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INTRODUCTION

W. Stoll [S], developing earlier ideas of Griffiths and King
[GK] , introduced in Value Distribution Theory the concept of
parabolic exhaustion. This notion has recently found important
applications in the classification of domains in t™ and in

general of complex manifolds. A strictly parabolic exhaustion

on a non compact complex manifold M of dimension m is a

® exhaustion function :M —> [O,Az), 0 <A = sup VT S ’

C
such that dad>0 on M and dd°logtz20 , (dAdlogT)™=0

on M -'r-1(0). Using the information that T yields and most
noteworthy the existence of a Monge-Ampére foliation associeted
to 1 (cfr. [BK]), Stoll in [SPM] shows that there exists

a biholomorphic map h:B(a) —> M , where B(A) = {z€x ™| llzli<a} ,
such that 10 h(Z) = ||Z||2 (cfr. also [BU} and [W1] for

other proofs). The properties of the exhaustion ¢ on 1_1(0)
play a decisive role in the classification. In fact, if we

relax the differentiability assumptions on 1~1(g), even

assuming that this set reduces to a single point (which is
always the case if 1t 1is strictly parabolic), the range of
possibilities for the underlying manifold is much wider. If
Gc::tm is a smooth, strictly pseudoconvex, complete circular
domain and ¢ is its Minkowski functional squared, then o

is strictly parabolic on G- {0} but it is smooth on the origin
if and only if G is biholomorphic to the ball. On the other
hand the space of biholomorphic classes of such domains is in-
finte dimensional (cfr. [PW]). In this class of examples the
Monge-Ampére foliation associated to the exhaustion

is always holomorphic. This is also quite an exceptional



occurrance. Let DCCG!m be a smooth, strictly convex domain
and p€ D be any point. There exists an exhaustion

TP:B —> [0,1] such that T;1(0) = {p} , 1/3D = 1 and that

™ is strictly parabolic on D -~ {p} (cfr. [L1] and [P1]).

For a generic strictly convex domain the Monge-Ampére foliation

associated to rp is not holomorphic (cfr. [P1]).

In this paper we study complex manifolds M admitting an
exhaustion T:M —?-m,Az) which is strictly parabolic on
M - 1°1(0) and has a prescribed behavior on 1 1(0). We re-
quire that there exists p>€r—1(0) such that, if P:; -> M
is the blowup of M at p , then o PEC”(H) and such that,
with respect to coordinates centered at p, we have
C ”ZlF $1(2)8 KHZH2 for some positive constants C,K
(cfr. Section 1 for detailed definitions). It is easy to see
that this definition encompasses the above mentioned examples.
Under these assumptions we are able to give an accurate
description of the Monge-Ampére foliation associated to the
exhaustion (cfr. Theorem 3.4 below). This is used to define,
in analogy with our previous work [P1], a "model" (G,d) for
(M,T) where G 1is a circular dqomain and o, up to a factor,
is its Minkowski functional squared. A homeomorphism
h:G - M is constructed sucht that To h =0 . We show that
h is biholomorphic if and only if the Monge-Ampére foliation
associated to 11 is holomorphic. This, because of a theorem
of Burns [Bul], is always true if A = sup /7 =o . In this case

M is biholomorphic to ¢™ and = pulls back to the Minkowski



functional squared of some circular domain (cfr. Theorem 4.4

for a precise statement).

The methods used here are a mixing of Stoll's technique
([SPM]) and of ideas developed in the special case of strictly
convex domains ([P1]). The simplifications to Stoll's original
proof due to Burns [Bu] and Wong [W1] cannot be used here be-
cause they are based on the consideration of the exponential
map of the metric ddc% at the center point 1—1(0) whereas
‘in our situation the metric is not defined on 1 !(0). It is
interesting to note that we can define a "generalized" ex-
ponential map at the center which, however, is only homeomorphic.
This map is smooth at the origin if and only if it is biholomorphic
(which is the case if and only if 1t is strictly parabolic on
all M). Complex manifolds carrying an exhaustion which is
strictly parabolic outside its zero set and whose associated
Monge-Ampére foliation is holomorphic, have been classified
also by Wong [W2]. His approach is based on the study of the
differential geometry of the level sets of the exhaustion.

His results do not overlap with ours but are clearly related.
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0. NOTATIONS

Let M be a complex manifold and let T(M), TC(M) denote

respectively the tangent bundle and the complexified tangent

bundle of M . Then T(M) is a subbundle of TC(M) .and we
have the splitting T°(M) = T (M) @ T (M) where T'(M),T (M)

denote respectively the holomorphic and the antiholomorphic

tangent bundle of M. The projections 7 _: (M) — T (M)

and w_: T°(M) —> T (M) restrict to R-bundle isomorphisms
T,:T(M) —> ™ (M) and m_:T{(M) —> T(M). To the complex structure

of M is canonically associated an almost complex structure

J:TC(M) o TC(M) which is a bundle isomorphism such that

J? = - Id4 and such that J|T+(M) is the multiplication by
i and J|T;(M) is the multiplication by -i. By an hermitian

metric k on M we intend here a C° function

k:T*(M) ® T'(M) —> L such that for all PEM its restriction
kp:T;(M) e T;(M) —>» L 1is a positive definite hermitian form.

. The canonical form associated to k is a positive (1,1) form

w defined, for all p€M and X,Y€ T;(M), hy'tup(x,?)=
(i/2n)kp(X.Y). The metric &k is Kihler if and only if 4w = 0.
Also to k 1is associated a Riemannian metric g defined for

all p€M and X ,Y€E T(M), by gp(x,'!) = Re kp(w+(x) T (Y)) .

Given an exhaustion function 1: M —> [O,Rz), we shall

use the following notations:



1]

M[0] = {xe M| T(x) = 0}

M(r) {xeM| T(x) < rz}

(0.1) Mirl= {xeM lT(x)Srz}

M<r>= {x€M |1(x) = r?} = Mir]- M(r)

Mx = {x€M |t(x) #0 } = M - M[O] .

