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RAMIFICATION FILTRATION OF THE

GALOIS GROUP OF A LOCAL FIELD. 111

VICTOR A. ABRASHKIN

ABSTRACT. Let J< be a completc discrete valuation field of characteristic p > 0 with
a finite residue field and let r(p) be the Galois group of its maximal p-extension.
The main result of the paper describes the image of the ramification filtration of thc
Galois group of the field J( in r(p) modulo its subgroup of commutators of order '2: p
in terms of generators of the group r(p).

Throughout all this paper K is a complete discrete valuation field of character­
istic p > 0 with a finite residue field k ~ IFpNo, We fix a uniformising element to of
the field K and use the identification !{ = k((to)). Choose a separable closure !{sep

of !{ and set r = Gal(!(sep / ](): "This group has the detreasing filtration {r(v) } v>°
of its normal higher ramification subgroups in upper numbering, cf. [Se, Ch.!II]. If
r(p) is the Galois group of thc maxilnal p-extension of thc field !(, then r(p) is a
free pro-p-group [Sh], and there appears thc problem of description of the induced
ramification filtration {r(p)(v) } v> 0 in terms of generators of the group r (p). In this
paper we develop the methods from [Abl,2] to obtain this deseription modulo the
closure Cp(r(p)) of the subgroup of cornmutators of order 2:: p.

For this purpose we construct, cf. n.5.!, the profree Lie algebra .cO over Zp and
the identification

where i o = .ca /Cp(.c°) is thc maxiInal quotient of nilpotency class < p, and G(lO)
is the pro-p-group obtained from elenIents of Zo by the Canlpbell-Hausdorff compo­
sition law. The eonstruction of this identification is based on the nilpotent version
of Artin-Schreier theory from [Ab2] and depends on the choice of a uniformising
element to and Q' E W( k) such that Tl' Q' = l.

Thc profinite Lie W( k)-algebra.c = .co ®W( k) has a natural system of generators
Dan, where a E ZO(p) = {n E N I (n,p) = I} U {O}, n E Z, Da,n+No = Dan and
a Dan = Da,n+l (a is the Frobenius automorphism of TIV( k)). Ir A c ZO(p) is a finite
subset, eonsider a free Lie W (k )-subalgebra .c(A) of .c, w hieh is generated by all Dan
with a E A. Then .c = lim.c(A) and .co = lim.c°(A), where ,CO(A) = .ca n 'c(A) is

f--- f---
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Lie Zp-subalgebra of [,0. For v > 0 and N E N, we define in n.2 the ideals ['~(A,v)
of the Lie algebra [,O(A) as the minimal ideals containing the ideal of commutators
of order ~ p and such that ['~(A,v) 0 Y'V(k) contains elements :F'Y,-N for all , ~ v.
These elenIents :F'Y,-N are defined by explicit expressions as linear combinations
with some p-adic coefficients of commutators [... [Dal1l1 , Da:zn:z],' .. ,Da,n,] such
that 1 :::; s < p, al, ... , a.<j E A, n1 ~ ... ~ n.<j ~ -lV and alpn 1 + ... + a.<jpn, =
,. We also show in n.2 that the sequence of ideals {[,~ (A, v) } N stabilizes and
therefore, determines the ideal [,0 (A, v). This gives for all v > 0, the ideals .cO (v) =

lim .c°(A, v) of the Lie algebra .co; and we obtain, cf. Theorenl A of n.5.3, the
f----

AcZO Cp)

following description of the ramification filtration modulo pth commutators: for
any v > 0,

where lO(v) = .c°(v)jCp([,O). The Theorem B of n.5.3 gives also a construction of

the above ideals EO(v), which does not use the operation of projective limit.
This result is a consequence of the main theorem of n.4, which gives a description

of the image of the ramification filtration {r(v)}v>o under a group epimorphism
r -----io G(L), where L is a finite Lie algebra over Zp of a nilpotency dass < p
and G(L) is the p-group obtained from· L..by· the Campbell-Hausdorff composition
law. This theorem is proved by indllction on values of thc nilpotency dass anel the
exponent of L and by transfinite decreasing indllction on v > O. The main trick
is related to the following special property of loeal fields of characteristic p: if K'
is a totally rarnifieel finite extension of K in ](sep, then ]( ~ !(' anel therefore,
there exists an isomorphism Gal(]{sepjK) ~ Gal(!(sepjJC) which is compatible
with ramification filtrations. After a suitable ehoice of the auxillary field !{' the
illcluction step (modulo SOlne technical computations with the CaInpbell-Hausdorff
formula from n.3) uses only well-known information about ramification of Artin­
Schreier extensions of degree p of the field 1('.

The arguments of this paper arc based completely on constructions from the
papers [Abl,2]. In n.1.2 we give some commentaries about eqllivalence of the cat­
egories of Lie Zp-algebras aIld p-groups with dass of nilpotency < p. In papers
[Abl,2] there was studied the ramification filtration modulo IPCp(I) and lnodulo
C3 (I), respectively, where I = U r Cv) is the higher ranüfication subgroup of r.

v>o
The general result about the ralnification filtration modulo Cp(I) was only claimed
in the paper [Ab2] anel was applied for a description of the image of the ramification
filtration in the group r(p)jCp(r(p)). In this paper we apply our method directly
to the group r(p)jCp(r(p» (the lnodulo Cp(I) description can be now easily re­
covered). In fact, our approach works also in the case of a ground field !{ with
arbitrary perfect residue field, but in this ease the choice of generators of the Lie
algebra .ca is more complicated.

1. Preliminaries.

1.1 Construction 01 liftings.
vVe use the following construction of liftings froln [Ab2], which is a particular

case of the general construction from the paper [B-M].
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For a field E such that ]( C E C ](sep and a natural number N consider the
Z / pNZ-algebra

where WN is the functor of Witt vectors of length N, a is the Frobenius, and
t = [to] E vVN( ]() C llVN( E) is the Teichmüller representative of to. The algebra
ON(E) is a ~fting of the field [ lnodulo pN ,Le. ON (E) is a flat Z / pNZ-algebra such
that ON(E)/PON(E) = E, and its construction essentially depends on the initial
choice of the uniformising element of the field ](. For any lV E N, we have the
algebra epimorphislns of reduction modulo pN

If O(E) = Ern 0 N( E) with respect to these epimorphisms, then O(E) is the valuation
~

ring of an absolutely unrarnified field with the residue field E. The Frobenius of
Witt vectors induces thc system of Frobenius morphisms 0 = Oe : O(E) -----+ O(E),
which is compatible on fields E. We note, that O(K) = lV(k)«t)) and at = tp .

Clearly, there is a natural action of r on O(](sep). If H is an open subgroup in r
and ](t:p = E, then O(I(sep)r = O(E).

1.2. Group8 and Lie aigebras.
Let L(X, Y) be the completion of the free Lie algebra with the generators X and

Y with respect to its lower central series. Denote by A(X, Y) the Magnus algebra
in variables X and Y with integral coefficients (this is the conlpletion by powers
of the auglnentation ideal of the free associative algebra generated by X and Y).
Then we have a natural indusion L(X, Y) c A(X, Y) and in A(X, Y)0Q by the
Carnpbell-Hausdorff formula it holds

exp(X) exp(Y) = exp(X 0 Y),

where X 0 Y = X + Y + ~[X, Y] +... E L(X, Y)0Q. WC note that if Ci(X, Y) is
the cOlnponent of X 0 Y of total degree i, then Ci(X, J/) is p-integral for 1 :::; i < p.

Consider the category Lie(p) of finite Lie algebras over Zp of dass of nilpotency
< p and thc category Gr(p) of finite p-groups with the same condition for nilpo­
tency dass. If s 2:: 1 and L E Lie(p ), we use the notation Cs ( L) for the ideal of
commutators of order 2:: s in L. Similarly, if G E G1'(p), then Cs ( G) will denote the
normal subgroup of COlnmutators of order 2:: 8 in G. So, with the above notation
we have always Cp ( L) = 0 and Cp ( G) = e.

If L E Lie(p), denote by G(L) the p-group given by the composition law (11, 12 ) ~

lt 0 12 on elements 11, 12 of the Lie algebra L. The correspondence L 1---4 G(L) gives
the functor G : Lie(p) -----+ G1'(p), and this functor is an equivalence of categories,
cf. [La]. For our purposes we give below an interpretation of this equivalence in
terms related to envelopping algebras of Lie algebras fronl Lie(p). Dur arguments
use information about "dimension subgroups lnodulo 11," from the paper [Mo].

Let H E Gr (p) and let Jz [H] be the augmentation ideal of the group ring Z [H] .
By the main result of the paper [Mo], we have for 1 :::; s :::; p that
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If J[H} is the augmentation ideal of the group ring Zp[H], then JZ[H]8 = J[HP n
Z[H] for sEN, because Zp is a flat module over Z. This gives for 1 :::; s :::; p, that

(1)

In particular, H n (1 + J[H]P) = 1 and we can identify H with its image in the
Zp-algebra Zp[H]1 J[H]P.

Clearly the truncated logari thm

log(l + x) = :L (_l)n-l xnIn
I~n<p

induces a one-to-onc map from (1 + J[HD mod J[H]P to J[H]I J[H]P. Thc inverse
map is incluced by the truncated exponential

exp(x) = :L xn In!.
O~n<p

We note that log incluces for 1 :::; s < p, an isomorphisIll of the multiplicative group
(1 + J[HP) fiod J[H]~+l and the additive group J[H]8 fiod J[H]8+1.

Consider the set L(H) = log(H) C Zp[H]1 J[H]P. Then L(H) is a Lie subalgebra
of the algebra Zp[H]1 J[H]P, i.e. the set L(H) is closed under linear operations and
the Lie bracket in the algebra Zp[H]1 J[H]P. '

Indeed, if [ = logh, where h EHe Zp[H]1 J[H]P, then for any t E Zp, we have

t1 = tlogh = log(h t
) E L(H).

If 11 = log(h1), 12 = log(h2 ) E L(H) and t E ZPl then

log(h~h~) = log(exp(t11 )exp(t12 )) = :L tiCi(lJ, 12 ) E L(H).
l~i<p

This gives cl(II, 12) = 11 +12 E L(H) and c2(1] , 12) = ~[11, 12 ] E L(H).
H L E Lie(p) and H = G(L), then the rnap

log: L = H -4 L(H)

is an isomorphism of Lie algebras. Therefore, the functor H 1---+ L(H) is inverse to
the functor L 1---+ G(L).

Let A(L) be the envelopping algebra of L. By its universal propcrty the above
embeclding of L in Zp[H]1 J[H]P induces the algebra morphism

0': A(L) -4 Zp[H]1 J[H]P.

If J (L) is the augmentation ideal of A(L),· then for 1 :::; s :::; p,

a(J(L)S) = J[H]8 I J[H]P,

(in fact, 0' luod J(L)P is the isoillorphism of algcbras A(L)IJ(L )1) and Zp[H]1 J[H]P)
anel the above equality (1) implies for 1 :::; s :::; p that

This gives the following proposition:
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Proposition 1. H L E Lie(p), tben
(a) tbe natural embedding L -)0 A(L) induces for s 2:: 1, injectivc mOrpmS1l1S

(b) tbe truncated exponential exp induces tbe injective map

exp: L ----4 A(L)/J(L)P;

(c) tbe correspondence L I-t exp(L) lnod J(L)P gives a construction of tbe equiva­
lence G : Lie(p) -). G1'(p) in terms of envelopping algebras of Lie algebras fro1l1
Lie(p).

Remarks. 1) The parts (b) anel (c) of the above proposition are formal consequences
of the part (a). If all Cs(L) are direct sumlnands in the Zp-Inodule L, then (a) can
be proved imlnediately by thc special choice of a systCln of generators of L, cf. [Kn]
where the case of Lie algebras over a field was considered; the SaIne argument was
also applied in [Ab1].

2) It can be shown that in notation of the above proposition, the group exp(L)
is the group of "diagonal elements mod degp", i.e. the multiplicative group of
a E A(L) mod J(L)P such that

6.iL == a0 iL mod J (L ffi L )P ,

where 6. : A(L) -). A(L EB L) = A(L) 0 A(L) is the diagonal morphisnl and
aE A(L) is such that amod J (L)P = a.

V.;re need also a slight generalization of the above construction.
Assume that R is a commutative ring with unity which is a flat Z-module. If

L E Lie(p), then A(L R) = A(L ) 0 R is the enveloppillg algebra of the Lie R-algebra
Ln = L 0 R, and J(LR) = J(L) ® R is its augmentation ideal. The flattness of R
with the above proposition 1 gives

Proposition 2.
(a) Tl1e natural maps C s (LR)/Cs+1(L R) -). J(LR)S / J(Ln)S+1 are injective;

(b) exp induces tbe embedding exp : L R -). A(LR)/ J(LR)P;
(c) if LR* is tbe Lie algebra over Zp obtained from LR by restrictiol1 of scalars
Zp ----4 R, then exp(LR) ~ G(LR) and exp induces 1;1 bijection between the set of
ideals oE tbe Lie algebra LR* aJld tbe set of normal subgroups oE tl1e group exp(LR).

