
ON THE COHOMOLOGY OF BRILL-NOETHER STRATA

OVER QUOT SCHEMES

CRISTINA MARTÍNEZ

Abstract. We define a Brill-Noether stratification over the Quot scheme

parametrizing quotients of a trivial bundle on a curve and we compute

their cohomology classes.

1. Introduction

The theory of Brill-Noether over the space of stable vector bundles or
semistable bundles, has been very much studied, [BGMN], [BGN], [Te]. Let
M(r, d) denote the moduli space of stable vector bundles of rank r and

degree d, and M̃ (r, d) the moduli space of semi-stable vector bundles of
rank r and degree d. For E a rank r and degree d vector bundle, the slope
of E is defined as µ (E) = d

r
.

The Brill-Noether loci over the moduli space of stable bundles are defined
by:

Br,d,k = {E ∈ M(r, d)|h0(E) ≥ k}

for a fixed integer k and over the moduli space of semistable vector bundles:

B̃r,d,k = {[E] ∈ M(r, d)|h0(gr (E)) ≥ k}.

By the semicontinuity theorem these Brill-Noether loci are closed subschemes
of the appropriate moduli spaces, and in particular it is not difficult to de-
scribe them as determinantal loci which allow us to estimate their dimension.

The main object of Brill-Noether theory is the study of these subschemes,
in particular questions related to their non-emptiness, connectedness, irre-
ducibility, dimension, topological and geometric structure. In the case of
line bundles when the moduli spaces are all isomorphic to the Jacobian,
these questions have been completely answered when the underlying curve
is generic.

We can define in an analogous way Brill-Noether loci over the moduli of
maps of fixed degree d from a curve to a projective variety, Mord (C,X) and
the corresponding Quot schemes compactifying these spaces of morphisms.
In particular we are going to consider the case in which X is the Grass-
mannian of m planes in C

n.Moreover we study in detail the case in which
m = 2, n = 4. In this case, this theory is connected with the geometry of
ruled surfaces in P

3. We define a Brill-Noether stratification over the moduli
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of maps and the Quot scheme and we compute the cohomology classes of
these strata.

2. Brill-Noether loci

Consider the universal exact sequence over the Grassmannian G(m,n):

(1) 0 → N → On
G → Q → 0 over G(m,n)

For every morphism f ∈ Md := Mord (C,G(m,n)) we take the pull-back of
the sequence 1:

(2) 0 → f ∗N → f∗On
G(m,n) → f∗Q → 0.

Are we recovering all the bundles E over C when we take the pull-back of
Q under f ∈ Md? In other words, given E → C, does there exist f ∈ Md

such that f ∗Q = E?
Next lemma will ask to this question.

Lemma 2.1. Given E, a degree d, rank n bundle over C, there exists a

unique morphism f ∈ Md such that f ∗Q = E if and only if E is generated

by global sections, or equivalently is given by a quotient,

On
C → E → 0.

Proof. We suppose E is generated by global sections s1, . . . , sn ∈ H0(E),
each section gives a map si : OC → E, then E is given by a quotient

(3) On
C → E → 0.

We consider the Grassmannian G(m,n) where m = n− r. By the universal
property of the Grassmannian G(m,n), there exists a morphism f ∈ Md

such that f ∗Q ∼= E, where Q is the universal quotient bundle over the
Grassmannian G(m,n).
Conversely, for all f ∈ Md, f∗Q is generated by global sections, since Q is
given by a quotient:

On
G(m,n) → Q → 0.

�

These quotients are parametrized by the Grothendieck’s Quot schemes
Qd,r,n of degree d, rank r quotients of On

C compactifying the spaces of mor-
phisms Md.

In the genus 0 case, by a theorem of Grothendieck, every vector bun-
dle E over P

1 decomposes as a direct sum of line bundles and therefore
E ∼=

⊕
i OP1(ai) to be generated by global sections means that ai ≥ 0. In the

genus 1 case, the bundles generated by global sections are the indecompos-
able bundles of degree d > n, (since h0(E) = d > n for an indecomoposable
bundle of positive degree, [At]), the trivial bundle OC and the direct sums
of both. In genus greater or equal to 2, certain restrictions on the bundle
imply that it is generated by global sections. For example, we can tensorize
with a line bundle of degree m such that E(m) = E ⊗OC(m) is generated
by global sections and h1(E(m)) = 0, [DN]. Moreover, if d is sufficiently
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large and E is semistable, then h1(E) = 0 and E is generated by its global
sections, in fact, it is sufficient to take d > r (2g − 1).
We define the Brill-Noether loci over the spaces of morphisms Md as:

(4) Md,a = {f ∈ Md|h
0(f∗Q) ≥ a}

for a fixed integer a. More generally, we can tensorize the bundle with a
fixed line bundle L over C and consider the following Brill-Noether loci:

(5) ML
d,a = {f ∈ Md|h

0(f∗Q⊗ L) ≥ a}.

