NONVANISHING OF GI(2)
AUTOMORPHIC L FUNCTIONS
AT 1/2

Brooks Roberts

Department of Mathematics Max-Planck-Institut
University of Toronto fiilr Mathematik
Toronto, M5S 1Al Gottfried-Claren-Str. 26
CANADA 53225 Bonn
GERMANY

MPL/95-49






NONVANISHING OF GI(2)
AUTOMORPHIC L FUNCTIONS AT 1/2

Brooks ROBERTS

The Max-Planck-Institut fiir Mathematik

Let & be a number field with group of adeles A, let B be a quaternion algebra
defined over k, and let G = B*. Let w be an infinite dimensional irreducible cus-
pidal automorphic representation of G(A). Then the vanishing or nonvanishing of
L(1/2,7) has been conjectured or shown to be equivalent to conditions of consider-
able interest in number theory or automorphic representation theory. For example,
if £k =Q, B(k) = Mz(k) and 7 corresponds to an elliptic curve E defined over Q,
then Birch and Swinnerton-Dyer conjectured that the order of vanishing of L(s, )
at 1/2 is the rank of the torsion free part of F(Q). To take another example, if
the central character of 7 is trivial, then Waldspurger showed in [W1] and [W2]
that the nonvanishing of L(1/2,7) is equivalent to the nonvanishing of the theta
lift of m to Mp(2, A), the metaplectic cover of SI(2,A). In this paper, again when
the central character of 7 is trivial, we show how another condition is related to
the nonvanishing of L(1/2, 7). We also consider the implications of our results for
elliptic modular forms.

Our first main result relates the nonvanishing of L(1/2,7) to the existence of
another irreducible cuspidal automorphic representation o of G(A) along with an
automorphic embedding of 7 in c®c. For a precise account we need some notation.
If o is an infinite dimensional irreducible cuspidal automorphic representation of
G(A), define the trilinear fom T(c ® 0¥ @) : 0 Q0¥ ® m — C by

HRfa®f— f1(g9) f2(9)f(9) dg.

AXG{E\G(A)

For the remainder of this introduction, assume that the central character of 7 is
trivial. In Theorem 1 we prove that if there exists an infinite dimensional irreducible
cuspidal automorphic representation ¢ of G(A) such that T(c ® 0¥ ® 7) # 0, then
L(1/2,7) # 0. We also show that the converse holds in the case G # GI(2). To
prove Theorem 1, we use the above mentioned criterion of Waldspurger and theta
correspondences in the form of certain seesaw pairs. Theorem 1 is proven in section
1. In section 1 we also discuss some possible similar results and the connection of
Theorem 1 to the Jacquet conjecture.

In the case G = GI(2), the first part of Theorem 1 has a consequence for elliptic
modular forms. As an illustration of the more general result of section 3, suppose
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that N is a nonnegative integer, k is a positive even integer and Fy € Sy /2(To(N))
is an eigenform of the Hecke operators T'(p) for pt N. Then F?2 € S;.(I'o(N)). The
above result implies that if F € Si(T'o(N)) is a new form and (F, F{)r,vpg # 0
then L(k/2,F) # 0.

Under some hypotheses, in the case G = GI(2), our second main result gives a
necessary and suflicient condition for 7 to embed automorphically in 7(x) ® 7(x)"
for some x, where y is a unitary Hecke character of a quadratic extension E of k
that does not factor through N,‘:: , and w() is the irreducible cuspidal automorphic
representation of G1(2, A) associated to x. Suppose such a x exists. By Theorem 1,
we have L(1/2,m) # 0. Using Theorem 1 again, we show that L{1/2, TQuwg/ i) # 0.
See Lemma 2. We prove in Theorem 2 that for many m, these two necessary
conditions are also sufficient. To prove this result, we use another seesaw. See
Lemma 1. By this lemma, our trilinear form is related to the product of two
integrals over AXE*\A%. These integrals can be analyzed using the main result of
(W3], and an idea from [H]. This result is described in section 2.

Our final main result applies Theorem 2 to elliptic modular forms. The key
step in making the transition from the abstract situation of Theoremn 2 to elliptic
modular forms is to show that the local trilinear forms do not vanish on certain
pure tensors formed from a combination of new and old vectors. In particular,
we need more information than is contained in [GP|, where the case of a triple
tensor product of unramified representations or a triple tensor product of special
representations is treated. We also need to generalize the description of the new
vector in a Kirillov model from {GP] to the case when the central character is not
trivial. The result on trilinear forms appears in Lemima 3, and the new vector in a
Kirillov model is described in the discussion preceding the lemma.