1.3. Nilpotent Artin-Schreier theory.
Let L be a finite Lie algebra aver Zp of a nilpotency dass< p. The nilpatent

version of Artin-Schreier theory from [Ab2] gives the following properties:
a) If'f E Hom(r,G(L)), then there exist 1 E G(L ® O(](sep) and e E G(L 0

O(](») such that t71 = f 0 e and 'f(T) = (TI) 0 ( - f) for any T E r;
b) If Cl E G(L 0 O(](»), then there exists 11 E G(L 0 O(I(sep») such that

t711 = 11 0 el, and the corresponclence T I-t (T11) 0 (-11) determines the group
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hOIllomorphism 'l/Jl : r -----t G(L). The conjugacy dass of 'l/J] does not depend on
the choice of f] j

c) In the above notation, 'l/J = 'l/Jl if and only if there exists c E G(L ® O(K))
such that /1 = f 0 c and Cl = (-c) 0 e 0 (ac).

Let Z+(p) = { a E N I (a,p) = 1 } anel ZO(p) = Z+(p) U{O}. Choose CY E vV(k)
such that Trw(k)/Zp (0') = 1.

Lemma. He E G(L 00(I()), then there exists c E G(L 0 O(I()) such that

(-c)oeo(ac)= L t-aDaol
aE1fJ (p)

where a11 Dao E L 0 W(k), 0'-1 Doo E L and tlle set

A = { a E Z 0(p) I Da 0 =I- °}
is finite.

Proof. We use induction on s ~ 1 to prove this statement rnodulo Cs(L) 00(K).
If s = 1 there is nothing to prove.

Suppose that

(-c) 0 e 0 (ac) =L t- a D ao mod Cs(L),

where s 2:: 1, c E G(L 0 O(I()) and the elements DitO mod Cs(L 0 W(k)) satisfy the
statement of our lemma. Then

(-c)oeo(ac)= L t-aDao + L tblbffiOdCs+](L0W(k)),
uEZO (p) b>-oo

where alllb E C~(L 01V(k)).
If l+ = I:b>O tb1b' then l+ = al~ - 1,+, where

Consider l_ = 2:b<O tblb. This SUIll is finite. "If b < 0, then there exist the unique
ab E Z+(p) and nb E Z2:0 := {n E Z I n ~ O} such that -b = abp71b. Let

l~) = L t- abpn an-nb Ib.
O:::;n<nb

Then t bIb = a(z{b)) - leb) + t-ab (a- Ub Ib)' So if [' =" leb) then- - , - LJb<o - ,

1_ = a1'-. - 1'-. +L t-Ub(a-Ubh).
b<O

If 10 = l:i tvi10i l where all tvi E W(k) anel lai E L, then

tvi = a TI' tvi + atv~ - tv~

6



for some wi E W( k), because H 1 (Gal(k /IFp ), W( k)) = O.
So, if l~ = L:i wiloi, then 10 = al~ -l~ + 0' Li Tr(wd1oi.
Thus, for c' = c + 1+ + l~ + 1'-, we have

(-c') 0 e 0 (ac/) _ I: t- aD~o luod C8 +1(L),
aEZO{p)

where 0'-1 D~o = 0-
1 Doo + L:i(Tr wd10i E Land for a E Z+(p),

D~o = D ao + I: a- nb Ib.

ab=a

The lemma is proved.

In thc notation of the above lemlna we set Do = 0-
1 D oo . For any 'IjJ E

Hom(r, G(L)), the above lemma implies the existence of f E G(L 0 O(I(sep))
such that

a / = f 0 ( I: t- a D ao )

aEZO (p)

and 'IjJ(r) = (r/) 0 (-/) for any T E r. Choose a basis O'1, .. :,O'No of lIV(k)·~

lV(IFpNo) over W(lFp). If for 1 ~ i ~ No and a E Z+(p), the eleluents D~i) E L are

such that Dao = L1:::;;i:::;;No CiiD~i), then the group Im ~ C G(L) is generated by Do

and all Dii), where 1 ::; i ::; No and a E Z+(p). Thus, ~ is a group epimorphisln

iff the above elements Do and D~i) generate thc Lie algebra L (or equivalently,
the elements D o and an D aO, W here a E Z+(p) and °:s; n < !'la, generate the Lie
W(k)-algebra L 0 W(k)).

1.4. The 3tructural constants 7](11.1, . .. ,11. 8 ),

If 1 ::; 8 < P and 11.1, . •• ,11. 8 E Z, define constants 1](11.1,' .• ,11. 8 ) E Zp as folIows.
If there exist 1 ::; 81 < 52 < ... < SI = 8 such that 11.1 = ... = 11. 81 > 11.,91+ 1 =

... = 11. 82 > ... > 11. 8 '_1+ 1 = ... = 11. 8 ,(= 11. 8 ), then we set

1
7](11.1, •.• ,11.8 )= '( )' ( )"

51' 52 - 81 .... Si - 51-1 •

otherwise we set 77(11.1, . .. ,11. 8 ) = O. "VVe extend this definition by setting for 8 = 0,
1](11.1, .. • ,11. 8 ) = 1](0) = 1.

Lemma.
(a) H 0 ~ 81 ::; 5 < p, tben for any nl, ... ,11. 8 E Z, we bave tbe identity

1](11. 1 , . . . , 11. 8 1 ) 1] ( 11. 8 1+1 , . . . , 11.8) = I: 77 (11. 1r( 1) , . . . 1 11. 1r( 8) ) ,

1rE1818

wbere I~18 is the subset 01 substitutions 1T oE order 8 such that 1T-
l (1), ... , 1T- 1 (81)

and 1T- l (51 + 1), ... ,71'"-1(8) are increasing sequences in [1,8] (i.e. 1818 is tbe set oE
a11 "insertions" oE tbe set {I, ... ,51} into tl1e set {51 +1, ... ,5});
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(b) JE 0 :::; 8 < P and n1, . .. ,n~ E Z, then

L (-1 )t1](nt, ... , nl )11(nt+l , ... , n s ) = OOs,

o:::;t:::;tl

where 0 is the !(ronecker symbol.

Proof. Assurne that a :::; nl, ... , n s :::; b for SOlne a, b E Z. Consider the free
Lie algebra Lover Zp with generators D n , where a :::; n :::; b. Denote by A
the envelopping algebra of Land by J its augInentation ideal. Any element
of A mod JP can be uniquely presented as a linear combination over ZP of the
products Di l ••• Di" where 0 :::; 8 < P and i l , . .. ,i8 E [a, b]. Similarly, any el­
ement of A 0 Amod(l ® J + J ® l)P can be uniquely presented as a Zp-linear
combination of Di l ••• Di'l ® D jl ... Dj'2' where 81,82 2: 0, 81 + 82 < P and
i}, ... , i Sl ,j], ... ,j8 2 E [a, b].

Consider the diagonal algebra morphism

~ : A mod JP ~ A ® A mod(l 0 J + J ® l)P

given by the correspondences Dn ~ 1 ® Dn + Dn 0 1 for all n E [a, b].
Let € = exp(Db)exp(Db- 1 ) .•. exp(Da ), where exp(x) = L:O<i<p xi /i! is the

truncated exponential. Fronl the above definition of the constants1](n1, . .. ,n s ) it
follows, that

where the sum is taken for °:::; 8 < P and nl, . .. ,ns E [a, b].
The identity of the part (a) is implied now by the property

~e _ e 0 € mode1 0 J + J 0 l)P.

The identity (h) follows frolll the expansion

e- l =exp( -Da) ... cxp( -Db) Inod JP = L (-lr1](ns1 ···, 11\ )D71l ••• Dn ,

O:::;s<p

and the property e-1e - 1 mod JP.

1.5. The field K(N, 1'*).
Let N E N, q = pN and let r* > °be such that 1'*(q - 1) = b* E Z+(p). We use

the following generalization of the Artin-Hasse exponential

E(a,X) = exp (aX + (aa)XP /p + ... + (aia)Xp
i

/pi + ... ) E vV(k)[[X]],

where a E W(k).

8



Proposition. There exists an extension I«AT, T*) of tlle neid I( such that
(a) [I{(N, T*) : K) = q;

(b) The Herbrandt function 'ljJ of the extension I«(N, T*)/ I( equals

{

X,
'ljJ(x) =

(x-r*)/q+r*,

for 0 :::; x :::; 1''''

for x 2:: 1'*.

(c) There exists a uniformising e1enlent t~ of the neld I«(N, 1'''') such that

Praof. Let 1· ... = m/n, where m, 11. E N and (m, 11.) = 1. Then m, 11. E Z+(p), nl(q-l)
and 1nlb*. Take Uo E K sep such that Uö= to. Then L = K(uo) is a totally ramified
extension of I( and [L : I(] = n. Take U E Ksep such that uq + r*U = 7l;m. Then
L' = L(U) is a totally ramified extension of L, [L' : L] = q and LI = I«(U). Set
JC = I«(U71) c L'. We want to verify that the field I{' can be taken as I«(N, 1'*),
i. e. it satisfies the properties (a)- (c) of our proposition.

Lenlma. [L': !('] = n. .

Proo/. Denote by I<ur the maximal unramified extension of I( in K sep and set
L ur = LI<uf' ]<:lf = I(II(ur and L~r = L' I<ur. Because L is totally ramified over K
it is sufficient to prove that [L~r : I(~r] = n.

Clearly, L~lf is a Galois extension of I<ur and there exists T E Gal(L~r/I{~r) such
that T 71 = id and TUo = ,uo, where , E I(ur is a prilnitive root of llnity of order n.
Because nl(q - 1), we have ,q = , and therefore TU = ,-mu + 0', where Q' E I(ur
is such that a q + T"'Q' = O. We can assurne that 11. > 1. If ß = a/(,-m - 1), then
ßq + r*ß = 0 and for U1 = U + ß, we have Ui + r"'U] = u;m and TU] = ,-mu].

Therefore, L~r = Lur(U1 ) = I(ur(U1 ) has the degree 11, over I(ur(Ur). Applying
an automorphism of the group Gal(L~rlI{ur) which transforms U1 to U we obtain
[L~r : K~r] = n. The lelnma is proved.

The above len1ma irnplies that ](' is a totally nunificd extension of I( of deh'Tee
q.

The extensions LI]( and L'11(' are tarnely ramified extensions of clegree 11.,
therefore their Herbrandt fune tions are equal 'ljJ L / [{ ( x) = 7/J L I / ](1 ( x) = x /11. for
x 2:: O. For the extension L' IL, we have

{

X,
'lfu L =

/ (x - rn)Iq + rn,

for 0 :::; x :::; m

for x 2:: rH.

By the composition property of the Herbranclt function we obtain, that

anel
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Therefore for x 2 0, we have

1 { x,7/J]C/K(X) = -7/JU/L(nx) =
11 (x-r"")/q+r>lo,

for 0 ::; x :::; r*

for x 2 r*.

Note that U 71 = u;m, where Ul is a unifonnising element of !('. This gives
U 1

-
q = ur and

-mq ( "" b.) 71 -m
U 1 1 + r U 1 = to .

Therefore

cnl~ (1 + r*ut") -l/r· = to

for same Cl' E !(' such that a m = 1. Because (rn, q) = 1, therc exists Q1 E !(' such
q , b- b-that Q'l = 0'. If U2 = 0'1 Ul then U2 is a uniformising element of !( , u 2 u 1

(because rnlb*), and

This gives

Now a suitable version of the Rensel Lelnma gives thc existence of t~ E !C such
that t~ =U2 moel uf+l and t o = t~qE( -1, t~b·).

The proposition is proved.

1.6. A characterization 0/ the ideal 7j;(r(VO») = L(Vo) .

Choose M E Z>o such that pM+l L = O. Clearly, L 0 O(!() = L 0 OA1+1(!()
and L 0 O(Ksep ) = L 0 OM+1(Ksep ). As earlier, suppose that 'IjJ : r ---+ G(L) is
given by the correspondence r ~ r f 0 (- f), where r E r, f E G(L 0 O(!(sep)),
e = LaEZO(p) t- a Dao E G(L 0 O(!()) and a / = f 0 e.

