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Introduction.

Consider two polynomials f, g ∈ C[x, y] where C is the field of complex

numbers with the Jacobian J(f, g) = 1 and C[f, g] ̸= C[x, y] i.e. a counterex-

ample to the JC (Jacobian conjecture) which states that J(f, g) = 1 implies

C[f, g] = C[x, y] (see [K]). This conjecture occasionally becomes a theorem

even for many years but today it is a problem.
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One of the approaches to this problem which is still popular, is through

obtaining information about the Newton polygons of polynomials f and g.

It is known for many years that there exists an automorphism ξ of C[x, y]

such that the Newton polygon N (ξ(f)) of ξ(f) contains a vertex v = (m,n)

where n > m > 0 and is included in a trapezoid with the vertex v, edges

parallel to the y axes and to the bisectrix of the first quadrant adjacent to v,

and two edges belonging to the coordinate axes (see [A], [AO], [H], [L], [M],

[MW], [Na1], [Na2], [NN1], [NN2], [O], [R]). This was improved quite recently

by Pierrette Cassou-Noguès who showed that N (f) does not have an edge

parallel to the bisectrix (see [CN]). Here a shorter (and more elementary)

version of the proof of this fact is suggested. A proof of the “trapezoid” part

based on the work [Di] of Dixmier published in 1968 is also included to have

all the information on N (f) in one place with streamlined proofs.

As a byproduct we’ll get a proof of the Jung theorem that any automor-

phism of C[x, y] is a composition of linear and “triangular” automorphisms.

Trapezoidal shape.

In this section, using technique developed by Dixmier in [Di], we will

check the claim that if f ∈ C[x, y] is a Jacobian mate i.e. when J(f, g) =

∂f
∂x

∂g
∂y

− ∂f
∂y

∂g
∂x

= 1 for some g ∈ C[x, y] then there exists an automorphism ξ

of C[x, y] such that the Newton polygon N (ξ(f)) of ξ(f) is contained in a

trapezoid described in the introduction.

Recall that if p ∈ C[x, y] is a polynomial in 2 variables and each monomial

of p is represented by a lattice point on the plane with the coordinate vector
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equal to the degree vector of this monomial then the convex hull N (p) of

the points so obtained is called the Newton polygon. For reasons which are

not clear to me Newton included the origin (a non-zero constant term) in his

definition.

Define a weight degree function on C[x, y] as follows. First, take weights

w(x) = α, w(y) = β where α, β ∈ Z and put w(xiyj) = iα + jβ. For

a p ∈ C[x, y] denote the support of p, i.e. the collection of all monomi-

als appearing in p with non-zero coefficients by supp(p) and define w(p) =

max(w(xiyj)|xiyj ∈ supp(p)). Polynomial p can be written as p =
∑
pi where

pi are forms homogeneous relative to w. The leading form pw of p according

to w is the form of the maximal weight in this presentation.

Lemma on independence. Take any two algebraically independent

polynomials a, b ∈ C[x, y] and a non-zero weight degree function w on C[x, y].

Then there exists an h ∈ C[a, b] for which J(aw, hw) ̸= 0 i.e. hw and aw are

algebraically independent.

Proof. A standard proof of this fact would be based on the notion of Gelfand-

Kirillov dimension (see [GK]) and is rather well-known. The proof below uses

a deficiency function

defw(a, h) = w(J(a, h))− w(h)

(somewhat similar to the one introduced in [ML]) and is more question spe-

cific. This function is defined and has values in Z when J(a, h) ̸= 0 i.e. defw is

defined for any h ∈ C[a, b] which is algebraically independent with a. Observe

that defw(a, hr(a)) = defw(a, h), r(a) ∈ C[a] \ 0; defw(a, h) ≤ w(a)− w(xy);
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and that defw(a, h
k) = defw(a, h) since J(a, hk) = khk−1J(a, h).