We will use the following notation and definitions. Given a group, we let 1 de-
note the trivial one dimensional representation of that group, i.e., the character
that maps all the elements of the group to 1. Throughout the paper, & is a number
field, with group of adeles A, B is quaternion algebra defined over &k, and G = B*.
The notation for trilinear forms will be as above. Let v be a place of k, and let
7 be an irreducible admissible representation of G(k,) or an irreducible cuspidal
automorphic representation of G(A). The central character of 7 will be denoted
by wy, and the contragredient of = by n¥. If 7 is an infinite dimensional irre-
ducible cuspidal automorphic representation of G(A), let JL(7) be the the infinite
dimensional irreducible cuspidal automorphic representation of Gl(2, A) associated
to m by the Jacquet-Langlands correspondence, as in Theorem 10.5 of [Ge]. If =
is an irreducible cuspidal automorphic representation of G1(2,A), and 7 lies in the
Jacquet-Langlands correspondence with respect to G(A), let JL(7) be the associ-
ated infinite dimensional irreducible cuspidal automorphic representation of G(A);
otherwise, let JL{(7) = 0. If 7 is an infinite dimensional irreducible cuspidal auto-
morphic representation of G(A), then L(s, m) is defined to be L{s,JL(w)). Let E
be a quadratic extension of k. We denote the nontrivial unitary Hecke character of
A that is trivial on k* NE(AE) by wgyk. If x is a unitary Hecke character of A%
that does not factor through NE, then 7(x) is the irreducible cuspidal automorphic
representation of GI(2, A) associated to x as in Theorem 7.11 of [Ge]. If F' is a
nonarchimedean local field, then Sp is the special representation of Gl(2, F), i.e.,



the irreducible quotient of p(| |~1/2,| [/2); the last representation is defined as in
[Ge]. If D is a quaternion algebra, the canonical involution of D will be denoted
by * and the reduced norm N and trace T of D are defined by N(z) = zz* and
T(z) =z +ax*. Let (U,(, )) be a nonzero, nondegenerate finite dimensional sym-
metric or symplectic bilinear space over a field F' not of characteristic two. An
F linear map T : U — U is called a similitude if there exists A € F* such that
(Tu, Tu') = Au,u’) for u,u’ € U; in this case, A is uniquely determined, and we
write A(T) = A. We denote the group of all similitudes by GO(U) or GSp(U),
depending on whether U is symmetric or symplectic, respectively. If the U is sym-
metric and of dimension 2n, then we denote the subgroup of 7' € GO(U) such that
det(T) = AM(T)™ by GSO(U). The notation for elliptic modular forms will be as in
[Sh]. Finally, if M is a positive integer, we let

0 -1
Wi = (M 0 )

In preparing this work, I benefited from some discussions with F. Rodriguez-
Villegas. Also, the idea of using the seesaw of Lemma 1 to obtain this result was
told to me by D. Prasad.

1. The general case. In this section we prove Theorem 1. At the end of the
section we make some remarks about the proof and possible analogous results. We
also discuss the relationship between Theorem 1 and the Jacquet conjecture.

To prove Theorem 1 we will use a certain seesaw from the theory of the theta
correspondernice. For an outline of the global theory of the theta correspondence for
isometries and similitudes, the reader can consult [HPS] and section 2 of [HST],
respectively. For more about seesaws, see [K].

Theorem 1. Let ® be an infinite dimensional irreducible cuspidal automorphic
representation of G(A) with trivial central character. If there there exists an infinite
dimensional irreducible cuspidal automorphic representation o of G(A) such that
T(c®c¥ ®@m) # 0, then L(1/2,7) # 0. Conversely, if L(1/2,7) # 0 and G #
GI(2), then there exists an infinite dimensional irreducible cuspidal automorphic
representation o of G(A) such that T(c @ 0¥ @ 7) # 0.

Proof. To define the seesaw used in the proof, let X be the symmetric bilinear
space defined over & with underlying space B and symmetric bilinear form ( , )
corresponding to — N, where N the reduced norm of B. Let X be the subspace of X
such that Xo(k) = k, and let X be the subspace of X of trace zero elements. Then
there is an orthogonal decomposition X = Xg L X;. Let Y be the nondegenerate
two dimensional symmetric bilinear space over k. We write SI(2) = Sp(Y’) and
Gl(2) = GSp(Y). Consider the symplectic spaces W = X QY, Wy = Xo @Y
and Wy = X, ® Y defined over k. Via the obvious inclusions, (O(X),SI(2)) is a
dual pair in Sp(W). Via the inclusion coming from the orthogonal decomposition
W =W, L W, (O(Xo) x O(X1),S1(2} x SI(2)) is also a dual pair in Sp(W). Since
S1(2) is contained in S1(2) x S2) and O(X,) x O(X;) is contained in O(X), our
two dual pairs are seesaw dual pairs, which is illustrated by the diagram:

S1(2) x SI(2) O(X)

T X T .
81(2) O(Xo) x O(X1)



Let g be the projection of the metaplectic group Mp(W(A)) onto Sp(W(A)).
Since the dimension of X is even, it follows that the inverse images of SI(2, A) and
O(X(A)) in Mp(W(A)) are split. It follows that the inverse image of O(Xp(A)) x
O(X(A)}) is also split. However, the inverse image of S1(2, A) x SI(2, A) is not split.