M

We can use the uniformizer t~ of the field a M !( to canstruct the lifting

of the field a M !( and the lifting

of the field aAl !(sep. For any n E Z, we also use the notation an D ao = Dan.
With the above notation we obviously have

aAl e = L:aEZO(p) t- apM DaM E L ® OM+l(a M!(), a k
! f E L ® OA1+1(a M](sep),

a(a Mf) = (aM f) 0 (aM e) and 'IjJ(r) = r(a Mf) 0 (_aM f) for any r E r.
Let vo be a positive real number. For the raulification subgroup r(vo) of r, we

set

Clcarly, L(vo) is an ideal of the Lie algebra L.

10



Choose N* E N and 0 < r* < Va such that r*(q - 1) = b* E Z+(p), where
q = pN+. Consider the field 1(' = K(N*, r*) C K sep and its unifornlising element tb,
cf. n .1.5, to construct for any N E N, the liftings of K I and ](~ep = ](sep modulo pN .

We use the following notation for these liftings: 0'tv(](') = lVN(aN- 1 K'){t 1 ] and
0N(](sep) = WN(aN- 1 ](sep)[t1], where t1 = [tb] E WN(]('), O'(](') = liIn 0N(K')

of--

and O'(]\sep) = lim 0N(]\sep)' Clearly, the embedding ]( C ](' and the identifica-
t--

tion Ksep = ](~ep induce the embeddings

OA1+1(a JH J(sep) C H1M +1(aM I(sep) C O~+l(](sep) C lIVM+l(](sep).

These eInbeddings allow us to relate constructions of the nilpotent version of the
Artin-Schreier theory for different liftings O(]() and O'(](').

Leluma. vVith respect to tlle above embedding OM+1(a M !() C O~+l(K') we
bave

Proof. Denote by V : WM+1(](') --+ WM+l(](') the "Verschiebung", i.e. the a-1 _

linear morphism giyen by the corresponclence (al, a2 , ... , aM+1) f-7 (0, al , ... , aM ).

Clearly,

and for any s :2: 0, we have

The lemma is proved, because V M+ 1WM+1(](') = O.

Let e1 = L:aEZO(p) t-;-a Da,-N+ E G(L00'(](')) and choose 11 E G(L00'(I(sep))

such that a 11 = 11 0 e1. Becausc a M f E G(L 0 O(a M ](sep)) C G(L <8) O'(](sep),
there exists X E G(L 0 O'(](sep)) such that

If J is an ideal of the Lie algebra L, denote by J(~(X) the field of definition

of X Inod(JO'(I(sep)) over ]('. By definition, I(~(X) = K;~t(X), where HJ(X)
is the subgroup of r' = Gal(Ksep /1('), which consists of T E f' such that T X ==
X mod(JO'(I(sep)).

Denote by v~(X) the maximal upper ramification I1tuuber for the extension
I(~(X)/J('. By definition, v~(X) is the nUlnber such that the ramification sub­
groups f'( v) of the group r' act trivially on I(J(X) if and only if v > v ~ (X) (the
existence of v~(X) follows from left-continuity of the ranüfication filtration).

For v > 0, let 3~(X) be the set of ideals J of the Lie algebra L such that v~(X).<
v. If 1},J2 E 3~(X), then v~lnh(X) = max(v~JX),v~2(X)) and therefore J1 n
12 E 3~(X). Therefore, the set .J~(X) has the minimal element 1~(X).

11



P ·t· L(vo) J' (X)ropOSI Ion. = qvo -b- .

Proof. If J is an ideal of L denote by ](J(f) the field of definition of the elenlent
f mode J O(K sep )) and by v J(f) the maximal upper ramification number of the
extension ](J (f) / ]{. Clearly, L (vo) is the lninimal elelnent in thc set :rvo (f) of
ideals J of L such that vJ(f) < va.

Dur proposi tion will be proveel if we verify, that :rvo (f) = :r;vo _b- (X).
Let J be an arbitrary ideal of L. Note, that the correspondences a- N - : k ~ k,

io ~ t~, t ~ t 1 , e ~ el and f 1---+ !1 determine an isomorphism of the extension
]{J(!)/]( with the extension ](~(fl)/]C1 where ](~(fl) is the field of definition
of !1 mod(JO'(]{sep)) over ]('. Therefore, vJ(f) = V~(fl)' where V~(fl) is the
lnaximal upper ranüfication number of the extension ](~(fl)/]('. We also note,
that V~(!I) is the last edge point of the graph of the Herbrandt function 'IjJK~ (ft) / [(I.

Then the equality 'IjJ[(~(fd/K = '1jJK~(ft)/KI 0 '1jJ[(f //{ gives for the maxinlal upper
ramification nUluber v J(!)) of the extension ](~(fl)/ ](, that

if V~(11) ~ r*

if V J(f1) ::; r* .

In the both cases, we have VJ(f1) ::; max{ 1'* , VJ(f)} and vJ(ll) ~ Vo implies
v1(/) > VJ(f1) (we reminel that r* < va).

Because, ](J(a M f) = ](J(f) and ](~(aM+N-11) = I(~(ll)' the equality X =
(_a M +N - fl) 0 (aM f) gives J(J(X) C !(J(f)J(J(fl)' Therefore, if J E Jvo(f) anel
VJ(X) is the maximal upper ramification number for the extension J(J(X)/K, then
vJ(X) ::; max{ vJ(/), VJ(/l)} < va. This is equivalent to the inequality v~(X) <
qvo - b*, i.e. J E :r;vo-b- (X).

If J E :r;vo-b- (X) and V1(/I) ~ va, then v1(/) > vJ(h) = lnax{VJ(f1), vJ(X)},
This contradicts to the embedeling](J(f) C I{~(fl )I(,(X). Therefore, VJ(/1) < va,
vJ(f) = max{VJ(/l), vJ(X)} < Vo and J E :rvo(f). The proposition is proved.

2. The Lie algebra .co (A) and its filtration {.co (A, v)} v>o.

2.1. Let A C ZO(p) be a finite subset anel A+ = A \ {O}. Denote by .c(A) the
free Lie algebra over YV( k) with the set of generators

{ D~m) I a E A+, T11, E Z/NoZ} U { Va I if 0 E A}.

Let a be the Frobenius automorphism of W( k). Define a-linear automorphism ac

of .c(A) by correspondences ae : 'D~m) 1---+ 'D~m+) if a E Z+(p) and rn E Z/NoZ,
and ac : 'Da 1---+ 'Da if 0 E A. We shall use later the simpler notation ae = a. Fix
0' E W( k) such that Trw(k)/Zp 0' = 1.

If n E Z, we set 'Dan = V~nmodNo) if a E A+, anel 'Dan = (anO')Vo, if 0 E A.
Clearly, a'Dan = 'Da ,n+l for any a E ZO(p) anel n E Z.

It is easy to see that

.c°(A) = { I E .c(A) lai = I }
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is a free Lie algebra over Zp and LO(A) 0 W(k) = L(A).
In this section the set A will be fixed, so we can use the simpler notation:

L(A) = L and LO(A) = LO.
We use the following notation:
(a, Ti) = (aI, nl , ... , a8, n 8), where 1 ::; 8 < p, CL I , ... , a8 E A and nl , ... , n8 E Z;
if N E Z, then Ti ~ N lneans nl, ... ,n8 ~ lV (in the same way we use the

notation Ti ::; N, n > N etc.);
,Ca, Ti) = alpn1 + ... + CL8pns;
if n E Z, then n* = n for n ~ 0, and n* = -00 for n < °(in this case pn* = 0).

For , ~ 0 and N E tE, consider the element

:F'-y,-N = 2::( -lr1J(nj, ... , n 8)alpn7[... [Va1n1 ' Du2 ,n2L··· ,Dasn.l

of the Lie algebra L, where the surn is taken for

(a, Ti) E M,,-N(A) := { (a, Ti) I,(a, 71,) = "nI ~ ... ~ n 8 2:: -N }

(it is easy to see that this SUIll has only a finite nurnber of nonzero slulllllands).
For v > 0, denote by .cN(A, v) = LN(v) the nllnimal u.c-invariant ideal of L,

which contains all :F'i,-N with f 2:: v, and the ideal Cp(L) of comrnutato1's of order
2:: p. For any N E Z, L~(v) := LN(v) n LO (A) is an ideal of the Lie algebra LOand
we have L:~(v)W(k) = LCJv(v) 0 W(k) = LN(V).

2.2. For, > 0, consider the set

It is easy to see that M-y(A+) is a finite set. Therefore, we can define

Definition. Let, 2:: Va > 0. Then (a,n) E .i\1i (A+) is (va,A+)-bad, if for any
o ::; t < 8 and ,t = 1';(a, n) := a1ptl1 + ... + atptlt we have either ,; 2:: Vo and
nt+l 2:: -N(,;, A+), 01' ,; < Va.

The following properties are imlllediate consequences of the above definition:
a) if (fi,n) = (al,nl) and fl1pn1 2:: Va, then (a,n) is (vo,A+)-bad;
b) if (a, n) E JVI-y(A+), , 2: Va and f - aspn. < Va, then (a, n) is (vo, A+)-bad;
c) if (ä,n) is (vo,A+)-bacl and '';-1 = alpnt + ... + a 8_1pll·- 1 2:: Va, then

(al , n 1, ••. ,a '" -], n 8 -1) is (va, A+)-bad;
cl) if (a, n) is not (va, A+)-bad and ,(a, Ti) 2:: Va, then there exists the unique

indice 81 < 8 such that (al, n1, ... , a",', n 8 , ) is not (va, A+)-bad for SI < 8 ' ::; 8, and
is (va, A+)-bad for Si == SI' In particular, ,~ == a1pn1 + ... + a81pnlll 2:: Vo and
-N("V- A+) > n +1 > ... > n .181' 8t _ _ 8

2.3. For NI E tE, denote by B M = B M ('0O, A+) the set of (va, A+)-bad collections
(a, n) such that n ::; lvI. Clearly, B M = 0 for sufficiently slnalllvI.
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Proposition. Tlle set B M is finite.

Praof. If 7f = (a, n) E M,(A+), where , ~ Vo, set

We want to show that there exists only finitely many 7f E B M with a given value
of ma(7f).

Lemnla. There exists

Praol 01 lemma. For 1 ::; So < p, denote by M'lSO(A+) the subset of M'l (A+),
whieh consists of collections (a, n) of length S ::; So. VVe use induction on So ~ 1 to
prove the existence of

The existence of 51 is obvious. Assume that So ~ 2 and 080 -1 exists. Clearly, there
exists '0 E (vo - 0090 -1, vo) such that lvI,o",o(A+) "I 0. It is sufficient to prove the
existence of only fini tely many " E (,a, va) such that M,' So (A+) =I=- 0.

Let (a,n) E M"so(A+). Then a,'40pn. o ~ ,0 - (vo - 0090 -1) = 5' > 0. This gives
the existence of f\l* = N*(A+ 1 5') such that n o9o ~ N*. Therefore, (a, n) belongs to
the finite set

The lelnma is proved, because 5(vo l A+) = 5p - 1 •

Continue the proof of proposition by induction on ma(7f).
Let ma elf) = 0, i.e. ,- aspn~ < Va. Then ao9pn. 2:: 5(Va 1 A+) anel all 7r E B M

with ma (7r) = 0 belong to the finite set

Assume fini teness of 7f' E B M with 7120 (7f') < 712 '" 1 Where rn * 2:: 1. Let

If 7f = (a,n) E BM and mO(7f) = 712*, then 1T1 = (a1,nl, ... ,as -l,ns-1) E BM anel
r12o(7f1) = m* -1. Therefore, n" 2:: -N(,(1Tl), A+) 2:: N(nl* 1 Va, A+), and 7f belongs
to the finite set { (a, n) I N(m*, Va, A+) ::; n], ... ,ns ::; M }.

The proposition is proved.

2.4. Let r B = { ,(a, n) I (a, n) E B M for some MEZ }.
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Proposition. There exists maxi N(" A+) I, ErB }.

Proof. Consider Mo = Mo (A+ , vo) E N such that apMo 2: Vo for all a E A+ .
Let M > Mo and (a, n) E B M \ B M -]. It follows easily from the defini tion of a
(va, A +)-bad collection that (al, Mo - }vI +nl, ... ,as , Mo - M + n s ) E B Mo, and
therefore

exists. The proposition is proved.

2.5. Let NB(va,A+) =max{ N("A+) 1 ,E rB }.

Proposition. IE N ~ N B(Va, A+), then LN(A, va) = LNB (vo,A+)(A, va).

Proof. For, ErB, consider the set B, C M,(A+) of all (va, A+ )-bad collcctions
(a, Ti) such that ,(a, Ti) = ,.

Define the subset M (B,) C j\([" N ("A +) ( A) consisting of collections (a, n) such
that if we remove frorn (a,n) all {ai,ni 11 .s i .s S,ai = 0 }, then we obtain a
collection (a', n') E B,. So, for all , ErB, we can define the elelnents

of the Lie algebra L, where the surn is taken for (a, ii) E M (B -r ).