"

In particular C(r), Clr] will always denote respectively
the open and the closed disk of radius r in L . For m> 1
we will denote the ball of radius r in @€ by B(r) and
write B = B(1). The unit sphere in R" will be denoted by

Sn-1

or simply by S if the dimension is clear from the
context. We will use the differential operators d = 3+ 3 ,
a€ = (i/47m) (3-3) and dd%=(i/2m)33. Finally, throughout the
paper, upper indices will denote components and lower indices
derivatives. Moreover, whenever possible, Einstein summation

convention will be used. Also we shall use the Kroneker

symbol 6uv’



1. DEFINITION AND PRELIMINARIES

Let M be a non compact complex manifold of dimension
m and T:M +[0,A2), 0 < A= sup /T § », be an exhaustion function.

We say the pair (M,1) is a manifold of circular type if the

following assumptions are satisfied:

(1.1 te€c%m nc®m,) .
(1.2) ddt>0 and dd®logt20 on M, .
(1.3) (ad®1ogt)™ =0 on M, .

(1.4) There exists p € M[0] such that :

(1) with respect to local coordinates centered at p,
if Ul |I denotes the euclidean norm, we have
CHZHZS T(Z)SIIZII2 for some positive constants
C,K;

(ii) if P:M+M 4is the blow up of M at p, then
O e
ToP €C (M).

In what follows we shall only use the following consequence of (1.4)

(1.4') There exists peM[0] and a coordinate neighbourhood Up,

centered at p, such that:
(i) there exists positive constants C,K such that
clzI® st(2) SK Nzh? for all ze U,
(11) there exists ¢€,>0 so that tZ€Up if Itl<s:0
and #zZ1<2 and such that the map h:(-eo,eo)xIB(Z)-{O}-i

defined by h(t,2Z) = 1(t2) 4is of class c” .

As it will turn out from Theorem 3.4, (1.4') is in fact equivalent

to (1.4).if (1,1),(1,2),(1.3) are fulfilled. We also say that

>
[}

sup Y1 1is the radius of (M,T).



It is useful to bare in mind some concrete example from
the very beginning. In fact, the basic motivation for this paper
was to try to generalize Example 1 according to the lines

suggested by Example 2 and 3.

Example 1. Stoll defines in [SPM] a strictly parabolic manifold

to be a pair (M,T) where M 1is a complex manifold of dimension

m and T:M - (O,Az), 0<A= sup /Tse» , is a C_  strictly plurisub-
harmonic exhaustion such that (ddclog T)m- 0 on M,. He proves

that, up to exhaustion-preserving biholomorphic maps, the only

such pairs are the balls of radius A in c" equipped with the
exhaustion To = e (simplified proofs of this theorem are given by
Burns [Bul and Wong [W 1)) .Clearly, strictly parabolic manifolds

are manifoids of circular type. This can be also easily checked
directly without refering to the classification theorem (cfr. [spMml,

Proposition 2.2).

Example 2. Let G be a strictly pseudoconvex, bounded, smooth,

complete circular domain in ¢™ . The Minkowski functional

p:Em -+ Rw associated to G is defined by

0 if zZ =0
(1.5) p (2) = {

inf {1/t | t>0 and tZ¢ G} 4if Z § 0 .

It is not hard to check that (G, 3) is a manifold of circula:

type with radius 1 (cfxr. [BT 2] and [PW]).



Example 3. Let D be a smooth, bounded, strictly convex

domain in ™. According to [L 1], for any p€ D there exists

2m-1

a surjective C* map F:C[1]x S + D, which we called

stationary representation of D at p in [P 1], such that
for all bEjSzm_1 F(ao,b):C(1) + D is a proper holomorphic
embedding with F(0,b) = p, F'(0,b) = |IF'(0,b)|] b and such

that, if K denotes the Kobayashi metric of D , then

K(p,b) = (||F'(0,b)j) "

2m-1

. Also if re® with |x]= 1 and

(z,b) €e€C[1] xS , then F()z,b) = F(z,)b). An exhaustion

1:D= [0,1], called the Lempert exhaustion of D at p, is well

defined by t(F(z,b)) = |z|2. Using results of Lempert [L 1]

one can show that (D,1) is a manifold of circular type with
radius 1. Properties of the Lempert exhaustions and applications

to the classification of strictly convex were studied in [P 1].

In the remainder of this section we give some preliminar

results on manifold of circular type. First we have the following.

Theorem 1.1. Let (M,T) be a manifold of circular type. Then

the set M[0] consists exactly of one point which we call the

center of M .

Proof. Since no use of the smoothness of 1t on M[0] 4is made .
a word by word repetition of the proof of Theorem 2.5 of [SPM]
shows that M[0] is connected. On the other hand, since 1 satis-
fies (1.4), then M[0] has an isolated point and therefore the

claim follows.
g.e.d.



Remark One can show that given any smooth, bounded, strictly
convex domain Dc@™ and any p€ D, the only exhaustion o of

D such that (D,0) is a manifold of circular type with center
{p} and radius 1 is the Lempert exhaustion at p. A proof of this
fact based on the Bedford-Taylor minimum principle for the
Monge-Ampére operator (cfr. [BT 1]) is in [L 2]. Likewise given

a strictly pseudoconvex, bounded,smooth, complete circular domain
G ct™ then the unique exhaustion 1 of G such that (G,o0) is
a manifold of circular type with center at the origin and radius 1
is o= p2 where p is the Minkowski functional of G . The

proof of this fact, which goes along the same lines of the case

of strictly convex domains, can be found in [P 2] .

Let (M,T) be a manifold of circular type. We shall now
collect some known facts which will be needed in this paper (cfr. for
proofs [Bul or [SPM] or [W 1]). A simple calculation shows that
(1.2) and (1.3) imply that on M,, with respect to any choice of

local coordinates,the following fundamental formula holds
(1.6) t1t o=

where we set (1 u) = ('rug)"1 . A K&hler metric hk on M, is

defined by the form dd®t> 0. A unique vector field X of type

(1,0), called the complex gradient of T , exists which is dual to

31 with respect to k 1i.e. such that:

(1.7) 2T(W) = R(X,W)

for all vector field W of type (1,0). In Jocal coordinates we
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have the following expression for X:

K3 VU 9
(1.8) X=X — =71 Tyt
az“ v az“
Because of (1.6) we have also
(1.9) 3T(X) = R(X,X) =T .