In addition, consider the dual pair (O{Xg),SI(2)) in Sp(Wy) and the dual pair
((O(X1), S1(2)) in Sp(Wy). The inverse images of O(Xg(A)) and O(X1(A)) are split,
while those of S1(2,A) are commonly isomorphic to Mp(2, A). Moreover, there is
an epimorphism p of Mp(2,A) x Mp(2,A) onto ¢~ (S1(2, A) x SI(2,A)) such that,
the following diagram commutes:

Mp(2,A) x Mp(2,A) —Z— ¢~ 1(SI(2,A) x SI(2,A))

SI(2,A) x SI(2,A) —<—  SI(2,A) x SI(2, A).

Here, the vertical maps are projections.
We can summarize the situation by the following diagram:

Mp(2,A) x Mp(2,A) & ¢ 1(SI(2,A) x SI(2,A)) O(X(A))
i1 1 .
SI(2,A) ’ O(Xo(A)) x O(X1(A))

Fix a nontrivial additive character 4 of A/k. Let (ro, 8(Xo(A))), (11, 8(X1(A)))
and (r,8(X(A))) be the Schrédinger models of the smooth Weil representations
of Mp(Ws(A)), Mp(W1(A)) and Mp(W(A)) defined with respect to ¢, respec-
tively. Denote the composition of r with the natural maps of ¢ *(SI(2,A) x
SI(2,A)) x (O(Xo(A)) x O(X1(A))) and SI{2;A) x O(X(A)) into Mp(W(A)) by
w and «’, respectively, and denote the composition of ro and r; with the nat-
ural maps of Mp(2,A) x O(Xo(A)) into Mp(Wy(A)) and Mp(2,A) x O(W1(A))
into Mp(W1(A)) by wp and wy, respectively. Clearly, the restrictions of w and
w' to SI(2,A) x (O(Xe(A)) x O(X,(A))) are identical. Moreover, the map from
S(Xo(A)) ®c S{X1(A)) to 8(X(A)) that takes po @ ;1 to ¢ with p(zg B z1) =
wo(To)p1(xq) gives an isomorphism of C vector spaces such that

w(p(go,91), (f?«o, hq))‘P(iBO S5 5131) = WO(Q{): ho)‘Po(ﬂlo)wl(gl, h«l)(Pl(fE])

for oo ® 1 € $(Xo(A)) ®c S(X1(A)), (go,91) € Mp(2,A) x Mp(2,A) and (hg, h1) €
O(Xo(A)) x O(X1(A)).

We define the appropriate theta kernels. For ¢ € 8(X(A)), (¢, ') € SI(2,A) x
O(X(A)) and (g,h) € ¢71(S1(2,A) x SI(2,A)) x (O(Xo(A)) x O(X1(A))) and let

09, hip) = Y, wig,he(z),  0(g h0)= Y W'(d M)el).

zeX (k) w€X (k)

If (g,h) = (¢', 1) is in S1(2, A) x (O(Xp(A)) x O(X1{A))), these functions clearly
agree. For oo € 8(Xo(A)), ¢1 € 8(X1(A)), g € Mp(2,A), ho € O(Xe(A)) and
h,l € O(X](A)) let :

6(g, ho; o) = Z wo(g, ho)po(x),  Blg,hier) = D wilg,n)er(a).
x€ Xo(k) z€X1(k)



If o € 8(Xo(A)), v1 € 8(X1(A)), 90,91 € Mp(2,A), hg € O(Xo(A)), b1 €
O(X1(A)), and ¢ € S(X(A)) corresponds to o ® p1, then

8(p(g0, 91), (ho, h1); ©) = 8(go, ho; v0)0(g1, h1; 01).

There is a characterization of the right hand side of the above diagram that we
will use. We have the following commutative diagram:

GSO(X(A)) 2 (G(A) x G(A))/A*

T I

SO(X1(A)) = SO(Xo(A)) x SO(X1(A)) —=—  G(A)/A.

