
A TOP HAT FOR MOSER’S FOUR MATHEMAGICAL RABBITS

PIETER MOREE

Abstract. If the equation 1k + 2k + . . . + (m − 2)k + (m − 1)k = mk has a

solution with k ≥ 2, then m > 1010
6

. Leo Moser showed this in 1953 by amazingly
elementary methods. His proof rests on four identities he derives separately. It
is shown here that Moser’s result can be derived from a von Staudt-Clausen type
theorem (a simple proof of which is also presented here). In this approach the four
Moser identities can be derived uniformly. The mathematical arguments used in
the proofs were already available during the lifetime of Lagrange (1736-1813).

1. Introduction

Consider the Diophantine equation

1k + 2k + . . .+ (m− 2)k + (m− 1)k = mk, (1)

to be solved in integers (m, k) with m ≥ 2 and k ≥ 1. Note that in case k = 1
the left hand side of (1) equals m(m− 1)/2 and this leads to the (unique) solution
1 + 2 = 3. From now on we will assume that k ≥ 2. Conjecturally solutions with
k ≥ 2 do not exist (this conjecture was formulated around 1950 by Paul Erdős in a
letter to Leo Moser). Leo Moser [10] established the following theorem in 1953.

Theorem 1. (Leo Moser, 1953). If (m, k) is a solution of (1) with k ≥ 2, then

m > 10106.

His result has since then been improved upon. Butske et al. [2] have shown, by
computing rather than estimating certain quantities in Moser’s original proof, that
m > 1.485·109321155. By proceeding along these lines this bound cannot be improved
upon substantially. Butske et al. [2, p. 411] expressed the hope that new insights

will eventually make it possible to reach the more natural benchmark 10107 . This
hope was recently fulfilled by Gallot, the author, and Zudilin [4], who showed that
2k/(2m−3) must be a convergent of log 2 and made an extensive continued fraction
computation of (log 2)/2N , with N an appropriate integer in order to establish
Theorem 2. Note that their result goes well beyond establishing the benchmark.
Their approach only works for those N for which it can be shown that N |k. In [9]
it was e.g. shown that lcm(1, 2, . . . , 200)|k.

Theorem 2. If (m, k) is a solution of (1) with k ≥ 2, then m > 10109.
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Moser’s proof of Theorem 1 is quite amazing in the sense that he only uses very
elementary number theory. His proof is even mathemagical in the sense that he
pulls four rabbits out of a hat, namely the Equations (7), (10), (12), and (13), that
a solution (m, k) has to satisfy. He derives each of these equations separately in a
quite ingenious way. In this note we will see that a reproof of Moser’s result can be
given, showing that the following result is the top hat the four rabbits were pulled
from.

Put Sr(y) =
∑y−1

j=1 j
r.

Theorem 3. (Carlitz-von Staudt, 1961). Let r, y be positive integers. Then

Sr(y) =

y−1∑
j=1

jr ≡

{
0 (mod y(y−1)

2
) if r is odd;

−
∑

p−1|r, p|y
y
p

(mod y) otherwise.
(2)

Using this result, an easy proof of which will be given in Section 3, a less math-
emagical reproof of Moser’s result can be given. For a polished version of Moser’s
orignal proof, we refer the reader to the extended version of this note [8].

The prime harmonic sum diverges (as Euler already knew) and so given α > 1/2
there exists a largest prime p(α) such that

∑
p≤p(α) 1/p < α. Moser needed p(3.16)

in his proof, but could only estimate it using certain prime number estimates. His
proof is easily adapted to involve p(31

6
) and this was first exactly computed by

Butske et al. [2] leading to an improvement of Moser’s bound, namely

m >
(

3
∏

p≤p(3 1
6
)

p
) 1

4
> 1.485 · 109321155. (3)

We obtain, using Theorem 3 and a computer algebra package like PARI to com-
pute p(31

6
) = 85861889 and the prime product in (3), the following variant of Moser’s

result.

Theorem 4. Suppose that (m, k) is a solution of (1) with k ≥ 2, then
1) m > 1.485 · 109321155;
2) k is even, m ≡ 3 (mod 8), m ≡ ±1 (mod 3);
3) m− 1, (m+ 1)/2, 2m− 1, and 2m+ 1 are all squarefree;
4) If p divides at least one of the above four integers, then p− 1|k;
5) The number (m2 − 1)(4m2 − 1)/12 is squarefree and has at least 4990906 prime
factors.

