the proof of the part (b)
of the above lemma 4.

3.7. Forany v > 0,1 € Z>p and N € Z, set

-

‘IJEII,)—N = Z(—l)a—l-t?’](nt, . ,nl)?](nt+1, Ce ,713)6}{01(&, T?. aﬁ H Xfl a. 'ﬁ

where the sum is taken for 0 < ¢ < s < p and (a,n) such that 7 > —N and
v(@,7) = v. Then \I’E:,)_N € LOwx) W(k)[[X]] and it is easy to see that if y — 400,
then \Ilf:,)_ ~ — 01in the p-adic topology. Therefore,

‘I’(_I) Z ‘I’E:) N l—q'Y

and \I’(_l)N converges for X = t!". We set @S) =0 (4 vt e L® O

Proposition.
(2) For any | € Z3o, 0\ € 1+ Ai(vo) + 82~ Jo + JI;

(b) @(_"])v =1+) F, _AtTT mod (A+(v0) +88 7 + J”)
v

(c) For any m € N, @(_"g = (9(_":0_1) mod (.Af(vo) NI R A le)

Proof. As it was noted in n.3.6, if 0 < [; < [, then for 1 < ¢ < ph*!, we have
@g%(z) = \I’(_l)ﬁ(z) Therefore,

l+l —1

p—1
! N, ih” { 1 { AVEL
00 = > T + p> OGRS I SO S
1=0 :

izp't!
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and the statement (a) follows from the parts (a) of the above lemmas 3-5 because
for any ! € Z>o, we have p"™1b* — a*pl(p — 1) > b* — a*.
Consider the equality

0L =14+ 90" + 3 vk @)t
122

If i > 2, then —q(vy + &) + ib* > b* — a*.

Indeed, —q(vo + &)+ tb* > —g(vo +€) +2b* = b* —a* —q(é+¢€)+7r*(¢—1). But,
cf. n1.3.1.1,¢,8 < wvp/3 and 7* > (g+p)(vo —6)/(¢—1) give —q(6+&)+r*(¢g—1) >
q(vo — e — 28) + pa*/q > 0.

Thus, by the parts (b) of the lemmas 3-5 from n.3.6, we have

SO @ € Af (v) + 8 Jo + I,
i>2

Because ‘I'(_O,)'g(l)ttl" = 2,7, _ﬁtl_ﬁ_i-b‘, the part (b) of the proposition is

proved. Similarly we can prove the part (c) because
m -1 g (m) o ib” m—1), .\ tb*
o -6 — Y W - S W
izp™ izp™
The proposition is proved.

3.8. For M € Zx, consider the following three subgroups Hy D H? D Hf of
the group of invertible elements of the algebra A,;:

Hi =1+ Ai(vo) + Z (tl_a-pm Jo)j + JP;

izl

HO =1+ Ai(vo) + (tﬁ""“'m” o)y (t;“'?” Jo)j 4P,

iz0
’Hi{' 1+ AT(UD) N (tgb-_a-)qpu Jo) Z (tl_a‘pm Jo)j + J{J
iz0

It is easy to see that H} and H; are normal subgroul)s in the group H; and
HS/HT is a central subgroup of M, /H;" of exponent p.
Proposition. If N =N+ M then
(a) For m,l,n € Z>o such that n + m — 1 < N, we have a"@(_l)ﬁ+m € Hy;
(b) If m, !, n satisfy the above assumptions from (a) and n+1 > N +1, then

ny(d) — npl-1) +.
o ®—ﬁ+m =0 6—1\7+m mod HY;

(¢) oM. = &p (UN“ Y F, _ ﬁt;ﬂ“") mod Hj .



Proof. From the part (a) of the proposition of n.3.7, it follows that for any I,n €
Z>q, we have U"G)(_li,-\-, € H;.
Now we note that the power series C’_N,, and CZN,, from the beginning of the

. b* b* -
n.3.6 converge for X =t . Then J"C"_ﬁ,_ﬁ_{_m(t1 )—1 and o"CZﬁy_lm_m(t‘]’ )-1

are linear combinations with coefficients from Qg of 'DﬁﬁtJ_Q7(a"1)

, where
ﬁgn—ﬁ-{-m—lgﬂff

by assumption (a) of our proposition. Therefore by the proposition of n.3.3, we

have
n b‘ n b-
g Ci—ﬁ,—ﬁ+m(t1 )’0 Cﬂﬁ,_ﬁ_;_m(t] ) € Ha.