Denote by La the lrunimal ac-invariant ideal of L, which contains all :FB-y, where
f ErB, and Cp(L). We want to prove, that LN(A, Va) = LB for N 2:: 1\TB(Va, A+).

Lelnma 1. For any, ~ Va, we have :F"-N(,,A+) E LN(A, va).

Proof of lemma. If (a, n) E .iVJ,N(A), then there exists the unique indice SI <
S such that (al, nl,· .. ,ast' n.,J E M"-N(,,A+)(A), a SI +1 = ... = a., = 0 and
-N("A+) > n"l+l 2: ... 2: n8 2:: -N. This gives

where the SUfi is taken for t ~ 1 anel all -N ::; mt ::; ... ::; ml < -N(" A+).
Now the lemlna follows, because the operator in brackets of the above equ8Jity is
invertible.

The following two lemmas can be proved sinlilarly by applying the property d)
of (va, A+)-bad collections from n.2.2.

Lenuna 2. For any f 2:: va, we have :F,,-N E La.

From the above nn.2.3-2.4 it follows, that rB = { tJ, ,2, ... }, where Va ::; fl ::;,2 ::; ... (in the archimedian topology ,n- -t +oo,-in_the -p-adic:topology-~n_---+0).

For n E N, denote by L~m) the ideal of L generated by {:FB-Yj 11 ::; i < 1n } and by
Cp(L).
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Lemma 3. For allY rn E N we bave

'L - 'L 1rem)
J', -N(, A+) = J B moc J...-B .rn, m, "Ym

The lemma 2 gives that LN(A,vo) C LB.
By the lemma 3, the ideal LB is the minimal a-invariant ideal of J:. such that

F,ml-N(,rn,A+) E J:.B for all m E N. So, the lemlna 1 implies that LB C LN(A, vo).
The proposition is proved.

2.6. Now we can set J:.(A, vo) = J:.N(A, vo) and J:.O(A, vo) = J:.?v(A, vo) =
LN(A, vo) n.co, where N ~ N B(Vo, A+). We also define the integer

The filtration {J:.( A, v)} v>O is a decreasing filtration of a-invariant ideals of the
Lie algebra.c. The filtration {.c°(A, v)}v>o is a decreasing filtration of ideals of
the Lie algebra J:.o. The set of jllmps of this filtration is contained in the set
{ f I lvf,(A+) f:. 0 }. The lernma of n.2.3 gives, that for any Vo > 0, there exists
8 = 8(Vo, A+) > 0 such that J:.(A, v) = J:.(A, va) and J:.O(A, v) = .cO (A, va) for any
v E (va - 8, va). In particular, the filtration {.co (A, v)} v>O is left-continuous.

3. Estimations in the envelopping algebra A(J:.) 0 0(1(').

In this section A is a fixed finite subset of ZO(p). We use the notation from
n.2.1 with omitted indication to the set A. The main result of this section is the
proposition of n.3.IO. We use this proposition for the study of the ramification
filtration of the group r in the section 4.

3.1. Notation and agreements.
Fix a positive real number va.
If 8(va , A+) is the rational nurnbel' fronl the leluma of n.2.3, choose 0 < 8 <

rnin{8(vo, A+), vo/3} such that va - 8 E Z[I/p].
Choose 0 < e < vo/3 such that Vo + e E Z[I/p].
We choose N E N and 7'* E Q such that if N* = N+ 1 and q = pN", then
N ~ tnax{ N(vo, A+), N(vo + c, A+) }, cf. notation of 11.2.6;
a* := q(vo - 8) E pN and q(vo + c) E N;
b* := r*(q - 1) E Z+(p);
(vo - 8)(q +p)/(q - 1) < 1'* < Vo.

We note that .co (vo) = .cR(vo), .co (vo +c) = J:.R(vo + E), and the above inequality
for 7'* gives q(b* - a*) > pa*, in particular, b* > a*.

Consider the field JC = J«1'*, N*) and the elenlent t1 = [t~] E 0'(1('), where
t~ is the uniformising element of ](', cf. n.1.5. For N :::; Fr and arbitrary " we
have either F,,-N = 0, or q, E pN. In particular, the expression F,,-Nt~q, is

well-defined in the Lie algebra.c° 00'(1('). We note also that t~qa"l)-l,t~q(vo+e) E

0/(1(').

vVe use the following abbreviated notation:

0 1 = 0/(1(/) = W(k)((tl», 0 0 = W(k)[[t 1 ]];
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A = A(.c°) is the envelopping algebra of the Lie algebra .co = .c°(A), and
J = J(.c0

) is its augmentation ideal;

In the algebra Al := A 0 0 1 we set Jl = J0 1 and Ja = JOo;

Al (vo) and Al (vo +c) will denote the minimal 2-sided ideals in the Ol-algebra
AI, which contain .c°(vo) and .c°(vo +e), respectively;

Für sEN, we set C.'l(A1(vo)) = L:O~.'ll<8 J;lA1(vo)J;-1-.'ll.

Ai(vo) = C2 (A 1 (vo)) + A 1 (vo + e) + pA1(vo);

As in n.2, (a,n) = (al,nl, ... ,a."n.'l)' where 0 ~ s < p, al, ... ,a., E A and
71.1, •.• , n.'l E Z;

For a E A, n E Z and I E Z2:o, we define the power series eXl(a, n) E .Zp([X]] as

follows:

{

exp(apn-lXPI), for n > I

eXl(a,n) = eXl(a,n)(X) = E(a,XP'), for n = I

1, for n < 1,

where E is the function froIll n.1.5.

If 0 ~ t ~ s and (a, n) = (al ,121, •.• , a." 71..<1)' we set

(by definition, eXl.'l(li, n) = 1). If t = 0 we use the simpler notation eXl(a, n)
eXlO(a, n).

The results of the substitution X ~ tr in the above power series we denote by
[l(li, n) = eXl(a, n)(tr) E 0 0 and Clt(li, n) = eXlt(a, n)(tf) E 0 0 .

V an = Val nl ... Va. n., where V ajnj for 1 ::; i ::; 5, are the generators of the Lie
algebra .c froIll 11.2.

Proposition. For any" we have
(a) :F-Yl_Nt-;q-y E A 1(vo) + t~a· Ja;

(b) :F-Yl-iJt -;q-y E Al (vo + €) + t~q( vo+~) Ja.

Proof. If, 2:: vo, then :F-y,_Fit-;q"Y E A1(vo). If, < Va, then , ~ Va - 8 and

:F,,_Rt;q"Y E t-;a* Ja, because a* q(vo - 8). The part (a) is proved. Similar

arguments prove the part (b).

3.2. Let ,a(ä, n) = a1pnr + ... + a.'lpn: = L:ni~O aipn i , and for 0 ~ t ~ 5, set

,at(a, n) = at+lpn;+l + ... + a.'lpn: (cf. n.2.1 for the definition of 71.*, where 71. E Z).

Proposition. For any '( ~ 0 and N E Z,
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where thc sum is taken for 1 ::; s < p, 0 ::; t ::; sand all (a, n) such that ,Ca, n) = ,
and Ti 2:: -lV.

Remark. If 0 E Athen the right-hand surn contains infinitely rnany sUlumands. In
this and similar cases we set

:F,." -N = liIn :F", -N I,
" 1-+00 " ,

where :Fi,-N,l is the part of the right-hand SUln which contains terms with n < 1.
In our case it is easy to see (by applying the identity of thc part (h) of thc lemma
from n.1.4, cf. also the proof of lemma from n.3.3 below), that if 10 = 10 (" A) E N
is such that ploa > , for any a E A+, then Fi,-N,1 1 = :F'Y,-N,12 if 11, 12 2:: Io(A, ,).

Proof. For 1 ::; s < p anel 1 ::; t ~ s consider thc subset 1>st of substitutions 1r of
order s such that 1r(1) = t anel for any 1 ~ l ~ s the subset {1r(1), . .. , 7r( l)} of [1, s]
is "connected", i.e. there exists 11,(1) E N such that

{7[(1), ... , 7r( l)} = {n( l), n( l) + I, ... ,11,( l) + 1- I}.

By definition, we set «Pso = «P s ,s+l = 0.
Set Bt(n) = LrrEep,t 17(nrr(l)"'" nrr(s» for 0 ~ t ~ s. Vle note that Bo(n) =

Bs+1(n) = 0, Bl(n) = 1](11,1, ... ,ns) and B.9(n) = 17(11,.9,··· ,nI)'

Lelnma 1. For any 0 ::; t ~ s, the set <P.9 t U <P.9, t+ I is tlle se t of a11 insertions of
theset {t, ... ,l} into theset {t+l, ... ,s}, i.c. 7r E <P s tU<P.9,1+1 ifandonlyifthe
sequences {7r- 1 (t), ... , 7r- l (I)} anel {7[-l(t + 1), ... , 7r- l (s)} al'e increasing.

The proof of this lemma follows easily from the above definition of the set <P si.

The following lemma is implied by the property a) of lelnma of n.1.4 of the
structural constants 1](n).

Lemlna 2. For 0 ::; t ::; s, we have

Lemma 3. For indeterminates Xl, . .. ,Xs wc bave the identity

2::= (-I)t- 1X rr -l(1) ... X rr -l(3) = [... [X1,X2], ... ,Xs].

l::;;;U:;.9
rrEtP,t

We omit the proof, which can be obtained by siluple combinatorial arguments.

Now we can rewrite the right-hand side of the equality of our proposition in the
form

2::= (-1r+ t+1E t ( n)( ,O,t-l (a, n) - ,Ot (a, n) )Daii =
b::;;t::;;;.9<P

i(a,ii)=i,n)-N

2::= (-Ir 2::= (-I/+lBt(1i)atpn;Vän =
1::;;;3<p l::;;;t::;;;s

i(ä,n)=i,ii~-N
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L
l~s<p

,(a,fl)=,
n~-N

L (_1)8 L (-1)t+1 17(n rr(1)'.'" nrr(8))atpn~'Dan=
1~8<P l~t~~

,(a,fl)="n~-N rrEc)~t

(-lY1](nl'.'" ns)a)pn~ L (-1)t+l'Dar_1(l),n ... _1(1) ... 'Da ... -l(,),nr-lC,)·
)~t~s

rrE~,t

By the above lemma 3 the last expression equals F,,-N. The proposition is proved.

3.3. For, 2:: 0 and J.V,1 E Z such that -N < 1, we set

F,,-N,l= L(-lY L (-1)t17(nt, ... ,nl)1](nt+l, ... ,ns)'Ot(a,n)'Dän,
o:s.;;t~s

where 8 is the !(ronecker synlbol, all three sunlS are taken for 1 < s < p and
collections (a, n) such that ,(a, n) = / and - N :::; n. < 1.

Lemlua. For / 2: 0 and N, 1 E Z such that - f\l < 1, we have

F,,-N = F,,-N,l + L C~l,-N,IF,. ,IC~2,_N,lnlod Jf·
,1 +,·+"'12=,

Froof. We have

F,,-N - F,,-N,l = L (-lYa(a,n)'Dan ,
,(a,n)=,
max fl~l

where a(a, n) = LO:5::ts:::s( -l)t1](nt, ... , nd1](nt+l,.'.' ns)rot(ci, n).
-.;:: -.;::

Let h = h(n) = min{ t I nt 2:: 1 } and t2 = t2(n) = Inax{ t I nt 2: 1 }. Then
from the part (b) of the lelnma fronl n.1.4, it follows that

a(a, Ti) =

where r(t,t
2
1(a, n) = at+lpn~+l +.. .+at:ilpn~2 and the sum is taken for tl -1 :::; t :::; t2.

From the definition of the structural constants 1](n) it follows that a(a, n) ::f=. 0
implies nt 2: 1for all t) :::; t :::; t 2 •

It is easy to see now that the above expression for a(a, Ti) gives the statement of
our lemma.

19



Proposition. ~

(a) JE I E 1: 20 aJld -N ::; n < 1, then

Dant~q,(a,n) E A1(vo) + L (t~a-pl-l Ja) 1+ Jjj
i>]

(b) H I E N, then f-y"t";n E A 1(vo) +Li2:1 (t;aOp'-' Jo) i +Jr
Proof. We use induction on 2 ::; So ::; P to prove the formulae (a) and (b) modulo
J .'lQ

] .
Let So = 2.
If s ~ 2, then 'Dan E C2 (,c). If s = 1, i.e. (a, n) = (a, n) with a E Z+(p) and

-N ::; n < I, then 'Dan =(1/a)a n(Fa,_N)modC2 ('c), with arbitrary N ~ -no If
we take N = N, then for a ~ Vo, we have Dan E ,c(vo) + C2 (,c) and 'Dant~q,(a,n) E

A ( ) J 2 If hel '1"'1 -q,(a,n) _a-pl-l J b] Vo + ]. a < Vo, t en a S; Vo - v ane van t ] E t 1 0, ecause
n < I. So, the formula (a) is proved modulo J;.