Here, the top map is defined by p(g, ")z = gzg'~1, the bottom map is defined by
p(g)z = gzg™', and the second vertical map takes g to (g, g); note that SO(Xy(A))
is trivial.

Next, we recall the theta correspondences and seesaw identity associated to our
situation. Let f € m and let ¢ € S(X(A)). Let f be the function on SO(Xo(A)) x
SO(X;(A)) such that fop= f. Define 6(f, p) on g~1(S1(2, A) x SI(2,A)) by

oo = | 00, (1, h); ) f(hy) dhy.

SO(X1(k))\ SO(X1(4))

If ¢ corresponds to o @ 1 € §(Xo(A)) ®c $(X1(A)), and (go, 1) € Mp(2,A) x
Mp(2, A) then

8(f,¢)(p(g0,91)) = (g0, 1;90)8(f, ¢1)(91),

where 0(f, 1) is the theta lift defined in [W1], p. 25, and denoted there by
T’J)((}Dl)glaf)'

The second theta correspondence will require some more notation. By [HK1],
the representation w’ extends to a representation of the group

R(A) = {(g,h) € GI(2, A) x GO(X(A)) : det(g) = A(h)}.

Here, A(h) is the similitude factor of h € GO(X(A)). With the aid of the extended
representation we can lift representations of G1(2,A). Define, as above, 8(g, h; ©)
for (g,h) € R'(A) and ¢ € S(X(A)). Suppose that 7 is an irreducible cuspidal
automorphic representation of GI(2,A). Let f' € 7 and ¢ € §(X(A)). Define
6(f',¢) on GSO(X(A)) by

O(f,p)(h) = / 0(g19', by 0) ' (919") dan.

S1(2,k)\ SH(2,4)
Here, ¢’ € GI(2,A) is such that det(q’) = A(h). Note that for h € SO(X(A)),
8(f'¢)(h) is the same as the usual theta lift of f' with respect to ¢. Let 6(7) be
the C vector space spanned by the functions 8(f’, @) for f' € T and ¢ € §{X(A)).

Then it is known that 6(7) is a cuspidal automorphic representation of GSO(X (A)).
Moreover, one knows that (7)op = {Fop: F € §(r)} is the C vector space spanned

5



by the functions f, ® fa, where f; € JL(7} and f; € JL(7)V, and f; @ f, is the
function on (G(A) x G(A))/A* defined by (fi ® f2){g1,92) = fi{g1)f2(g2). For
details, see [H] and [S1].

Because our dual pairs form a seesaw, if 7 is an irreducible cuspidal automorphic
representation of G1(2, A) we now have

(f',0(f, ©))si2) = (fag(f’:()o))SO(Xl)

for fex, f/ €7, and p € §(X(A)). Here,
o s = [ 7(9)6(F,0)(9) dg,
SI(2,k)\ SI(2,A)

and (f,0(f", ©))so(x,) is similarly defined.

Now assume that there exists an infinite dimensional irreducible automorphic
representation of G(A) such that T(c®@ oY @7) #0. Let T =T(c®c¥ @ 7). Then
T(fi® f2® f) # 0 for some f; € g, f € ¢¥ and f € n. From above, we can
write f1 ® f2 as a linear combination of functions 8(f’, ¢) o p, where f' € 7 = JL(0o)
and ¢ € §(X(A)). From T(f1 ® fa ® f) # 0 it follows that there exist f' € 7
and ¢ € S(X(A)) such that (f,0(f",¢) o p)aiz) # 0. Here, the integral is over
AX GI(2,k)\ GI(2,A). Now:

(fLO0(f',0) o paizy =(fop, 0(f',¢) o p)aie)
=(f.0(f,¢))so(x1)
(F'.0(f,))s12)-

It

Since (f,0(f',¢) o p)aiz) # 0, we have 0(f,) # 0. It follows that 6(f,¢) # 0
for some ¢ = o @ p1 € §(Xo(A)) ®c S(X1(A)). Hence, 0(f,p1) # 0. By [W1],
Théoreme 1, and [W2], Proposition 22, this implies that L(1/2,7) 5 0.

Next, assume that L(1/2,7) # 0 and G # Gl(2), so that B(k) is a division
" algebra. Let f € m and ¢ € §(X(A)). Assume that ¢ = g ® ¢1 € §(Xo(A)) &¢
S(X1(A)). We first show that 6(f, ©)|si(z,a) is a cusp form. Let g € SI(2,A), and
let (g0, 91) € Mp(2,A) x Mp(2, A) be such that p(go, g1} = ¢, where g is regarded
as an element of ¢ '(S1(2,A) x S1(2,A)). A computation shows that

L o00(y T)onan= X ot oW onon~(a.)