Proposition 2.2. For d sufficiently large, there is a morphism from the

Quot scheme Qd,r,n to the Jacobian of the curve J d.

Proof. Let U be a universal bundle over C × M (r, d). We consider the
projective bundle ρ : Pd,r,n → M(r, d) whose fiber over a stable bundle
[F ] ∈ M(r, d) is P(H0(C,F )⊕n). We take the degree sufficiently large to
ensure that the dimension of P(H0(C,F )⊕n) is constant. Globalizing,

Pd,r,n = P(ρ∗U
⊕n).

Alternatively, Pd,r,n may be thought as a fine moduli space for n−pairs,
(F ;φ1, . . . , φn) of a stable rank r, degree d bundle F together with a non-
zero n−tuple of holomorphic sections φ = (φ1, . . . , φn) : On → F considered
projectively. When φ is generically surjective, it defines a point of the Quot
scheme Qd,r,n,

0 → N → On → E → 0

taking N = F∨. The induced map ϕ : Qd,r,n → Pd,r,n is a birational
morphism, therefore Qd,r,n and Pd,r,n coincide on an open subscheme and
also the universal structures coincide.
Now we consider the canonical morphism to the Jacobian of the curve:

det : M(r, d) → Jd

and the composition of the morphisms, F = det ◦ ρ ◦ ϕ gives a morphism
from Qd,r,n to the Jacobian Jd. �

3. A Brill-Noether stratification over the Quot scheme.

In [Mar2] we consider the space of morphisms R0
d := Mord(P

1, G(2, 4)) and
2 different compactifications of this space, the Quot scheme compactification
and the compactification of stable maps given by Kontsevich. We consider
the following Brill-Noether locus inside the space of morphisms R0

d:

(6) R0
d,a = {f ∈ R0

d|h
0 (f∗Q∨⊗OP1(a)) > 0, h0 (f∗Q∨⊗OP1(a−1)) = 0},

for a fixed integer a.

Note that we are considering here rank two bundles, but the definition can
be generalized easily to bundles of arbitrary rank r.

It is easy to see that this set can be defined alternatively as the f ∈ R0
d

with f∗Q ∼= OP1(a) ⊕ OP1(d − a), for a ≤ d
2 and the parameter a gives a

stratification of the space R0
d.



4 CRISTINA MARTÍNEZ

Geometric interpretation. The image of a curve C by f , is a geometric curve
in the corresponding Grassmannian or equivalently a rational ruled surface
in P

3 for the Grassmannian of lines. Fixing the parameter a we are fixing
the degree of a minimal directrix in the ruled surface. The spaces R0

d,a

are locally closed again by the Semicontinuity Theorem and they can be
shown as the degeneration locus of a morphism of bundles by means of the
universal exact sequence over the corresponding Quot scheme Rd and we find
that the expected dimension of R0

d,a as determinantal variety is 3d +2a +5.

These spaces are considered in [Mar2] as parameter spaces for rational ruled
surfaces in order to solve the following enumerative problems:

(1) The problem of enumerating rational ruled surfaces through 4d + 1
points, or equivalently computing the degree of R0

d inside the pro-
jective space of surfaces of fixed degree d,

R0
d → P

(d+3

3 )−1.

(2) Enumerating rational ruled surfaces with fixed splitting type. This
problem raises the question of defining Gromov-Witten invariants
for bundles with a fixed splitting type.

When the underlying curve C is of genus greater or equal to 1, for
f ∈ R0

C,d, we consider the Segre invariant s of the bundle f ∗(Q∨), that

is, the maximal degree of a twist f ∗Q∨ ⊗ L, having a non-zero section, or
equivalently, the integer s such that the minimal degree of a line quotient
E → L → 0 is d+s

2 , ([LN], [CS]). If T is any algebraic variety over k and A
is a vector bundle of rank Z on C × T , then the function s : T → Z defined
by s(t) = s(A|C×t) is lower semicontinuous. We recall that the bundle E
is stable if s > 0 and semistable if s ≥ 0. We define the corresponding

Brill-Noether loci over R0
C,d as the subsets:

(7) R0
C,d,s = {f ∈ R0

C,d|h
0(f∗Q∨ ⊗ L) ≥ 1, deg L =

d + s

2
}.

