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0. Introduction. Index and Determinant. Euler characteristic and Torsion.
Let us consider finite-dimensional complex vector bundles £ and F over a closed
manifold M of dimension n. If A is an elliptic differential (or pseudodifferential) operator
of, say, order m > 0 that maps sections of E into sections of F' then it is well known that
both ker A and cokerA = L?(M, F)/RangeA are finite-dimensional, and, therefore, the
index of A,

indA := dimker A — dim cokerA

is defined. The most important property of the index is that it is stable under deformations.
This means that if A(t) is a continuous family of elliptic operators of the same order, then
indA(t) does not depend on £. Stability of the index implies that it depends on the principal
symbol of A only, and the celebrated Atiyah-Singer theorem provides us with an exact
formula for ind A.

There are scveral proofs of the Atiyah-Singer theorem. One of them, due to Atiyah—
Bott—-Patodi [ABP], is based on the heat trace expansions. Let us briefly recall how the heat
trace expansion is used. We choose a Riemannian metric on M and Hermitian structures
on E and on F in order to define A*, the adjoint of A, which is again a differential
(pseudodifferential) operator. Both operators exp(—tA*A) and exp(—tAA*) are of trace
class when ¢t > 0. The function '

0(t) := 0. (t) - 0_(1),

with 8, (t) = tre™*4"4 and 6_(t) = tre~*44" | has the following properties:

(P1) 6(t) is independent of ¢, or equivalently <6(t) = 0;

(P2) limy e 6(t) = ind A.

Property (P2) follows from the fact that lim;_ o, exp(—tA* A) is the orthogonal pro-
jector onto ker A, and limy_, o, exp(—tAA*) is the orthogonal projector onto ker A*, which
is isomorphic to cokerA.



It remains to study lim,_,o+ @(t). According to Minakshisundaram and Pleijel, the
functions #4 admit asymptotic expansions

00
Bi(t) ~ Z C%t(—n+2k)/2m (0_1)
k=0

as t — 07. The Minakshisundaram-Pleijel expansion in (0.1) is stated for differential
operators. If A is a pseudodifferential operator, additional terms would appear.

All coeflicients cf can be computed in terms of the complete symbol of A. In partic-
ular, one can compute c:ﬂ — C;/z: which equals lim,_, ¢+ #(¢) and thus obtains

indA =, — ¢y (0.2)

The formula for (;:/2 — /2 due to Minakshisundaram—Pleijel, provides an algorithm for
computing ind A and is in fact the starting point for the proof of the Atiyah—Singer formula.
Formula (0.2) and general results about the structure of ¢, /o imply that if the dimension
n is odd then indA = 0.

To compute Cj:/z - c;/z, one can use the zeta-function instead of the heat trace ex-

pansion. Let H be a positive elliptic operator of order m > 0 that acts on sections of a
vector bundle F over a compact manifold M of dimension n. Then the function

CH (‘3) =trH™ ¢

is holomorphic in the half-plane Rs > n/m, and it can be extended analytically to a
meromorphic function in the whole complex plane, with simple poles at the points (n —
$)/m, 3 =1,2,... ([Se]}). Some of these points are, in fact, regular for (x(s), and, most
importantly, s = 0 i1s a regular point. The (-function and the heat trace

B (t) = tre *H

are related to each other by

CH(S) = % /000 ts_lﬁy(t)(it, (03)

and the cocfficients of the expansion of 8y (t) (see (0.1)) are proportional to the residues
of the zeta-function and its values at some special points, 0 included. In particular, the
index of an elliptic operator A can be represented as

indA = {4+ 44¢(0) — Caa-+(0)

for any € > 0. One needs to add ¢ > 0 to insure that the operators AA*+¢ and A*A+¢ are
positive. The assumption H > 0 is, in fact, not important. It suffices to assume that H
admits an Agmon angle, i.c. that there exists a solid angle in the complex plane, centered
at the origin, that does not intersect the spectrum of H. In particular, 0 is not in the
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spectrum of H. An Agmon angle is needed for defining complex powers of H, and the
value of the zeta-function depends on the choice of this angle.

There are several geometric quantities that can be interpreted as indices of certain
elliptic operators. For example, the Euler characteristic of a manifold (the superindex of
the DeRham differential d) equals the index of

d+d*: A (M) — A°4(M)

where AP (A1) is the space of even(odd) forms on M, d is the DeRham differential,
and d* is its adjoint with respect to the scalar product induced by a Riemannian metric
on M.

Next we define the analytic torsion as the “absolute value of the superdeterminant”

of d. First, we recall how the regularized determinant of a positive elliptic operator H is
defined. By the definition of Ray-Singer ([RS]),

logdet H = —(i(0). (0.3")
The most important property of this determinant is that the variational formula
d .
7 logdet H(t) = tr H(t)H (t)™* (0.4)

holds. Here H(t) is a differentiable family of elliptic operators. Formula (0.4) has perfect
sensc if the operator on the right is of the trace class. Otherwise, the right hand side of
(0.4) is understood in the following sense: The “generalized zeta-function”

C(s;t) = trH () H(t)™*

is meromorphic in the whole complex plane, with at most simple poles. By F.P.((1;) we
denote the free term in the Laurent expansion of this function at s = 1. The trace on the
right in (0.4} is defined to be F.P.((1;¢). Again, the assumption that H is positive is not
important; it is sufficient to assume that there exists an Agmon angle for //. Note that
this implies that indH = 0. The determinant (as well as the modified determinant defined
below) is defined for operators with index 0 only.