’EE')(U(A')

= ZWO(Q{h 1)(,00(0 ' 1)1’{/(.];)9]190130’2):
uck

where, as in [W1],

1 n

Wonan foty= [ ooy 1) ot-myan

k\&

6



for t € k. We assert that W(gol,gl,f, a?) = 0 for all g € Mp(2,A) and a € k. If
a = 0, this follows as in [W1], p. 30. Since for all g € Mp(2,A) and a € k¥,

W((Plrgla.fu (LZ) = vV(‘Pla((S (1.91) :1)g:f11):

it now suffices to show that W (py, g1, f,1) for ¢ € Mp(2,A). As in [W1], p. 29, for
g € Mp(2,A),

W(er, a1, f,1) = / Z w1(g, hi)er () f(hy) dhy.
SO(X[(k))\SO()\'] (A)) IE.X]([\‘,), (:c,a:)=1

Since B(k) is a division algebra, there exist no z € Xy(k) such that (z,z) =1, and
our claim follows.

Since L(1/2,7) # 0, again by [W2], there exist f € 7, ¢1 € 8(X1(4)) and
g € Mp(2,A) so that 6(f,¢1)(g) # 0. There exists o € 8(Xo(A)) such that
8(g,1;00) # 0. By the last paragraph, it follows that if v = ¢y ® @1, then
6(f, ©)|si(z,a) 1s a nonzero cusp form on SI(2, A). Hence, there exists an infinite di-
mensional irreducible automorphic cuspidal representation T of G1(2,A) and f' € 7

so that (f7,0(f, ©))siizy # 0. Since (f’,@(f, ©)sizy # 0 for some f' € 7, we

have (f o p,0(f',¢) o p)gi2y # 0 by an identity from above. This implies that
T{oc ® 0¥ @ m) # 0, where 0 = JL(7). This completes the proof of Theorem 1 O

We make some remarks on the proof of Theorem 1 and a possible analogous
result. The argument for the second part of Theorem 1 fails if G = GI(2). In this
case, we do not always have W (1, g, f, 1) = 0. To see this, suppose that B(k) is
not a division algebra and that the notation is as in proof of Theorem 1. Then by
[W1], p. 30,

u')l (g, ]7‘1)(,01 (.’L‘]) / f(Sh,]) dS(lh.l .

S(k\S(A)

I‘V(tpl:gaf: 1) = /

S{A)\ 50(X1(4))
Here, S(k) and S(A) are the groups of elements in SO{X;(k)) and SO(X;(A)),

respectively, that fix
o — 0 1
] = 1 0/

Now S(k) is conjugate to the image under p of the subgroup of G1(2, k) consisting
of the elements of the form

a 0

0 1/’

where a € kX. As in [W1], for a proper choice of f € m and hy € SO(X;(A)), we

find that
/ f(shi)ds =/ f (a O) da
SU\S(A) kX \AX 01

=L(1/2, 7).

-7



Since we are assuming L(1/2,7) # 0, this implies that for some f € m, ¢ €
$(X1(A)) and g € Mp(2,A) we have W(p,,g, f,1) # 0.

As for the similar result, it may be possible to prove a statement analogous to
Theorem 1, with the quadratic base change of an irreducible cuspidal automorphic
representation of G1(2, A) in place of ¢ ® ¢V. This might be obtained by replacing
X from the proof of Theorem 1 with a different one dimensional symmetric bilinear
space. For example, fix a quadratic extension K = k(v/d) of k with Galois group
Gal(K/k) = {1,-}, and consider the symmetric bilinear space X over k with
underlying vector space

X’(A:):{(th b‘a/a) ca€ K,bcek)

and bilinear form coming from the restriction of (—1/d) - det. We see that X’ (k) =

(o(k) L X1(k), where again X{(j(k) = k- I and X[ (k) is the subspace of elements of
trace zero. Also, X{(k) is isometric to Xy (k) from the proof of Theorem 1. However,
Xo(k) and X{(k) are not isometric, nor are X (k) and X’(k). The appropriate
identifications of the groups of similitudes are now given by

GSO(X'(4)) T (A% x GI(2, Ak))/A

SO(X!(A)) = SO(X)(A)) x SO(X(A)) —=—  GI(2,A)/AX.

Here, the top map p is defined by p(t, g}z = t '¢zg", the bottom map is defined by
p(9)z = gxg~?, and the second vertical map sends g to (det(g), g). The inclusion of
A% takes z to (N,{‘ (z),z). With these objects playing the role of their counterparts,
there may be a development like that in the proof of Theorem 1. However, the theta
correspondence from the proof of Theorem 1 that involves the Jacquet-Langlands
correspondence would seem now to involve base change to G1(2, Ax). In the general
setting, this theta correspondence has not been developed as thoroughly as the one
corresponding to the Jacquet-Langlands correspondence. See, however, [C].