So, the part (a) follows from the identity, cf. n.3.6,
W om0, = ("C 5 @) (2709%) (7€ 5 _gan®))
From the parts (a) and (c) of the proposition of n.3.7, it follows that
0V (090) ™ € 14 At (w) + 47 so 4 1,
and therefore, if n+1> N +1 = N* + M, we have
a"@(_[)ﬁ = U"O(_ll_vl) mod H} .

-1)

i . . ! NG
Now the above identities (1) give that o"@(_)ﬁ_'_m and o @(_N+m have the same

image in the group H; /H; and the part (b) is proved.
The part (c) follows easily from the part (b) of the proposition of n.3.7.

3.9. For N € Z>y and m € Z, consider (cf. remark of n.3.6)

M = Z(—l)”’tn(nt, coyn (g, . ,ns)tl_”(ﬁ’ﬁ)Dﬁﬁ Eu(a,n),

where the sum is taken for 0 <t < s < p and (@, ) such that 7 > m.
We note, that ‘1’57?) = @,(.,?).
For M € Z >y, consider

By =Y nne,...,n1)Em(a,n)... &(@, i)t 1M Dy,

and _
Ey = n(ne,..na )ty 0D,

where the both sums are taken for 0 < 5 < p and (a@,n) such that ny = - =n, =
M. By the proposition of n.3.3, we have Ey, EY, € H;.
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Proposition.
(a) @g),a@g‘f) € Hy;

(b) @S‘f)EM = EY, (0@55)) mod H{(1 +pM+1A;);

() @ Ey = By (o0d\))ezp(—o 7! N F st Ymod MY (14 pM 1 A,).

r

Proof.
Lemma 1. (ﬁg‘?)EM = Eﬁ,,@%,v_z_l mod J?.

Proof. In the notation from the beginning of n.3.6 it is easy to see that Ej; =

C;{,I’Mﬂ(t’l’*). The identity @E‘?’) = Eﬁ,@%\’llcamﬂ(tl{-)mod J! is quite analo-
gous to the identity of the lemma 1 from n.3.6, and can be obtained by similar
arguments. The lemma is proved.

Lemma 2. If N € N and m € Z, then (a@SHN__ll)) oY) = @Sriv).

Proof. For 0 <t £ s < pand !l € N, set (a,7)00,g = (@1,71,...,081,1¢) and
gIT(C_L, T_l) = 51(((_1, ﬁ)(o,,]). Then

ce (VD
Z(—l)"’"n(nt, o) (e, ns)Ene(@, ) . L. Eve(@, )] t]-q'f(a"_')’D;,ﬁ,

o) — Z(—ns [(=D)'n(ne,...,n)ER (@, 7). .. E5(a, )] x

T)(Ttt.!.l, e ,n,)ENt(&, ﬁ) v got((_l,ﬁ)t;q‘y(&'ﬁ)Daﬁ,

where the both sums are taken for 0 <t < s < p and (@, 72) such that @ > m. When
multiplying these expressions we can use the part b) of the lemma from n.1.4 to
simplify the product of square brackets. This gives the formula of our lemma.

From this lemma and the part (a) of the proposition of n.3.8, we obtain

3 = (s70%) (+7-101, ) - (s08i) o € 1y,

R

(®) _ (,8+10) Y TT 5 5+1-19®
0@l = (M0 [[ 10 e,
=1

The part (a) is proved.
Similarly, we have

Ny _ N41-in(-1) (N)
o0, =TI (+"+-'e"3),) ol

=1

31



By the part (b) of the proposition of n.3.8, we have

N4i-iglh)  — N+1-1nU-1) -+
o O %u=0 0~ 5, mod My

forall1 <i< N.Ifn > M + 1, then £y(@,7) € 1+ pM 10y and the lemma from
n.1.4 gives that @S‘ﬁ_l €14+ pM+iA,. So,

- -1 -
o), = (a7100L)  (00l”) modnf (1 4 pM+0 4y),
and the statements (b) and (c) follow from the above lemma 1 and the parts (a)

and (c) of the proposition of n.3.8.
3.10. Let { = t!E(~1,#") € O,. We note, cf. lemma of n.1.6, that

" mod pMt10, = " e OM+1(UMI{).