Let l ~ 1. If, rt p1N, then F"I = O. Otherwise, F,,1 = F,,-N mod C2 (,c), with
arbitrary -N ::; l. Thcrefore, if, ~ Vo then :F"lt~q, E A1(vo) +Ji. If, < Vo then
f ::; Vo - 8 and :F"lt-;q, E {la- Ja. So, the fonnula (b) is proved modulo Jl.

Assume that the relations (a) anel (b) are pro~eel 11l0elulo J;O, where 80 ~ 2.

Fronl (a) it follows now that for s 2: 2 anel -N S; n < 1, we have

(1) 'Dant;q,(a,n) E C2 (A 1 (vo)) + L (t~a-pl-1Jo)1 + J:0+1 •

i22

We abtain also from (a) that for any , .2:: 0 and l E Z20 ,

Now the above lemma for I E N, anel the ineluctive assulnption (b) 11l0dulo J{O
glve

(3)

modC2 (A1 (vo)) +L (t;aOp'-' Jo) i + Jto+J
•

i22

If , E plN, then :F,,-N,l is a linear combination of D afl with 8 2: 2, -N S; Ti < l
and ,(0., n) = ,. So, we can apply the property (1) to estimate:F -N I' Because" ,I ~ 1, we also have
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Now the relation (3) gives the fonnula (b) modulo 1!o+1 in the ease , E p'N. If
, rf:. p'N, then F,,/,l = 0, and the fonnula (b) is valid by trivial reasons. We can use
also this argument in the ease 1 = 1 and , = a E Z+(p) to obtain from thc above
relations (1) and (3) that

Vaof;qa E A 1(vo) +2: (t;a. Jor+ J;o+l.
i~l

If I E Z~o and n < 1, then

Vanf;n(a,n) = an (Vaot;qa) E an(A1 (vo) + 2: (t l a• Jor+ J;o+l) C

i~l

a1
-

1(A 1(vo) + 2: (t;a· Jo) i + J:o+ 1) c A 1(vo) +2: (t;aOpl
_ ' Jo ) i + J:o+ 1.

i~l i~l

Together with the property (1) this gives obviollsly the formula (a) modulo 1:0 + 1
.

The proposition is proved.

Remark. If we apply the part (a) of thc above proposition in the case 80 = 1 and
(a,n) = (a, 0), then the proposition 2 of n.1.2 gives, that

ij a.2: 8Vo, 7JJhere 1:S 8< p, then Van E L:(vo) + Cs+1 (L:).

3.4. We also need the following modification of the above proposition.

Proposition.

(a) JE 1 .2: 0 and -N :S n < 1, tben

Vant-;q,(a,n) E Aj(vo) + t~q(vo+~) Jo + 2: (t~a·pl-l 10) 1 + 1f;

i2: 2

(b) H I .2: 1, tben

F.",t;n E At(vo) + t;q(vo+<) Jo + 2: (t;a
Opl

-

1

Jo ) i + Jj.
i~2

Proof. We use the part (b) of the proposition of n.3.l anel that Ai(vo) contains
C2(A 1(vo)) + A1(vo + c:). If 8 .2: 2, then (a) follows froln the formula (1) of n.3.3
for 80 = P - 1. In the case 8 = 1, we ean use arguments frorn the end of n.3.3. For
proving the property (b), we ean assume that , E plr:~f. Then (b) follows from the
formula (3) of n.3.3, where So = P - 1.

3.5. For, ;::: 0, N E Z anel i E N set (cf. remark of n.3.2)

F,,-N(i) = 2:( -l)s+t1](nt, ... ,nd7](nt+h'" ,ns),ot(a, n)iVan ,

F,,-N(O,i) = 2:(-l)~+t1](nt, ... ,nt}7](nt+l, ... ,ns)'o(a,n)'ot(a,ii.)iVan ,

where the both sums are taken for 1 :S s < p, 0 :S t :S 8 and (a, Ti) such that
,Ca, n) = I and n .2: -N.

We note that ..ri ,-N(l) = Fi,-Ni if I .2: 0, then F"I(O, i) = ,Fi,l(i); and if
I rf:. N, then Ti,o( i) = 0.
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Lemnla 1. For,2: °and N, i E N, we have

(a)

(b)

F,,-N(i) =

F-y,-N(O, i) =

c~ -N oFAJ. 0(i)C~2 -N 0Iuod lf;,1, , " 1',

,1 +'·+'2='

c~ -N 0'*F,. o(i)C!: -N °mod J1P.d" , ,2"

'1+'·+'2='

The proof is analogous to the proof of the lemma !rom n.3.3.

Lemma 2. For N E Z, i E N and, 2: 0, we have

L F,t ,-N (1 )F,'J ,-N(i) = F,,-N( i + 1) - F,,-N(O, i) Iuod Jf·
'1+'2='

Prao]. From the part (b) of the Iemlua of n.1.4 it follows that for any (a, Ti)

L (-1 y+try(nt, . .. ,ndry(nt+h' .. ,n8),o(a, n)'Dan = 0.
0:::;t:::;8

So, iffor 0:::; t:::; s, ,Q;(ä,Ti) = ,o(a,n) - 'i'ot(ä,Ti) = a1pnr +... + atP71~, then

F,t ,-N(l) = - L (-1)8+t 17(nt, ... ,nl)17(nt+l, ... ,n8)'i'~(a,n)'Daii .

O~t~s<p

,(a ,n)=;t

For computing the Ieft-hand side of the identity of our lemma, we can use the indices
(S',t'), where 1 :::; s' < p and 0:::; t' :::; s', in the above expression for F,t,-N(l),
and the indices (5, tU), where S' :::; S < ]J and S' ::; t" ::; s, in thc expression for
F'2,-N(i). Because 'i'Oö(a, n) = r0 8(a, n) = 0, we can assume also that 1 ::; t' ::; s'
and s' ::; t" < s. Now we obtain the following congruence Inodulo Jf

(1) L F;1,-N(1)F'"t2,-N(i) ==
;1 +'2='

- L 17(nt""" nl )'i'ö";/(a, n)Rtltll( -1)8+t"ry(nt"+h'" ,n8)'i'Otll (a, n)i'Dan ,

where the sum is taken for 2 ::; s < p, 1 :::; t' ::; tU < sand (a, Ti) such that Ti 2: -N
and ,(ä, n) = 'i', and

R t , t ll =
,

(-1 )"1 1
- t ry (nt'+1 , ... , n 81 )17 (n t" , ... , Tl- 8 1 +1 ).

By the part (b) of the lCIuma frolu n.1.4, we have R.tltl! = 8(1 t", where 8 is the
I<ronecker symbol. So, we can take t' = t" = t and after applying the identity
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we ean rewrite the right-hand side of (1) in the form

L( -l)"'+t7](nt, ... ,n1)7](nt+1, ... ,ns),ot(ä, n)i+1Dan ,

where the both sums are taken for 2 ::; 5 < p, 1 ::; t < 5 anel (ä, n) such that 11. 2:: -N
and ,(ii, Ti) = I' Now we note, that in the above expression we can use summation
for the indices (5, t) such that 1 ::; 5 < P and °::; t ::; 5. Indeed, for any 1 ::; 5 < p,
we have ,os(a,n) = 0, and for t = °we have ,o(ä, ii),ot(ä, ii)i = ,ot(ä,n)i+l.

So, the above expression is equal to -:F,,-N(O, i) +F,,-N( i +1), and the lemma
is proved.

Proposition 1. JE i E N aI]d 1 2:: 0 then

(a)

(b)

F,,_N(i)t-;q, E A 1 (vo) + L (t I a
" Jo)) + Jfj

l~j~i

F,,_iJ(i)t-;q, E Ai(vo) + t;q(vo+~) Jo + L (t;-a" Jo)) + Ji·
2~j~i

(c) F"o(i)t-;q, E A1(vo) + L (tin" Jo)J L (t;-U"p-1 JO ))1 + Ji-
l~j~i j1~0

Proof. If i = 1 the formulae (a) and (b) are proved, cf. proposition of n.3.1.
Assume by induction that (a) and (b) are proved for i = i o 2:: 1.
Now we assume that (c) is provecl for i = i o Inodulo 1;0, where 1 ::; So < p.

Then the property (2) of n.3.3 with 1= 0, and the part (a) of lemma 1 imply that

F ( ') -q, - T (') -q"'(,,-N 1-0 t] = ~"O to t]

By the inductive asslunption (a) for i = i o, this gives the formula (e) n10dulo J!o+l.
So, the part (c) is proved by induction on 1 ::; So ::; P for i = i o.

We apply it with the property (2) of n.3.3 and the part (h) of lemma 1 to obtain

(1) F-y,_N(ü, ioKQ"Y E A 1 (vo) + L (t l
aO

JoyL (t~aOp-l Jor + Jf.
l~j~io j1~0

The induetive assumption (a) for i = i o gives

(2)



Now the above relations (1) and (2) with lenllua 2 give the fornlula (a) for i = i o+1

(we use that (t~a'p-'Jor' c t~a' Jo far 1 :s: h < p).

Proceeding in the same way we obtain

F ( . 1) -q, - F (0' ) -q, - :F (0') -g, - F (') -q,,,-N Zo + t] = i,-N ,Zo t] =, ,,0 ,Zo t] =, ,,-N Zo t]

modC2 (A1(vo)) + L (t~a' Jo)i + Jr

(we use the lenllua 2 for the first congruence and the lemlna 1 for the second anel
the third congruences). Thc above congruences give thc part (b) for i = i o + 1.

The proposition is proved.

Proposition 2. If 1, i E N, then

(a) :F-r,l(i)t~q-y E 2.:>(i-iJlCj(A1(vo)) + L p(i-i)l (t~a'pl-'Jor + Jj;
j=l l~j(i

j1 ~j

(b) F"l(i)t-;qi E p(i-l)IA+(vo) + LP(i-j)ICj(A](vo»+
j=2

p(i-l)lt~q(VO+<!)Jo + L p(i-j)l (t~a·pl-1 Jo )11 + Ji;

2(j~i

j1 ~j

Proof. We use induction on i 2: 1.
If i = 1, then

F"I(I)t~qi = Fi,lt~qi E Al (vo) + L (t~a.pl-1 Jo ) 11 + Jr
j1 ~1

by the part (b) of thc proposition of n.3.3.
Assurne that our proposition is proved for i = i o ~ 1. Then

(1) L Fi1 ,1(1 )Fi2 ,1(iO)t~qi E
i1 +1'2='

L p(io+l- j)ICj(A](vo» + L p(io+l-j)l (t~a.pl-1 Jo)11 + Jr

2::;j~io+1 2~j~io+1
11 ~j

Clearly, Fi,I(O, io) = ,Fi,l(io) and we have either , E p1N, 01' F"l(io) = O. There­
fore,

F"I(O,io)t~qi E L p(io+1- j)ICj(A1(vo»+ L p(io+l- j)l (t;-a.
p1

-
1
Jo )11 +Jf,

l(j(io l(j(io
it ~j

and we obtain the part (a) for i = i o+ 1 from the abovc lemma 2 with -N = 1and
Z = zoo

The part (b) for i = i o + 1, can bc now obtained by the ase of the above formula
(1), the lemma 2, and the inductive assumption (b) for i = i o.

24



Corollary. Jf i 1 l 2:: 1, tllen

(a) (F"l( i)/i!)t-;q, E Al (vo) + I: (t-;a+ p'-1 JO ) J + Jf;
l~j<p

(h) (F,,((i)/i!)t-;n E Ai(vo) + t-;q(vo+<) Jo + I: (t-;"'pl-l J O/ + Jj.
2~j<p

Proof. Clearly, if n 2:: 1, then /Ot(a, n) E p'N for 0 ::; t ::; s. Therefore,

F"I( i) /i! E (p'i / i!) Al c Al.

If i E N, then by the proposition 2, F"I( i)t~q, belongs to

I: p(i- j )ICj(A1(vo)) + I: p(i-j)I (t~a+pl-1Jo )J1 + Jf

l~j~min{i,p-1} 1~j~h ~min{i,P-I}

C piA1(vo) + l I: (t-;"'pl-l Jor + Jj,
I ~jl <p

where i = max{O, i - (p - 1)}.
Olle can easily vcrify that vp ( i!) ::; i for i E N. Thereforc, the "Ji-part" of

F" I ( i)t -;q, is also divisible .by i! and we 0 btain the part (a) of the corollary.
The part (b) can be proved similarly.