The analytic torsion of a closed Riemannian manifold is a counterpart of the Eu-
ler characteristic: it is the superdeterminant of the DeRham differential d. To define it
properly, let us take the Hodge decomposition

AR(M) = AL (M) & AL (M) @ HP (M)

where A% (M) is the space of exact k-forms, A® (M) is the space of coexact k-forms, and
H¥(M) is the space of harmonic k-forms (with respect to an arbitrary, but fixed Rieman-
nian metric g on M). Denote by Af the restriction of the Laplacian Ay to the subspace
A,f(M ). The operators Aki are positive, and one can define a regularized determinant of
them using their spectra. Define

n

log T(M, g) = %Z(—nk logdet A (0.5)
k=0
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Note that the operator AL is given by the formula dj,dy, so det A, can be thought of as the
square of the absolute value of the determinant of d. One can use the fact that operators
Ag' and A, are unitarily cquivalent to show that (0.4) implies the more familiar formula
for the analytic torsion [RS]:

T

1 .
logT(M,g) = 5 Z(—l)‘"“k log det 'Ay. (0.5")
k=0

Here det” denotes the modified determinant (zero modes are discarded) defined by

logdet 'Ay, 1= lirrrl)(log det(Ag + €) — logedim(ker Ag)). (0.3")
e—

The Poincaré duality implies that the analytic torsion is trivial for even-dimensional man-
ifolds (as opposed to the Euler characteristic, which is trivial for odd-dimensional mani-
folds).

The analytic torsion can actually be defined for a closed Riemannian manifold and a
flat Hermitian bundle £ — M. The analytic torsion T(M, g) corresponds to the trivial one-
dimensional Hermitian bundle. Given a flat connection, the DeRham differential can be
extended to an operator dg taking smooth FE-valued k-forms to smooth E-valued (k + 1)-
forms. In the case when the fibers of £ are finite-dimensional, the above construction
can be carried out with no changes, and one obtains the analytic torsion of the complex
(A(M; F),dg). A classical example is when F is associated to an hrreducible unitary
representation p of the fundamental group m1(M). Another possibility is a Hilbert bundle
of A-Hilbert mocdules. This means that the fibers of E are finite Hilbert modules over a
finite von Neumann algebra A, and the bundle is equipped with a flat connection that
makes the A-module structure of the fibers, as well as the scalar products in the fibers,
parallel with respect to the connection. Let us recall the definitions of the above used
notions (e.g.. see [BFKM], [CM], [Co], [Di], [GS], [LR))-

A finite von Neumann algebra A is a umtal C*-algebra with a *-operation and a
faithful trace tr: A — C that satisfies the following properties:

1. {a,b) = tr(ab*) is a scalar product, and the completion A, of A with respect to this
scalar product is a scparable Hilbert space.

2. The left regular representation gives an embedding of A into L{As), the algebra of all
bounded, linear operators in Aj;. If viewed as a subalgebra of L(A4;), A is weakly closed.
3. The trace is normal. This means that for any monotone increasing net (a;)ics such that
a; > 0, and a = sup;c; q; exists in A, one has tra = sup,.; tra;.

A Hilbert space W is an A-Hilbert module if W is a left A-module, (¢*v, w) = (v, aw)
(a € A, vyw € W), and W is isomorphic to a closed submodule of A; ® V where V
is a separable Hilbert space, and the tensor product is taken in the category of Hilbert
spaces. If the space V is finite-dimensional then W is called a Hilbert module of finite type.
The main example of a Hilbert bundle is the canonical bundle associated to the universal
covering  : M — M of the closed manifold M whose fiber above a point m € M is the
Hilbert space 12(7~1(m)) = {?(I") where I' is the fundamental group of M, and the algebra
A is the weak closure of the group algebra C(I') acting from the left by convolution on 1%(T)
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([At]). Here the *-operation is induced by g — g~}

with e the unital element in .

In the case when F is an infinite-dimensional von Neumann bundle, defining the ana-
lytic torsion by using formulac (0.3), (0.3’), (0.3”) and (0.5) needs (besides the replacement
of "trace” by "von Neumann trace”) additional work. For example to make sense of (0.3),
one writes the right hand side of (0.3) as the sum of the integral from 0 to 1 and the integral
from 1 to oo. The integral from 0 to 1 adinits an analytic continuation to a meromorphic
function, with 0 being a regular point. The problem that ariscs in the infinite-dimensional
case is that, in general, there is no reason, why the second term can be extended beyond
Rs < 0. A sufficient condition for this to happen for H given by the Laplacians A, {and
therefore to have the analytic torsion defined), is that the Novikov-Shubin invariants of
(M, g, E) are positive. Let us explain this condition in terms of the spectral distribution
function.