From (1.2) and (1.3) it follows that the form dd°logt has
rank m - 1 at every point of M,. Then a distribution A of rank

is defined by
(1.10) a= {weT"(M,) | a8log (W, V)= 0 for all VveT (M)} .

The distribution A is integrable and the associated foliation of

M, in Riemann surfaces is called the Monge-Ampére foliation

assocliated to 1t . This foliation, first introduced by Bedford and
Kalka [BK], has been focus of many studies recently (see for instance
[B],[PW],[SPM],[W 1)) . Here we shall just recall few well known
properties. The distribution A is a trivial subbundle of T+(M*)

spanned by the vector field X i.e. for every p€M, we have
(1.11) A =CX .

As a consequence we get that the Monge-Ampére foliation is.

holomorphic - i.e, A is a holomorphic subbundle of T'(M,) -

if and only if X is holomorphic.
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A further remarkable property of the Monge-Ampére foliation
is that its leaves are totally geodesic submanifold of M, with
respect the Kdhler metric k . In fact if g is the Riemannian
metric associated to k and we define a vector field Y on M,

by

(1.12) Y

"

|
™
+
x

then we have

(1.13) Y

gradg YT and g(Y,Y) =1 .

Every integral curve of Y 1lies on a leaf of the Monge-Ampére

foliation and it is a geodesic for the metric g .
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2. THE GRADIENT FLOW

In this section we shall give a precise description of the
flow of the vector field Y defined in (1.12). We shall use the
same method used by Stoll in [SPM] for the case of strictly
parabolic manifolds. We have to recall first the concept 6f the
double at a point of a differentiable manifold. Let N be a
differentiable manifold with dimRN =n . Let LcN be a closed
submanifold with dimRL =N - 1.Let h:N+ R be a function of
class C~ with h|p, =0 and a€L. We say that h vanishes of
Q.E‘_‘Eb k at a if there exists a neighbourhood U of a and
a function g:U-+R with g-1(0) = LNU and dg(x) # 0 if
X €U, such that on a neighborhood U1 cU of a we have h=gkh1
where h,:U, *R is a function of class c” with h1(a)# o .
Clearly h need not vanish of any order at a.If M is an-
other differentiable manifold, with dimRM =n, and f:N*M
is a differentiable map with flL = begM , we say that £ branche:
of order s at a€L if, given a local coordinates around a € N

and b e M, one has that

i
D = det (-a-g-)
i,j=1'oo.,m

vanishes of order s + m - 1 at a€L . This definition does not
depend on the choice of local coordinates and one easily sees that
s20 . Let 0€M be any point. We say that (N,r) is the double
of M at 0 (or connected sum of M and M at 0) (cfr.

Milnor [M] and Stoll [SPM]) if:
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(1) N 1is a differentiable manifold with dimI!N=dimI‘M:n .

(id) The map r:N-+M is proper, surjective and of class

c Ld

0 is a compact submanifold

(1ii) The inverse image r-1(0) = 8
of N diffeomorphic to s™ .

(iv) The map r branches of order 0 at every point of SO'
(v) There exists two open sets N,,Nc N such that

N =N,UN,US

1 2 o 1s a disjoint union and Ty = Ty Ny~ M- {0}

J
is a diffeomorphism.

In a neighbourhood of S0 the double of M can be described

as follows (cfr. [SPM], pg.113). Let U be a coordinate neighbour-
hood of 0 in M and let B(e) cU be a ball of radius €

centered at 0. Let V = r-1(B(s)). If € 1is small enough, there

exists a diffeomorphism £:V +(-g,€)x s

n-1

such that f(SO) =

{ol}xs and r(x) ry(£(x)) for all x€V where r, is de-

tb. When working near S0 . we shall
1

defined by ro(t,b)
identify V with (-e,e) xS" ' so that £ =1Id and r = r;, on
v .

Let now (M,T) be a manifold of circular type of dimension
m and radius A . To describe the flow of the vector field Y
defined in (1.12) we will use the following strategy. First we
pull back Y to a vector field ¥ on the double (N,r) of M
at the center 0 €M . Then we integrate ¥ on N and finally we

Push down the resulting flow. Of course one has to make precise

this strategy and carry it out correctly. To this aim is devotea

this section.
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Let U be the coordinate neighbourhood of the center

0
0 of M with the properties listed in (1.4). Also the

notations of Section 1 will be assumed. Furthermore here
we write S=82""1 pefine y={z¢ Uy| 2=tb with t€(-e,e) and bE Sk
If (N, r) is the double of M at 0 then set V= r hwy.

We can choose € small enough so that we can

tb. We also

identify V = (-g¢,e) xS and so that r(t,b)

(0,€) x8S.

set V1 =N1nV= (-¢,0) xS and V2 =N2nv

LEMMA 2.1. There exists a function G:V-{0}* R of class

C® and constants C2> C1

we have T(2) = G(2) HZHZ and C

>0, such that for all 2z €y - {0}

< G(2) <C,. Furthermore

1 2
there exists c:V +R, H:S+R_, R:V+R of class c® such

that c?(t,b) = T(r(t,b)) for all (t,b)€ V with c

<0
Ve

(o} v.> 0 and such that
V2

(2.1)  c(t,b) = VA(B) + t2R(t,b) .

PROOF The fact that a function G on U-{0} exists with
the above properties is an immediate consequence of (1.4°')
part (i). Let h:(-ey,e,)%IB(2) - {0} + R, be defined as
in (1.4') part(ii). Then its restriction h:V +R_ is of
class C~ . There exists G:V +R, of class c” and such
that G>0 on V so that h(t,b) = &(t,b)t. Then we have

h(0,b) = 0 and h(0,b) >0 for all b €S where we have

H oh
set h 3t ° Define H:S-’R+ by

1]
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(2.2) H(b) = =~ h(0,b) .