We note that the definition is independent of the chosen line bundle L of
minimal degree.
We consider the Zariski closure RC,d,s of the sets R0

C,d,s inside the Quot
scheme compactification of the space of morphisms:

RC,d,s = {q ∈ RC,d|h
0 (C,Eq,s) ≥ 1, Eq,s := E∨ ⊗ π∗

2L|{q}×C}.

The next theorem will exhibit RC,d,s as determinantal varieties which allow
us to estimate their dimensions.
Let us consider the universal exact sequence in RC,d × C,

(8) 0 → K → On
RC,d×C → E → 0.

Let KC be the canonical bundle over C and π1, π2 be the projection maps
over the first and second factors respectively. Tensorizing the sequence (9)
with the linear sheaf π∗

2(KC ⊗ L−1) gives the exact sequence:
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(9)
0 → K⊗π∗

2(KC⊗L−1) → On
RC,d×C⊗π∗

2(KC⊗L−1) → E⊗π∗
2(KC⊗L−1) → 0.

The π1∗ direct image of the above sequence yields the following long exact
sequence on RC,d:

0 → π1∗(K ⊗ π∗
2(KC ⊗ L−1)) → π1∗(O

n
RC,d

⊗ π∗
2(KC ⊗ L−1)) →

→ π1∗(E ⊗ π∗
2(KC ⊗ L−1)) → R1π1∗(K ⊗ π∗

2(KC ⊗ L−1)) →

→ R1π1∗(O
n
RC,d

⊗ π∗
2(KC ⊗ L−1)) → R1π1∗(E ⊗ π∗

2(KC ⊗ L−1)) → 0.

Theorem 3.1. For d sufficiently large, RC,d,s is the locus where the map

(10) R1π1∗(K ⊗ π∗
2(L

−1 ⊗ KC) → R1π1∗(O
n
RC,d×C ⊗ π∗

2(L
−1 ⊗ KC))

is not surjective, it is irreducible, non-empty and has expected codimension

2g − s − 1 as a determinantal variety.

Proof. The map (10) is not surjective in the support of the sheaf

R1π1∗(E ⊗ π∗
2(KC ⊗ L−1)),

that is, in the points q ∈ RC,d such that h1 (E ⊗ π∗
2(KC ⊗ L−1)|{q}×C) ≥ 1,

or equivalently in RC,d,s by Serre duality. In other words, by semicontinuity
there is an open set Ps ⊂ P(R1π1∗(E ⊗π∗

2(KC ⊗L−1))) parametrizing points
p ∈ RC,d such that s(E|{p}×C) = s and by the universal property of RC,d,
there is a morphism f : Ps → RC,d such that, f(Ps) = RC,d,s. This proves
that the subschemes RC,d,s, being the image of an irreducible variety by a
morphism, are irreducible. The non-emptiness follows easily from definition
(7).
By Serre Duality it follows that

R1π1∗ (K ⊗ π∗
2(L

−1 ⊗ KC)) ∼= π1∗(K
∨ ⊗ π∗

2L)

and by the Base Change Theorem, their fibers are isomorphic to

H0(C,K∨ ⊗ π∗
2L|C×{p}), p ∈ RC,r,d

and have dimension 2d+ s+m (1− g). It is enough to take d + s > 2m (g −
1) to ensure the vanishing of h1(C,K∨ ⊗ π∗

2L|C×{p}). As a consequence,
π1∗(K

∨ ⊗ π∗
2L) is a bundle of rank 2d + s + 2 (1 − g), (note that we are

assuming that rank (K∨) = m = 2 and n = 4). Again by Serre Duality we
see that R1π1∗(O

n
RC,d×C ⊗ π∗

2(L
−1 ⊗ KC)) ∼= π1∗(O

n
RC,d

⊗ π∗
2L) and it is a

bundle with fiber isomorphic to

H0(C,On
RC,d

⊗ π∗
2L|C×{p})

of dimension 2d + 2s − 4g + 4. Therefore we have the following morphism
of bundles:

π1∗(K
∨ ⊗ π∗

2L)
φ
→ O2d+2s−4g+4

RC,d
.

The expected codimension of RC,d,s as determinantal variety is

((2d − 2g + s + 2) − (2d + 2s − 4g + 3))

· ((2d + 2s − 4g + 4) − (2d + 2s − 4g + 3)) = 2g − s − 1.