Denote by Ni(A) the lowest upper bound for the von Neumann dimensions of A-
invariant subspaces M C A* (M; E) such that |dw|? < Mw|?, w € M. Here A* (M; E) is
the image of d* in the space of E-valued k-forms. Introducing

, and the tracc is given by tr(f) = f(e)

o —~—log Ni(X)
By = {imy logh

the Novikov-Shubin invariants are defined by ([NS], [GS])

oy := min{ B, Br_1}-

Positivity of all Novikov—Shubin invariants implies that the analytic torsion can be de-
fined. In fact, a milder assumption suffices. We say that E, together with all introduced
structures, is of a-determinant class if

1
/ log AdNg(A) > —o0
0

for all values of k. Equivalently, one can formulate this condition in terms of the heat
trace: the corresponding integral from 1 to infinity should converge {cf. Proposition 2.12
in [BFKM]).

Both the Novikov—Shubin invariants and the property of being or not being of deter-
minant class, depend only on the topology of the pair (M, E). In particular, in the case of
the canonical flat Hilbert bundle that was mentioned above, they depend on the homotopy
type of M only.

There exists a combinatorial counter-part to the above construction. Let (h,g’) be
a pair consisting of a Riemannian metric g’ and a self-indexing Morse function &+ on M
(selfindexing means that h(z) is equal to the index of z for any critical point z of h)
such that the g’-gradient Vi satisfies the Morse-Smale condition (i.e. for any two critical
points z and y of h, the stable manifold W of the flow, generated by —Vh, is transversal
to the unstable manifold W~ ). The unstable manifolds W provide open cells of a CW-
structure on M. Note that the partition of M generated by the open simplexes of a smooth
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triangulation can be obtained in such a way. This partition gives rise to a cochain complex
on M with values in E, and one defines the combinatorial torsion T, in the same way as
the analytic torsion, with the DeRham differential replaced by the coboundary operator.
In the case when the rank of E is finite, 7, is a combination of determinants of finite-
dimensional matrices. In the case of infinite-dimnensional flat Hilbert bundles, one has to
make the assumption that F is of c-determinant class:

1
/ log AddNE(A) > —o0
0

where NZ(A) is defined in the same way as Ni(A), with the DeRham differential replaced by
the coboundary operator. It follows from [GS] that the conditions of being of a-determinant
class and of c-determinant class are equivalent. Therefore, we will just use the notion of
being of the determinant class.

The analytic torsion and the combinatorial torsion are not equal, in general. The
reason is that the analytic torsion depends on the Riemannian metric, and the Reidemeister
torsion depends on the cell partition provided by (%, g¢’). To connect thesc two torsions,
one needs to introduce a term that accounts for the choice of the Riemannian metric and
of (h,g'). Integration of smooth k-forms over k-cells provides an isomorphism 9,:1 from
the space of harmonic forms to the space of harmonic cochains. The correction term is
given by the following formula

1 .
log Ty, = 3 Z(—l)’“ log det (664
k

The Reidemeister torsion T is defined as the product of T, and T,. A celebrated theorem
of Cheeger and Miiller ([Ch], (Mii]) says that, in the case of a flat bundle of finite rank,
the analytic torsion and the Reidemeister torsion are equal. In [BFKM] this theorem was
proved for von Neumann bundles of determinant class.

The goal of this paper is to explain the main ideas that are used in the proof of

Theorem T =7,

The complete proof of this theorem can be found in [BFKM]. We point out that the
ideas used in the proof have other applications as well, but they will not be discussed here.

One of the main tools for our treatment of the analytic torsion i1s the Witten defor-
mation of the DeRham complex

d(t) = e~ hdet = d + tdhA (0.6)

where i(z) is a “good” Morse function on M. One can define the analytic torsion T'(t) of
the complex d(t). Following an idea proposed in [T], and implemented in [BZ], [BFK1],
[BEKM], we use the function log T'(#) for torsions in a similar way as Atiyah, Bott and
Patodi [ABP] have used the function #(t) for the index. Although 4 logT'(t) is not zcro
in general, it is computable (cf. Lemma 1.4 below). As T(0) = T, it remains to study the
behavior of T'(t) when t — co. (In the index theorem the analogue of this last step is the
analysis, due to Minakshisundaram-Plejel, of the heat trace when ¢ — 0.)
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It turns out that, as ¢ gets large, a gap in the spectrum of the deformed Laplacian A (t)
develops: a part of the spectrum is cxponentially close to 0 as ¢ — oo; the remaining part
is bounded away from 0 by a factor proportional to ¢, and the deformed DeRham complex
splits into the direct sum of two complexes: the small complex and the large complex. We
study the small and the large complex separately. Although the small complex contains
most of the topological information it turns out that the most delicate part of the analysis
is the one of the large complex. We use two technical tools for investigating the behavior
of T(t) for large t. The first one concerns Mayer-Vietoris type formulae for determinants
(see [BFK2], [L]) that are used when making “surgery”. The second one is an asymiptotic
analysis of determinants of elliptic operators with parameter.

The plan of the paper is the following one. In section 1 we discuss the Witten de-
formation of the analytic torsion. In scction 2 we present Mayer—Vietoris type formulae.
Comparison theorems, which allow to compare torsions of two different manifolds, and the
derivation of the Thecorem are treated in section 3.



1. Witten deformation

Witten [Wi] introduced the deformation (0.6) of the DeRham complex induced by a
Morse function .. This deformation does not change the cohomology of the complex. In
particular, for the computation of the Euler characteristic, one can take any value of the
parameter ¢. It turns out that it is most beneficial to take the limit ¢ — oo. Let us recall
some basic facts about the Witten deformation (e.g., see [CFKS]J).

