Max-Planck-Institut fur Mathematik
Bonn

Higher genus character for vertex operator
superalgebras on sewn Riemann surfaces

by

Alexander Zuevsky

Max-Planck-Institut fir Mathematik
Preprint Series 2013 (16)






Higher genus character for vertex operator
superalgebras on sewn Riemann surfaces

Alexander Zuevsky

Max-Planck-Institut fiir Mathematik
Vivatsgasse 7

53111 Bonn

Germany

MPIM 13-16






HIGHER GENUS CHARACTERS FOR VERTEX OPERATOR
SUPERALGEBRAS ON SEWN RIEMANN SURFACES

ALEXANDER ZUEVSKY

ABSTRACT. We review our recent results on computation of the higher genus
characters for for vertex operator superalgebras modules. The vertex operator
formal parameters are associated to local parameters on Riemann surfaces formed
in one of two schemes of (self- or tori- ) sewing of lower genus Riemann surfaces.
For the free fermion vertex operator superalgebra we present a closed formula for
the genus two continuous orbifold partition functions (in either sewings) in terms
of an infinite dimensional determinant with entries arising from the original torus
Szegd kernel. This partition function is holomorphic in the sewing parameters on
a given suitable domain and possess natural modular properties. Several higher
genus generalizations of classical (including Fay’s and Jacobi triple product) iden-
tities show up in a natural way in the vertex operator algebra approach.

1. VERTEX OPERATOR SUPER ALGEBRAS

In this paper (based on several conference talks of the author) we review our re-
cent results [TZ1]- [TZ5] on construction and computation of correlation functions
of vertex operator superalgebras with a formal parameter associated to local coordi-
nates on a self-sewn Riemann surface of genus g which forms a genus g 4+ 1 surface.
In particular, we review result presented in the papers [TZ1]- [TZ5] accomplished in
collaboration with M. P. Tuite (National University of Ireland, Galway, Ireland).

A Vertex Operator Superalgebra (VOSA) [B, DL, Ka, FHL, FLM] is a quadruple
VY, Lw): V=Val;= @TE%ZV;, dimV, < oo, is a superspace, Y is a linear
map Y : V — (EndV)[[z, 27 !]], so that for any vector (state) u € V we have u(k)1 =
(5k,,1u, k > —].,

Y(u,z) = Z u(n)z "1,
nez
u(n)Va C Vayp(u), p(u)-parity. The linear operators (modes) u(n) : V' — V satisfy
creativity
Y(u,2)1 =u+ O(z),
and lower truncation
u(n)v =0,
conditions for u, v € V and n > 0.

1991 Mathematics Subject Classification. 17B69, 30F10, 32A25, 11F03.
Key words and phrases. Vertex operator superalgebras, intertwining operators, Riemann surfaces,
Szegd kernel, modular forms, theta-functions, Frobenius—-Fay and Jacobi product identities.
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These axioms identity impy locality, associativity, commutation and skew-symmetry:

(21— 22)™Y (U, )Y (v, 22) = (—=1)P) (21 — 20)™Y (v, 22)Y (u, 21),
(20 + 22)"Y (u, 20 + 22)Y (v, 20)w = (20 + 22)"Y (Y (u, 20)v, 22)w,
u(k)Y (v, 2) — (=1)P@IY (0, 2)u(k) = Z (f) Y (u(j)v, 2)2%7,
Jj=0
Y(u,z)v = (—1)Pe) e LY () 2y,

for u, v, w € V and integers m, n > 0, p(u,v) = p(u)p(v).
The vacuum vector 1 € Vj ¢ is such that, Y'(1, z) = Idy, and w € V; 5 the conformal

vector satisfies
Y(w,2) = ZL(n)zf"*Q,
nez

where L(n) form a Virasoro algebra for a central charge C
[L(m),L(n)] = (m —n)L(m+n) + %(m?’ — M), —p-
L(—1) satisfies the translation property
Y(L(-1)u, z) = 0,Y (u, 2).
L(0) describes a grading with L(0)u = wt(u)u, and V, = {u € V|wt(u) = r}.
1.1. VOSA modules.

Definition 1. A V-module for a VOSA V is a pair (W, Yy ), W is a C-graded vector

space W = @ W,, dmW, < oo, Wiy, = 0 for all r and n < 0. Yy : V —
reC
End(W)([z, 27']],

Y (u, z) = Z uy (n)z~" 7,
nez
foreachu € V, uy : W — W. Yi(1, z) = Idw, and for the conformal vector

Yie(w,2) = 3 L (n)2 "2,
ne”Z

where Ly (0)w = rw, w € W,. The module vertex operators satisfy the Jacobi
identity:

_ 2 — 2
25 s ( lzo 2) Yw (u, z21)Yw (v, 22)

Z9 — Z
(17095 (222 Vi (22 Vivl, )

= 22_15 (Zl ;2 ZO) Yw (Y (u, z0)v, 22) .

Recall that 6(z) = 37, ., 2" The above axioms imply that Ly (n) satisfies the
Virasoro algebra for the same central charge C and that the translation property

Yw(L(-Du,z) = 0.Yw(u,z2).
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1.2. Twisted modules. We next define the notion of a twisted V-module [FHL,
DLM?2]. Let g be a V-automorphism g, i.e., a linear map preserving 1 and w such
that

gY (1, 2)g7 = Y (g, 2),
for all v € V. We assume that V' can be decomposed into g-eigenspaces
V =®pecV?,
where V? denotes the eigenspace of ¢ with eigenvalue 2™,

Definition 2. A g-twisted V-module for a VOSA V is a pair (W9,Y,), W9 = @ W4,
reC

dim W7 < oo, WY, =0, for all 7, and n < 0. Y, : V — End W9{z}, the vector

space of (End W9)-valued formal series in z with arbitrary complex powers of z. For

veVP

Yg(vvz): Z vg(n)z_n_lv

nep+7Z
with vy (p+ 1w =0, w € W9, | € Z sufficiently large. Y(1,z) = Idws,
Yy(w,2) = ) Lg(n)="""2,
neZ

where Ly(0)w = rw, w € W9. The g-twisted vertex operators satisfy the twisted
Jacobi identity:

11—z
N 16( ! 2) Yy (u, 21)Y,(v, 22)

20

22 — 21

115 (22 Y )Yy )

_ —-P _
= z;l (Zl ZO) 0 (Zl ZO) Yy (Y (u, 20)v, 22),

—z2 —z2

for u € V*.

1.3. Creative intertwining operators. We define the notion of creative intertwin-
ing operators in [TZ3]. Suppose we have a VOA V with a V-module (W, Yy ).