�
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Remark 3.2. Note that as s increases, the bundle E becomes more general,

so the codimension decreases. In particular when s = g−1, the codimension

is g when fix L or 0 when we allow L to vary.

4. Cohomology of the varieties RC,d,s.

Let {1, δk , 1 ≤ k ≤ 2g, η} be a basis for the cohomology of C, η represents
the class of a point. We will also denote {1, δk , 1 ≤ k ≤ 2g, η} the pull-
backs to RC,d by the projection morphism. Let Θ be the theta divisor of
the Jacobian variety of the curve, and Θr be the pull-back of Θ under the
morphism F constructed in 2.2.
Let

ci(K
∨) = ti +

2g∑

j=1

sj
i δj + ui−1 η, ti ∈ H2i (RC,d), s

j
i ∈ H2i−1(RC,d),

ui−1 ∈ H2i−2 (RC,d).

be the Künneth decompostion of the Chern clases of K∨.
Every class z ∈ A(RC,r,d) can be written in the form

z = a +

2g∑

j=1

bjδj + f η

where a = π∗(η z) and f = π∗(z) ∈ A(RC,d). In particular ti = π∗(η ci(K
∨))

and ui−1 = π∗(ci(K
∨)), u0 = π∗(ci(K

∨)) = −d.

Conjecture 4.1. t1, u1, δ1, . . . , δ2g generate H2(RC,d).

For L a line bundle over C of degree a = d+s
2 its first Chern class is given

by

c1(π
∗
2L) = a η.

Lemma 4.2. RC,d,s does not have components at infinity.

Proof. Let q ∈ RC,d,s a boundary point, that is, Eq,s := E∨ ⊗ π∗
2L|{q} has

a non-zero torsion T . The contribution of T to the total degree is given by
the formula,

deg (Eq,s) = deg (Fq,s) + h0(T ),

where F is the locally free part of Eq,s:

h0(C,Eq,s) = h1(C,Eq,s) + deg (Fq,s) + h0(T ) + (1 − g) rank(Eq,s).

L is of maximal degree d+s
2 . If Eq,s has a non-zero torsion of degree 1,

and we tensorize with a line bundle L2 of degree d+s
2 − 1, we still have

h0(Eq,s ⊗ L2) ≥ 1, but this contradicts that Eq,s has Segree invariant s,
therefore these points give a component but are not in RC,d,s.

�

Theorem 4.3. If C is any smooth curve of genus g, and RC,d,s is either

empty or has the expected codimension 2g − s − 1 it has fundamental class:

[RC,d,s] = −c2g−s−1(π1∗(K
∨ ⊗ π∗

2L)).
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Proof. By assumption RC,d,s has the expected codimension as a determi-
nantal variety and by Lemma 4.2, the Porteous formula gives the fundamen-
tal class of the varieties RC,d,s in terms of the Chern classes of the bundles
given by Theorem 3.1.

[RC,d] = 42g−s−1,1

(
ct(−π1∗(K

∨ ⊗ π∗
2L)) ,

where 4p,q(a) = det




ap . . . ap+q−1
...

...
ap−q+1 . . . ap


 , for any formal series a(t) =

∑k=+∞
k=−∞ ak tk. �

4.0.1. Computations of Chern classes. Applying Grothendieck-Riemann-Roch
theorem to the morphism π1∗, it follows that

(11) ch (π1∗(K
∨ ⊗ π∗

2L))) = π1∗(Td (RC,d × C)/RC,d) · ch (K∨ ⊗ π∗
2L)).

First we compute the Chern classes of K∨ ⊗ π∗
2L:

c1(K
∨ ⊗ π∗

2L)) = t1 + (

2g∑

j=1

sj
1δj) + 2 (d + am) η,

c2 (K∨ ⊗ π∗
2L) = t2 + (

2g∑

j=1

sj
2δj) + u1η + aηt1 + a(

2g∑

j=1

sj
1δj)η,

c3 (K∨ ⊗ π∗
2L) = aη t2 + aηα2.