Choose an arbitrary but fixed pair (h,g¢’) consisting of a Morse function kA and a
Riemannian metric ¢’. The Laplacians on k-forms associated to the deformed differential
have the form

Ag(t) = Ay + tBg + t*|Vh|? (1.1)

where Ay is the Laplace-Beltrami operator associated with the metric ¢’ and a flat connec-
tion on E, By, is a zero order differential operator that is an endomorphism of EQA* (T M),
and V& denotes the gradient of h with respect to ¢’. Let us assume that the Riemannian
metric is Euclidean in (small) coordinate neighborhoods of the critical points of h where
the function 2 has the standard Morse form

1< 1
h{z) = h{0) — 5 Z:r? +5 Z :E?
j=1

J=q+1

Here g is the index of the corresponding critical point. We assume also that the gradient
vector field Vi satisfies the Morse-Smale condition and that the Morse function h is self-
indexing (although this last condition is merely a convenience). Let e(z) be a section of F
in a neighborhood of a critical point of h. Then, for any multi-index 7 = (1 €11 < iy <
<y <),

By (e(x) ® do') = w(le(z) ® dz’ (1.2)

where dz! = dz*' A+ - - Adz**, and w(T) is a number. What is important is that w(I) > —n,
and w(I)=—nifand only if k=qand I =(1,2,...,q).
It follows from (1.1) that

(Ai(t)e, @) > Cit* — Cat

if « € A¥(M; E) is supported outside of (small) neighborhoods of the critical points of
h. In a neighborhood of a critical point of index ¢, the operator Ak (t) is a direct sum of
shifted harmonic oscillators. If ¢ # &, then all eigenvalues of these oscillators grow linearly
as functions of £. In the case when ¢ = k, one eigenvalue is 0, and its multiplicity equals
the dimension of E (the von Neumann dimension of a fiber of £ if E is a flat Hilbert
bundle over M). The lower bound for the positive part of the spectrum is growing linearly
with t. This analysis leads to the following

Theorem 1.1. There exist constants tg, Cq, Cy, and C3 so that the interval
(Cre~C3t, Cat) does not intersect the spectrum of Ag(t) when t > tg.

Let Py(t) be the spectral projector associated to A (t) that corresponds to the interval
[0,C1e=C2t). Then the von Neumann trace, trPy(t), equals the product of the number of
critical poins of h of index k and the von Neumann dimension of a fiber of E.
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Denote by A%y (M;E) the image P(t), and by Aka(M; E) the image of I — Py (¢)
where, in these notations, we suppress t. Theorem 1.1 implies that, for sufficiently large
values of ¢, the deformed DeRham complex splits into the direct sum of (Agm (M; E), d(t))
and (A, (M; E),d(t)). One defines the torsions T'(t), Tsm(t), and Tj,(t) of the deformed
DeRham complex, its small part, and its large part. Clearly, they depend on (h,¢'),
whereas 7(0) depends on ¢’ only.

The key for the proof of Theorem 1.1 is a simple variational lemma.

Lemma 1.2. Let A be a selfadjoint operator in a Hilbert space H. Let Hy and H,
be subspaces of H such that H = Hy+H,. Assume that (Az,z) < al|z||? when z € H,,
and (Az,z) > b||z||> when © € Hy where a < b. Then the open interval (a,b) does not
intersect the spectrumn of A.

Proof. Suppose that a number A € (a,b) belongs to the spectrum of A. Then there
exists a sequence z, € H such that ||z,]| = 1, and w,, = (A — M)z, — 0. Decompose z,,
into the sum ¥, € H; and z, € Hy. Then

R(wn, yn) = (A = Nyn, yn) + R(A = Nz, yn) < (@ = N)llyal{* + R(A = N 2m, yn)
and
R(wn, 22) = ((A = Nzn, 20) + RUA = Ny, 2) 2 (0= Vlzal [ + R(A = X)zn, yn).
Subtract the second inequality from the first one:
R(wn, Yn — 2n) < (@ = Nlynll® + (A = 0)llzall* < —c(llyall* + {l2al*) (1.3)
where ¢ = min{A — a,b — A}. Note that norms of y,, and z, are uniformly bounded, and

w, — 0; so the left hand side of (1.3) approaches 0 when n — oco. Therefore ||yn|| — 0
and ||z,|! — 0, which contradicts {|y,, + zn|| = 1.