The proof we give in this note shows that if Lagrange (1736-1813) would have had
a present day computer, he could have well proved Theorem 4.

In order to improve on Theorem 2 by Moser’s approach one needs to find additional
rabbit(s) in the top hat. The interested reader is wished good luck in finding these
elusive animals !

2. Proof of Theorem 4

Proof of Theorem 4. We will apply Theorem 3 with r = k.
In case k is odd, we find on combining (2) (putting y = m) with (1) and using
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the coprimality of m and m − 1, that m = 2 or m = 3, but these cases are easily
excluded. (Since 1k + 2k < (1 + 2)k for k > 1, one sees that 1 + 2k = 3k has only
the solution k = 1.) Therefore k must be even.

Take y = m− 1. Then using (1) the left hand side of (2) simplifies to

Sk(m− 1) = 1k + 2k + · · ·+ (m− 2)k = mk − (m− 1)k ≡ 1 (mod m− 1). (4)

We get from (2) and (4) that∑
p|m−1, p−1|k

m− 1

p
+ 1 ≡ 0 (mod m− 1). (5)

Suppose there exists p|m − 1 such that p − 1 - k. Then on reducing both sides
modulo p we get 1 ≡ 0 (mod p). This contradiction shows that in (5) the condition
p− 1|k can be dropped and thus we obtain∑

p|m−1

m− 1

p
+ 1 ≡ 0 (mod m− 1), (6)

Suppose there exists a prime p dividing m−1 such that also p2 divides m−1. Then
on reducing both sides modulo p2, we get 1 ≡ 0 (mod p2). This contradiction shows
that m− 1 must be squarefree. On dividing (6) by m− 1 we obtain∑

p|m−1

1

p
+

1

m− 1
≡ 0 (mod 1). (7)

Take y = m. Then using (1) and 2|k we infer from (2) that∑
p−1|k, p|m

1

p
≡ 0 (mod 1). (8)

Since a sum of reciprocals of distinct primes can never be a positive integer, we infer
that the sum in (8) equals zero and hence conclude that if p− 1|k, then p - m. We
conclude for example that (6,m) = 1. Now on considering (1) with modulus 4 we
see that m ≡ 3 (mod 8).

Take y = m+ 1. Then using (1) and the fact that k is even, the left hand side of
(2) simplifies to

Sk(m+ 1) = Sk(m) +mk = 2(m+ 1− 1)k ≡ 2 (mod m+ 1).

We obtain ∑
p|m+1, p−1|k

m+ 1

p
+ 2 ≡ 0 (mod m+ 1), (9)

but by reasoning as in the case y = m − 1, it is seen that p|m + 1 implies p − 1|k
and thus ∑

p|m+1

1

p
+

2

m+ 1
≡ 0 (mod 1). (10)
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From (9) and m ≡ 3 (mod 8), we derive that (m+ 1)/2 is squarefree.
Take y = 2m− 1. On noting that

Sk(2m− 1) =
m−1∑
j=1

(jk + (2m− 1− j)k) ≡ 2Sk(m) ≡ 2mk (mod 2m− 1),

we infer that ∑
p|2m−1, p−1|k

2m− 1

p
+ 2mk ≡ 0 (mod 2m− 1). (11)

Sincem and 2m−1 are coprime we infer that if p|2m−1, then p−1|k, mk ≡ 1 (mod p)
and furthermore that 2m− 1 is squarefree. By the Chinese Remainder Theorem it
then follows that 2mk ≡ 2 (mod 2m− 1) and hence from (11) we obtain∑

p|2m−1

1

p
+

2

2m− 1
≡ 0 (mod 1). (12)

Take y = 2m+ 1. On noting that

Sk(2m+ 1) =
m∑
j=1

(jk + (2m+ 1− j)k) ≡ 2Sk(m+ 1) ≡ 4mk (mod 2m+ 1)

and proceeding as in case y = 2m− 1 we obtain∑
p|2m+1

1

p
+

4

2m+ 1
≡ 0 (mod 1). (13)