Let
_ M A~ M
e =3 t7"Dane, e =3 7 Doy
acA acA

Lemma 1. Ey, = Gﬁ‘*’]gfﬁ(e’c): By = é}-P—(e(cM))-

Proof. The lemma follows, because E}; and Eps could be written in the following
form:

L]

Ey =0 ST ()] (474 Des-n+)

0gs<p =1
ai,...,6,€A
]
r—a;p™
Ey= Y (/O] (F*" Dum).
0gs<lp 1=1
ag,..., G, €A

Lemma 2. There exists qﬁg.j,v) € L°® Oy = L, such that

@f,f) = E}T}S((ﬁg))mod JT.

Proof. If m € N, let @g‘fzn be given by the same expression as @%{?), but the sum
is taken with the additional restriction 2 < N 4+ m. Then we have

‘I’S{:,V) = ‘I)E.‘I;:zn mod p™ A4,

cf. remark of n.3.6. R
It is easy to see that ‘I’S@t}n = @1, Pym mod JP| where

(I)lm = Z n(n-ﬁa e 1n1)t1_q-r(&,ﬁ)/Dﬁﬁa
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Do = Z(“l)sﬂ(nl, s )80 N(a n)t e )Daﬁ’

where the both sums are takenfor 0 < s < p,a € A and M <n < N +m, and we
use the notation & _g(a,n) = &(a,n)... E5(a,n).
From the deﬁn1t1on of the structural constants, cf. n.1.4, it follows now that

M
i H exp (a" Ztl_qa'Dao) mod J?,

n=ﬁ+m a€A
ﬁ+m
&, = H exp Z (a,n)o™(t; *Dyo) | mod JP.
n=M QEA

This gives thc existence of d)M) € L such that @;,,Nzn = &5(‘?55\?2:) Clearly,

there exists qSM = limmn—oo ¢M) € L, and @5@” = é-}?ﬁ(qﬁf.g))
The lemma 1s proved.

Let £y(vg) = L%(v)0;. Define the ideal
L% (vo) = [L°, L (v0)] + pL (vo) + L (vo +€)

of the Lie algebra £°. We also set £ (vg) = L% (v9)0; and Lo = L°0,.
We note that

L1(vo) = L1 N (As(vo) + JT), L£F(vo) = L1 N{AT(v0) + J7).

Consider the following Ogy-submodules of £;:

LHy = L1(vo) + Z tl_ja.pMCj([:o) pMEIL,

1<5i<p
Al fpe __ » —(i—1)a" M
CHY = Li(ve) + 157 O ST 47U 0io) 4+ pMH Ly,
1<i<p
Moawe_ _» —(i=1)a*p™
CHY = L (o) + 77 C 770 3T 70TV g0 + pMH L
1<5<p

With respect to induced Lie brackets, LH, is a Lie algebra over Og, LH? and LH;
are its ideals and LHY/LH] is an abelian ideal of LH;/LH; annihilated by p.

Lemma 3. Ifl € £, then
(a) l € LHy <= exp(l) € Hy(1 +pMH1Ay);
(b) l e LHY = &xp(l) € HI(1 4 pMT1A));

(c)l e LHT «=&xp(l) e HF (1 +pMH1A));
Proof. Consider the Lie Z,-algebra

L% = LO(A)/(L°(4,v0) + pMT1LO(4)).
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Then L0 is a finite Lie algebra of nilpotency class < p.