Helffer and Sjéstrand [HS1,2] (see also [BZ]) analyzed the “small” complex in a finite-
dimensional setting. Their analysis was extended in [BFKM] to flat Hilbert bundles over
M. Their conclusion is that, up to rescaling, the small subcomplex is asymptotically
isomorphic to the cochain complex (C*, §) associated to (h,¢’). The rescaling of the small
subcomplex consists in replacing d,(t) by (m/t)}/2etd,(t) and the scalar product (-, ), in
Adm (M; E) by Qq(""'/t)@q_d)ﬂ(‘, Vg

More precisely, let Int : (A*(M; E), d) — (C*,§) be the cochain complex map provided
by integration over the unstable manifolds of —Vh, and let et : (A*(M; E),d(t)) —
(A*(M; E); d) be the cochain complex map induced by multiplication by et*. Helffer and
Sjostrand have constructed isometries w? : C7 — Al (M; E) so that

(d—2g)/4
(g—) e Yntet w? = Id+ O (%)

(cf. [BFKM, section 5). The comparison between the torsion of (A*(M; E),d(t)) and its
rescaled version leads to the following asymptotic expansion:
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Theorem 1.3. (Theorem A(3) from [BFKM]). The function log Tsm(t) admits an
asymptotic expansion for t = oo of the form

Ti

(Z(—l)k“(kﬂk - kmkl)) (2t — logt + log m) + o(1)

k=0

1
logT, + -
ogile + 7

where i is the k-th Betti number, my, Is the number of critical points of h of index k, and
! is the rank (von Neumann dimension of a fiber) of E.

Another part of the analysis of the Witten deformation consists of deriving a vari-
ational formula for the analytic torsion. In the finite-dimensional case, it was done by
Tangermann [T)]. The idea is the same as in [RS]. The variational formula (0.4) is the key
ingredient of this analysis, and the problem is, how to interpret the right hand side of it
in geometrical terms. We will follow [BFKM], section 6.

Lemma 1.4 (Proposition 6.2 from [BFKM]). Let Qx(t) be the orthogonal projector
onto the kernel of Ay (t). Then

n

log T(t) = 3 (~1)* tr(Qi (L) hQk(1)).

k=0

el

dt

Note that Lemma 1.4 implies that if the DeRham complex is acyclic then T'(¢) is
independent of t. Let us sketch a formal proof Lemma 1.4. Formula (0.5) says that

n

1

log T(1) = 5 > (~1)*logdet A (t)

k=0

where the operator Af (t) = d*(t)d(t) acts on A* (M; E). One has A () = ethd*e™ 2 det”,
and
AL (t) = hAL(t) + A (t)h — 2d* (t)hd(2).

Therefore,
srAL (AL (#) 77 = 26rh AL (8) 7% — 2trhd(t) AL (1) 747 1d* (¢).

One easily verifies that
dt)AL ()57 (1) = A, ()70

Hence,
d n _ .
& P70 = DAL + AT O) o (1.4)
Further
trh(AL (8) + AL (1) = li”(') trh(Ag(t) + €) 7% — trQr(8)hQr (1)
e—
and

trh(Ag(t) + €)™ = trh(An_g(t) +€)7°.
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Because the sum (1.4) is alternating, and » is odd, the last two equalities, together with
(1.4), imply the statement of Lemma 1.4. This proof is almost complete in a finite-
dimensional situation. In the case when £ is a flat Hilbert bundle, the essential spectrum
of Laplacians can be nonempty, and it may include 0, so one has to be careful in dealing
with inverses, complex powers, etc.

The next step is to find a geometric interpretation for trQw(#)hQx(t). To formulate
the result, we introduce some additional notations. Denote by HF(M; E) the space of
t-harmonic k-forms in A¥(M; E), i.c. is the kernel of the operator Ay(t). Consider the
operator Ky(t) : Hi(M; E) = HE(M; E) defined by

Ki(t)(w) = Qk(O)e”‘w.
Then

tr(Qr () Qi () = %;—i log det(Kx (£) Kx(£)*). (1.5)

The proof of formula (1.5) is based on the Hodge decomposition and (0.4). Note that
log det( K (0)Kx(0)*) = 0. Therefore, Lemma 1.4 and (1.5) imply

1 T
log T(t) = log T(0) + 3 > (1) log det(Ki (1) Ki(t)*). (1.6)
k=0
Now we will relate the asymptotic expansion of log7(t) when ¢t — oc to the metric
part T}, of the Reidemeister torsion, defined with the help of the pair (A, g’) (cf. section
0), in the case where g = g’. Denote by Hgomb the kernel of the combinatorial Laplacian

Aﬁomb of the complex (C*,d). Recall that in section 0 we introduced the isomorphism

O = HE o = HE(MGE)

k
coInm

the inverse of which is given by the composition of the operator Int* of integration over
k-chains with the orthogonal projection 7y onto ’Hgomb. Stokes’ theorem implies a de-
composition

Kk(t) = HLKL(I‘) = BkﬂkK,':(t)Ik(t)

where Ii(t) is the inclusion of HF into A¥(M; E)gm, and K (t)w is the k-cochain defined
by integrating of e*w over k-chains. Note that

log det (K (t)Kg(t)*) = log det(0x05) + log det (K (¢) K. (t)*). (1.7)
Recall that
1< ! .
log T = 5 ;(—1)‘" log det(0x6}).