We further see that 2m+ 1 is squarefree.
No prime p > 3 can divide more than one of the integers m − 1, m + 1, 2m − 1

and 2m + 1. Further, since m ≡ 3 (mod 8) and 3 - m, 2 and 3 divide precisely
two of these integers. We infer that M = (m− 1)(m+ 1)(2m− 1)(2m+ 1)/12 is a
squarefree integer. On adding (7), (10), (12), and (13), we deduce that∑

p|M

1

p
+

1

m− 1
+

2

m+ 1
+

2

2m− 1
+

4

2m+ 1
≥ 4− 1

2
− 1

3
= 3

1

6
. (14)

One checks that the only solutions of (7) with m ≤ 1000 are 3, 7, and 43. These are
easily ruled out by (10). Thus (14) yields (with α = 3.16)

∑
p|M

1
p
> α. From this

it follows that if ∑
p≤x

1

p
< α, (15)

then m4/3 > M >
∏

p≤x p and hence

m > 31/4eθ(x)/4, (16)

with θ(x) =
∑

p≤x log p, the Chebyshev θ-function. Since for example (15) is satisfied

with x = 1000, we find that m > 10103 and infer from (14) that we can take
α = 31

6
−10−100 in (15). Next one computes (using a computer algebra package) the
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largest prime pk such that
∑

pj≤pk
1
pj
< 31

6
, with p1, p2, . . . the consecutive primes

(note that pk = p(31
6
)). Here one finds that k = 4990906 and

4990906∑
i=1

1

pi
= 3.1666666588101728584 < 3

1

6
− 10−9.

By direct computation one finds that θ(pk) = 8.58510010694053 · · · ∗107. Using this
we infer from (16), the inequality (3) and hence part 1 of the theorem is proved.

Notice that along our way towards proving part 1, the remaining parts of the
theorem have also been proved. �

3. Proof of the Carlitz-von Staudt theorem

Carlitz [3] gave a proof of Theorem 3 using finite differences and states that the
result is due to von Staudt. In the case r is odd, he claims that Sr(y)/y is an integer,
which is not always true (it is true though that 2Sr(y)/y is always an integer). The
author [6] gave a reproof using the theory of primitive roots and Kellner [5] a reproof
(in case r even only) using Stirling numbers of the second kind. Here a reproof will be
given that is easier than all the above. It only uses the following result of Lagrange.

Theorem 5. If f is a one-variable polynomial of degree n over Z/pZ, then it cannot
have more than n roots unless it is identically zero.

Proof. See, e.g. the book of Rose [11, Theorem 2.2]. �

Lemma 1. Suppose that p−1 - r. Then the equation xr 6≡ 1 (mod p) has a solution.

Proof. Let r1 ≥ 0 be the smallest positive integer such that r1 ≡ r (mod p−1). Then
r1 < p − 1. Suppose that xr ≡ 1 (mod p) for every x ∈ {1, 2, . . . , p − 1}, then by
Fermat’s Little Theorem we also have xr1 ≡ 1 (mod p) for every x ∈ {1, 2, . . . , p−1},
contradicting Lagrange’s Theorem. �

Lemma 2. Let p be a prime. We have

Sr(p) ≡ εr(p) (mod p),

where

εr(p) =

{
−1 if p− 1|r;
0 otherwise.

Proof. If p− 1 divides r the result follows by Fermat’s Little Theorem. If p− 1 - r,
assume that Sr(p) 6≡ 0 (mod p). Let a be an integer not divisible by p. Multipli-
cation by a permutes the elements of Z/pZ and hence Sr(p) ≡ arSr(p) (mod p),
from which we infer that ar ≡ 1 (mod p). We infer that ar ≡ 1 (mod p) for
a = 1, 2, . . . , p− 1. Invoking Lemma 1 gives a contradiction and hence our assump-
tion that Sr(p) 6≡ 0 (mod p) must have been false. �

The usual proof of this result makes use of the existence of a primitive root modulo
p, which provides a solution to xr 6≡ 1 (mod p) in case p − 1 - r. The proof given
here only makes use of the more elementary theorem of Lagrange, Theorem 5.
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Lemma 3. In case p is odd and in case p = 2 and r is even, we have Sr(p
λ+1) ≡

pSr(p
λ) (mod pλ+1).