Finally, we make some remarks about the connection between Theorem 1 and
the Jacquet conjecture. Recall that, in our case, the Jacquet conjecture states that
if o is an irreducible cuspidal automorphic representation of G(A), and at every
place of k, the local component of # embeds in the local component of o ® gV, then
T(c®oY @m)#0if and only if L(1/2,JL(c) ® JL(cV) ® JL(r)) # 0. The Jacquet
conjecture is known in many cases. See [HK2]. Now if ¢ is an irreducible cuspidal
automorphic representation of G(A), then

L(s,JL(0) ® JL(c¥) ® JL(7)) = L(s,m)L(s, JL(7) ® JL(o), 7).

Here, r is the representation of the L-group Gl(2,C) x GI(2,C) of GI(2) x Gl(2)
with underlying vector space C? ® Sym? C?, and action defined by 7(g,¢') = ¢ ®
(detg'~'g’ - ¢'). The action on C? is the standard one. As is pointed out in [GK],
L(s,JL(7) ® JL(c),r) is entire. If the Jacquet conjecture is true, then the first
part of Theorem 1 follows from the above equality of L-functions. It is not clear
if the second part of Theorem 1 also follows from the assumption of the Jacquet
conjecture. In addition to assuming the Jacquet conjecture, one would need a o

such that L(1/2,JL(r) ® JL(g),r) # 0.



2. The case of unitary Hecke characters. In this section we consider the
case when B(k) = Ma(k) and ¢ = w(yx), where x is a unitary Hecke character of
a quadratic extension E of k that does not factor through NP, and 7(x) is the
irreducible cuspidal automorphic representation of GI(2,A) associated to x. We
show that for many =, the exists a x such that T(7(x) ® 7(x)¥ @ 7) # 0 if and
only if L(1/2,m)L(1/2,7 @ wgs) # 0. Using another seesaw, Lemma 1 reduces
the analysis of such trilinear forms to the investigation of some period integrals
over AX EX\AX. These integrals can be understood using (W3] and an idea from
[H]. The seesaws of Theorem 1 and Lemma 1 are quite analogous and of the same
general type. However, in contrast to the seesaw in Theorem 1, in Lemma 1 the
trilinear form appears on the symplectic side of the seesaw.

Lemma 1. Suppose that k is totally real. Let D be a quaternion algebra defined
over k and let E be a quadratic extension of k contained in D(k) as a k subalgebra.
Let Gal(E/k) = {1,—}. Let xo and x1 be unitary Hecke characters of A}, that do
not factor through N E . Let m be an irreducible cuspidal automorphic representation
of GI(2,A). Assume that waxo|axx1|ax = 1. If

/ f@x@a@d: [ k@) ds £0
AX EX\AX

AXEX\AY

for some fy, fo € JL{m), then

T(m(xo0) ®_7T(X1) @m) #0.

Proof. The proof of the lemma will analogous to the proof of Theorem 1. Again,
we will use a scesaw.

To define the seesaw, regard D as a symmetric bilinear space X with symimetric
bilinear form ( , ) induced by the reduced norm of D. Let Xy be subspace of X
such that Xg(k) = E, and let X; be the orthogonal complement to X3. Define
Y, Wy, Wi and W as in the proof of Theorem 1. We have the analogous seesaw
dual pairs (O(X),SI(2)) and (O(Xy) x O(X1),SI(2) x SI(2)) in Sp(W), and the
same seesaw diagram. We also have the auxiliary dual pairs (O(Xjy), S1(2)) and
(O(X1),SK2)) in Sp(Wp) and Sp(W1), respectively. For the same reasons as before,
the inverse images of O(X(A)), SI(2,A) and O(X,(A)) x O(X1(A)) are split; since
the dimensions of Xy and X, are even, it also follows that the inverse images of
O(Xo(A)) and SI(2,A) in Sp(Wp(A)) and of O(X;(A)) and SI(2,A) in Sp(W1(A))
are split. This implies that the inverse itnage of SI(2,A) x SI(2,A) in Sp(W(A)) is
split.

We will use the same notation as in the proof of Theorem 1 for the Weil repre-
sentations and their restrictions. However, now w is a representation of {S1(2, A) x
SI{2, A)) x (O(Xp(A)) x O(X1(A))), and

w((go, 1), (ho; h1))e(zo ® 1) = wolgo, ho)po(zo)wi (g1, 11)p1(x1)

for ¢ = Po®p1 € $(Xo(A))RcS(X1(A)), (90, 91) € SI(2,A)x81(2, A) and (ho, h1) €
O(Xo(A)) x O(X1(A)).