3.6. Vve use the notation from n.3.1 to define for Pl ::; J\T and 1 2:: 0 the following
elements of the algebra A ® 0 1 [[X]]:

I

,,( 1)8+t ( ) ( ) (- -)t-q,(ii,n)V II (--)LJ - 1] nt, . .. ,71,1 7] nt+1, . .. ,Ho! eXOt a, n 1 an eXil a, n ,

11 =1

where the surn is taken for 0 ::; s < p, 0 ::; t ::; sand (0" n) such that Ti 2: -N (the
part of this SUffi which corresponds to s = 0 is assluned to be equal to 1).

Remark. The meaning of the abovc right-hand SUln can be clarified as follows. If
11 E N (:U1d lJ1~~,Il is the part of this sunl consisting of tenns with n < 11, then

lJ1~~,ll E A ® Oo[t11 ][[X]]. It is easy to see that, if lt 2:: 12 > I, then

'l'(l) ='lJ(I) modpb- l A 00 [t- 1][[X]]-N,lt -N,l2 0 1

and thercfore,

'lJ~~:= Ern 'l'~~ I E A 0 0 1 [[X]] = Al 001 0 1 [[X]].
lt-+oo ,1

For l, N E Z such that -N < l, set

C I 1 +~ ( )V t-q,(ii,n) II (- -)- N ,I = LJ 1] no!, . .. , nl an 1 ex11 a, n ,
1S;I 1 <I

C f! 1 + ~( 1)~ ( )V t- q,(a,71) II (- -)-N,I = LJ - 7] 71,1,· .. 1 n~ an 1 eXIl a, n ,

o~lt <I

where the both SUlliS are taken for 1 ::; s < p and (ä, n) such that - N ::; Ti < I.
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Lenlma 1. For 11 , N E Z and [ E Z20, we have

\I1(l) = C' w(l)C"
-N -N,/ t h -N,h'

The proof is simi1ar to the proof of the 1emlna of the n.3.3. vVe on1y note that
eXh (a, Ti) = 1 if n < [1.

For I E Z20 and 0 ~ t ~ s, consider the expansions in po\vers of X:

eX/(a, n) = I: cl/)(a, ii)X jp1
,

i2°

( - -) '""' (O)(t - -)XieXOt a, n = L..J ci ,a, n .

i20

(O)(t--)- (--)jj".ci ,a, n - ,Ot a, n ).,

If 1 E Z~o, we set "'o(a,n) = a1P(n t -l)- + ... + asp(n,-l)-, and note that this
definition coincides with the definition from the n.3.2 in the case 1 = 0, and for
Ti ~ I, we have ,/(a, n) = p-I,o(a, Ti).

Lemma 2.
(a) For 1 ~ j < P and [ E Z20 , we l1ave

(1)(_ -) _ (- -)ij"ci a,n -,I a,n ).,

I
(h) For 1 E Z2:o and n > I, we bave eX/(a, Ti) = exp(,/(ä, n)XP ).

Proof. The part (a) follows, hecause the Artin-Hasse exponential E(l, X) coincides
with the standard exponential in degrees < p. The part (h) follows frOln the
definition of eXl(a, Ti), cf. n.3.1.

For any lV ~ N anel 1 E Z>o, we use the ahove expansions of exot(a, n) and

eXil (0" n), where 1 ~ 11 ~ I, to ~btain the expansion of w~~:

w~~ = I: 'l!~~(i)X i
.

i~O

By the part (b) of the lelnma of n.1.4, \I1~~(0) = 1. If 0 ~ 11 < I and 1 ~ i < ph +1,
then

\I1~~(i) = w~~( i),

hecause eXil +1 (0" Ti) _ ... == eXl(a, n) - 1 modedeg plI +1).

Leluma 3. JE 1 ~ i < p, tJlen

(b) tlJ~~(i) E Ai(vo) + t;q(vo
+<) Jo + I: (t~a' Jor+ Jj.

2~i~i

Proof. Indeed, by the part (a) of the ahove lemlna 2 for 1 :S i < p, we have

\I1~1(i) = I:(:r'(,-R(i)ji!)t;q-y,
-y

alld our 1emlna follows from the proposition 1 of n.3.5.
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Lemma 4. H I E N and pi :S i < pl+l, tllen

(a) W~~(i) E A 1 (vo) + :L (t~a·pl-l 10 )J + 1f;
l~j<p

(h) ili~k(i) E Ai(vo) + t;-q(vo
+<) Jo + :L (t;-a.

pl
-' Jor+ Ji;

2(j<p

Proof. Consider the decomposition w(l)_ = Cf N- IW~l)C" - from the lemlna 1 and
-N -, -N,l

let Cf - = L: ·~o C' - (i)Xi anel C" N- = L:i~o C" N- l( i)X i
. By thc proposition

-N,l Ir -N,l - ,I r -,

of n.3.3, we have for i 2:: 1,

Fronl lemlna 2, it follows that for 1 :S i < pi+1, '1J ~ I) ( i) coincides with thc
coefficient for Xi of the expression

:L(-1y+t 17 (nt, ... , nl )17(nt+l, ... ,ns ) exp(tOt(a, n)X) X

xVo.ftt;Qi(ft ,ft) TI exp ( ,(a, n)XP
u /pu)

l~u~1

-,EN exp [, (~;' +... + ~p)] (F,,/(j)fj!)t;-nX j
,

j~l

where the first SUffi is taken for 1 :S s < p, 0 :S t :S s anel (a, n) such that

n 2:: 1. Therefore, w}l)(i) is a linear con1bination with p-integral coefficients of

~i(Fi,l(j)/j!)t~Qi,where JEN, and therefore belangs (cf. corollary of n.3.5) to

Now the part (a) of the lelnma fallaws froln the relation

The part (b) can be obtained similarly by the ase of thc estimations

where i 2: 1.
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LeUlma 5. H 12:: 0 and i 2:: pl+l, tllen

(a) iIJ~~(i) E A1 (vo) + 2: (t;-a Opl

Joy+ Ji;
l~j<p

(h) iIJ~~(i) E A{(vo) + t;-q(vo+')Jo + 2: (t;-a
Opl

JO)i + Jr
2~j<p

Proof. Consider the decomposition \l1~~ = C~N,'+l \l1~21 C~N,I+l Proceeding as

in the proof of the above lemma 4, we obtain the part (a) of our lemma, because
here we have

The part (b) of the lemma can bc obtained similarly to thc proof of thc part (b)
of the above lemnla 4.

3.7. For any f 2:: 0, 1E Z,2:o anel N E Z, set

I

\l1~:_N = 2:( -l)s+t1](nt, . .. ,nI)77(nt+b· .. ,ns)eXOt(a, n)Van II eXil (a, 71),
11 =.1

where the Slun is taken for 0 :S t :S s < p and (Ci, n) such that n. 2:: - N and

,(a, Ti) = ,. Then \l1~'?_N E LC9~v(k) lV(k)([X]) anel it is easy to see that if, --t +CXJ,
then W~':_N --t 0 in the p-adic topology. Therefore,

w(l) = '" w(l) t -q'Y
-N L.t 'Y,-N]

i

and \l1~)N cOllverges for X = tf. We set e~~ = \l1~~(tr) E L. 0 0 1.

Proposition.
(l) b"' "'(a) For any 1E Z~o, e-N E 1 + A 1 (vo) + t] -a Jo + Jf;

(b) e(O~ =1 + '" :F _t- qi+b* mod (A+(vo) + tb*-u"' Jo + JP) .-N L.t ,,-N 1 1 1 1 ,

i

(c) For any m E N, e~mJ =e~R-l) mod (Aj(vo)+ tfm(b*-u*) Jo +Ji).

Proof. As it was noted in n.3.6, if 0 :S 11 < I, then for 1 :S i < p l 1+ 1 , we have

w~~(i) = w~~( i). Therefore,

p-I pl+l_1

e~~ = 2: 'lJ~~( i)db"' + ... + 2: \l1~~( i)t~b"' + 2: 'lJ~)N( i)t~b* ,
i=O i=pl i~pl+1
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and the staternent (a) follows from the parts (a) of the above lemmas 3-5 because
for any I E Z~o, we have p'+l b* - a*pl(p - 1) ;::: b* - a*.

Consider the equality

If i ;::: 2, then -q(vo + e) + ib* ;::: b* - a*.
Indeed, -q(vo+E)+ib*;::: -q(vo+e)+2b* = b*-a*-q(8+e)+1'*(q-1). But,

cf. 11.3.1.1, E, 8 < Vo /3 and 1'* > (q + p)(Vo - 8) / (q - 1) give - q(8 + e) + 1'* (q - 1) >
q(vQ - e - 28) + pa* /q > O.

Thus, by the parts (b) of the lemmas 3-5 from 11.3.6, we havc

Because 'lJ(O~(l)tb· = "F _t-qi+b
* the IJart (b) of the proposition IS-N 1 L./'y "f,-N I ,

proved. Similarly we can prove the part (c) because

The proposition is proved.

3.8. For M E Z~o, consider the following three subgroups 'H1 => 1f~ => 1fj of
the group of invertible elelnents of the algebra Al:

1l{ = 1 + A{evo) + (t~bO-aO)qpM Jo) L (t;-a
OpM

Jor + Jf'.
j?:o

It is easy to see that 1f~ and 1fj are normal subgroups in the group H 1 and
1f~ /Hj is a central subgroup of 'H1 /Hi of exponent p.

Proposition. H IV = N+M tbCl1

(a) For m, I, n E Z~Q such that n +m - 1 :::; N, we have O'ne~~+m E H 1 ;

(b) H m, I, n satisfy the above Hssumptions from (a) and n + I ;::: N+ 1, tben

(j n e(l)_ =0'ne (1-.=..1) lilO cl H+ .
-N+m -N+m 1 1

(c)
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Proof. Frolll the part (a) of thc proposition of n.3.7, it follows t hat for any I, n E

Z>o, we have ane(l)_ E H1 .
- -N
Now we note that the power series C'-N ,and C'.!...N I from the beginning of the

n.3.6 converge for X = tf· Then an CI N- N~ (tf ) - i and an C" N- N- (t b
1·) - 1- ,- +m - ,- +m

are linear combinations with coefficients from 0 0 of V an t-;Q;(a,71) , where

n ::; n - lV + rn - 1 ::; !vI

by assumption (a) of our proposition. Therefore by the proposition of n.3.3, we
have

n , b+ n" b+
a C-N,-N+m(tl ), a C-N,-N+m(tl ) E H 1.

So, the part (a) follows from the identity, cf. n.3.6,

(1)

Froln the parts (a) and (c) of the proposition of n.3.7, it follows that

and therefore, if n + I ~ N+ 1 = N* + M, we have

Now the above identi ties (1) give that ane(I)_ anel an e(1-=.1) have the sarne
-N+m -N+m

image in the group H1 1HT anel the part (b) is proveel.
The part (c) follows easily from the part (b) of the proposition of n.3.7.

3.9. For N E Z~o and mEtE, consider (cf. remark of n.3.6)

if,.(N) - """'( l).9+t ( ) ( )t-q-y(a,n)V TI C' (- -)
'±" m - D - 'Tl nt, . .. ,n1 'Tl nt+1,· .. ,n.9 1 an vit a, n ,

O~i~N

where the surn is taken for 0 :::; t ::; s < p arId (a, n) such that Ti ~ m.
(0) (0)vVe note, that 1>m = Gm .

For M E Z~o, consider

E """' ( )C' (- -) C' (- -)t-Q-y(a,71)'T"lM = L-t 'Tl n ~, ... , n1 v At a, n ... 00 a, n 1 U Ci ii

and

where the both sums are taken for 0 ::; s < panel (a, 11.) such that nl = ... = n.9 =
A1. By the proposition of n.3.3, we have E M , E~1 E 1{1.
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Proposition.

(a) <I>(1\t) a<I>(N) EH'
Al' Al 1,

(c) <I><f/) EM - E~(a<I><j}) )exp( _aN+ 1 L F')',_Nt~q')'+b+) mod 'Ht (1 + pM+l Al)'
')'

Proof.

Lelnlna 1. <I>~~)E M == E~<P~~1 modJi.

Proof. In the notation from the beginning of n.3.6 it is easy to see that E"A/ =

CII ( b+) Th'd . n-.(N) E' ;T..(N) CIf ( b+) 1JP . . 1
M,M+I t 1 · e 1 entIty '±' M = M'±'M+1 M,M+1 t l moc ] 1S qUlte ana 0-

gous to the identity of the lemlna 1 from n.3.6, and can be obtained by similar
arguments. The lenuna is proved.

JE N ~ cl '7l b (n-.(N -1») e(N) (N)Lemlna 2. E 1'1 an m E "-", t en U'±'m-1 - m = <Pm .