If aw and bw are algebraically dependent then there exists an irreducible

non-zero polynomial q =
∑k
i=0 qi(x)y

i ∈ F [x, y] for which q(aw, bw) = 0

and all monomials with non-zero coefficients have the same degree relative

to the weight W (x) = w(a), W (y) = w(b). Elements a, b′ = q(a, b) are

algebraically independent since a and b are algebraically independent but

there is a drop in weight, i.e. w(b′) < w(qk(a)b
k).

We have defw(a, b
′) = w(J(a, b′))− w(b′) = w(

∑
i J(a, qi(a)b

i))− w(b′) >

w(J(a, qk(a)b
k))−w(qk(a)bk) = defw(a, b

k) = defw(a, b) since w(b
′) < w(qk(a)b

k)

while w(J(a, qk(a)b
k)) = w(kqk(a)b

k−1) + w(J(a, b)) = w(
∑
i iqi(a) b

i−1) +

w(J(a, b)) = w(
∑
i J(a, qi(a)b

i)) because
∑
i iqi(aw) b

i−1
w ̸= 0 since q is irre-

ducible. If aw, b
′
w are algebraically dependent, we repeat the procedure and

obtain a pair a, b′′ with defw(a, b
′′) > defw(a, b

′), etc.. Since defw(a, h) ≤

w(a) − w(xy) for any h and defw(a, h) ∈ Z, the process will stop after a

finite number of steps and we will get an element h ∈ C[a, b] for which hw is

algebraically independent with aw. 2

Now back to our polynomials f, g with J(f, g) = 1. These two polynomi-

als are algebraically independent. To prove it consider a derivation ∂ given on

C[x, y] by ∂(h) = J(f, h). When ∂ is restricted to C[f, g] this is the ordinary

partial derivative relative to g. Hence if p(f, g) = 0 then pg(f, g) = 0 and a

contradiction is reached if we assume that p is an irreducible dependence.

This derivation is locally nilpotent on C[f, g], i.e. ∂d(h) = 0 for h ∈ C[f, g]

and d = degg(h)+1. Therefore ∂w which is given by ∂w(h) = J(fw, h) on the

ring C[f, g]w generated by the leading w forms of elements in C[f, g] is also
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a locally nilpotent derivation. Indeed a straightforward computation shows

that J(a, b)w = J(aw, bw) if J(aw, bw) ̸= 0.

Take a weight degree function for which w(f) ̸= 0 and a w-homogenous

form χ ∈ C[x, y] for which fw = χd where d is maximal possible. Then by

Lemma on independence there exists a ψ ∈ C[f, g]w which is algebraically

independent with χ i.e. ∂w(ψ) ̸= 0. Take k for which ∂kw(ψ) ̸= 0 and

∂k+1
w (ψ) = 0 and denote ∂k−1

w (ψ) by ω. Then ∂2w(ω) = 0, ∂w(ω) ̸= 0 and

∂w(ω) = c1χ
d1 since χ and ∂w(ω) are homogeneous. Therefore J(χd, ω) =

c1χ
d1 and J(χ, ω) = c2χ

d1−d+1. For computational purposes it is convenient

to introduce ς = ω
c2χd1−d ∈ C(x, y); then J(χ, ς) = χ and w(ς) = w(xy).

If w(x) = 0 then χ = yjp(z), ς = yq(z) where z = x; if w(x) ̸= 0 we

can write χ = xrp(z), ς = xsq(z) where z = x
β

−αy. In both cases p(z) ∈

C[z], q(z) ∈ C(z). In the second case r, s ∈ Q and w(χ) = rα, w(ς) = sα.

(Recall that w(x) = α, w(y) = β.) In any case the relation J(χ, ς) = χ is

equivalent to

τp′q − ρpq′ = cp (1)

where ρ = w(χ), τ = w(ς) = w(xy), and c ∈ C∗.