Definition 3. A Creative Intertwining Vertex Operator ) for a VOA V-module
(W, Yw ) is defined by a linear map

V(w,z) = Z w(n)z™ "L,
ne”Z
for w € W with modes w(n) : V. — W; satisfies creativity
Y(w,z)1 =w+0(z),

for w € W and lower truncation
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forv eV, w e W and n > 0. The intertwining vertex operators satisfy the Jacobi
identity:

20

2’0_1(5 (Zl — 22) Yw (u, 21) Y (w, 22)

ey <M> P(w, 22)Y (u,21)

= 2515 (Zl _ ZO) Y (Yw (u, z0)w, 22) ,

22
forallu e Vand w e W.

These axioms imply that the intertwining vertex operators satisfy translation, lo-
cality, associativity, commutativity and skew-symmetry:

VIw(—Dw,z) = 0. Y(w,z),
(z1 — 22)"Yw (u, 21)V(w, 22) = (21 — 22)""V(w,22)Y (u, z1),
(z0 + 22)"Yw (u, zo + 22)V(w, z2)v = (20 + 22)" YV (Yw (u, 20)w, 22)v,

ww (R)YV(w, 2) — Y(w, 2Julk) = Z(’;)ﬂuvy(a’)w,z)z“,
3=>0

y(w,z)v = eZLW(il)YW(rUafz)wa

for u, v € V, w € W and integers m, n > 0.

1.4. Example: Heisenberg intertwiners. Consider the Heisenberg vertex opera-
tor algebra M, [Ka| generated by weight one normalized Heisenberg vector a with
modes obeying

[a(n)v a(m)] = nén,—ma

n, m € Z. In [TZ3] we consider an extension M = UsccM, of M by its irreducible

modules M, generated by a C-valued continuous parameter o automorphism g =
2mica(0)
e .

We introduce an extra operator ¢ which is canonically conjugate to the zero mode
a(0), i.e.,
[a(n)a Q] = 571,0-
The state 1 ® e* € M is created by the action of e*? on the state 1 ® €. Using ¢-

conjugation and associativity properties, we explicitly construct in [TZ3] the creative
intertwining operators Y(u, z) : M — M,. We then prove

Theorem 1 (Tuite-Z). The creative intertwining operators Y for M are generated
by q-conjugation of vertex operators of M. For a Heisenberg state u,

Vuwe*,z) = ™Y (e%2)Y(u®e’) Yy(e® 2) 20,

exp (ZFQZ a(£n) Zj:) .

n>0

Yi(e%, 2)
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The operators Y with some extra cocycle structure satisfy a natural extension from
rational to complex parameters of the notion of a Generalized VOA as described by
Dong and Lepowsky [DL,DLM3]. We then prove in [TZ3]:

Theorem 2 (Tuite-Z). Y(u ® e®, z) satisfy the generalized Jacobi identity

—ap
- () 5() V(e e, 21) Y e e, z)

20 20

—20

. . aa(0)
22—15<Zl ZO)3’<3’<U®ea,zo><v®eﬂ>,zz> <) ’

22 22

_ —of _
—C’(oz,ﬁ)zo_1 (T) 0 (M> Ve P, 29) Y(u® e, 21)

for allu® e, v®el € M.

1.5. Invariant form for the extended Heisenberg algebra. The definitions of
invariant forms [FHL,L] for a VOSA and its g-twisted modules were given by Schei-
thauer [S] and in [TZ2] correspondingly. A bilinear form (-,-) on M is said to be
invariant if for all u ® e®, v ® €?, w ® ¥ € M we have

Duee,2wee vwe) = ™o Y uge, 2)uwwe),
) A\ 220) 2
yT (u®ea72) — y(e—z)\ 2L(l) <_> (U®€a),_7 .
z z

We are interested in the M6bius map z — w = £ associated with the sewing condition
so that A = —¢ p2, with € € {£v/—1}. We prove in [TZ3]

Theorem 3 (Tuite-Z). The invariant form {.,.) on M is symmetric, unique and
invertible with

(v@e*,weel) = )\*D‘Qcia,_g(v ®ew®ed).

1.6. Rank two free fermionic vertex operator super algebra. Consider the
Vertex Operator Super Algebra (VOSA) generated by

Y(05,2) =Y vz
nez
for two vectors ¢+ with modes satisfying anti-commutation relations
[ (m), ¥~ ()4 = dnnmr, [T (m), 9T ()4 = 0.
The VOSA vector space V' = @y>0V} /2 is a Fock space with basis vectors

Uk, 1) =T (ki) ... 9T (k)™ (—=l1) ...~ (=11,
of weight wt[W(k,1)] = >, (k; + 1) + >+ 3), where 1 < ky < kp < ... < k; and

7

1<l <ly<...<l; with (k)1 =0 for all k¥ > 0.
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1.7. Rank two fermionic vertex operator super algebra. The conformal vector
is

w= S (=209 (~ Do (-2t (DL,

whose modes generate a Virasoro algebra of central charge 1. 1* has L(0)-weight %
The weight 1 subspace of V' is V; = Ca, for normalized Heisenberg bosonic vector
a =T (—1))~(=1)1, the conformal vector, and the Virasoro grading operator are

[a(m), a(n)] = mém, —n,

a 2
w = %a(—1)21, L(0) = % +> " a(-n)a(n).

n>0

2. SEWING OF RIEMANN SURFACES

2.1. Basic notions. For standard homology basis a;, b; with ¢ = 1,..., g on a genus
¢ Riemann surface [G,FK] consider the normalized differential of the second kind
which is a symmetric meromorphic form with fa_ w@) (z,-) = 0, has the form

le dZQ

3 for local coordinates z; ~ z3.
(21— 22)

C,J(g)(zl’z2) ~

A normalized basis of holomorphic 1-forms v;, the period matrix QE? ), and normalized
differential of the third kind are given by

9z = f;w(g)(z,-), ]{VJ(-Q):ZWMU,
a9 _ L J w © = [ w0
g 2mi i “ramp P P e
where §ai wl(,g)_pl =0, wl()g)_pl (2) ~ %dz for z ~ pg, a =1,2.