The analysis of the small part of the deformed DeRham complex leads to asymptotics for
log det( K (t)K(t)*). If combined with (1.6) and (1.7), it implies

n

& 1 t
log T(t) = loe T — log _1\k+1, _ _ 1)k N -1y 1.
oBT(0) = 08T ~log T+ 3 (-1t D -0448 s (1) 00 (1)
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One can combine (1.8) and Theorem 1.3 to obtain an asymptotic expansion for the
torsion of the large part of the deformed DeRham complex:

1 .
log Ty, (t) = log T — log 7 + 2 E (—=1)* gl (2t — logt + log7) + o{1). (1.9)
k=0

One can try to complete the proof of T = 7 (for the metric g') by deriving an asymp-
totic expansion for log 7}, (¢) independently from the above analysis. We use a different
approach involving surgery and a comparison theorem. This will be explained in the next
section.
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2. Mayer—Vietoris type formula

We discuss a formula of Mayer—Vietoris type [BFK2] that relates the determinant of
an elliptic differential operator of second order on a closed manifold M to the determinant
of the operator given by the same differential expression, with the Dirichlet boundary
condition along a hypersurface in M. This formula is a particular case of a more general
Mayer—Vietoris type formula established in [BFK2] in the case of a finite-dimensional
bundle. We first describe the result in more detail, then sketch its proof, and, at the end,
explain how it is used to analyze (1.9).

In this section, our main object is a positive differential operator of second order that
acts on sections of a Hilbert bundle £ over a closed manifold M. This operator is assumed
to be elliptic, and, moreover, of Laplace—Beltrami type, that is its principal symbol is scalar
[1€]|2Tde,. The main example is Ag(t) + ¢ (cf (1.1)) where € > 0 and £ = £ ® A¥(TM).
Note that we add a positive number € to the Laplacian to make the operator positive. Let
[’ be a smooth embedded hypersurface in M with trivial normal bundle. Denote by My
the manifold with boundary, the interior of which is M \ ', and the boundary of which
consists of two copies of I', I't and I'". The bundle £ can be extended to a bundle over
Mt that will be also denoted by £. By & we denote the restriction of £ to I'. Let Ap
be an operator acting on sections of £ — My defined by the differential expression A and
the Dirichlet boundary conditions, i.e. the closure of the restriction of A to sections with
compact support in M \ ['. Tt is well known that the operator Ap is elliptic and positive.
Further we need to introduce the Dirichlet-to-Neumann operator. Let ¢ be a section of
Ep. Let the section u be the unique solution of Au = 0, u(x) = ¢(z) (z € ['). It is smooth
everywhere on Mp. We denote by ¥ = R¢ the jump of the normal derivative of u along
I'. The operator It maps a section of &p into a scction of &+ and is called the Dirichlet-
to-Neumann operator. R is a positive pscudo-differential operator of order 1. The easiest
way to see this, is to note that Aw = ¢(z)dpr where ér is the Dirac distribution supported
on I'. Therefore,

¢ =Ry =rA""(Yor)

where 7 is the operator of restricting a section to I'. A~1 is a pseudo-differential operator,
and one can use local coordinates to see that R™! is also a pseudo-differential operator.
In this way one also obtains the following formula for the principal symbol of R~1:

(R, ¢) = ~ / (A, 08 m)dn

27 J_
where (z',y) are coordinates on M near I" such that I" is given by y = 0, and 3/0y is
the field of unit vectors normal to I', and (§',7n) are dual coordinates. A Mayer—Vietoris

formula for determinants is given in the following
Theorem 2.1 If all the assumptions above are satisfied then

det A=cdet Apdet R (2.1)

e=exp( [ els),
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and the density ¢(«) is a polynomial in the components of the complete symbol of A and
a finite number of their derivatives.

Let us briefly explain how Theorem 2.1 is proved. The complete proof can be found
in [BFKM, section 3] (cf. also [L]). Theorem 2.1 is a special case of more general Mayer-
Vietoris type formulae, valid for arbitrary elliptic operators, which were established earlier
in [BFK2]. First, we will give supporting arguments in the casc when the rank of E is
finite, and, therefore, the spectrum of A is discrete. Consider two functions

FO = di;%% and  g(\) = det B(\)

where R(A) is the Dirichlet-to-Neumann operator associated to A+ A. One can show that
both f(A) and g(A) are meromorphic functions. The zeroes of f(A) are eigenvalues of — A,
and the poles of f(A) are eigenvalucs of —Ap. The multiplicity of a zero or a pole of f(A)
equals exactly the multiplicity of the eigenvalue of the corresponding operator. On the
other hand, the operator R(A) has zero modes when A belongs to the spectrum of — A, and
it is not defined when A belongs to the spectrum of —Ap. Therefore, g(A) has the same
zeroes and the same poles as f(A). Further it is easy to see that the multiplicity of the
zeroes and poles of f(A) and g(A)} are the same. Of course, the above argument does not
prove (2.1) but it gives an idea, why one can expect a formula like (2.1) to hold.

In a general situation, when the fibers of E are Hilbert modules, the functions f(A)
and g() are holomorphic outside the union of the spectrum of — A and —Ap. In particular,
they are holomorphic everywhere away from the ray (—oo, —¢] for some ¢ > 0. One can use
formula (0.4) for computing the derivatives of log f(A) and log g(A\). These computations
show ([BFK2], see also [BFKM]) that these derivatives coincide. Therefore,

logdet(A + A) = logc + logdet(Ap + A) + log det Z(A) (2.2)

where ¢ is a constant.