Proof. Every j with 0 ≤ j < pλ+1 can be uniquely written as j = αpλ + β with
0 ≤ α < p and 0 ≤ β < pλ. Hence we obtain on invoking the binomial theorem that

Sr(p
λ+1) =

p−1∑
α=0

pλ−1∑
β=0

(αpλ + β)r ≡ p

pλ−1∑
β=0

βr + rpλ
p−1∑
α=0

α

pλ−1∑
β=0

βr−1 (mod p2λ).

Since the first sum equals Sr(p
λ) and 2

∑p−1
α=0 α = p(p − 1) ≡ 0 (mod p), the result

follows. �

Proof of Theorem 3. First let us consider the case where r is odd. Assume Sr(m)
is a multiple of m(m − 1)/2. We need to show that Sr(m + 1) = Sr(m) + mr is a
multiple of m(m+ 1)/2.

If m is even, we have that m/2 divides Sr(m). But

Sr(m+ 1) = (1r +mr) + (2r + (m− 1)r) + . . .+ ((
m

2
)r + (

m

2
+ 1)r),

which is a multiple of m+ 1 as each pair above is. Thus, Sr(m+ 1) is a multiple of
m/2 as well as of m+ 1, which are coprime and hence a multiple of m(m+ 1)/2.

If m is odd, then m|Sr(m). But

Sr(m+ 1) = (1r +mr) + (2r + (m− 1)r) + . . .+ (
m+ 1

2
)r,

which is a multiple of (m + 1)/2 as each pair as well as the last remaining term is.
Thus Sr(m+ 1) is a multiple of m as well as (m+ 1)/2 which are coprime and hence
a multiple of m(m+ 1)/2.

Next we consider the case where r is even. Suppose that pf |y, then

Sr(y) =

y

pf
−1∑

α=0

pf−1∑
β=0

(αpf + β)r ≡ y

pf
Sr(p

f ) (mod pf ). (17)

By the Chinese Remainder Theorem it is enough to show that

Sr(y) ≡ y

p
εr(p) (mod pep),

where y =
∏

p p
ep is a factorization of y into prime powers pep . By (17), Lemma 3,

and Lemma 2, we then infer that

Sr(y) ≡ y

pep
Sr(p

ep) ≡ y

p
Sr(p) ≡

y

p
εr(p) (mod pep),

thus concluding the proof. �



A TOP HAT FOR MOSER’S FOUR MATHEMAGICAL RABBITS 7

4. Concluding remarks

A further application of the Carlitz-von Staudt theorem is to show that Giuga’s
conjecture (1950) and Agoh’s conjecture (1990) are equivalent, see Kellner [5].
Giuga’s conjecture states that if n ≥ 2, then Sn−1(n) ≡ −1 (mod n) iff n is prime.
Agoh’s conjecture states that if n ≥ 2, then nBn−1 ≡ −1 (mod n) iff n is a prime,
where Br denotes the r-th Bernoulli number.

The author has generalized the Carlitz-von Staudt theorem to deal with consec-
utive r-th powers in arithmetic progression, see [6]. The method of proof in case r
odd given in Section 3 does not generalize then.

That Theorem 3 can be used to reprove Moser’s result is a discovery due to the
author and first used in [7], where it was used to study the equation 1k + 2k + · · ·+
(m−1)k = amk. The presentation given here also draws on computer improvements
since 1996 and [2]. The proof of Theorem 3 given here is clearly easier than those
given in [3, 5, 6], and is the main new contribution in this paper.

Some variants of the Erdős-Moser problem require computing p(α) for α > 31
6
,

see e.g. [7]. The largest value for which p(α) has been computed is α = 4. Bach
et al. [1] found that p(4) = 1801241230056600467, but whereas the computation of
p(31

6
) is straightforward with a computer algebra package, computation of p(4) is

rather more involved (using the Meissel-Lehmer algorithm). For α > 4 one presently
has to resort to deriving a sharp lower bound for p(α) and here, as was Moser, one
is forced to use prime number estimates, cf. [7].

Acknowledgement. The argument in case r is odd of Theorem 3 was suggested to
me by B. Sury and the proof of Lemma 2 by D. Zagier. I like to thank W. Moree,
J. Sondow and the referee for comments on an earlier version.
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