2.2. Period matrix. Q9 is symmetric with positive imaginary part i.e. Q) ¢ Hy,
the Siegel upper half plane. The canonical intersection form on cycles is preserved
under the action of the symplectic group Sp(2g,Z) where

b b (A B b A B
(0)-(a)=(en)(a) (& 5)esenn
This induces the modular action on H,

Q@) - QW = (AQ@ + B) (CQ(9> + D) -
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2.3. Sewing two tori to form a genus two Riemann surface. Consider [Y,TZ1]
two oriented tori £§ = C/A., with a=1,2 for A;, =2ni(Z® 1,Z) for 7, € Hy, the
complex upper half plane. For z, € E,(ll) the closed disk |z,| < 7, is contained in Z((ll)
provided r, < $D(7,) where

D(1,) = min |\ = minimal lattice distance.
AEA L, A0

Introduce a sewing parameter € € C and excise the disks |z1| < |e|/r2 and |z2| < |€|/71
where

1
le] < rire < ED(Tl)D(W)-

Identify the annular regions |e|/ro < |z1] < r1 and |e|/r1 < |22] < 7o via the sewing
relation
Z1R9 = €,

21:0 2’2:0

<)

lel/r2 lel/m

gives a genus two Riemann surface X(2) parameterized by the domain
1
D¢ = {(Tl,TQ,E) cH; xH; xC | ‘€| < ED(Tl)D(TQ)}

2.4. Torus self-sewing to form a genus two Riemann surface. In [TZ1] we
describe procedures of sewing Riemann surfaces [Y]. Consider a self-sewing of the
oriented torus 1) = C/A, A = 27i(Z7 © Z), T € H.

21:0 22:0

o1/ pl/m

Define the annuli A,, a = 1, 2 centered at z = 0 and z = w of ¥(!) with local
coordinates z; = z and zy = z — w respectively. We use the convention 1 =2, 2 = 1.
Take the outer radius of A, to be r, < %D(q) = minyea,azo |A|. Introduce a complex
parameter p, |p| < r1r9. Take inner radius to be |p|/rg, with |p| < rire. 71, 79 must
be sufficiently small to ensure that the disks do not intersect. Excise the disks

{2a: |24 < |plr5 '} € B,
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to form a twice-punctured surface
2O = 2O\ {za |2l < lplrz "}
a=1,2
Identify the annular regions A, C i(l), Ao = {za, |p|7“g1 < |zq| < 74} as a single
region A = A; ~ A, via the sewing relation
Z1%2 = p,

to form a compact genus two Riemann surface $(2) = i(l)\{Al U Az} U A, parame-
terized by

D’ = {(r,w,p) EHy x Cx C ,|w— Al >2|p|Z >0, A€ A}.

3. ELLIPTIC FUNCTIONS

3.1. Weierstrass function. The Weierstrass p-function periodic in z with periods
2me and 27wiT is

1 1 1
oz=7) = Z+ X { T

(z — wm.n)?
m,neEZ ’
(m,n)#(0,0)

+ Y (n—1)Eu(r)2" 2,

n>4,n even
for (z,7) € C x H, wy,,, = 2mi(m7 + n). We define for k > 1,
(_Uk—l ak—l

1
2

Pk(z,T) = WWPl(Z?T)
= Ly §<Z:1)En(f)znk.

Then Py(z,7) = p(z,7) + E2(7). Py has periodicities
Pi(z 4 2mi,7) = Pi(2,7), Prp(z+27mit,7) = Pi(2,7) — O1-

3.2. Eisenstein series. The Eisenstein series E,(7) is equal to 0 for n odd, and for
n
B, (0) 2 rnlgr

+
! —1)! —qr’
n! (n—1)! = 1—g¢q

where B,,(0) is the nth Bernoulli number. If n > 4 then E,(7) is a holomorphic
modular form of weight n on SL(2,Z)

E,(y.17) = (et + )" E,(7),

for all v = ( Ccl Z ) € SL(2,Z), where .7 = (C‘:jrrg Ey(7) is a quasimodular form
d
Es(y.7) = (7 + d)? Ea(r) — L; d)
i

having the exceptional transformation law.
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3.3. The theta function. We recall the definition of the theta function with real
characteristics [M)]

Al m (z|Q(9)> = ) exp (m(m+a).g<g).(m+a) + (m+a)-(z+27riﬂ)),

meZ9I
for a = (a;), 8 = (B;) € RI, z = (2;) € CY,
9]' _ _67271'1'[3]‘7 ¢J 27”0‘17 ] = 1’ ey g,

9@ {g] (z+2m’ (Q(g).T_FS) |Q(g)) _ 2mies g =2mifr = im0 1.z 9(g) {g] (Z|Q(9))7

99 [gig] (2|Q(g)> _ 2miausg(g) [g} <z|Q(5)),

for r, s € Z9.

3.4. Twisted elliptic functions. Let (6, ¢) € U(1) x U(1) denote a pair of modulus
one complex parameters with ¢ = exp(2mi)) for 0 < A < 1. For z € C and 7 € H we
define ”twisted” Weierstrass functions for k£ > 1, [DLM1, MTZ]

0 O (=DF G i
lglen-in T i

" nEZAA

!

for ¢ = ganir where Y means we omit n = 0 if (0,¢) = (1, ] converges

-
@%

absolutely and uniformly on compact subsets of the domain |q| < |qZ | <1, [DLM1].

Lemma 1 (Mason-Tuite-Z). For (0,¢) # (1,1), Px (z,7) is periodic in z with

0
¢
periods 2mwiT and 2w with multipliers 6 and ¢ respectively.

3.5. Modular properties of twisted Weierstrass functions. Define the standard

left action of the modular group for v = ( ? Z ) €el'=SL(2,Z) on (z,7) e CxH
with
z at +b
v.(2,7) = (v.2,7.7) = <c7'+d’c7'+d)
We also define a left action of I on (6, ¢)

0 B 9a¢b
o))
Theorem 4 (Mason—Tuite-Z). For (0, ¢) # (1,1) we have

P, <7. { Z D (y.2,7.7) = (c7 + d) Py { Z } (7).

Then we obtain:
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3.6. Twisted Eisenstein series. We introduce twisted Eisenstein series for n > 1,

0 Bn(>\ ,,._,_)\n 19 1r+)\
R

n! 1—91’"+’\

n laqr)\
n_llz 1_9qr)\ ’
!

where Y means we omit r = 0 if (6,¢) = (1,1) and where B, ()) is the Bernoulli
polynomial defined by

A 1 B,
q, =4 Z (A) anl'

qz_]-_z !

n!
n>1

In particularB; (A) = A— 3. Note that E, [ 1 } (1) = E,(7), the standard Eisenstein
) =

series for even n > 2, whereas E,, [ 1 ] (r —B1(0)d,,,1 = %5%1 for n odd.

Theorem 5 (Mason-Tuite-Z). We have
0 Lk n—1 0 n—k
alglen=grcr S (0y)m | g ot

Theorem 6 (Mason-Tuite-Z). For (68,¢) # (1,1), Ej { Z } is a modular form of
weight k where

Ex (7. { Z D (y.7) = (cr + d)* By, { Z } (7).

3.7. Twisted elliptic functions. In particular

(2] - topa[g] o

E>1
0 B ! em(bn
Ek|:¢:|(7') = kaZ[zn: (mt +n)k
0 0
P, { } (z—2',7) { } Ykl
e k,>1 ¢

where C [ Z } (b, 1,7) = (=1 (5F2) By [ Z } (),
P [ Z ] (wt+z—2,7)= kng { g } (k,1,w)zF" 1211

andD[ ](k,l,ﬂz):(—l)kﬂ(kH Y Posi— 1[

] (1, 2).