The last step in the proof of Theorem 2.1 concerns the computation of the constant ¢
in (2.2). For this purposc we study the asymptotic behavior of both sides when A — +o0.
It was established in [V], [Fr] that, in the discrete-spectrum-case, both logdet(A + A) and
log det(Ap+A) admit a complete asymptotic expansion when A — 400, One can show that
R(A) is an elliptic pseudodifferential operator with parameter (for the definition, see e.g.
[Sh]), and a somewhat tedious but rather standard analysis in [BFK2] leads to a complete
asyniptotic expansion for logdet R(A). What is important is that the coefficients in any of
these expansions are local expressions, i.e. they are integrals of certain polynomials in the
components of the complete symbol of A and their derivatives. For logdet(A + )), these
integrals are taken over M, for logdet (), the integrals are taken over I'; in the case of
log det(Ap + A), terms, which are integrals over M or integrals over I' are present. Finally,
the constant ¢ is determined from comparing the free terms in the asymptotic expansions
of both sides of (2.2) when A — +o00. This analysis was extended in [BFKM] to operators
acting on sections of Hilbert bundles.

In fact, in [BFK2] (cf. also [L]), Theorem 2.1 is derived from a corresponding result
for operators of order m > 2n, which is easier to prove, but more elaborate to state.
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We consider the following special case. Let A be a non-negative differential operator of
Laplace-Beltrami type, and consider A? 4 « where p > n + 1 is a positive integer, and
a > 0. By (A? + a)p we denote the operator acting on sections of £ — Mr defined by
the differential expression AP + o and boundary conditions A'ulp = 0,1 =10,...,p — 1.
In this situation, the Dirichlet-to-Neumann operator R,(c) acts on sections of the direct
sum of p copies of Epr — I'. If ¢q,...,¢p—1 are sections of Er then (¢g,...,¥p_1) =
Ry(a)(¢o, ..., ¢p-1) is constructed in the following way. First, one solves the boundary
value problem APu + cu = 0 in M \ T, subject to boundary conditions A'ulp = ¢y,
1=0,...,p~1. Then one defines ¢, as the jump of the normal derivative of Alu across T
The operators I7,(a) are elliptic in the sense of Agmon-Douglis-Nirenberg (sec [ADN]),
and

log det(AP + o) = logc -+ log det(A? + a) p + log det R, (c) (2.3)

where logc is given by a local expression.

To conclude this section, let us explain how formula (2.3) (rather than Theorem 2.1)
will be used to analyze formula (1.9). As we have seen in (1.9), the difference logT —log
appears in the asymptotic expansion of the large part of the analytic torsion. This large
part is defined by

n

1

log T, (t) = 5 > (1) klog det Ag(t)
k=0

where Ag(t) is the restriction of Ag(t) to the image of Py (t), the spectral projector corre-
sponding to [1,+00) (£ is assumed to be sufficiently large). Then

T

1 -
log Ty, (t) = % > (1) 'k logdet(Ax(t))?.
k=0

As p > n + 1, the Fredholm determinant of the operator I + Ag(£)~? exists (for the von
Neumann case, see [FK]), and

log det(I + Ak (t)™7) = o(1)
when ¢ — oo. The reason for this is that a lower bound for the spectrum of Ak(t) grows
linearly in ¢ (cf. Theorem 1.1). Therefore,
log det Ag(£)? = log det(Ak(£)? + 1) + o(1).
On the other hand,
log det(Ag(t)? 4 1) = log det(Ax(t)? + 1) + o(1)

because the operator Ax(t)? + 1 is the direct sum of Ax(t)? + 1 and an operator, act-
ing in a finite-dimensional (in the von Neumann sense) space, the spectrum of which is
exponentially close to 1. Finally,

n

log T, (t) = '217, 3 (~1)E+ 1k log det (Ax(£)7 + 1) + o(1). (2.4)
k=0

To analyze (2.4), formula (2.3) will be applied with A := Ag(t) and o := 1.



3. Comparison Theorems

Let £y —» M; and E3 — M, be two flat A-Hilbert bundles over the compact Rie-
mannian manifolds My and M, of the same odd dimension n. Denote by T; (1), 1= 1,2,
their analytic (Reidemeister) torsions. Assume that the fibers of E; and Ej are isomorphic
as A-Hilbert modules. Let (hy,g}) and (L, g5) be two pairs, each consisting of a Morse
function and a Riemannian metric that satisfy the hypotheses of section 1. We make the
assumption that
(C) the number of critical points of h1 and hy of any given index are the same.
We will sketch the proof of the following comparison theorem.

Theorem 3.1. Suppose that E; — M, and E; — Mj are of determinant class. If
the assumption (C) holds, then

log Ty — log T = log Ty — log . (3.1)

We will first sketch the proof in the particular case when g; = g, i = 1,2. Denote
by p1,...,pn € My the critical points of hy, and by ¢1,...,qny € M2 the critical points
of hy. We enumerate them in such a way that the index of p; equals the index of ¢,
j = 1,...,N. Choose for cach each critical point in M;, ¢ = 1,2, a small coordinate
neighborhood such that these neighborhoods are mutually disjoint, the bundle £; — M; is
trivial over each of these neighborhoods, and &; has the standard Morse form if expressed in
local coordinates (see the beginning of sect. 1). One can assume that each neighborhood,
in local coordinates, is given by {x : |z| < €} for some ¢ > 0. Denote by U; the chosen
neighborhood of p;, and by V; the one of ¢;. For both bundles, we consider the Witten
deformation of the twisted DeRham complex. Formula (1.9) implies that large parts of
the deformed analytic torsion are related to each other:

log T 1a(t) — log T} 14(t) = (log T2 — log 72) — (log Ty — log 71} + o(1).
Therefore, to prove Theorem 3.1, one has to show that
C.T.(logTz’la(t) - lOng,la(t)) =0 (3.2)

where C.T. denotes the constant term in the asymptotic expansion. In view of (2.4),
equality (3.2) follows from (with p > n = dim M;)