(1) can be rewritten as ln(pτq−ρ)′ = c
q
or

pτ = qρ exp(c
∫ dz

q
). (2)

If ρτ > 0 then q(z) must be a polynomial since a pole of q(z) would induce

a pole of p(z) in the same point.

Now we are ready to discuss the shape of N (f). Let m = degx(f), n =

degy(f). Assume that f does not contain a monomial cxmyn. Then N (f)

has a vertex (m, k) where k < n (and maximal possible) and an edge e with
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the vertex (m, k) and a negative slope. We can find a weight degree function

w so that the Newton polygon of the leading form fw of f relative to w is e.

Since the slope of e is negative ρτ is positive and ς = xsq(z) is a homogeneous

polynomial. Indeed, w(x) ̸= 0 and we checked above that ς is a polynomial

in z and therefore a polynomial in y. Since w(y) ̸= 0 similar considerations

show that ς is a polynomial in x.

There are just four options for N (ς) because w(ς) = w(xy). Here is

the list of all possibilities: (1) ς = cxy; (2) ς = cx(y + c1x
k), k > 0; (3)

ς = c(x + c1y
k)y, k > 0; (4) ς = c(x + c1y)(y + c2x), c1c2 ̸= 0. In each case

there is an automorphism of C[x, y] which transforms ς into cxy and then the

image of χ = fe under this automorphism is also a monomial (J(χ, cxy) = χ

is satisfied only by monomials xiyj where c(i− j) = 1 and these monomials

have different weights). Hence in the first case χ is a monomial, in the second

case χ = c3x
a(y + c1x

k)b, in the third case χ = c3(x + c1y
k)ayb, and in the

fourth case χ = c3(x+ c1y)
a(y + c2x)

b.

Define A(f) = degx(f) degy(f). In each case there is an automorphism

ζ such that A(ζ(f)) < A(f): in the second and the forth cases we can take

ζ(x) = x, ζ(y) = y− c1x
k (indeed, ζ(xa(y+ c1x

k)b) = xa(y− c1x
k+ c1x

k)b =

xayb and degx(ζ(f)) < degx(f), degy(ζ(f)) = degy(f)) and in the third and

the forth cases we can take ζ(x) = x − c1y
k, ζ(y) = y (then degx(ζ(f)) =

degx(f), degy(ζ(f)) < degy(f)).

Hence if xmyn ̸∈ supp(f) one of the automorphisms ζ(x) = x, ζ(y) =

y−c1xk; ζ(x) = x−c1yk, ζ(y) = y (usually automorphisms ζ(x) = x, ζ(y) =

y + ϕ(x) and ζ(x) = x + ϕ(y), ζ(y) = y are called triangular) decreases

A(f). Since A is a nonnegative integer there is an automorphism ξ which
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is a composition of triangular automorphisms for which A(ξ(f)) is minimal

possible and N (ξ(f)) contains a vertex (degx(ξ(f)), degy(ξ(f))).

Replace f by ξ(f) for which A(ξ(f)) is minimal. The leading form of f ,

say for a weight w(x) = 1, w(y) = 1 is xmyn. The corresponding ς = cxy.

Since J(xmyn, cxy) = c1x
myn where c1 ̸= 0 we cannot have m = n and an

assumption that n > m is not restrictive (if m > n apply an automorphism

α(x) = y, α(y) = x).

If m = 0 then f = f(y). Since then J(f, g) = −fygx this implies that

degy(f) = 1, g = g0(y) + cx where c ∈ C∗ and C[f, g] = C[x, y].

Consider again a weight given by w(x) = 1, w(y) = 1. Then fw = xmyn.

As we observed above ∂w defined by ∂w(h) = J(fw, h) is locally nilpotent

on C[f, g]w. If C[f, g] = C[x, y] then C[f, g]w = C[x, y]w = C[x, y]. Hence

if C[f, g] = C[x, y] then ∂(h) = J(xmyn, h) is a locally nilpotent derivation

on C[x, y]. If m > 0 then ∂j(y) = m(m+d)...(m+(j−1)d)
j!

xj(m−1)yj(n−1)+1 where

d = n−m > 0 is never zero and C[f, g] ̸= C[x, y].