RSN
RSN
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4. THE PRIME FORM

There exists a (nonsingular and odd) character [ } such that [M,F1,F2]
v @y —
ﬂ[d}(om ) =0, 62119[ ](om )) £ 0.

Let ¢(2) = >, 0.9 (7] (O\Q(g))ui(g)(z)7 be a holomorphic 1-form, and let ((z)2
denote the form of weight % on the double cover %) of £(9). We define the prime
form

93] (5 72100)

EW(z,2) = - - ~(z=2)dz"7dd7 forz~ 2
((z)2¢(2")=
The prime form is anti-symmetic, £ (z,2') = —E (%', ), and a holomorphic dif-
ferential form of weight (—5, —3) on S x %, and has multipliers 1 and e~y =5 v

along the a; and b; cycles in z, [F1]. The normalized differentials of the second and
third kind can be expressed in terms of the prime form [M]

w9 (z,2") = 8.8 logEY (2,2 dz d,
(9)
(9) () — EY(z,p)
wy_g(2) = 0;log E@ (2,q)

Conversely, we can also express the prime form in terms of w( q by [F2]

1 z
EW(z,2)= lim (z—p)(g—2")exp (—2/ wz(,g)q)] dz"%dz'"3 .
z

p—z, g7y ’

4.1. Torus prime form. The prime form on torus [M]

EW(z,2) = KO(z—2 7)de"2 do'" 3,
91(z,7)
KM _ I\
(Z?T) 82'[91(077—),

for z € C and 7 € H; and where ¥;1(z,7) =9 [

[SIE S

] (z,7). We have

K(l)(zvfr) = exp(*Po(ZaT)),

1
Py(z,7) = —log(z) + Z %Ek(r)zk,
k>2

d
Pi(z,7) = = Po(z,7) = - — > Ey(r)
k>2
KM (z,7) has periodicities
KV(z42mi,7) = —KWU(z,7),
KW (z 4 2mir, 7) —q VPR W (2, 7).
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5. THE SZEGO KERNEL
The Szegd Kernel [M,F1,F2] is defined by

P
(A (z,2/10W) = p {g} (0) BE@)(z,2) 7~ 7

sz/ ”(g)) dz3dz's

— for z ~ 2/,

S(9) [

with o {g} (0) #£0, 0, = —e= 2™ ¢; = 2™ j=1,...,g, where B (21, 2) is
the genus g prime form. The Szeg6 kernel has multipliers along the a; and b; cycles in
z given by —¢; and —0; respectively and is a meromorphic (%, %)—form on X9 x 39

0
5(@) {
¢

where =1 = (') and ¢~ ! = (¢; ).

K3 K3
Finally, we describe the modular invariance of the Szeg6 kernel under the symplectic

group Sp(2g,7) where we find [F1]

[ o2y = s [(‘H )

S(g) q (Z, Z’|Q(g)) — S(g) |:6:| (27 Z’|Q(‘g))7
¢ ¢
with éj = *6727”'51'7 ng — ,e2m'dj’
—B\_(A B —p i 1 ( —diag(ABT)
a) \C D)\ a) 2\ diagcD") )
~ 1
0@ — (AQ(!I) n B) (CQ(Q) —i—D) ,

where diag(M) denotes the diagonal elements of a matrix M.

5.1. Modular properties of the Szeg6 kernel. Finally, we describe the modular
invariance of the Szegd kernel under the symplectic group Sp(2g, Z) where we find [F1]

St m (2,2|09) = @ m (2,2|Q9),
where 6; = —e—2mib; (5]» = —e2™% for

(Z)=(& 5) () wal s ).

where diag(M) denotes the diagonal elements of a matrix M.
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5.2. Torus Szegd kernel. On the torus ¥ the Szegd kernel for (6, ¢) # (1,1) is

S [ Z ] (2,2'7) = Py { Z } (z— 2, 7) dzb d'h,

where

(2] - M;jjj%f;s?;?

B

gh
- _21_9 Tgk+x

keZ

for ¥1(z,7) =9 E} (2,7), q- = €%, and ¢ = exp(2miA) for 0 < )\ < 1.

2

6. STRUCTURES ON ¥(2) CONSTRUCTED FROM GENUS ONE DATA

Yamada (1980) described how to compute the period matrix and other structures
on a genus ¢ Riemann surface in terms of lower genus data.

6.1. w? on the Sewn Surface Y®. w® can be determined from w® on each
torus in Yamada’s sewing scheme [Y,MT2]. For a torus ©() = C/A, the differential
is
w(l)(zl,zg) = PQ(Zl —ZQ,T) le dZQ,

Py(z,7) = p(z,7) + Ea(7),

for Weierstrass function
1 k—2
T) = Z—2+Z(k—1)Ek(7)z ,
k>4

and Eisenstein series for &k > 2

Ei(r) = QWZkZ[ZmT—Fn)

FEi; vanishes for odd k and is a weight k£ modular form for k > 4. Fs is a quasi-modular
form. Expanding

1
Py(z1 — - C(k, 1) -
L P +kzz>:1 oo
(k+1—1)!

C(k,l) =C(k,l,7) = (71)k+lmEk+l(T),

we compute w(® (21, 22) in the sewing scheme in terms of the following genus one data,
a=1,2
(k+1) /2

Aa(k1,7a,€) = <22C (k1 70).
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6.2. A Determinant and the period matrix. Consider the infinite matrix I —
A1 As where [ is the infinite identity matrix and define det(I — A7 As) by

logdet(I — A1As) = Trlog(I — A1As) = — E lTr((AlAQ)”),
n
n>1
as a formal power series in €, [MT2].

Theorem 7 (Mason—Tuite).
(a) The infinite matrix

(I — A1) =) (A414y)",

n>0

is convergent for (71, 72,€) € DE.
(b) det(I — A1 As) is non-vanishing and holomorphic on D¢.

Furthermore we may obtain an explicit formula for the genus two period matrix
Q=0® on 2? [MT2]

Theorem 8 (Mason—Tuite). Q = Q(71, 72, €) is holomorphic on D¢ and is given by

27Ti911 = 27Ti7’1 +€(A2(I—A1A2>_1)(1,1)7
27Ti922 = 27TiT2+€(A1(I—A2A1)_1)(1,1),
27Ti912 = —G(I—AlAg)il(l,l).

Here (1,1) refers to the (1,1)-entry of a matriz.