We will call α1 and α2 to the classes
∑2g

j=1 sj
1δj and

∑2g
j=1 sj

2δj respectively.
The intersection numbers for the δi imply the following relations:

α2
1 = −2Aη, A =

g∑

j=1

sj
1s

j+g
1 ∈ H2 (RC,d × C), α3

1 = 0,

α2
2 = −2γη, γ =

g∑

i=1

sj
2s

j+g
2 ∈ H6 (RC,d × C), α3

2 = 0,

α1α2 = Bη, B = (

g∑

i=1

−si
1s

i+g
1 + si+g

1 si
2) ∈ H4(RC,d × C),

By proposition 2.2 and [ACGH], A coincides with the divisor Θr.
Let us denote by chi, the i−homogeneous part of the Chern character of a
bundle.

ch0 (K∨ ⊗ π∗
2L) = m,

ch1 (K∨ ⊗ π∗
2L) = t1 + α1 + η (d + am),

ch2 (K∨ ⊗ π∗
2L) =

1

2
[t21 + α2

1 + 2 t1 α1 + 2t1η (d + am) + 2α1η (d + am)

− 2t2 − 2α2 − 2u1η − 2aηt1 − 2aηα1, ]
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ch3 (K∨ ⊗ π∗
2L) =

1

6
[t31 + 3 (d + am)η t21 + 3 (d + am)ηα2

1 + 6(d + am)ηα1t1

+ 3t1α
2
1 + 3α1t

2
1 − 3t1t2 − 3α2t1 − 3u1t1η − 3aηt21 − 3ηα2

1

− 3α1t2 + 3t1α
2
1 + 3α1t

2
1 − 3t1t2 − 3α2t1 − 3u1t1η − 3aηt21

− 3ηα2
1 − 3α1t23t3 + 3α3 + 3u2η + 3aηt2 + 3ηα2]

chn (K∨ ⊗ π∗
2L) = coeff (tn)


∑

n

(−1)n−1

n

∑

j

cj(K
∨ ⊗ π∗

2L)tj




n

Now applying formula (11), we have

ch (π1∗(K
∨ ⊗ π∗

2L)) = π1∗

(
(1 + (1 − g)η) (ch (K∨ ⊗ π∗

2L)
)
.

The i−homogeneous term of ch(π1∗(K
∨ ⊗ π∗

2L)) is,

ch0 = rank (π1∗(K
∨ ⊗ π∗

2L)) = d + am + (1 − g)m

ch1 = t1 (d + am) + α1 (d + am) − at1 − aα1 − u1 + (1 − g)α1

ch2 = (1 − g)[
1

2
t21 +

1

2
α2

1 + t1α1 − t2 − α2 + 3(d + am)t21 + 3(d + am)α2
1]

+ 6(d + am)α1t1 − 3u1t1 − 3at21 − 3α2
1 − 6aα1t1 − 3u1α1 − 3(d + am)t2

− 3(d + am)α2 + 3u2 + 3at2 + 3α2

ch3 = (1 − g) [t31 + α3
1 + 3t1α

2
1 + 3t21α1 − 3t1t2 − 3α1α2 − 3α1t2 + 3t3 + 3α3]

...

chi(π1∗(K
∨ ⊗ π∗

2L)) = (1 − g) ch(K∨ ⊗ π∗
2L) + coeffη

(
chi(K

∨ ⊗ π∗
2L)

)
.

Finally, we get that the Chern classes of π1∗(K
∨ ⊗ π∗

2L) are,

c1 (π1∗(K
∨⊗π∗

2L)) = (d+am−a+(1−g))t1 +(d+am+(1−g)−a)α1 −u1.

c2 (π1∗(K
∨ ⊗ π∗

2L)) =
1

2
c2
1 −

1

2
(1 − g)(t21 + α2

1 + t1α1 − t2 − α2)

+ 3 (d + am)(t21 + α2
1 + 2α1t1 − t2 − α2)

+ 3(α2
1 + at21 + u1t1 + 2aα1t1 − u2 − at2 − α2).

...

cn(π1∗(K
∨⊗π∗

2L)) = −
n∑

r=1

(−1)r−1

n
r! chr(π1∗(K

∨⊗π∗
2L)) cn−r(π1∗(K

∨⊗π∗
2L)).

Corollary 4.4. If C is a curve of genus 1, then

[RC,d,0] = −c1(π1∗(K
∨ ⊗ π∗

2L)) = −(d + am − a)t1 − (d + am − a)α1 + u1.
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[RC,d,−1] = −c2(π1∗(K
∨ ⊗ π∗

2L)) = −
1

2
((d + am − a)t1 + (d + am − a)α1 − u1)

2

− 3 (d + am)(t21 + α2
1 + 2α1t1 − t2 − α2)

− 3(α2
1 + at21 + u1t1 − 2aα1t1 − u2 − at2 − α2).
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