1
2
Then there exists T:V+R of class C_ such that if

(t,b) €V, then 0 sh(t,b)= t?H(b) + t>T(t,b). In particular
we have that H(b) + tT (t,b) >0 for all (t,b) € V. The

1/2

function L:V +R defined by L(t,b) = (H(b) - tT (t,b)) /%~(H(b))1/2

is of class C and L(0,b)=0 for all b€S . Thus there
exists R:V >R of class C_ such that L(t,b) = tR(t,b).

But then c¢:V+R given by
c(t,b) = t(H()) /2 + t2R(t,b) = t(H(b) + tT(t,b) /2

is the required function.

g.e.d.

LEMMA 2.2 Let W = (-eo,eo) x (B{(2) - {0}). There exists

a map A:W-C™ of class C_  so that if X 1is the vector field

defined in (1.7), (t,2) €W and t # 0 , then
2
(2.3) X(t,2) = t2 + t“A(t,2) .

PROOF Let (t,2) €W and t # 0, then because of Lemma 2.1

we have for u,v =1 ,..., m:

T(tz) = t2a(ez)z i

T (£2) = t G(tz)z¥ + t2G_(t2) Nzl

v v
T (t2) = G(tZ)S,.. + tG (tZ)z® + tG_(tZ)z"
uv wv B v

« t2 _(t2)1ai?
JURY
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Because of (1.4') there exists G:W > (0,») of class C

such that h(t,2z) = &(t,Z)lIitz1% and, in fact, G(t,Z)
A A
if (t,Z)€ W and t # 0. Functions G":W=, G’ :W— € and

AT
Guv

G(t2)

: W~>C of class C are defined by

(1/£)G (t,2) = G (t2) if t#+0
Al B n
G (t,2) = {':'
G (tlz) if t =0
18
- (1/8)G_(t,2) = G=-(t2) if t#+0
Ay \Y v
G (t,2) = {&
G-(t,2) if t=0
AY
- (1/t)G*(t,2) = G (t2) if t+0
Auv Vv HV
G (t,Z)= ;u
G_(t,Z) if t=0

v

where the dot denotes the derivative with respect to t .

Then we have for (t,Z) €W and t+0

~t A-
T_(t2) = t8(t, 22" + £26°(¢,2)1202

r V(tz) = § (t,2)6 _ + tB*V(¢,2)
uv H

(2.4)
v

where BMV:iw — ¢ are functions of class C defined by

by A A - Auy
B*V(t,2) = G*(t,2)z" + GY(t,2)Z* + t&*V(t,2) UZIP .

There exist functions R”‘V:w—-v ¢t of class C“ so that if
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(t,2) €W and t +0 we have

\‘) -
8 ez) = —1 5 st RV (t,2)

a(t'z) [F3V)

where (rw') = (Tu\T)-1' But recalling (1.8), we get at once

(2.2) where A:W -~ € is the map of class c” defined by

m

2 -
Z A ~ v
A t,2)= ] {'——"—— 8 va(t,Z) +G(e,2)”R*Y (¢, 2) 2
v=1 G(t,z) ¥

A
+ thzh 2’"Ye,2) 87 (¢, 2).

qg.e.d.

In order to study vector fieldson the double (N,r)
of M we make the following identifications. Let (t,b) € V.

We identify T = RoTb(S) where Tb(S) is the tangent

(¢,b) V)
space of S at b . Also if H (S) is the holomorphic tangent

space to S we identify T (V) = ReiRbeH (S) . As seen

(t,b)

above we can consider V as a neighbourhood of SOCN and

set r(t,b) = tb if (t,b)€ V. Also if p€V then we identify

m

so that the projection n n

To(U) = T (U) = TO(U) = ¢ o T
are the identity, the almost complex structure J is the
multiplication by i and the conjugation is obtained by con-
jugation of the coordinates. We denote the hermitian product in
™ by (! ) so that the real scalar product <|> 1is given

by <Z|W >= Re (ZIW). Then we have the following formula:

Im(Zib) Z _ (Z2]lb)
t ib + ¢ t )

(2.5) ar~1(t,b) (2) = (Re(zlb),

ER oiRbe Hb(S)
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Let J be the almost complex structure on M . On N - S0
a complex structure is defined by pulling back by r the
complex structure of M . The associated almost complex
structure is denoted by J and we have J = ar’ ', J o dr .
Thus if (t,b)e VvV - S0 and (u,ivb + W)€ Re® iR e Hb(S)

~ . - u. .
(2.6) Jt,b(u’lVb + w) = (- tv, t1b + iw) .

On N - S we can define vector fields of class C°° X

0
and Y by lifting via r the vector fields X,Y. Also de-

fine T:N— R, by T=t1erxr .

LEMMA 2.3 The function T is of class C on N . There
exists c:N R of class c” such that c2 = ?, c]N1< 0

and > 0. Furthermore X, JX and Y extend

c

[N,
o0

to vector fields of class C on N .

PROOF . We need only to check the claim on V. It is an
immediate consequence of Lemma 2.1 that T is of class C°

and that c:N+ R exists with the required properties. Using

(2.3) and (2.5) we have for (t,b)EV - SO:

X(t,b) = ar” ' (t,b) (X(r(t,b)))

(2.7)

£(F,(t,b), Fy(t,b)ib + Fy(t,b))

where F1:V + R, FZ:V->:R . F3:V+ Hb(S) are of class c”
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and defined by

F1(t:b) = 1 + t Re(A(t,b) |b)
(2.8) F,(t,b) = Im (A(t,b)]|D)
Fy(t,b) = A(t,b) - (A(t,b) |b) .

But then X extends of class C°° on all VvV and thus on

From (2.6) and (2.7)Vwe have for (t,b)€é Vv - S0

(2.9) JX(t,b) = (-t2F2(t,b), Fy(t,b)ib + itF,(t,b))

and thus also 3? extends of class C°° on all N.

Finally,since if (t,b) €V - S0 we have

"~ - 1 a4 "
Y(t,b) = m-)— (X(t,b) + X(t,b)) ’

Y extends of class Cco on N because of (2.1) and (2.7)

gqg.e.d.