6.3. Genus two Szegd kernel on X(? in the e-formalism. We may compute

S(2) [i} (z,2") for 0 = (01, 62) in the sewing scheme in terms of the genus one data

0., ba,
Fu(k,1) = F, Lﬁ ] (1, 7as ) = 04 { ] tm)
S is described in terms of the infinite matrix I — Q for
0 EF |0
Q= 4] . E=V-L

¢rli] o

Theorem 9 (Tuite-Z).
(a) The infinite matriz (I — Q)™ = ano Q" is convergent for (11, 72,€) € D,
(b) det(I — Q) is non-vanishing and holomorphic on D¢.

6.4. Genus two Szeg6 kernel in the p-formalism. It is convenient to define

k€ [-1,1) by ¢2 = —*™*. Then we prove [TZ1] the following

Theorem 10 (Tuite-Z). S is holomorphic in p for |p| < riry with
§P(x,y) = S (x,y) + O(p),
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forzxz, ye SO where S,(Ql)(x,y) is defined for k # —%, by

0 [eno - (sne)

F1E) {g

}(x—y—i—ﬁ;wﬂ')

1
1

90 5] (. 7) KO @ — g, 7)
with similar expression for S(_li (x,y) for k= _%_
2
Let ko, = k + (—1)%k, for a = 1, 2 and integer k£ > 1. We introduce the moments
for S,gl)(x,y) :

g1
Gab(k,l) = Gab |:¢(1):| (/ﬁ; kJ)
_ p%(ka“rlb*l)

_ koo Ny (1) (o 3 g3
(27Ti)2 ia(xa) féb(yb)(ma) (yb) SK (Ia’yb) dma dyb ’

with associated infinite matrix G = (Gap(k,1)). We define also half-order differentials

o) L(ka—3)
ha(ka ‘T) = ha |: (1):| (H; ka ‘T) - u% ygkasf(cl)(xﬂ ya) dy
¢ Ca(Ya)

Q ol

2mi ’

_ [ pika=3) X
= . = — —_"a (1) —
ha(k,y) = ha [(b(”] (ki b, y) e 72(%) wg S (va,y) de

and let h(z) = (ho(k,2)) and h(y) = (ha(k,y)), denote the infinite row vectors
indexed by a, k. From the sewing relation z125 = p we have

STRST

)

SIS

dzz2
b

Za

for & € {#+/—1}, depending on the branch of the double cover of (1) chosen. It is
convenient to define

dzi = (~1)7 € p?

T =¢GDY,
with an infinite diagonal matrix

DOk, 1) = [ 961 _09 }5(1@,1).

Defining det (I — T') by the formal power series in p
1
logdet (I —T)=Trlog(I —T) = — —Tr(T"
ogdet (I = T) = Trlog (1 = T) = = 3 ZTv(1™),

we prove in [TZ1]

Theorem 11 (Tuite-Z).
a.) (I-=T) ' =%, 5,1 is convergent for |p| < rirs,

b.) det (I —T) is non-vanishing and holomorphic in p on DP.
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Theorem 12 (Tuite-Z). S (z,y) is given by

S® (2, y) = SO (x,y) + h(x)D*(I = T) 'R’ (y).

7. GENUS ONE PARTITION AND n-POINT FUNCTIONS

7.1. The torus partition function for a Heisenberg VOA. For a VOA V =
®n>0Vy of central charge ¢ define the genus one partition (trace or characteristic)
function by

2y () = Try (g70=C/2) = 3™ dim V, g/,
n>0

for the Heisenberg VOA M commutation relations with modes
[a(m), a(n)] = Mmom, —n,

ZW(q) = ﬁ for n(r) = g% [ (1 - ™).

7.2. Genus one twisted graded dimension. We define the genus one partition
function for the VOSA by the supertrace

2y (7) = STy (¢ O73) = Try (0q" 07 31) = g3 [T (1 - ¢"72)?,

where gu = e2mwt(w)y,

More generally, we can construct a og-twisted module M, for any automorphism
g = e2™P0) generated by the Heisenberg state a € V;. We introduce the second
automorphism h = €27@%(0) and define the orbifold og-twisted trace by

nlh _1
zy! [ . } (a) = STrar,, (hg" O~ %),
to find for § = e~ 27>,

h 2y s
zy) { g } (q) = qPH/2 22 TT(1 = 07 P ) (1 - 0g't7).
I>1

7.3. Genus one fermionic one-point functions. Each orbifold 1-point function
can found from a generalized Zhu reduction formulas as a determinant.

Theorem 13 (Mason-Tuite-Z). For a Fock vector
Uk, 1] = ¢ [—ka] . T [—kn] T [=0] T[],

Z0 [ Z } (U[k, 1], q) = det <C [ Z DZ(V” [ ;L } (a),

where fori,j=1,2,...,n
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7.4. Genus one n-point functions for VOA. In general, we can define the genus
one orbifold n-point function for vy,...,v, € V by

h
Z\(/l) |: g :| ((’01,2’1),...,(1)7“,2");(])
= STryy,, (h Y(vi,21)...Y (0, 2n) qL(O)*Tﬁ)
h
=z { p } (Y1, 21).Y [va, 22] . .. Y [Un, 2n]-1, q).

Every orbifold n-point function can be computed using generalized Zhu reduction
formulas in terms of a determinant with entries arising from the basic 2-point function
for ¢, ¢~ [MTZ].

7.5. Zhu reduction formula. To reduce an n+ 1-point function to a sum of n-point
functions we need:
the supertrace property

STr(AB) = p(A, B)STr(BA), p(A,B) = (—1)PArB)

Borcherds commutation formula:

atm). Y02 =5 (

expansions for Pi-functions:

m

Y (a(5)b, 2) 2™,
i)

P, [ Z } (21 — 20,7) = ! > + Z C’{ Z } (k,1)2h=1 2t

o
1 ki>1

0 G A N
Py |: b :| (Z,T)* (k’—l)' Z 1_9—1qn'

neL+A

Theorem 14 (Mason—Tuite-Z). For any vi,...,v, € V we have

Z(l)(v,vl,...vn;ﬂ

- 0
- Z Z D1, r—1 P [ & ] (z = 2,,7) ZD (01, .. 0mve, .. v T)

r=1m2>0

+06,1:9,15Tr (O(U)YM(Qf(O)U17 @) Yar(gEOu,, qn)qL(O)fﬁ) ,

where p4,...B is given by

yPr—1

1 forr=1
p(A,By...B._1) = { (_1)p(A)[p(Bl)+...+p(BT,1)] for r> 1
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7.6. General genus one fermionic n-point functions. The generating two-point
function (for (6, ¢) # (1,1)) is given by

2y [ " } (W*, 21), (W7, 22)59) = Py [ Z ] (21 — 22,q) 2 {

" | @.

g
Theorem 15 (Mason—Tuite-Z).

A { Z } (01, 21)s - (vns 20); @) = det M 2D { Z } (q).