C.T.(logdet(Ag x(t)? + 1) — log det(Aq x(t)? + 1)) = 0. (3.3)

We will apply the Mayer—Victoris type formula (2.3) to both log det(Ay £(£)? +1) and
logdet(Ag ()P 4 1). Let I'y (T'y) be the union of boundaries of neighborhoods U; (V;).
Denote by My (May) the union of closures of U; (V;), and let M;_ = M; \ M;y. Let
Rix(t), © = 1,2, be the Dirichlet-to-Neumann operator that corresponds to A = A; ,(¢),
a =1, and p as in (3.3) (cf. also(2.3)), and let ¢; k(f) be the corresponding constants in
(2.3).

Our first observation is that

c1k(t) = ca(t) (3.4)
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because the constant log ¢ in (2.3) is given by local expressions, and the operators A; ()P +
1, restricted to small neighborhoods of I'; are isomorphic.

Secondly, the operators R; (t) are elliptic pseudodifferential operators with param-
eter, and, therefore, logdet R; x(t) admit asymptotic expansions as t — oo ([BFK], [L]).
Cocfficients in these expansions are determined by the complete symbols of R; 1 (¢). These
symbols are equal. Hence

log det Ry & (t) — logdet Ry «(t) = o(1). (3.5)
Next, for ¢t =1, 2,
log det(A; x(t)" + 1)p = logdet(A:k(t)” -+ 1)p -+ logdet(A; (1) + 1)p (3.6)

where the superscripts £ indicate that the corresponding operator is restricted to M;...
As the operators (A;':k(t)f’ + 1)p, 1 = 1, 2, are unitarily equivalent, their determinants are
equal.

Summarizing (3.4)—(3.6), and using (2.3), one obtains

logdet(Ag k()P + 1)~ logdet(Aq (1) + 1) =
logdet(A; . (£)” + 1) p—logdet (AT (1) + 1)p + o(1),

so (3.3) is equivalent to
C.T.(logdet(Ay,(t)” +1)p — logdet(A] ((¢)” + 1)p) = 0. (3.7)

Both terms in (3.7) have an asymptotic expansion when ¢ — oo {[BFK]). The coefficients
of these expansions are given as a sum of two terms. The first term is the integral over the
cosphere bundle 5* M;_ of a polynomial in components of the complete symbol of A7, and
their derivatives. From the formula for the constant term in the asymptotic expans’ion of
log det ([BFK]) one can easily derive that the contribution to the constant term from the
interior equals 0 for manifolds of odd dimension as in this case, the integrand is an odd
function in the dual variables. The sccond term is the integral over T'; of an expression
that is determined by the complete symbol of Ai‘,k in an infinitesimal neighborhood of T';.
Because the operators A:k arc isomorphic in small neighborhoods of I';, the contributions
from I'; to C.T.(logdet(A;(¢)” +1)p) are equal for i = 1 and 2. This shows that (3.7)
holds. This concludes the proof of Theorem 3.1 in the special case where g; = gi.

To prove Theorem 3.1 in full generality one needs the metric anomaly of the analytic
torsion. Let E' — M be a flat Hilbert bundle, g; and g be two Riemannian metrics on M,
and (h, ¢') be a pair consisting of a Morse function and a Riemannian metric that satisfies
all assumptions of section 1. Denote by T; (¢ = 1, 2) the analytic torsions of (M, E, g;) and
by T, i (¢ = 1,2) the correction terms (ietric part of the Reidemeister torsion) introduced
in scction 0.

Using similar arguments as in section 1, one can show that

logTy — logTy = log T, 1 — log Ty 2.
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This result is known as the metric anomaly of the analytic torsion and was first established
for flat Hermitian bundles by Ray-Singer [RS]. Their proof works for flat Hilbert bundles
as well (cf. [BFKM], Lemma 6.11, Appendix).

To finish the proof of the equality of the analytic torsion and the Reidemeister torsion,
we use the product formulae for the analytic and the Reidemeister torsion (to simplify the
writing we suppress any reference to bundles)

log (M x My) = x(M3)log T(M:) + x(M) log T(My)

and
log 7(M) X My) = x(M3) log 7(M1) + x(M,) log 7(My)

where x(M;) is the Euler characteristic of £; — M;. We apply these formulac when
M, := M, and M is either S® or §% x 83 with £, being the trivial line bundle. One
derives

log T(M x §%) = 2log T(M), log7(M x 8% = 2log7(M) (3.8)

and

log T(M x 83 x §%) =log (M x §° x §3) = 0. (3.9)

As M x §% and M x 83 x 83 are manifolds of the same odd dimension, one can construct
self-indexing Morse functions n; and he on them so that they have equal numbers of
critical points for each index (cf. [Mi]). Choose pairs (hy,g]) and (hg, g4) that satisfy all
assumptions of section 1. Theorem 3.1, (3.8), and (3.9) imply that T(M) = r(M).
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