Let L=L°® W(k), io =I'® O, f;l =1'® O,. If JO is the augmentation
ideal of the envelopping algebra of the Lie algebra I weset J = J°Q® W(k),
jo = J9® Oy and .Tl =J'® O,. With this notation the part (a) of our lemma is
equivalent to the following statement:

(al) Z tl_.ja'pM CJ(EO) _ El n (Ztl—ja'hﬂf j,g) + ,]]p)

1<<p >

Clearly, the left-hand side of (a') is contained in its right-hand side. Further we
note that any element j € J; can be uniquely expressed in the form

.:l':: Z t;ljay

a>>—o0

where j, € J for all @ € Z and j, = 0 for sufficiently small a. In this notation,
j €L1 1ffjaEL1 for all @ € Z, and

~ —ia" S e
jed T+t
i>1

iff for 1 < s < p we have: ja € J* for a < —sa*pM
Therefore, if 7 belongs to the right-hand side of (¢'), then for 1 < s < p and
a< ——sa*pM we have j, € LN J*+1. By the proposition 2 (a) of n.1.2, LnJs+ =
C,41(L), and therefore ] belong to the left-hand side of (a').
The parts (b) and (¢) of our lemma can be proved similarly.

Now the proposition of n.3.9 can be stated in the following form.

Proposition.
(a) (M 56t ¢ oMy,
(b) 45 0600 = (o1 ) o (044)) mod G(LHY);

(¢)
W 06l = (a1 ) o (o4 o (—aﬁ“ Zf%_ﬁt;”*"') mod G(LHY).
hi

4. The main theorem.

In this section we consider a group epimorphism % : I' — G(L), where L is a
finite Lie algebra over Z, of a nilpotency class < p.
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By the n.1, for any 7 € I', we have 1(7) = 7 fo (—f), where f € G(L @ O(Ksep))
is such that of = foe,e=3, ., t7*Dao € G(LO®O(K)) and A C Z°(p) is a finite
subset.

Consider the Lie algebras £° = L%(A4) and £ = L(A) from n.2. Then the
correspondences Dyg — Dgo where a € A, define the unique o-invariant morphism

of Lie algebras
7 L — LQW(k).

For any n € Z and a € Z°%p), we set Dyp = 0" Dyo = 7(Dyn). Clearly, 7 induces
the epimorphic morphism of Lie algebras over Z,

s p—

and we have the induced decreasing filtration {L(v)},>o of the ideals L(v) =
7%(L(A,v)) in the Lie algebra L£°.

Foranyy > 0and N € Z,set Fy _n =7(Fy,_n). fvg >0and N > ﬁ(vg,A+),
then L{v)W (k) is the minimal o-invariant ideal of L @ W (k) which contains the set
{Fy-n | ¥ 2 v}

Theorem. Ifv > 0 and I'(*) is the ramification subgroup of I' in upper numbering,

then
H(I') = G(L(v)) C G(L).

Proof.

4.1. Inductive assumption.

Let M € Z»o be such that pMH*IL = 0 and let 1 € s5p < p be such that
Cso+1(L) = 0. By induction we can assume that the theorem is proved for the
compositions of the morphism ¥ with the natural projections G(L) — G(L/pM L)
and G(L) — G(L/C,,(L)).

This assumption gives for any v > 0, that

(1) L = L(v)mod Cyo(L), LY = L(v)mod pM L,

where L{*) is the ideal of L such that $(T?)) = G(L().

Consider the set R = {v € Rsq | LV} # L(v)].

It is easy to see that for a sufficiently large v we have L(*) = L(v) = 0. This
implies that either R = § (and the theorem is proved), or there exists vg = supR >
0. In this case L{*) # L(w). Indeed, the both filtrations {L(v)},>0 and {L(M},5¢
are finite and left-continuous. Therefore, there exists § > 0 such that for any v €
(vo — 6,vg), we have L(*) = L{"0) and L(v) = L(vy), and the equality L(vg) = L{¥®
gives the contradiction vy = supR < vg — 4.

So, the theorem will be proved, if we take an arbitrary vp > 0, assume that

(2) L(v) = L' VYo > v,
and show that L(¥0) = L{vg).