Theorem 16 (Mason-Tuite-Z). For n Fock vectors U(®) = ¥(®)[—k(®); _1(2)] gnd
U = W@ k@ @], for kK@ = KB and 10 = 11 with
a=1,...,n. Then for (6,¢) # (1,1) the corresponding n-point functions are non-

vanishing provided Y, (sq —tq) =0, and

a=1
Z0 [ ﬁ ] (OD,z0),..., (", 2,);7) = € detM. 2 [ ‘5 ] ™

where ¢ is certain parity factor. Here M is the block matrix

C(ll) D(12) . D(ln)
D(21) C(22) L D(2n)
M =
D gl
with

C(““)(i,j):(][ 0 ] (k0 7), (1<i<s0,1< ] <ta),

é <i< <

for sq,tq > 1 with 1 < a <n and
ab) /. - 0 a . .
D) (i, j) = D [ 5 } (B0 7, 20), (1<i<s0,1<)<t),

for sq,ty > 1 with 1 < a,b < n and a # b. € is the sign of the permutation associated
with the reordering of )* to the alternating ordering.

Furthermore, the n-point function (7.1) is an analytic function in z, and converges
absolutely and uniformly on compact subsets of the domain |¢| < |g.,,| < 1.

7.7. Torus intertwined n-point functions. As in ordinary (non-intertwined) case
[DLM1, H, MN, MT1,MT3,MT4, MTZ, TZ2,Z1] we construct in [TZ4] the partition
and n-point functions [DVFHLS, EO,FS,GKV,GV,KNTY,Pe,R, TUY, U] for vertex
operator algebra modules.

Let g;, fi, i = 1, 2 be VOSA V automorphisms commuting with ov = (—1)P(")y.
For u € V,4, and the states v1,...,v, € V we define the intertwined n-point function
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[TZ4] on the torus by

y [ f . . _
Z( ) |:g :| (U,ZQ, V1,T1y...3Un,Tn;U, 21, T)
1

Lsg,(0
= S’I‘I‘Vagl (fl y (qZ2 2 ( )U7Qz2) Y(qf(O)Uh%)
Loq,l(O)i .
e Y(qu;(O)v"’ qn) y (qzl 2 u, qzl) qLagl © /24> )

where ¢ = exp(27iT), qr = exp(xr), ¢z, = exp(z;), j = 1, 2; 1 < k < n, for variables
r1,...,T, associated to the local coordinates on the torus, and @ is dual for v with
respect to the invariant form on V,4,. The supertrace over a V-module IV is defined
by

STI'N(X) = TTN(JX).

For an element u € V,4, of a VOSA g-twisted V-module we introduce also the
differential form

Fn {fl] (u, 295 V1,215 « 5 UnyTn; Uy21; T)
1
f _ n
=zW [ 1} (u, 225 V1,215 .. Un,y i W, 215 T) dz;”t[u] dzi”t[u] Hdac;“t vl
9 i=1
associated to the torus intertwined n-point function.

7.8. Torus intertwined two-point function. The rank two free fermionic VOSA
V(H,Z+ %)®?, [Ka] is generated by ¢* with

[ (m), ¥~ (n)] = dm,—n—1, [¥7 (M), ¥F (n)] =0, [~ (m), ¢~ (n)] = 0.

The rank two free fermion VOSA intertwined torus n-point function is parameterized
by 0; = —e~2™01 ¢ = —e?™ N and ¢y = —e 2™ [TZ2, TZ4] where

Ufl _ 627r1B1a(0)7 og1 = 6—271'104111(0)’ ogs = eQTrma(O)’

for real valued oy, B1, &, (61,¢1) # (1,1).
Foru=1®e" =e" € V,g, and v; = 1,4 =1,...,n we obtain [TZ4] the basic
intertwined two-point function on the torus

AS) Bﬂ (e, 295 €7 215 T) = STry,,, (fly (qu(o)e”,qZ2) Yy (qfl(o)e_”,qzl) qlon (0)_6/24) .

We then consider the differential form
bil
g’,g{l) I: ($17y17"-axn7yn)
g1
e[S ok ek,
:-F g (6 7U1,’l/1 7£E1,'(/1 7y17"°7¢ a%zﬂ/’ s Yns € 707T)a
1
associated to the torus intertwined 2n-point function

A Mj (e w; v 0y T @ 0T Yy e 05 T),
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with alternatively inserted n states ¥* and n states 1)~ distributed on the resulting
genus two Riemann surface X(2) at points z;, y; € ), i = 1,...,n. We then prove
in [TZ4]

Theorem 17 (Tuite-Z). For the rank two free fermion vertex operator superalgebra
V and for (0,9) # (1,1) the generating form is given by

f1

grr(Ll) |:f1:| (‘rlvylv"'a‘rnvyn) - Z(l) |:
g1 g1

] (e”,w; e ", 0; ’7') detS’,(ﬁl)7

190 (5] e, )

n(r) KO, r)=

zW [fl} (e, w; e7*,0; 7) =
g1

is the basic intertwined two-point function on the torus, and n X n-matriz S,gl) =

[S,g) {le} (@i, 95 | T,w)}, i, j = 1...,n, with elements given by parts of the Szegd

kernel.

8. GENUS TWO PARTITION AND n-POINT FUNCTIONS
8.1. Genus two partition function in e-formalism. We define the genus two

partition function in the earlier sewing scheme in terms of data coming from the two

tori, namely the set of 1-point functions Z‘(/1 )(u, 7o) for all uw € V. We assume that V
has a nondegenerate invariant bilinear form - the Li-Zamolodchikov metric. Define

Z‘(/Q)(Tl,TQ,E) = Zén Z Z‘(})(U,Tl)Z‘(})(’EL,TQ).
n>0 UE V]

The inner sum is taken over any basis and # is dual to w wrt to the Li-Zamolodchikov
metric.

8.2. Genus two partition function for the Heisenberg VOA. We can compute
ZJ(VQI) using a combinatorial-graphical technique based on the explicit Fock basis and
recalling the infinite matrices Ay, As:

Theorem 18 (Mason—Tuite). (a) The genus two partition function for the rank one
Heisenberg VOA is

ZO (71, m0,€) = (det(I — Ay Ag)) /2,

n(71)n(72)
(b) Z](VZI)(Tl,TQ, €) is holomorphic on the domain D¢,
(c) 21(\/2[)(7'1,7'2, €)? is automorphic of weight —1.