REMARK Using (2.8) and (2.9) we also have the following

useful formula for b¢€S:

(2.10) JX(0,b) = (0,ib) .
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PROPOSITION 2.4 There exists a number n >0 and a map

Y:(-n,A) xS+N of class c” such that

(1) ¥(0,b)

(O,b)ESO = {0} xS for all besS ;

(ii) ¥(t,b) = Y(¥(t,b)) for all (t,b) € (-n,8)x S;

(iii) The map W:[O,A]-*SOUN2 is a diffeomorphism;
(iv) c(¥(t,b)) =t for all (t,b)e [0,A] x S;
(v) If t20 , define Wt:S + N by Wt(b) = ¥Y(t,b) and

N, = {c = t} . Then Wt:S+ N is a diffeomorphism.

t t

PROOF Since c:N+R is a function of class C such that
¢ 1(10,a)) is non empty,non compact and connected, ¢~ (10,1

is compact for all t€l[0,A), S.= c-1({0}) #® and ¥ is a

0
vector field of class C. on N , according to Theorem 4.1
of [SPM] the map Y with the properties (i) - (v) exists

provided dc(p,3(p)) = 1 for all pec '([0,4)) = S UN, .

0 2

To show this observe that

dr(p.¥(p)) = -y(r(p)) on N,

dr(p,¥(p)) = y(r(p)) on N, .
But then on N1 using (1.13) we have

dc(p,Y(p)) = -a/T (r(p).,dr(p,¥(p)))

= -d/7T (r(p), -¥Y(r(p))) = 1

In the same way one obtains dc(p,Y(p)) = 1 on N, and thus

by continuity the claim is true on N .

g.e.d.
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LEMMA 2.5 Let r,> 0 small enough so that W((-n.ro)x S)c Vv
and let W1:(-n,r0)x S+ R, WZ:(-n,rO)x S + S such that

- . e o L gl
¥ = (W1,W2) . There exist W3.( n,ro)x S+ R and W4.( n,ro)x S-Q

of class Cm such that

1+, t2w3(t,b) ,

(2.11) ¥, (t,b) )
vH

(2.12) Yz(t,b) b + tW4(t,b).

PROOF Because of (i) of Theorem 2.4 there exist W4:(—n,r0)x s+ c"
and WS:(—rpro)x S+R of class C~ such that (2.12) holds and

W1(t,b) = t?s(t,b). If is the isomorphism defined is Section 0,

+

then

1

S(t,b) X(t,b)

lim n+(?(t,b)) = lim
t+0 t+0

1
vH(b)

(1,F2(0,b)ib + F3(0,b))

where we have used (2.1),(2,7) and (2.8). Thus because of
(1) of Theorem 2.4 we have ¥.(0,b) = ¥, (0,b)=(u(b)) /2,
But then there exists W3:(-ryr0)x S +R of class C_ such
that ¥ (t,b) = (#(b))~"/2 + t¥ (t,b) and thus the proof

is completed.

qg.e.d.

We have now all the ingredients to describe in detail the
flow on M of the vector field Y defined in (1.12). Here

we identify T,(M) = c®,
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THEOREM 2.6 There exists a map of class C

(2.13) ¢: [0,8)x s+ M

with the following properties

(1) ®(0,b) 0 for all bE€Es ;

(ii) ®©(0,b) = (H(B)) V% for all bES ;

(iii) @(t,b) = Y(p(t,b)) for all (t,b) € (0,A)x S;

(iv) ©:(0,8) xs+M, 1is a diffeomorphism;

(v)  T(e(t,b)) = t2 for all (t,b) € [0,8)xS;

(vi) the map mt:s-+M<t> defined by wt(b) =¢p(t,b) is a
diffeomorphism;

(vii) tw (&(t,b)) = X(¢(t,b)) for all (t,b)e[0,8) xS;

(viii) The curve ¢(o,b):(0,4) xS+ M, is geodesic with respect

the K&hler metric defined by ddcr> 0 for all bE€S.

PROOF If r:N~>M is the projection from the double, we de-
fine = ro¥ :[0,A) + M . Then (i),(iii),(iv),(v),(vi) and
(vii) are immediate from Proposition 2.4. Also, using the
usual identification of the tangent space of M at the center
0 with Em, with respect to local coordinates around 0 we
have recalling (2.11) and (2.12):

@(t,b) r(¥(t,b))

T (¥, (t,b),¥,(t,b))

=172y 4 ¢20(¢,b)

t(H(b))
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where T 1is of class Cm and thus (ii) follows. Finally, (viii)
is a consequence of the well known fact recalled in Section 1

that the integral curves of Y are geodesics.

g.e.d.
COROLLARY 2.7 The map E:B(4) *M defind by
0 if z=0
(2.14) E(2)= {
@(uzl, z/WAd) if Z2+0
is a homeomorphism and its restriction E:B (4) - {0}~ M, is

a diffeomorpfism.

PROOF. The map E:B (4) - {0} + M, is clearly a diffeomorphism.
Also t(E(2)) = 12If and hence lim E(2) = 0 and Iim E ' (p) = 0

20 0
so that the proof is complete.

g.e.d.

REMARK The metric k defined on M, by dd ®t  is not de-
fined on the center 0 of M. Thus one cannot define in the
usual way an exponential map at 0 . The map E defined in (2.14)
is a generalized exponential map at the "singular" point 0 with
respect the metric k . The existence of an exponential map at

a singular point of a Riemannian manifold has been investigated
by Stone [St] in terms of curvature conditions in a neighbourhood
of the singularity. Here it follows from the behavior of the

exhaustion which defines the metric. It would be interesting to
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understand the relationship between Stone's hypothesis and ours
in this particular case. Notice also that the map E is
differentiable at 0 if and only if the metric extends over

0 and this is the case if M 1is strictly parabolic (in which
case E 1is biholomorphic). This will be evident from the

results of the next section.
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3. THE LEAF PARAMETRIZATION MAP

In order to give a parametrization of the leaves of the
Monge-Ampére foliation induced by 1 we must consider also

the flow of the vector field 2 defined on M, by
(3.1 Z = i(X - X)= J(X +X) .

where X 1is as usual the complex gradient of 1. Using (1.9)

we have
dr(2z) = i31(X) - i3t(X) = it - it = 0
and therefore any integral curve of 2 is contained in some

level set of 1 which is compact. But this implies that 2

is complete i.e. there exists a unique map o :R xM, > M, such

that
(3.2) o(o,p):R +M, is an integral curve of 2 such that
a(0,p) = p.
(3.3) For all y€R the map o(y,o):M,+» M, is a diffeomorphism.
(3.4) For all y,,¥,€R and p€ M, we have

°‘Y1*’yzlp) = (Y110(Y2'P))-

Define a map a:[0,a)x M,+M Dby
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(3.5) a(t,p) = o(t,o

(p)).
YT(p)

Clearly o is continous and of class c” on (0,A)x M, .