4.2. For the above vy > 0 and A C Z%p), we use the choice of ¢, §, f\}, N* q,
a*, b* and notation of n.3.
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Weset Ly = L O, Lo = L® Oo, Li(vg) = L(vp )01, Ly(veo +¢) = L(vo + )01,
L*(vg) = [L, L(vo)] + pL(vo) + L(vo + €) and LT (vo) = L (vy)0;.
Let 71, =7°® O, : L1 — Li. Then

meg) =€ =Y t7°Da_no;

a€EA
rl(éECM)) =oMe= Zt_“”MDaM €EL® OM.I.l(orMK) C Ly;
acA
m1(LH1) = In(wo) + Y4777 Cj(Lo) == LH;;
Y
M e_ = —(i—1)a* M
mi(LHY) = Ln(vo) +47 7 N 70TV Ci(16) 1= LAY
Y
M _at —(i=1)a* Af
m(CHY) = L (wo) +¢17 OO N 70V 0y Lo) = LA
Y

Clearly, LH, is a Lie algebra over Oy, LH{ and LHf are its ideals and the
quotient LHY /LH;t is an abelian ideal in LH,/LH;" annihilated by p.
With the above notation the proposition of n.3.10 gives the following

Proposition. If ¢* = wl(qbgf)), then
(a) ¢*,0¢* € G(LH));

(b) ¢* o (Me) = (c¥+1e;) 0 (0¢*) mod G(LH?);

(c) ¢*o(oMe) = (Jﬁ+161) o(a¢*)o (—aﬁ'“ Z F%_Ntl_q""'b' ymod G(LH;).
v

4.3. We set
Lsep = L ® O'(I{sep)a L(’Uo)sep = L(Uo)O’(I(sep), L('vo)+ (’UU)O (I\sep)

sep

Similarly to n.4.2, we also set

—ia” Af
LHsep = L(Uo)sep + Ztl e Cj(LO);

izl
M ._* (i a‘ M ,
LHS, = L{vo)sep + 77 723470707 (L),
izl
M *_a* i - M
LHY, = L(vo), + 77 73470097 0 Lo,
izl

As in the n.4.2 we have tha,t LHgep 1s a Lie algebra over Oy, LH and LH

sep sep
are its ideals and LHY, /LHZY  is an abelian ideal in LH,ep/LHZ, annihilated by

p. We have also the natural inclusions:

LH, C LHyep, LHY C LHY, , LH} c LHY

sep? sep*

sep
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Proposition. There exists f € {fi € G(Lsep) | 0fr = f1 o e} such that for
X0 = (=Mt Yo (oM f), we have X° = ¢*mod G(LHS,).

sep
Remark. In particular, we obtain that X° € G(LHsep). In fact, one can show that
UMfaUN+1f1 € G(LHSBP)-

Proof. By induction we can assume the existence of f| € G{Lgep) such that of] =
fioey and for X' = (—a’v“"lf{) o (6™ f) we have
(1) X' = ¢" mod G(LHsep + Csy(Lsep))-
The equalities o f; = fioe; and of = foe give
X'o(oMe) = (67 *1ey) 0 (0 X))
The congruence (1) gives X' = ¢” o U, where
U € G(LHsep + Cyo(Lsep))-

We note that the quotient G(LHY,, + Csy(Leep))/G(LHL,,) is a central subgroup

sep

in G(LH.ep)/G(LH],,). From the congruence, cf. proposition of n.4.2,

sep
¢a* o] ((TMG) = (Uﬁ+1el) ° (096*) mod G(LHs?ep)a

we obtain that cU — U € G(LHS, ).

sep

Therefore, U € J'_',I-Igf’ep + L because G(Lsep)|o=ia = G(L) and for any

Mos_ = —(i—1)a*p™
! c t?P (6" —a™) Ztl (j—1)a"p Cj(LO),
izl

we have

Migw . : =
h=-3 o"et? TN Um0 oy 1)

n20 izl

and this I; satisfies the identity cly — 1, = [.
So, we have U = umod G(LHsep ), where w € Cy (L).
Let f? = flou, then of) = f®oe; and

X0 = (—o ¥ Yo (oM f) = X' o (—u) = ¢" mod G(LHaep).

The proposition is proved.
Corollary. L{(*) C L(vp).