(d) ZJ(\?[) (71, T2,€) has an infinite product formula.
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8.3. Genus two fermionic partition function. Following the definition for the
bosonic VOA we define for h,, g,
h h
7(2) A Z(1) 2 _ .
] wmo= X e > (w2 | | 5,2
meLz UEVm
The inner sum is taken over any V], basis and @ is dual to u with respect to the
Li-Zamolodchikov square bracket metric. Zy, (1) g } (u, qq) is the genus one orbifold
1-point function. Recall that the non-zero 1-point functions arise for Fock vectors
Uik, 1 = ki) 9 [ [l 9 [—La]L,

such that m =wt [k, 1| = >, (ki +1; + 1),

A% { Z } (U[k,1], q) = det <c { Z DZ(V” { Z ] (q).

The Li-Zamolodchikov metric dual to the Fock vector is
U[k, 1] = (—1)"¥[l, K]
Recalling the infinite matrix @ we find

Theorem 19 (Tuite-Z).
(a) The genus two orbifold partition function is

h h h
20 2 o =20 | 2 [z | 22 | @aenr - ),
g 9 g2
(b) Z® { Z } (g1, g2, €) is holomorphic on the domain D¢,
(c) Z®? { h

9

8.4. Genus two partition and n-point functions in p-formalism. Let f;, i =1,
2 be automorphisms, and V4. be twisted V-modules of a vertex operator superalgebra
V. For aq,...,2, € X1 with || > |p|/r2 and |2 —w| > |p|/r1, k= 1,...,n, we
define the genus two n-point function [TZ4] in the p-formalism by

} (g1, g2, €) has natural modular properties under the action of G.

A {J;] (V1,153 Up,y T T, W, P)

72 Z A [fl}(U7w+22;01,5€1;---;Umxn,;fz%Zl;T),

k>0 uEV, g, (k] 91

where (f, g) = ((fi), (g:)), where f (respectively g) denotes the pair f1, f (respectively
g1, g2). The sum is taken over any V,4,-basis.
In particular, we introduce the genus two partition function

z® B] (rwp) = > 20 [Q] (u, w; f27,0; 7),

ue Vagg
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where Z() {’gﬂ (u, w; fo W, 0;7) is the genus one intertwined two point function.

Remark 1. We can generalize the genus two n-point function by introducing and
computing the differential form associated to the torus n-point function containing
several intertwining operators in the supertrace as well as corresponding genus two
n-point functions.

Similar to the ordinary genus two case [TZ2], we define the differential form [TZ4]
associated to the n-point function on a sewn genus two Riemann surface for v; € V
and x; € £®) i =1,...,n with |z;| > |p|/r2, |z; —w| > |p|/r1,

‘F(z) |:‘£:| (Ulv"'vvn;vaap)

n

=7z B] (1,215 3O, s 7w, p) [ da .

=1
9. GENERALIZATIONS OF CLASSICAL IDENTITIES

9.1. Bosonization. The genus one orbifold partition function can be alternatively
computed by decomposing the VOSA into Heisenberg modules M ® e indexed by
a(0) integer eigenvalues m, i.e., a Z lattice [MT1]. Let ay,...,a, € L be lattice
elements of the rank one even lattice, a1 + ...+ ay, =0, and €(«, ) - cocycle. Then

Theorem 20 (Tuite-Mason).
Z37 (e, 215 i €7, 201 )
(8,8)/2
:qT [T @z ] elai,ap) KO (zig, 7)),
n 1<r<n 1<i<j<n

Then ther genus one twisted partition function is given by

g [ Z } (1) = Y (=" Trygen (qL(O”%(“%)z—(B%)m—i)
meZ
e2mi(a+1/2)(8+1/2) g4l
B { g 1? ](7).
n(7) a+ i

Comparing to the fermionic product formula we obtain the classical Jacobi triple
product formula:

[Ta=am+2¢" (1 + 27 =D 2mgmm=1/2,
n>0 me”ZL

9.2. Genus two Jacobi triple product formula. The genus two partition function
can similarly be computed in the bosonized formalism to obtain a genus two version
of the Jacobi triple product formula for the genus two Riemann theta function [MTZ]

h
z® { g } (91, q2,€) = o® [ Z } (Q(Q)) ZJ(\/QI)(QD(]Q»E)a
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for an appropriate character valued genus two Riemann theta function

@(2) |: Z :| (Q(Q)) _ Z eiﬂ(m+a).Q(2).(m+a)+27ri(m+a).b.

meZ?

Comparing with the fermionic result we thus find that on D¢
a
0?2 { " } (9(2))

- - = det(I — A1 Ay)Y? det(I — Q).
Y1) [ b :| (7’1) (1) |: b

1 2

} (72)

9.3. Fay’s trisecant identity. Recall Fay’s trisecant identity [F1]
oo =10~ 2),
0(x —2)0(y —t)

=00y — =),
020y 1)

0(0E+y —z+2—1)

0§ +2—-2)0(+y—1)

=0 +z-1)0(+y—x),
forxz, y, z, t € X, £ € J, where J is the Jacobian of the curve.

9.4. Bosonized generating function and trisecant identity. In a similar fashion
we can compute the general 2n-generating function G&)’h in the bosonic setting to
obtain:

Theorem 21 (Mason—Tuite-Z).

1
;n)h(fazlv . ,Zn;Zi,...,Z;L;T)

o2mi(at1/2)(B+1/2) B+ 1
T e | CER

=1

1<Zl;[j<n KM (z — 25, T)K(l)(zg — zé, T)
‘ [1 EO(z—2,7)

1<ij<n

Comparing this to fermionic expressions for (0, ¢) # (1,1) we obtain the classical
Frobenius elliptic function version of generalized Fay’s trisecant identity [F1]:

Corollary 1 (Mason—Tuite-Z). For (0,¢) # (1,1) we have

_ 1 n
(S dr) I KOG 5 mE OG5
1<i<j<n

o | 1
det(P) = mn{_5+%](Qﬂ [I KO(z—z,7)

1<i,5<n
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9.5. Generalized Fay’s trisecant identity. We may generalize these identities
using [MT1]. Consider the general lattice n-point function. We have, [MTZ] For
T S

integers m;, n; > 0 satisfying > m; = > n;, we have
i=1 j=1

ZX (f;(1@e™, 21), ... (10e™, 2,.), (10e ™™, 2)), ... (1oe ™", 21);7)

2mi(a+1/2)(8+1/2)

¢ ﬁm[ ﬂ+z} S - zn
=1

n(7)

1 KOG =z [T KO (2 -z, r)mm
A<i<ksr 1<j<i<s
KM (2 — 2, m)mins

UET, IS

Comparing this to the expression for n-point functions we obtain a new elliptic gen-
eralization of Fay’s trisecant identity:

Corollary 2 (Mason—Tuite-Z). For (0,¢) # (1,1) we have
1 r s
w| At I S
v [ a+ 3 } (Zm’zz Elnjzj’7>

2

9) { fj 2 ](0 )