These observations prove a theorem of Jung (see [J]) that any automor-

phism is a composition of triangular and linear automorphisms. If α is an

automorphism of C[x, y] then f = α(x) is a Jacobian mate since by the chain

rule J(α(x), α(y)) = c ∈ C∗. As we saw we can apply several triangular auto-

morphisms after which the image of f is a polynomial which is linear either

in x or y (since both cases n > m and m > n are possible). After that an

additional triangular automorphism reduce (f, g) to either (c1x, c2y+g1(x))

or (c1y, c2x + g1(y)) and another triangular automorphism to (c1x, c2y) or

(c1y, c2x). Finally a linear automorphism reduces the images to (x, y).

From now on assume that m > 0. Then there are two edges containing
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v = (m,n) as a vertex, the edge e which is either horizontal or below the

horizontal line and the edge e′ which is either vertical or to the left of the

vertical line.

Consider the edge e and the weight w for which N (fw) = e. If the slope of

e is less than 1 then ρτ > 0, ς is a polynomial and w(ς) = w(xy). In the case

e is horizontal ς = yq(x) where q(x) is a polynomial and after an appropriate

automorphism x→ x− c, y → y we may assume that q(0) = 0. If w(x) ̸= 0

and w(y) ̸= 0 then ς(0, 0) = 0 because of the shape of N (ς). If ς = cxy then e

is a vertex contrary to our assumption. If ς = c1xy+ . . .+c2x
iyj where c2 ̸= 0

and i > 1 then j = µ(i − 1) + 1 where µ is the slope and J(xmyn, xiyj) =

(mj − ni)xm+i−1yn+j−1 ̸= 0 since mj − ni = (mµ − n)(i − 1) +m − n < 0

(recall that n > m and 0 ≤ µ < 1). But then degx(J(fw, ς)) > degx(fw) and

J(fw, ς) ̸= cfw, a contradiction.

Therefore the slope of e is at least 1. If slope is 1 we cannot get a con-

tradiction using only J(fw, ς) = fw since J(ykh(xy), xy) = −kykh(xy).

Edge with slope one.

Newton introduced the polygon which we call the Newton polygon in

order to find a solution y of f(x, y) = 0 in terms of x (see [Ne]). Here is

the process of obtaining such a solution. Consider an edge e of N (f) which

is not parallel to the x axes and take a weight w(x) = α, w(y) = β which

corresponds to e (the choice of weight is unique if we assume that α, β ∈

Z, α > 0 and (α, β) = 1 ). Then the leading form fw allows to determine the

first summand of the solution as follows. Consider an equation fw = 0. Since
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fw is a homogeneous form and α ̸= 0 solutions of this equation are y = cix
β
α

where ci ∈ C. Choose any ci and replace f(x, y) by f1(x, y) = f(x, cix
β
α + y)

which is not necessarily a polynomial in x but is a polynomial in y, and

consider the Newton polygon of f1. This polygon contains the degree vertex

v of e, i.e. the vertex with y coordinate equal to degy(fw) and an edge e′

which is a modification of e (e′ may collapse to v). Take the other vertex v1 of

e′ (if e′ = v take v1 = v). Use the edge e1 for which v1 is the degree vertex to

determine the next summand and so on. After possibly a countable number

of steps we obtain a vertex vµ and the edge eµ for which vµ is not the degree

vertex, i.e. either eµ is horizontal or the degree vertex of eµ has a larger y

coordinate than the y coordinate of vµ. It is possible only if N (fµ) does not

have any vertices on the x axis. Therefore fµ(x, 0) = 0 and a solution is

obtained.