In fact, for the proof we will need the similitude version of the seesaw. The
similitude seesaw and identity require some more notation and observations. First,
we claim that there is a quaternion algebra basis 1,1, j,k = ij for D(k) such that
Xoky=E=k+k-iand Xy(k) =k -j+k-k=FE-j. Tosee this, let E=k+k-i,
where i2 € k*. Since the canonical involution * of D generates Gal(E/k), i* = —i,
and (1,i) = 0. Let z € X;(k) be nonzero. Consider the set E’ of elements of
D(k) that commute with . As z ¢ k, thisis £+ k- z. Now as a k algebra, E' is
either a quadratic extension of & or isomorphic to & x k. Morcover, the restriction
of * generates Gal(E'/k). Hence, there exists j € E’ such that £/ = k+k -},
j? € kX and (1,j) = 0. Let k = ij. Since z € X;(k), we have (i,z) = 0, so that
(i,j) =0, i.e., ij = —ji. We conclude that any two distinct elements among 1,1, j, k
are orthogonal, and hence 1,1, j, k is a basis. Since (Xg(k),k-j+k-k) = 0. we have
X1(k) =k-j+k-k. We note that Xo(k) and X;(k) have the same determinant,
though they need not be isometric.

Using the last observation, we can identify GSO(Xp(A)) and GSO(X,1(A)). For
a € A%, let m(a) denote both the element of GSO(Xo(A)) and of GSO(X,(A))
defined by left multiplication by a. It is well known that the maps from A% to
GSO(Xp(A)) and GSO(X1{A)) which send a to m(a) are isomorphisms. Clearly,
the similitude factor A(m(a)) of m(a) for a € AL is NE(a). Tt follows that
M(GSO(Xo(A)) = A(GSO(X1(A)) = NF(AF).

The seesaw that we will use now is:

[GI(2,A)" x GI(2,A)"] GSO(X (A))
T X T .
Gl(2,A)" H(A) = [GSO(X;1(A)) x GSO(X2(A))]

Here, GI(2,A)" is the set of ¢ € GI{2,A) such that det(g) € A(GSO(X,(A)) =
MGSO(X1(A))) = NE(AR); [G1(2,A)* x G1(2, A)1] is the subgroup of pairs (g, ¢')
of GI(2,A)* x GI(2,A)" such that det(g) = det(¢’), and H(A) = [GSO(X1(A)) x
GSO(X2(A))] is the subgroup of pairs (h, h') € GSO(Xp(A)) x GSO(X2(A)) such
that A(h) = A(R'). At this point we may as well state an identification of the
right hand side of the diagram, analogous to the one of Theorem 1. We have a
commutative diagram

GSO(X(A)) —— (D(A)* x D(A)*)/AX

T T

~

H(A) — (Ag x AL)/A%

Here the top map p is as in Theorem 1, and the bottom map is defined by p(z,y) =
(m(zy~'), m{zy~!)). The vertical maps are inclusion.

As in the proof of Theorem 1, to introduce similitudes into the theta correspon-
dence, we will use the extended representation of [HK1]. Let R(A) be as in the proof
of Theorem 1, and define Ry(A) and R;(A) analogously. Then wy and w; extend
to representations of Rg(A) and Ry (A), respectively, just as does w’. Moreover, we
have

w'(g, (ho, 1)) (@) (zo ® 1) = wo(g, ho)wo(wo)wi(g, R1)p1 (1)

10



for ¢ = o @ 1 € §(Xo(A)) ®c S(X1(A)), (g, ho) € Ro(A) and (g, h1) € R1(A).

Using the extended representations we define the theta lifts, and finally state
the seesaw identity. We define 6(f’, ) for f' € m and ¢ € ${X(A)), and 6(~w) as
in the proof of Theorem 1. Using the isomorphism of GSO(X(A)) with A} from
above, define Fiy on GSO(Xo(A)) by Fo(m(z)) = xo(z). For ¢o € §(Xo(A)) define
6(Fo, po) on G1(2,A)t by

0(F1,¢1)(g) = j 8(g, hih; o1 )F1(hih) dhy
SO(X1(F)\NSO(X1(4))

where h in GSO(Xo(A)) is such that det(g) = A(h). For gy € §{Xo(A)), extend
#(Fo,po) to a Gl(2, k) invariant function on GI(2,A) by setting 8(Fy, wo)(gog) =
8(Fo, po)(g) for go € GI(2,k) and g € Gl(2,A)t and letting #(Fy, o) be 0 off
Gl(2, k) G(2, A)". Then the automorphic representation of Gl(2,A) generated by
these functions is m(xp). Similar notation and comments apply to X; and x;. See
[HK2], section 13.