Proof. For 0 :s; t :s; s < p and I E N, set (a, n)(O,t] = (Ut, n1, ... ,at, nd and

&l~(a,n) = &[((a, n\o,t]). Then
n-.(N -1)

a'±'m-1 =

e~) = L(_l)a [( -l)t1](nt, ... 1 nd&Nt(a, n) ... &;;(a, n)] x

( )
C' (-~) C' (- -)t-qi(ä,ii)V1] nt+I, ... , n ~ 0 N t a , n ... 00ta, n 1 ii n ,

where the both sums are taken for 0 ::; t ::; s < p and (a, n) such that fi 2': rn. When
lnultiplying these expressions we can tlse the part b) of the lemma from n.1.4 to
simplify the product of square brackets. This givcs the formula of our lemlna.

From this lemma and the part (a) of the proposition of TI.3.8, we obtain

The part (a) is proved.
Similarly, we have
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By the part (b) of the proposition of n.3.8, we have

N+l- 1e(l) = N+]-le(l-t) d'1...l+
a N- 1 - a N- mo TL]- + - +1

for all 1 ~ I ::; N. If ii 2:: M + 1, then Eot(il, Ti) E 1 +pM+I00 and the lenuna from
. h e(N) M+1A Sn.1.4 glves t at - M+] E 1 +P I. 0,

<I>(N) =(aN+le(O~) -1 (a<I>(N)) mod H+(l + pA1+1 A )M+I -N M ] 1 ,

and the statements (b) and (c) follow from the above lemlna 1 and the parts (a)
and (c) of the proposition of n.3.8.

A q b-
3.10. Let t = t] E( -1, t] ) E 0 1 • We note, cf. lelnma of n.1.6, that

Let
f ~ -a (M) "" A_apM

ec = LJ t} Da,-N-, ec = LJ t DaM ·
aEA aEA

Lemnla 1. E~ = aR+lexp(e~), EM = exp(e~M)).

Proof. The lemma follows, because E~1 and E A1 could be written in the following
form: ..,

E~1 = a N+ I I: (1/ s1) rr (t~aiDai,_N_) ,
o~s<p i=I

al, .. ·,a,EA

s

EM = I: (1/sI) rr (i- aipM
Da;M ) .

O(s<p i=]
al , ,a, EA

Lenuua 2. There exists cP~) E ,Co 0 0] = 'cl such that

Proof. If 711 E N, let <I>(MR ) be given by the salne expression as <I> (MN) , but the sum
,TTI

is taken with the additional restrietion Ti < N+1n. Then we have

cf. remark of n.3.6.
It is easy to see that <I>0'~ == «PI m «P2 m Inod Jr, where,

.T. '"""' ( ) -q,(ii,n)D
'i"]m=~1]ns,... ,nltl an,
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n;. ,,( 1)~ ( )E (- -)t-q')'(a,fl)V
'±"2m = D - 1] n!, .. . , n s O-N a, n I äfl,

where the both StilUS are taken for 0 ::; s < p, a E AS and lvI::; 11. < N+m, and we
use the notation Eo_R(a, n) = Eo(a, 11.) . .. ER(a, Ti).

From the definition of the structural constants, cf. n.1.4, it follows now that

This gives thc existence of </JC::~ E LI such that <P~~ = exp( rPC:;f~)' Clearly,
. (R). (N) (N) ----( (N)

there eXIsts rP M = hrom _ oe </J Mm E 'cl and <P Al = exp </J /\1 ).
The lemma is proved.

Let 'cl (vo) = ,cO (va )01 , Define the ideal

,C0+(va) = [,Co, 'c0( va)] + p'c0(va) + 'c0(Vo + c)

of the Lie algebra .co. We also set 'ci (vo) = .c0+(va) 0 1 and .co = ,co 0 0 .

We note that

Consider the following Oo-submodules of .cl:

.cHI = 'cl (va) + L {;ja· pM Cj(.co) + pAI+l'cl'
l~j<p

.cH~ = .cl (va) + tipM (b· -a·) L t~(j-l)a·pM Cj('co) +pA1+1'cl'

l~j<p

.cHi = 'ci(vo) + tipM(b·-a·) L t~(j-l)a·pM Cj('cO) + pA1+l.c l .

l~j<p

With respect to induced Lie brackets, ,CH] is a Lie algebra over 0 0 , .cH~ and .cHi
are its ideals and .cH~ / .cHi is an abelian ideal of ,CHI / 'cHi annihilated by p.

Lenllua 3. H I E .cl, tl1en

(a) I E .cHI ~ exp(l) E J-ll (1 + pNf+I AI);

(b) 1 E .cH~ ~ exp(l) E H~(l + pM+l At};

(c) I E .cHi ~ exp(l) E Hi(l + pM+IAd;

Proof. Consider the Lie Zp-algebra
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Then La is a finite Lie algebra of nilpotency dass< p.

Let L = La ® lV(k), La = La ® 00, LI = La 001 . If Ja is the augmentation
ideal of the envelopping algebra of the Lie algebra La, we set J = Ja Q9 W( k),
Ja = Ja 000 anel h = Ja 001 . With this notation the part (a) of our lemma is
equivalent to the following statement:

(a') L f;ju· pM Cj(ia ) = LI n (Lt;ja·]J M Jb + Jj).
l~j<p j~1

Clearly, the left-hand side of (a') is contained in its right-hand siele. Further we
note that auy element J E h can be uniquely expressed in the form

J = L t~ju,
u»-oo

where ja E J for all a E Z emd ja = 0 for sufficiently small a. In this notation,
JE LI iff ja E LI for all a E Z, anel

J E L t~ja·pM Jb + Jf
j~1

iff for 1 ~ s < p we have: ja E Jtl+l for a < -sa*pM.

Therefore, if J belongs to the right-hand siele of (a'), thcn for 1 ::; s < panel
a< _sa*pA1, we haveju E Ln Jtl+I. By the proposition 2 (a) ofn.1.2, Ln Js+I =
Cs+ 1(l), and therefore Jbelong to the left-hand side of (al).

The parts (b) and (c) of our lelnma cau be proved similarly.

Now the proposition of 0.3.9 can be stated in the following fonn.

Proposition.

(a)

(b)

(c)

,pCj}) 0 e;[:1) == (u N+1e~) 0 (u,pCj}l) 0 ( _uN+1~ F,,_Nt;-q-yW) fiod G(CHi).

4. The 111ain theorenl.

In this section we consider a group epimorphism 'ljJ : r ~ G(L), where L is a
finite Lie algebra over Zp of a nilpotency dass< p.
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By the n.l, for any T E r, we have 'IjJ( T) = T f 0 (- f), whcre f E G(L 0 O(Ksep »
is such that a f = f 0 e, e = L:aEA t-a Dao E G(L 0 O(I(» and A C ZO(p) is a finite
subset.

Consider the Lie algebras 12° = LO(A) and L = L(A) from n.2. Then the
correspondences D ao 1---+ D ao where a E A, dcfine the unique a-invariant morphislll
of Lie algebras

Jr: L ~ L0 W(k).

For any n E Z and a E ZO(p), we set Dan = an Dao = Jr(Dan ). Clearly, Jr induces
the epimorphic morphism of Lie algebras over Z p

and we have the induced decreasing filtration {L(v)} v>o of the ideals L(v) =
Jro (La (A, v» in the Lie algebra La.

For any / ;::: 0 and N E Z, set Fi,-N = rr(Fi,-N). If va > 0 anel N ;::: N(vo, A+),
then L(v)W(k) is the minimal a-invariant ideal of L0 W(k) which contains the set
{Fi,-N I / ;::: va}.

Theoreln. Hv > 0 and r(v) is thc ramincation subgroup off in upper nunlbering,
tben

'IjJ(r(V) = G(L(v» c G(L).

Proof.

4.1. Inductive assumption.
Let M E Z:2:o be such that pNl+1 L = 0 anel let 1 ~ So < P be such that

Cso+J (L) = O. By induction we cau assume that the theorem is proved for the
compositions of the lllorphism 'IjJ with the natural projectiolls G(L) ---+ G(L/pM L)
and G(L) ~ G(LjCso(L».

This assumption gives for any v > 0, that

(1) L(V) =L(v) mod Cso(L), L(v) =L(v) IllOd pM L,

where L(v) is the ideal of L such that 'IjJ(f(v) = G(L(v).
Consider the set R = {v E lR.>o I L(v) i- L(v)}.
It is easy to see that for a sufficiently large v we have L(V) = L(v) = o. This

implies that either R = 0 (and the theorem is proved), or thcre exists va = sup R >
O. In this case L(vo) i- L(va). Indeed, the both filtratio~s {L(v)}v>o and {L(v)}v>o
are finite and left-continuous. Thereforc, thcre exists 8 > 0 such that for any v E
(vo - 8,vo], we have L(v) = L(vo) and L(v) = L(vo), and the equality L(vo) = L(vo)
gives the contradiction Vo = sup R ~ Vo - 8.

So, the theorem will be proved, if we take an arbitrary Vo > 0, assuIDe that

(2) L(v)=L(V) Vv>vo

and show that L(vo) = L(vo).

4.2. For thc above Va > 0 and A C ZO(p), ,ve use the choice of c, 8, N, N*, q,
a*, b* and notation of n.3.
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We set Ll = L&;Ol, Lo = L&;Oo, Ll(vo) = L(vo)O], L](vo+e) = L(vo+e)Ol'
L+(vo) = [L, L(vo)] + pL(vo) + L(vo + e) anel Lt(vo) = L+(VO)Ol'

Let ?Tl = ?To &; 0 1 :.cl ---+ Ll . Then

?Tl (e~) = el = L t~aDa,-N";
aEA

?Tl (e~M)) = aMe = L t-
apM

Dafl.1 E L (9 OM+l (aM !() C Ll j

aEA

?Tl (.cH~) = L1 (vo) + ti
pM

(b· -a·) L t~U-I)a"pM Cj(Lo) := LHf j

j~l

?Tl (.cHi) = Lt(vo) + ti
pM

(b· -a·) L t~U-l)a"pM Cj(Lo ) ;= LHt.
j~l

Clearly, LH I is a Lie algebra over 0 0 , LHf anel LHt are its ideals and thc
quotient LHf / LHi is an abelian ideal in LH1 / LHi annihilated by p.

With the above notation thc proposition of n.3.10 gives thc following

Proposition. H if>* = ?Tl (cP~)), tben

(a) cP*,acP* E G(LH.);

(b) cP* 0 (aMe) =(a N+l el) 0 (aif>*)modG(LHf);

(e) cP* 0 (aMe) == (a N+1el) 0 (acP*) 0 (_a N+1 LF')',_Nt~ql+b·)lnodG(LHt).
')'

4.3. We set

Lsep = L ® O'(!{sep), L(vo)sep = L(vo)O'(I(sep), L(vo)~p = L+(vo)O'(I{sep).

Similarly to n.4.2, we also set

LH+ = L(v)+ + tq.pM (b" -a") '""" t -(j-l)a· pM C .(L )
sep 0 sep 1 L...t 1 J o·

j~l

As in the n.4.2 we have that LHsep is a Lie algebra ovcr 0 0 , LH~ep and LH:ep
are its ideals and LH~ep/LH:ep is an abelian ideal in LHsep / LH:ep annihilated by
p. We have also the natural inclusions:

LH1 C LHsep , LHf C LH~ep, LHi C LHtep.
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Proposition. Tllere exists If E {lI E G(Lsep ) I a11 = f1 0 e} such tbat {ar

XO = (_a N+1 If) 0 (aM I), we have XO == <jJ* IllOd G(LH2ep)'

Remark. In particular, we obtain that XO E G(LHsep ). In fact, one can show that

a M I, a N+1 11 E G(LHsep ).

Proof. By induction we can assume the existence of f{ E G(Lsep ) such that all =
f{ 0 el and for x' = (_aR+1I{) 0 (aM I) we have

(1)

The eqllalities af{ = 11 0 el and al = 10 e givc

The congruence (1) gives X' = <jJ* 0 U, where

We note that the quotient t?(LH~ep + Cso(Lsep))/G(LH~ep) is a central subgroup
in G(LHsep)/G(LH~ep)'From the congruence, cf. proposition of n.4.2,

we obtain that aU - U E G(LH~ep)'

Therefore, U E LH~ep + L because G(Lsep)lu=id = G(L) and for any

I E t~pM(b·-a·) Lt~(j-l)a·pM Cj(Lo),

j;;::1

we have
1

1
= - L an I E tipM (b· -a·) L t~(j-l )a·pM Cj(Lo)

n;;::O j~l

and this 11 satisfies the identity a 11 - 11 = I.
So, we have U == u mod G(LHsep ), where 1.l E Cso(L).
Let If = I{ 0 U l then a If = If 0 Cl alld

XO = (_aN+1 If) 0 (aM f) = X' 0 (-u) == <j;* mod G(LHsep ).