The process of obtaining a solution is more straightforward then it may

seem from this description. The denominators of fractional powers of x (if

denominators and numerators of these rational numbers are assumed to be

relatively prime) do not exceed degy(f). Indeed, for any initial weight there

are at most degy(f) solutions while a summand cx
M
N can be replaced by

cεMx
M
N where εN = 1 and hence at least N solutions can be obtained (also

see [P] for a more elaborate explanation).

If N (f) has an edge which is parallel to the bisectrix of the first quadrant,

i.e. the edge with the slope 1 we can start the resolution process with the

weight w(x) = 1, w(y) = −1. If we choose a non-zero root of the equation

fw = 0 then a solution y = cx−1 +
∑∞
i=1 cix

ri
N where c ∈ C∗ and −1 < r1

N
<
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r2
N
< . . . will be obtained.

It is time to recall our particular situation. We have two polynomials

f, g ∈ C[x, y] with J(f, g) = 1 and the Newton polygon of f supposedly

contains an edge with slope 1. David Wright observed in [W] that the differ-

ential form ydx− g(x, y)df(x, y) is exact if and only if J(f, g) = 1 (a calculus

exercise) and therefore

ydx− g(x, y)df(x, y) = dH(x, y) (3)

where H ∈ C[x, y] (see the proof of theorem 3.3 in [W]). By the chain rule

dH(x, ϕ(x)) = ϕ(x)dx − g(x, ϕ(x))df(x, ϕ(x)) for any expression ϕ(x) for

which the derivative d
dx

is defined.

Take for ϕ(x) a solution y = cx−1 +
∑∞
i=1 cix

ri
N for f(x, y) = 0.

Then f(x, ϕ(x)) = 0 and dH(x, ϕ(x)) = ϕ(x)dx or

dH(x, ϕ(x))

dx
= ϕ(x). (4)

Since ϕ contains x−1 with a non-zero coefficient H(x, ϕ(x)) should contain

lnx with a non-zero coefficient which is clearly not possible. 2

We see that on a smooth curve γ given by f(x, y) = 0 the differential

form ydx is exact. This is a very strong restriction on γ. If γ is a rational

curve and we do not mind logarithms ydx on γ is exact but the exactness of

the restriction of ydx on γ does not imply that the genus of γ is zero (even if

logarithms are forbidden). E. g. for φ = xky2k(yk−1)k−1, ψ = xy(yk−1) we

have J(φ, ψ) = kφ and ydx− ψ
kφ
dφ = d[xy(2−yk)]. Hence ydx = d[xy(2−yk)]

on φ = 1. This curve is birationally equivalent to the kth Fermat curve:

xky2k(yk−1)k−1 = 1, hence xky2k(yk−1)k = yk−1 and [xy2(yk−1)]k = yk−1.
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Apparently a description of curves on which the form ydx is exact is not

known and possibly is rather complicated. I do not have a conjectural de-

scription of these curves but to find one seems to be very interesting.

Conclusion.

A reader may ask if it is possible to extract more information from (1) and

(2). For example when ρτ > 0 it is easy to observe that all roots of q must

be of multiplicity 1; that all roots of p are also roots of q; that ς = xyh(xayb)

where a, b are relatively prime integers and h is a polynomial and hence

m = l(1 + ka), n = l(1 + kb) (e. g. when the right leading edge is vertical

then a = 0 and m divides n); that there is a root of p with multiplicity larger

than ρ
τ
, this observation was made by Nagata in [Na1] and Vinberg (private

communication); and possibly something else which eludes me. The problem

is that there are plenty of polynomial solutions even for a more restrictive

Davenport equation ap′r − bpr′ = 1 where a, b are positive relatively prime

integers both larger than 1 (see [Da], [Sh], [St], [Z]). Similarly there are plenty

of forms which satisfy the Dixmier equation (2) when ρ and τ have different

signs. So we cannot eliminate additional edges of N (f) using only this ap-

proach. It is not very surprising, everybody who thought about JC knows

of its slippery nature! Clearly a description of curves on which ydx is exact

will help, but this question is possibly harder than JC.
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