LEMMA 3.1 For all t€R, s€ (0,A) and p€E M, we have

(3.6) o(t,a(s,p)) = a(s,o(t,p))

PROOF. Since a is such that for all péeEM, a(o,p) :(0,A)> M,

such that o(vYT(p).,p)=pP,

=0 on M,. Define F =X + X

is the unique integral curve of Y

(3.6) is equivalent to [Y,Z]

so
that Y = (1)~ V/?F and 2 = JF. Then
1 1
T VT
Since JF((T)-1/2) = 0 follows easily from (1.9) to show [Y,2]

we have only to prove ([F,JF 1 = 0. If [F,JF] = Hu—g— + ﬁu—%i
- az* 3z
then one computes B = 2iX x% . On the other hand

¥ x4 = Ty ™ (1 TBu)_
v B v
= TaTvaT__Tgu + TaTvaT_TEP .
Bv B v
Differentiating the equality 1 _1t9 =3

v and (1.6)
we obtain the following equalities:

Y
ay YBo

T =0
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i}
-
-

and

-
-

[[]
1

]

~
-
-
)
—

where in the last line we exchange the indices in the following

way : B+v, Y+B, v+Y . Our computation shows that XY xﬂ= 0
v

and thus [F,JF] =0 .
g.e.d.

We need now some notations. For RE€ (0,e] define

{z€X|Re z<log R} if R <=

3. =
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Also fix xoe (0,A). Write q = 9, - A one parameter group of
0
diffeomorphisms t:RxS+S 1is defined by

(3.8)  zly,b) = q ‘(oly,q(b)) .

Finally we define a surjective map W:H (A)xS+M, of class c”

by
(3.9)  W(x+iy,b) = o(y,e(e”,b))
From (3.5),{(3.6) and (3.8) one has at once

W(x+iy,b) = o(y,a(e®,q(b))
(3.10) =a(e*,o(y,q(b)))

= o(e*,z(y,b)) .

LEMMA 3.2, For all b€S the map W(o,b):H (A -+ M, 1is
holomorphic and W'(z,b) = X(W(z,b)). Furthermore if
X + iy, 8 + iteH (A and b,c €S, then W(x + iy,b) = W(s+it,c)
if and only if x =8 and c¢ = gy - t,b).

PROOF. If we set p = W(x+iy,b), then by (3.10):

soH(x+1y,b) = ¢(e¥,L(y,b))e* = /T(B) Y(p) = X(p) + X(B)

¥ (x+dy,b) = 3(y,0(eX,b)) = 2(p) =J(x(p) + XTp)) .
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W W _ 9W _ AW oW
But then X + Jay = 3% - 3 ' JJ3; = 0 and W(o,b) |is
wW(z,b)

thus holomorphic. Moreover W'(z,b) = "+(8x

Finally if W(x+iy,b) = W(s+it,c) then w(ex,c(y,b)) = w(es,c(t,b))

) = X(W(z,b)).

and therefore x =s and (y,b) = g(t,c) which implies
c = gly-t,b) since ¢ 1is a one parameter group. In the other

direction the implication is immediate.
g.e.d.

We need now to compute explicitly ¢(y,b) for y€ R and
b€ S. To this end we shall again use the notations introduced
in Section 2. Let (N,r) be the double of M at the center 0,
V= (-e,e)xScN and let U =r(V). If ¥ is the map defined in
Proposition 2.4, let r,> 0 be such that V([O,ro)XS)c:v. Then,
since ¢= ro¥, we have also w([O,ro)xS)c U. It is not restrictive
to assume that, if xoe (0,A) is the number used in the definition

(3.8) of ¢, then x0€(0,r0)-

PROPOSITION 3.3 For all y€ R and b€ S we have

(3.1 t(y.b) = e'¥b .

PROOF. Fix b€ S. For t€(0,ry)) and y€R define

Y(t,y) = r '(o(t,cly,b)). Then y is of class C~ on (0,r;)xR
and we have

y(t,y) = ¥(t,oly,b)) = r '(W(log t + iy,b)) .

Using (2.11) and (2.12) we have
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y(t,y) = (w1(t1C(Yrb)) ’ wz(tl;(YIb)))

- (____E_____ + £2¥, (£,2(y,b)) ,L(y,b) + t¥,(t,Cly,b]
VH(Z (y,B))

Thus

2 L

Yo (t,y) =(-t —
Y T w.BT

+ tw3(th(Ylb))rCy(Ylb)

)
+ t—a~§ ‘P4(t,t;(y,b)))

The limit of Yy(t,y) as t—+ 0 exists and

YY(OJY) = ii? Yy(tlY) = (OrCy(Ylb)) .

On the other hand since

+

wy(log t iy,b) = iW'(log t + iy,b) = iX(W(log t + iy,b))

we have:

Y, (t,b) ar"'(W(log t + iy,b), Wy (log t + iy,b))
= dr (o(t,L(y,b)), iX(o(t,z(y,b))))

FX(¥(t,z(y,b)))

Thus using (2.10) we have:
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"

Yy(O.Y) lim y_(t,y)

t+0 Y

= JX(¥,(0,2(y,b),¥,(0,z(y,b)))
= JX(0,z(y,b))

= ig(y,b)

Comparing the two expressions that we have obtained for

yy(o,y) we get
cy(y.b) = ig(y,b).

Integrating this equation and imposing the initial condition

t(0,b) = b we conclude that (3.11) holds.