Proof. In notation of n.1.6 the above proposition implies that for the field of defi-
nition of X mod L(vg )sep over K', we have

K'(X mod L(vp)sep) = K,
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i.e. L{vo) € J},,—p-(X), and by the proposition of n.1.6, we have L(vg) D L{".

4.4, By the unductive assumption (1) of n.4.1 and the corollary of n.4.3,
LH (o) € L™ C L(wp).

Therefore for L = L(vo)/L(”") we have pL C’g(L) = 0.

Let LSep =7 ® Kgep, L] L® K’ and LL L®l.

For v > vp, denote by i_y ~ the image of F _5 under the natural projection
L{vy) — Lt and consider Ue Lgep such that

T-T= Y F gt

vo<v<vo+te

Proposition. If K (U) is the field of definition of U over I', then for the maximal
upper ramification number v (U) of the extension I\’(U)/K' we have

o'(U) < quo — b*.

Proof. By the proposition of n.4.3, we have X® = ¢* o U, where U € G(L
Now we use the equality

sep)

X%0(cMe) =(0ﬁ+]el)o(axo),

the part (c) of the proposition of n.4.2, and that G(LHZ )/G(LHZ ) is a central

sep sep

subgroup of G(LHsep)/G(LHE,), to obtain the following congruence:

(1) oU—U =o' STF _ot77 mod(L* (v )sep + 11 Lo).

In the right-hand sum all summands with ¥ < vy can be omitted, because in this
case —qy + b* > —a* +* > 0 and F, _ﬁtl_ﬁ_"b € t1Lo. We can also omit all
terms with v > vy + ¢, because here F,r,_ﬁtl—q'ﬁb‘ € Ly(vo +€) C Lt (v0)sep-

If Uy,U, are any two solutions of the above congruence (1), then

Uy — Uz € LT (vo)sep + 1 Lo + L.

Therefore, the fields of definition of these elements modulo L{*9)0'(Kep) coincide.
We denote this field by K.

Clearly, K = K'(X° mod L{(*)0'(K,ep)). By the proposition of n.1.6, the max-
imal upper ramification number of the extension f(/K’ is less that qvo — b*. Tt
is easy to see, that there exists a solution U; € G(Lsep) of the congruence (1)
such that Uy mod L") 0’ (Kep) = oN+17 with respect to the natural embedding
Esep C Lsep/L(”°)O’(Ksep), and therefore I = I{'(fj).
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4.5. Assume that L = L{vo)/ L) £ 0, and I1,...,1, is a basis of L over F,.

We note that the set {or"ﬁr’_ﬁ | vo < < wvg+e,n € Z/NyZ} generates Ek over
k. Therefore the set of coefficients

{ayi €k |vo <7 <vy+e}

of the decompositions
n

F'.f’_f\j = Zaw‘li,

1=1

contains at least one non-zero element, i.e. there exist y9 > vy and 1 <25 < n such
that a., io # 0.
Consider the decomposition

ﬁ = zn: U,'l;',
=1

where for 2 = 1,...,n, U; € K and satisfy the relations
. t—qy+b°
Uf -U; = Z ity CRRRA

vo<y<vote

Clearly, K’(ﬁ) is the composite of the fields K(U;), i = 1,...,n. Therefore,

v'(U) 2 vy,
where v{ is the maximal upper ramification number of the extension K'(U;,)/K".
By the choice of ZV, q and b* from n.3.1, we have either F‘f’_ﬁ =0,orgy—b"€Z
and (gy — b",p) = 1. We also note that v > vo implies ¢y — b* > 0. For this reason,
g iy 7 0 implies that K'(U;,) has degree p over K' and v} = ¢7i, — b*, where
Yip = max{ v | ayi, # 0} = v = vo.

Therefore, for the maximal upper ramification number v’ ([7) of the extension
K’/K’ we have v'(ﬁ) > gy — b* > vo. This contradicts to the proposition of the
above n.4.4. So, I(vg) = L{*), and the theorem is proved.