The proposi tion is proved.

Corollary. L(vo) C L(vo).

Proof. In notation of n.1.6 the above proposition inlplies that for the field of defi­
nition of X IllOd L(Vo )sep over 1(', we have

j{'(X moel L(VO)sep) = JC,
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l.e. L(vo) E J~vo -b. (X), and by the proposition of n.1.6, we have L(vo) :> L( vo} .

4.4. By the unductive assuluption (1) of n.4.1 anel the corollary of n.4.3,

Therefore for L = L(vo)/L(vo), we have pL = C2 (L) = O.

Let Lsep = L0 ](sepl L1",= L® 1(' and Lk = L0 k.

For f ~ Vo, denote by F"f,-R the ilnage of F"f,-R uuder the natural projection

L(vo) ---t Lk and consider UE Lsep such that

aU - U =

Proposition. H 1('(U) is the ~eld of definition of fj o~r ](', then for the maximal
upper ramification number v'(U) of the extension ](I(U)/1(', we have

v/CU) < qVa - b*.

Proof. By the proposition of n.4.3, we have X O = 1>* 0 U, wherc U E G(LH~ep)'

Now we use the equality

the part (c) of the proposition of n.4.2, and that G(LH~ep)/G(LH:ep)is a central
subgroup of G(LHsep)/G(LH:ep), to obtain the following cougruence:

(1) aU - U ~ aN+1 LF"f,_Rt~q"f+b· mod(L+(vo)sep +t1LO)'
"f

In the right-hand sum all sUilllnands with f < Va can be onlitted, because in this
case -q, + b* > -a* + b* > 0 and F"f,_Nt~q"f+b· E t1LO' We can also oluit all

terms with f ~ Va + c, because here F"f,_iJt~q"f+b· E L1(va + c) C L+(vo)sep.
If U1, U2 are any two solutions of the above congruence (1), then

Therefore, the fields of d:.finition of these elements modulo L(vo)Q'(](sep) coincide.

V\Te denote trus field by ](.
Clearly, K = K'(Xa modL(vo}Q'(](sep»). By the.....proposition of n.1.6, the max­

imal upper ralnification number of the extension ]{/ ](/ is less that qVa - b*. It
is easy to see, that there exists a solution U1 E G(Lsep ) of the congruence (1)

such that VI modL(vo}Q'(!(sep) = aN+IU with respect to the natural elnbedding
Lsep C Lsep / L(vo)Q'(!(sep), and therefore K = ](I(U).
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4.5. AsslUlle that L = L(vo)/L(vo) =I 0, and 11 , • •• ,in is a basis of Lover IFp .

vVe note that the set {an F,,_N I va :::; , < va + 6, n E Z/NoZ} generates Lk over
k. Therefore the set of coefficients

{ a,i E k I va :::; , < Va + 6 }

of the decorupositions
n

F,,-N = L a,ili,
i;:; 1

contains at least one non-zero element, i.e. there exist ,0 2:: va and 1 :::; i o ::; n such
that a,o ,io =I- 0.

Consider the decomposition

n

U= L Ui1i,
i;:; 1

where for i = 1, ... ,n, Ui E ](sep and satisfy the relations

Up - U:­i l -

Clearly, K'(U) is the composite of thc fielels ]«(Ui), i = 1, ... ,n. Therefore,

where v~o is the rr:,aximal upper rarnification number of the extension ]e (Ui o ) / ]i'.

By the choice of N, q anel b* froln n.3.1, we have either F,,_FJ = 0, or q, - b* E Z
and (q, - b* ,p) = 1. Wc also note that , 2:: Va implies q, - b* > 0. For this rcasoll,
a,olio =I- °implies that ]('(Uio) has clegree p over ](' and v~o = q,io - b*, where,io = rnax{ , I a,i o =I- o} 2:: ,0 2:: va·

Therefore, for the maximal upper rarnification nunlber v'(U) of the extension

K / K' we have v'(U) 2:: q,o - b* 2:: va· This contradicts to the proposition of the
above n.4.4. So, L(va) = L(VO), anel the theorem is proved.

5. Description of the raluification filtration modulo pth conullutators.

5.1. Z/pM 71rmod'ltle 1(* / ](*pM .

As earlier ]( is a cornplete discrcte valuation Held of characteristic p > 0 with
finite residue Held k ~ IFpNo and a fixed unifonnising element ta. For M E N,
consider thc lifting 0 M (I() of the field K modulo pM from n.l.l. Let ColA1 : K"" ----+

OM(I()* be Coleman's rnultiplicative section of the projection OM(]() ---4 1(. This
homomorphism is uniquely defined by conditions: ta 1---+ t and E(0', t ö) 1---+ E( 0', tU),
where 0' E IV(k), a E Z+(p) and E( 0', X) is the power series from n.1.5.

Consicler the vVitt pairing
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explicitly given by the Witt reciprocity law, cf. {Fo],

(/, g) = (Res 0 Tr)(/ d10g CoIM(g)),

where / E 0 M(I(), 9 E 1(* and Tl' is induced by the trace of the quotient fiel cl of
W( k) over Qp. V-Ie have the induced identification:

As in TI. 1.3 fix 0' E W (k) such that Tl' 0' = 1. Then we have the decomposi tion

Therefore,

j(* jK*pM (9 WM(k) = TI Hom(WM(k)t- a
, WM(k)) x Hom((ZjpMZ)O', WM(k)).

aEz+ (p)

For CL E Z+(p) (resp.,· a = - 0) and n E Z denote by D~JI;!) the elelnent of
](* /]{*pM ®WM(k) with the only non-zero component in Hom(WM(k)t- a , T1V1i1(k))
(resp., Hom( (Z / pMZ )0', TVM (k ))) giyen by the correspondence wt - a I---t anw (resp.,

a I---t ana). Clearly, for any a E ZO(p), we have D~J;;) = D~~)+N and the set
, 0

generates the WM(k)-module ](* /I(*pM ® TIVM(k).
Let A be a finite subset of ZO(p). Then the set

{ D~~) I a E A,O ::; n < No }

generates the free W M (k )-module j\lt (A, lvI) 0 WM (k), where M (A, M) is the image
in ](* / ]{*pM of the subgroup of ](* generated by the set

and by i o if 0 E A (this follows easily froHl the Witt explicit reciprocity law). If
Al C A, then we have a natural epimorprnsm of lllodules

A-1(A, lvI) ---+ M(A 1 ,lvI)

induced by the correspondences D~~) I---t D~~) if a E Al, anel D~t;;) I---t 0 if a E
A \ Al. Vvith respect to these epimorphisms we have obviollsly that

M
lilnM(A, M) = ](* / j(*P .
t-­

A
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The above considerations give also

Horn (EBaEZ+(p) WM(k)t- a
EB (Z/pMZ)a, OM(K)) .

Denote by e(M) E ](* / K*pM 0 OM(K) the eleluent which corresponds to the
natural inclusion of EBaEZ+(p) WM(k)t- a EB (Z/pMZ)a in OM(]()' It is easy to see
that

e(M) = 2:= t- aD~~)

aEZO(p)

and the image of e(M) under thc natural projection of ](* / K*pM to M(A, lvI) equals

(A ,A1) = " t- a D(A1)
e L,.; aD'

aEA

Finally, we remark that nnder the nl0dulo pM reduction map

M+l M
'j{* / K*P ---t ]{* / ]{*P ,

we have D~~+l) ~ D~~) and e(M+l) ~ e(M).

5.2. The Lie algebra ,Co and the identification 'f.
Let K *(p) = linl]{* / K *pAr with respect to lllorphisnls of reduction 11lOdulo pA1

f--

M

from ]{* / K*pAr+l to ](* / ](*pM, M E N. Denote by ,Co (resp., [,O(M)) the free

Lie algebra with topologicalluodule of generators ](*(p) (resp., ](* / ](*pM ) over Zp
(resp., Z/pMZ). If A c ZO(p) is a finite subset, let [,O(A, M) bc a free Lie algebra
over 'll/pMZ with the generating lllodule M(A, Ai), cf. n.5.1.

Clearly, the projective SystCIll of Zp-modllies {M(A, M)} A,M defines the projec­
tive system of Lie algebras {[,o (A, M)} A,M and

linl[,O(A, M) = 'c°(M),
f--

A

Ern 'c°(A, M) = lim[,O(A) = [,0,
f-- f---

A,M A

where 'c°(A) = lirn[,O(A, M).
f---
M

Set [, = [,0 0 lV(k), 'c(M) = [,O(M) 0 WM(k) and 'c(A,A1) = [,O(A,M) 0
WM(k). We note that the Lie algebras ,CO(A) and 'c(A) = [,O(A) 0 W(k) are
naturally identified with thc Lie algebras from 11.2 denoted by the same symbols.
Under this identification for all a E A and n E Z 1 we have lilllD~~) = 'Dan, where

f---
M

the elements Dan E 'c(A) were introduced in n.2.1. The algebra [, is a profree Lie
algebra over W( k), the set

{Dan I a E ZO(p), n E Z}
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generates .c and oDan = 'Da ,n+l for any a E ZO(p) and n E Z. We shall use a
tilde in notation of any of the above Lie algebras for its quotient by the ideal of
commutators of oreIer ~ p.

Consider the elements eCA,M) E G(lO(A, NI) 0 OM(!<)) from n.5.1. These ele­

rnents are compatible in the projective system {G(IO(A,A1) 0 OA1(!())}A,A1. If

F(A, M) = {f E G(iO(A, M) 0 O(!(sep)) I 0 f = f 0 eCA ,A1) } ,

then {F(A, M)} A,M is a projective systern of non-empty finite sets and therefore, its
projective limit is not ernpty (in fact, all conllecting rllorphisn1s of this projective
system are epilnorphisms). Choose f E limF(A, M) alld denote by fCA,M) its

t---
A,M

projeetion to :F(A, A1). Then the correspondences

define the compatible system of group hornomorphisms

7jJ(A,M) : r ---+ G(IO (A, M)).

It is easy to see that 'IjJ{M) = lim7jJCA,M) induces 'the group isomorphism
t---
A

and 7jJ = lirn 7jJ(A,M) induces the group isomorphism
t---
A,M

;r; :r (p) j Cp(f(p)) ---+ G(lo ),

where r(p) = limr jfpM is the Galois group of thc n1aximal p-extension of !( in
t---
M

!(sep. We note that 1/J mod C2 (r(p)) : r(p)ab ::: K*(p) is induccd by the reciproeity
map of loeal class field theory.

5.3. For any finite subset A C ZO(p) anel v > 0, consider the ideal .co (A, v) of
the Lie algebra .co (A) from n.2.6. It is easy to see that {,Co (A, v)} A is a projective
subsystem in the projective system {.c°(A)} A. Therefore, lim.c°(A, v) = .c°(v) is

f--
A

an ideal of .co. If ['0 (v) = .c°(v)jCp(.c°), then the main theorern of 11.4 gives

Theorem A. For any v > 0, we have

7,b(r(p)(V) modCp(r(p))) = G(IO(v)).

Thc above ideals .co(v) can be describcd as follows.

For any a E ZO(p) and n E Z, denote by Van the image of 'Dan E .c in Z =
12jCp (.c). If v > 0 and l(v) = lO(v) 0lV(k) C l, then by the remark from n.3.3,
we have:
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if a '2: sv, where 1 ::; s < p, then for any n E Z, Dan E l(v) + C s+1(l).
Let A(v) = ZO(p)n (1, (p-1)v) ancl in notation of n.2.6Iet N(v) = N(v, A(v)+).

We use the constants 1] ( n 1 , ... , n S) from n.1.4 to define for any / > 0, the following
elements F,y(v) of the Lie algebra l:

where the above smn is taken for 1 ::; s < p, aJ, ... ,as E A(v) and nl, . .. 1 n s E Z
such that nJ 2:: 0, nl 2:: ... 2:: n s 2:: -N(v) aad alpn 1 + ... + aspnIl = f'

It is easy to see that: 1) for any r > 0, the above expression for F,(v) contains

only finitely many terms; 2) the set s(v) = {, > 0 I F,(v) f. O} is discrete in
the archimedean topology, and therefore, S(v) = {fl' ... , fm, ... }, whcre 0 < rl <
... < fm < ... ; 3) in the p-adic topology we have lim m _ oo F,rn (v) = O. So, we

have the following description of the ideals lO(v):

Theorem B. For any v > 0, lo (v) is tlle minimal closed ideal oI thc Lie algebra
lo such tllat l(v) = lO(v) C9 W(k) contains the set

{F,(v) I r 2:: v} U { 15aO I a 2: (p - l)v }-.
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