We can now state the main result of this section. As usual
we shall identify the tangent space to M at the center 0

with €™ and we shall denote by |l |l the euclidean norm on it.

THEOREM 3.4. There exists uniquely a surjective map, called the

leaf parametrization map,

(3.12) F:C(A) xS + M

of class C~ and with the following properties:

(1) . F(O,b) =0 for all b€ S;



(ii) T(F(z,b)) =12|%2 for all bES and z€T(4);
(iii) F(t,b) = o(t,b) for all be€esS and te€ [0,4);
(iv) F(z,\b) = F(Az,b) for all z€€(A), bES and

LEC with Al = 1;
(v) F(o,b) : €(A) - M is holomorphic, proper and injective;
(vi) X(F(z,b)) = zF'(z,b);
(vii)  F'(0,b) =||F'(0,b)||b = —2— .

V(b))

PROOF Since exp:H (A) » T(4) - {0} is the universal cover and,
becausé of Lemma 3.2 and Proposition 3.3, we have W(z1,b) = W(zz,b)
if and only if 2z, = z, + 2k7i, a unique map F:C(A)- {0} M,

of class C~ is defined by F(ez,b) = W(z,b). Also

F(gb):T(a) - {0}+ M, is holomorphic and injective. Define

F(0O,b) = 0 for all b€S . Then T(F(0,b)) = 0. If z€€(A) - {0},

then 2z = ex+1y

= e®® =212 and (ii) is verified. Clearly F:C(A)x S+M so

with x + iy€H(A). Thus 1(F(z,b)) = t(W(x + iy,b))

defined is continous and, by Riemann extension theorem,
F(o,b):C(A) M is holomorphic for all b€ S. Let UcM be a
coordinate neighbourhhood centered at O0€ M. With no loss of
generality we can identify it with an open subset of c® . Let
toe (0,A) be such that F(E(to) x S)c U. Let s€ (O,to) then if

2€C(s) and b €S we have

F(w,b) aw
w-z

and hence F is of class C~ on C(s)x S and therefore on

€(a) xS. If KcM is compact then Kc Mlr] for some ré€ (0,4).
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Then F-1(K)C=¢[r]x8 and therefore F 1is proper and thus

so is F(o,b) for all b€S . Also (iii) follows by construction
and F is surjective because so is ¢. As a consequence of the
definition of F , Lemma 3.2 and Proposition 3.3 one obtains

(iv) immediately. Again from Lemma 3.2 one gets (vi). Finally

(vii) is a consequence of (iii) and of (ii) of Theorem 2.6.

q.e.d.

REMARK If E:B(A) M is the map defined in (2.14), because
of (iii) and (iv) of Theorem 3.4 we have that E(zb) = F(z,b)
for all (z,b) €EC(A) xS . In other words the restriction of E
on any disk through the origin is holomorphic. This proves the
claim made earlier that E is biholomorphic if and only if it

is of class €~ at the origin.

EXAMPLES Before moving on it may clarify the matter to write
down the leaf parametrization map for some explicit example.
Let G be a strictly pseudoconvex, bounded, smooth, complete
circualr domain in €™ and let p its Minkowski functional.
If o= p2 one computes easily that the complex gradient
vector field X of o is given by x(2) = z* = | 1t

m
9z
follows then that the map F:C(1)x S +~ G, relative to the

manifold of circular type (G,0), is defined by F(z,b) = z(p(b)) 'b.
Let DcC® be a bounded, smooth, strictly convex domain, p€ D

and Tt be the Lempert exhaustion at p . From the results of

[P 1] 4if follows that tha map F for (D,t) 1is just the

stationary parametrization map which defines 1. However, it is not



hard to check directly that F(o,b):C(1)+> D is a stationary
map in the sense of [L 1] for all b€ S and thus that the

map F is indeed the stationary parametrization of D .
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4. THE CIRCULAR REPRESENTATION

Let as before (M,t) be a manifold of circular type and
A be its radius. We shall now define an "approximation" (G,0)
of (M,7T) where G is a circular domain and o¢ 1is, up to a
factor, its Minkowski functional squared. Let F:C(A)+ SxM be
the leaf parametrization map of (M,1). As usual we identify
freely TO(M) with €". Define o:¢™ > R by o(0) =0

+

and

(4.1) o(z) =( 1z ll )2 - wezman na

) IHF ' (0,2/11zl1 )}
if 2 +0 where H is defined in (2.7). One easily sees that
o€ c2@™nc® (€ - {0}). Also from the definition of o and

m

(iv) of Theorem 3.4 one has for all Ze(C and A€ Q€ :

(4.2) o (12) ﬂklzo(Z)

For r €(0, «) we define also complete circular domains

G(r) cec™ by

{zleec™ | g(2)< r2} if r ¢ »
(4.3) G(r)=
o™ if r = = .

Clearly the Minkowski functional of G(r) 1is given by /o/r .

PROPOSITION 4.1. For all r € (0,«] the pair (G(r),0) 1is a

manifold of circular type with radius r.
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PROOF Since (1.1) and (1.4) hold by construction only (1.2)
and (1.3) must be shown. But if 4&d% >0 on G(r) - {0}
using (4.2) the other statements are obtained by simple cal-
culations. We shall now show ddco > 0 on G(r) -{0} . Since
Ou-g(t,Z) = ou;(Z) because of (4.2), it will be enough to show

0

2+0 with llzli< e; and vee™ with vl = 1 . In a small

enough neighbourhood U of 0€ M we can choose coordinates so

that for some €E.>0 one has au-‘;(Z)Vu Tlv > 0 for all

that for some €,64>0 if O<t<e and 2Z€@™ - {0} with

i1Z]] <¢,., then tZ€ U and we have

0

o (£2) = T(tZ) - t3L(t,2)

where L is a function of class C* on (-€,€) «x (B(€o) - {0} )
(cfr. Lemma 2.1). Furthermore, recalling (2.4), there are functions
G and B"Y of class ¢ defined on (-€,¢) x B(ey) - {0})

such that
S (£2) = G(t,2)0,g + tB*O(t,2) .
Tuy 110u% ‘

Also there is a constant C> 0 such that E;(t,Z) > C for all

(t,2)e (~€,€) x (B(eo) - {0}) . Fix 2Z€B(c - {0} and define

0)

M = max N1 BV (e, 2 v
ltlse/2 By
VES
N = max HZ L _(t,Z)V“V"”
| tjses2 W MV

vVes
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Then for 0 <t<min {e¢/2, C/(M + N)} we have

. (TE) Y
aug(Z)V v ouv(tZ)V v

L]

Hgvy BGv
Y (t2)v'V tLuv(tZ)V v

2 C-t(M+ N)>0

Define p:(l:m-rli+ by
(4.4) p=v/o .