5. Description of the ramiflcation filtration modulo p** commutators.

5.1. Z/pMZ-module K*/K**" .

As earlier K is a complete discrete valuation field of characteristic p > 0 with
finite residue field & ~ F,~, and a fixed uniformising element ;. For M € N,
consider the lifting O s (K) of the field K modulo p* fromn.1.1. Let Colps : K* —
Oum(K)* be Coleman’s multiplicative section of the projection Op(K) — K. This
homomorphism is uniquely defined by conditions: tg — t and E(a,t§) — E(a,t%),
where « € W(k), a € Z*(p) and E(«, X) is the power series from n.1.5.

Consider the Witt pairing

(,):0m(K)x K* — Z/pMZ
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explicitly given by the Witt reciprocity law, cf. [Fol,

(f,9) = (Res o Tr)(f diog Colm(g)),

where f € Op(K),9 € K* and Tr is induced by the trace of the quotient field of
W (k) over Q,. We have the induced identification:

K*/E*" = Hom (Op(K) /(o — id)Ou (K), Z/pMZ).
As in n.1.3 fix o« € W(k) such that Tra = 1. Then we have the decomposition
Om(K) = (0 —i)0m (K) ® (@,ezr (y Wht (k)™ @ (2/pMZ)ar)
Therefore,

K*/K?" @Wa(k) =[] Hom(War(k)t™, War(k)) x Hom((Z /p™ Z)er, Wia (k).
a€Z" (p)

For « € Z*(p) (resp., a = 0) and n € Z denote by D the element of
K*/K*PM ® W (k) with the only non-zero component in Hom(Was (k) =%, War(k))

(resp., Hom((Z /pMZ)a, Wp(k))) given by the correspondence wt~® — o™w (resp.,

o o™a). Clearly, for any a € Z%p), we have D = Dfﬁﬂ_Na and the set

{ DD | a e Z%p),0 < n < No }

generates the Wy (k)-module /K " ® W (k).
Let A be a finite subset of Z%(p). Then the set

{DM jae 4,0<n <Ny}

generates the free Was(k)-module M(A4, M)Y®@Was(k), where M(A, M) is the image
in K*/K*PM of the subgroup of K'* generated by the set

{ B(a,t") | e € W(k),a € ANZY(p) }

and by #p if 0 € A (this follows easily from the Witt explicit reciprocity law). If
Ay C A, then we have a natural epimorphism of modules

M(A, M) — M(Ay, M)

induced by the correspondences Dﬁ?f) — Df,’}g) if a € 4y, and fo,‘f) — 0iface
A\ A;. With respect to these epimorphisms we have obviously that

HmM(A, M) = K* /K"
Y
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The above considerations give also
K* /K" ® Op(K) = (K* /K" @ W (k) @,y (1) Om(K) =

Hom (@qez+ () Wat (k)™ & (2/5"Z)e, O (K)) .

Denote by e™) ¢ K*/K*" @ Om(K) the element which corresponds to the
natural inclusion of @, g+, Wum (k)™ @ (Z/pMZ)a in Op(K). Tt is casy to see

that
eM) — Z t-“Dggﬂ
aGZO(P)

and the image of e(™) under the natural projection of K*/K " {0 M (A, M) equals

0 = 5
a€EA

Finally, we remark that under the modulo p™ reduction map
KR kR

we have D,(,?fﬂ) — DE.‘:““ and e(Mt1) y (M)

5.2. The Lie algebra £L° and the identification .

Let K*(p) = H‘EK* /K " with respect to morphisms of reduction modulo p™

M
from K*/K**"" to K*/K*" M € N. Denote by £° (resp., £2(M)) the free
Lie algebra with topological module of generators I{*(p) (resp., IK*/ K*PM) over Z,
(resp., Z/pMZ). If A C Z%(p) is a finite subset, let L2(A4, M) be a free Lie algebra
over Z /pMZ with the generating module M(A, M), cf. n.5.1.