2

det (MD) =

II K(l)(zi —zg, 7)™ ] K(l)(z; — 2], )™
1<i<k<r 1<5<I<s
I1 KM (25 = 2, 7)mn

1<i<r,1<j<s

Here Mp is the block matrix
DY .. D
DY .. D)

with D) the m, x n;, matrix
0
D)= 0| § |Gz ). G ismar<i<m)

for1<a<rand1l<b<s, and D-functions are given by the expansion

P { Z } (ztm—2mr)= 3 D{Z}(k,l,z) E1l1

ki>1

10. GENUS TWO INTERTWINED PARTITION AND n-POINT FUNCTIONS

In [TZ4] we then prove:
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Theorem 22 (Tuite-Z). Let V,g,, i =1, 2 be og;-twisted V-modules for the rank two
free fermion vertex operator superalgebra V. Let (0,¢) # (1,1). Then the partition
function on a genus two Riemann surface obtained in the p-self-sewing formalism of
the torus is a mon-vanishing holomorphic function on DP given by

e m (7w, p) = 2D Bl] (e, w; 7,0 7) det (1T,
1

where Z() Bﬂ (e",w;e="%,0;7) is the intertwined V-module Vg4, torus basic two-
point function.
We may similarly compute the genus two partition function in the p-formalism for

the original rank one fermion VOSA V (H L+ %) in which case we can only construct
a o-twisted module. Then we have [TZ4] the following

Corollary 3 (Tuite-Z). Let V' be the rank one free fermion vertex operator superal-
gebra and f1, g1 € {0,1}, a = 1, 2 be automorphisms. Then the partition function
for V-module V54, on a genus two Riemann surface obtained from p formalism of a
self-sewn torus XV is given by

28 ] (v = 22

rankl rankl

[j;l} (e®,w;e™",0;7)det (I — T)l/2 ,
1

where Zr(;r)lk 1 [51} (e",w; e %,0; 7) is the rank one fermion intertwined partition

function on the original torus.

10.1. Genus two generating form. In [TZ4] we define matrices
S@ = (5@ (iyy) . S = (5 (@ w)),

H* = ((h(z) (k,a)), H™ = ((Rly:) (1.5)" .

S and S,gl) are finite matrices indexed by x;, y; for 4, j = 1,...,n; HT is semi-
infinite with n rows indexed by x; and columns indexed by £ > 1 and a = 1, 2 and
H~ is semi-infinite with rows indexed by [ > 1 and b = 1,2 and with n columns
indexed by y;. We then prove

Lemma 2 (Tuite-Z).

S(l) ¢H* Do @)
d e =d det(I =T
et[ - I_T et S et( ),
with T, D%.
Introduce the differential form
f

g’£L2) |:£:| (l'layl,...,l'myn) :‘F(2) |:g:| (¢+7w_7"'7¢+7w_;77w’p)’

associated to the rank two free fermion VOSA genus two 2n-point function

f _ _
Z(2) [g (¢+7x1;¢ 7y1§~«-37/)+,$n;¢ 7yn;7-’w’p)7
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with alternatively inserted n states ¥+ and n states ¥ ~. The states are distributed
on the genus two Riemann surface £(?) at points z;, y; € £, i =1,...,n. Then we
have

Theorem 23 (Tuite-Z). All n-point functions for rank two free fermion VOSA
twisted modules Vo on self-sewn torus are generated by the differential form

G {ﬂ (1,91, T yn) = 22 [ﬂ (r,w, p) det S

where the elements of the matriz S = [5(2) [Z} (@i, y5 | T,w)} ,i,j=1,...,n and
AL {ﬂ (1, w, p) is the genus two partition function.

10.2. Modular invariance properties of intertwined functions. Following the
ordinary case [DLM1, MT3, MT5] we would like to describe modular properties of
genus two ”intertwined” partition and n-point generating functions. As in [MT3],
consider H C Sp(4,7) with elements

1 0 0 b
a 1 b ¢
;u'(avbu C) - 0 0 1 —a
0 0 0 1
(1,0, ), B = u(0,1,0) and C = p(0,0,1) with relations

H is generated by A =
= [B,

[A, B]C~2 = [A, (] C] = 1. We also define I'; C Sp(4,Z) where I'y = SL(2,Z)
with elements

0 b O

1 0 0

0 dl 0 5 a1d1 — b101 =1.

0 0 1

Together these groups generate L = HxT; C Sp(4,Z). From [MT3| we find that L
acts on the domain D of as follows:

wla,b,c).(t,w,p) = (7,w+ 2miar + 2mid, p),
(.0, p) a1 + by w P
. T’ b = ) ) .
m p T +dy et +dy ((217' + d1)2

We then define [TZ4] a group action of v; € SL(2,Z) on the torus intertwined two-
point function Z™ [gﬂ (u,w; v,0;7) for u, v € Vyy:

zW [fl] ‘71 (u,w; v,0; 7) = ZM (71~ BI]) (u,y1.w; v,0; 71.7),

g1

ay by
with the standard action ~;.7 and ~v;.w, and 7. [fl] = [ Ll;’il}, and the torus
1

1

multiplier e{}) [ ] € U(1), [MTZ], [TZ1]. Then we have [TZ4]
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Theorem 24 (Tuite-Z). The torus intertwined two-point function for the rank two
free fermion VOSA is a modular form (up to multiplier) with respect to L

zW [fl} M (w,w; v,0; 7)
g1
=el) [fl] (er7 + dy ) wtetwtots® z() [fl} (u, w;v,0;7),
g1 g1

where u, v € Vggq.

The action of the generators A, B and C is given by [TZ1]

f1 f1 f1 fig2 o0 f1 f1

Al | = fifao Bl =|fao Clf|=]|fege
gl g195 o |’ g1 g1 ’ a1 g1 :
g2 g2 92 92 92 g2

In a similar way we may introduce the action of v € L on the genus two partition
function [TZ4]

z® [ g ”’Y(ﬂ%ﬂ) =2Z® (v- { g D%(T,w,p),

h gt

fo | f2
Tlg | T et

g2 go

We may now describe the modular invariance of the genus two partition function for
the rank two free fermion VOSA under the action of L. Define a genus two multiplier

65,2) [5 } € U(1) for v € L in terms of the genus one multiplier as follows

o[- 1]
v g 71 g1 ’

for the generator v € I';. We then find [TZ4]

Theorem 25 (Tuite-Z). The genus two partition function for the rank two VOSA is
modular invariant with respect to L with the multiplier system, i.e.,

20 My = [1] 20| ] (o).

Finally, we can also obtain modular invariance for the generating form

gSLQ) |:£:| (501791, o 7$n7yn)7

for all genus two n-point functions [TZ4].

Theorem 26 (Tuite-Z). y(f) B] (1,91, -+, TnyYn) 18 modular invariant with respect
to L with a multiplier.
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