Then a map h:G(A) + M, called the circular representation of

(M,t), is defined by h(0) = 0 and

(4.5) h(Z) = F(p(2), z/ W21l ),

where F is the leaf parametrization map of (M,r) defined in

(3.12), if Z %0 .

PROPOSITION 4.2 The circular representation has the following

properties:
(1) h:G(a) +M 1is a homeomorphism with t°h=g ;
(i1) h:G(a) -{0}+M, is a diffeomorphism;

(ii4i) If L is any complex line through the origin in mm,

then h is a ' olomorphic map;

lca)ynL
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(iv) h:G(A - M is a biholomorphic map if and only if it is of

<0
class C at the origin,

PROOF It is clear by construction that teh =0 . Also if we

define Q:G(aA) » B () by

Z

Q(2) =ﬁél—"z
then Q is a homeomorphism and Q:G(a)-{0}-B(A)- {0} is
a diffeomorphism. Also if E:B(A) - M is the map defined in
(2.14) then h=QoE. Thus (i) and (ii) follow from Corollary 2.7.
Also since p(AZ)c |Alp(2) for all xre€ € and ze:mm , we
have Q(x2) = 2Q(2) for all > eC€ and Z2Z¢€ G(A) and thus (iii)
follows from the fact remarked at the end of Section 3 that E
is holomorphic on each disk through the origin. Finally, since
a smooth function on a complete circular domain which is holomophic
on each disk through the origin is holomorphic (cfr. [P 1] ,

Lemma 8.1 for a detailed proof), (iii) implies (iv).

g.e.d.
REMARK One can show in fact that the map h is differentiable
at the origin (not necessarily of class C1l) and that dh(0) = Id.

The proof is the same as in the case of strictly convex domains

(cfr (P 1] , Theorem 6.2).

PROPOSITION 4.3 The circular representation h:G(pA)+» M is

biholomorphic if and only if the Monge-Ampére foliation associated

to T is holomorphic.
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PROOF By the definition of h and (vi) of Theorem 3.4, the
disks through the origin in G(A) are mapped by h into the
leaves of the Monge~-Ampére foliation induced by +t. Thus, if

h is biholomorphic, the Monge-Ampére foliation on M is
holomorphic. Assume now that the Monge-Ampére foliation is
holomorphic. As recalled in Section 1 this is equivalent to
the fact that the complex gradient X of 1 is holomorphic
on M,. Thus X extends holomorphically on all M with

X{0) = 0. Moreover, if we regard X as a vector function with
values in Em, we have, for instance from (2.3), that dx(0)= Id.
There exist a neighbourhood U of 0€M and a holomorphic map

Q:U-+¢m such that on U

(4.6) X=1d + Q .

Define a map A:C(1) xG(aA) » M by A(z,Z) = h(z2). Then from
(4.5) and (iv) of Theorem 3.4, for 2% 0, one has

A(z,Z) = F(zp(2),2/12])) so that from (vi) of Theorem 3.4 we
have

(4.7) zZA'(z,2) = X(a(z,2)) .

For every 3j 21 , there exists Aj:G(A)* € such that

A(z,2)

Z A.(Z)zj .
3=

Thus from (4.6) and (4.7) we obtain
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Q(A(z,2)) = 2zA'(z2,2) - A(z,2)
(4.8) pos .
= L1 (3-1)A.(2) 2!
j=2 ’
Define P(z,2Z) = 1 Aj(Z)zj-1. If Q=1 0, 1is the development
j=1 k=2

of Q in homogeneous vector polynomials of degree k, then there

exist vector polynomials Qe such that

Qk (P(2,2)) = r§0 Qr (A (2) A, (2)) 2" .
Thus
Q(A(z,2)) = I Q (P(z,2)) 2%
k=2
- ) kgz rgo Qur (Ag(2) s (22"

= 3
P - LT L PR W D
Comparing (4.8) and (4.9), we get

(3 - 1 A(2) = j=E+err(A1(Z),...,Ar+1(Z))

Since k 22, we have r + 1 5j - 1 and hence there exists a

vector polynomial Rj for all 3j 22 such that

(4.10) 3 -1 As(z) = Rj(A1(Z),...,Aj_1(Z)) .



- 41 -

Since Ay = dX(0) = Id is holomorphic, using (4.10) it
follows by induction on Jj that Aj is holomorphic for

all j21. On the other hand there exists a number €>0

such that B({2¢c) <G(A), and .2 Aj(Z)zj converges uniformely
if ||Z2|k2¢ and |z]l<1/2. If H%ﬁ?< £ then we have

h(2z) = A(1/2,22) = |}

AL (22) (1/2) ]
3 J

1

where the series converges uniformely. Therefore h is holo-
morphic on a neighbourhood of the origin and hence of class
c® there. By Proposition 4.2 if follows that in fact h is

biholomorphic.

We can now state our main result.

THEOREM 4.4. Let (M,t1) be a manifold of circular type of

radius A. Then

(1) If A == there exists a biholomorphic map h:c™+ M

1/2

such that (te°h) is the Minkowski functional of some

circular domain G cmm‘.

(i) If A < » and the Monge-Ampére foliation associated to
7 is holomorphic, then there exists a circular domain

G(A <e™ and a biholomorphic map h:G(4) + M such that
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_ 1/2
A~V (con) | “is the Minkowski functional of G(A).

PROOF Proposition 4.2 and 4.3 yield immediately (ii). To
prove (i) we have only to recall that according to a theorem
of Burns [Bu], when A=~ the Monge-Ampére foliation

associated to 1 1is always holomorphic,
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