Clearly, the projective system of Zy-modules {M(A, M)} 4, defines the projec-
tive system of Lie algebras {£°(A, M)} a,m and

limLP (A, M) = L°(M), lim £L°(A, M) = lim£%(4) = L°,
— — —
A AM A

00 AN — im0
where £7(A) = lim[ (A, M).

M
Set £ = L% @ W(k), L(M) = LO(M) @ Wa(k) and L(A, M) = L2(A, M) ®
Wa(k). We note that the Lie algebras £°(A4) and L(A) = L°(A) ® W(k) are
naturally identified with the Lie algebras from n.2 denoted by the same symbols.
Under this identification for all « € A and n € Z, we have @Dﬁﬁﬂ = Dgn, where

M
the elements D,, € L{A) were introduced in n.2.1. The algebra £ is a profree Lie
algebra over W(k), the set

{Dun | a € Z°(p),n € Z)
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generates £ and 0D,,, = Dg py1 for any a € Z%p) and n € Z. We shall use a
tilde in notation of any of the above Lie algebras for its quotient by the ideal of
commutators of order > p.

Consider the elements e(4M) ¢ G(L£O(A, M) ® Oym(K)) from n.5.1. These ele-
ments are compatible in the projective system {G(L°(A, M) ® Opr(K))}an. I

F(A,M) = {f € GILY(A, M) @ O(Ksep)) | of = f o el },

then {F(A, M)} a m is a projective system of non-empty finite sets and therefore, its

projective limit is not empty (in fact, all connecting morphisms of this projective

system are epimorphisms). Choose f € 1(i£1f(A, M) and denote by f(AM) jis
AM

projection to F(A, M). Then the correspondences

7o 7 fUAM) o (_ p(ABDY
define the compatible system of group homomorphisms
HAM T G(LO(A, M)).

It is easy to see that (M) = l(iLn'g[)(A’M) induces the group isomorphism
A

™) T/TPY Cy(T) — G(LO(M))

and ¢ = li{iI}v,[)(A’M) induces the group isomorphism
AM

P D(p)/Co(T(p) — G(L),
where I'(p) = lgr_lf‘/ I'*" is the Galois group of the maximal p-extension of K in

M
Kgep. We note that 1 mod Co(T'(p)) : ['(p)*P ~ K*(p) is induced by the reciprocity
map of local class field theory.

5.3. For any finite subset A C Z%(p) and v > 0, consider the ideal £°(A4,v) of
the Lie algebra £°(A4) from n.2.6. It is easy to see that {£%(A,v)}}a is a projective
subsystem in the projective system {£%(A4)}4. Therefore, @ﬁU(A,v) = L%v) is

A
an ideal of £°. If L%(v) = L%(v)/Cp(L’), then the main theorem of n.4 gives

Theorem A. For any v > 0, we have
P(L(p)"*) mod Cy(T(p))) = G(L*(v)).

The above ideals £0(v) can be described as follows.
For any a € Z%p) and n € Z, denote by 'Da,,, the image of Dgp € L in £ =
L)CH(L). v >0and L(v) = EO( ) ® W(k) C L, then by the remark from n.3.3,

we have:
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if a > sv, where 1 < s < p, then for any n € Z, Den € E(v) + CH.](E).

—~—

Let A(v) = Z°%(p)N{1,(p—1)v) and in notation of n.2.6 let N(v) = N(v, A(v)*).
We use the constants n(n1,...,n,) from n.1.4 to define for any v > 0, the following
elements F(v) of the Lie algebra L:

.ﬁy(”) = Z(—l)sn(nl, ey Mg ) p™ [ - [5a1"nﬁazﬂz] ) ’ﬁa-na] ’

where the above sum is taken for 1 < s < p, ay,...,a, € A(v) and ny,...,n, € Z
such that ny > 0,n;1 > --- > ny, > ~N(v) and a1 p™ + -+ + azp™ = 7.

It is easy to see that: 1) for any v > 0, the above expression for j:'.,(v) contains
only finitely many terms; 2) the set S(v) = {y > 0 | ﬁ,(v) # 0} is discrete in
the archimedean topology, and therefore, S(v) = {v1,...,Vm,-.. }, where 0 < 7 <
o < ym < ...; 3) in the p-adic topology we have limp,_ oo j-,'.,m(v) = 0. So, we
have the following description of the ideals Eo(v):

Theorem B. For any v > 0, Lo (v) is the minimal closed ideal of the Lie algebra
LY such that L(v) = L%(v) @ W(k) contains the set

{.%-,(v) | v > v} U {'ﬁag |a>(p— l)v}-.
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