An argument as in [HK1], Proposition 7.1.4, now shows that for g € §(Xo(A)),
w1 € 8(X1(A)) and f e,

(O(Fo, 00)0(F1, 1), flaiz,a+ = (0(F, 00 @ v1), FoF1) i(a)-

Here, the first integral is over A™ G1(2, k)*\ GI(2, A)*, and the second integral is
over A* H(E)Y\H(A). It is here that we use that k is totally real.

The lemma follows easily from this identity. Suppose that the product of the
integrals in the statement of the lemma is nonzero. Then for some f; € JL(7) and

f2 € ']L(Tr)va

/ A@)xo(@)xa(z) dz - / f2()xo(@) " xa (@)  da # 0.
AXEX\AY

AXEX\AY

As was pointed out in the proof of Theorem 1, fi ® fz is a linear combination of
functions 8(f', @) o p where f' € w and ¢ € §(X(A)). Moreover, the vectors ¢ ® ¢
for o € S(Xo(A)) and ¢; € 8(X1(A)) span 8(X(A)). It follows that since the last
product of integrals is nonzero, for some f' € 7, o € 8§(Xo(A)) and ;1 € $§(X1(A))
we have

(O(F, 00 @ 1), Fo ® F1) sy # 0.

By the seesaw identity,

(H(FD: LPO)H(FI ) ‘Pl): f,)Gl(z,Aﬁ— # 0.

This implies that T'(7(xo) @ 7(x1) ®7) #0. O

The next lemma proves the necessity of the condition described at the beginning
of this section.

11



Lemma 2. Let 7 be a cuspidal automorphic representation of GI{2, A) with trivial
central character. Let E be a quadratic extension of k, and suppose x is a unitary
Hecke character of Ay, that does not factor through N EIf

T(r(x) ®@7(x)" ®m) #0

then
L(1/2,7)L(1/2,m @ wgyk) # 0.

Proof. Suppose that T{m(x) @ 7(x)¥ & 7) # 0. By Theorem 1 it will suffices show
that T'(m(x) @ 7(x)" ® (T ®wg/x)) # 0. Now by the characterization of 7(x) from
Lemma 1, there exists fi € w(x) with support in GI(2,k) G1(2,A)t, fo € m(x)V
and f € w such that T(r(x) @ 7(x)¥ @ 7} {(/L ® f2 ® f) # 0. Hence,

/ F1(9)12(0) F(9)wsyi(det(g)) dg
AX GL(2,k)\ GI{2,A)

/ F1(9)2(9)f(g) dg
A% GI(2,k)\ GL(2,k) GI(2,A)+

f1(9) f2(9) f(g) dg

/;x Gl(2,k)\ GI(2,A)
# 0.

This completes the proof. O
Now we prove the main result of this section.

Theorem 2. Suppose that k is totally real. Let D be a quaternion algebra de-
fined over k, and let ¢ be an infinite dimensional cuspidal automorphic represen-
tation of D(A)* with trivial central character. Let m = JL(p). Suppose that
there exists a quadratic extension E contained in D such that for all places v of k,
Hompx (0v,1) # 0. Then

L(1/2,7)L(1/2,m ®c wgyk) # 0

if and only if there exists a unitary Hecke character x of Ay, that does not factor
through N such that

T(r(x)®@n(x)" @) #0.

Moreover, suppose S is a finite set of places of k which stay prime in E, and x,,
for v € S are unitary characters of E* such that Homg,(0v, X, © —/x,) # 0 for
all v € §, where Gal(E,/k,) = {1,—}. Then we may assume that in the previous
statement x, = x, forv € S.

Proof. Assume that L(1/2,7)L(1/2,7 @c wg/k) # 0. By [W3], it follows that

/ f(x)dx #0
AX EX\AX

12



for some f € p = JL(7). By an argument as in Lemma 1.4.9 and Lemma 3.8 of [H],
there exists a unitary Hecke character x of A} such that x does not factor through
NE, Xo = X, forve S, and

/ ' (@)x@)x ()" dz # 0
AXEX\AY

for some f' € p = JL(x). By Lemma 1 with xg = x and x; = x~', we have
T(r(x) ® n(x)" ®m) # 0.
The other implication of the theorem follows from Lemma 2. O

3. Applications to elliptic modular forms. The main result of this section is
Theorem 3, a version of Theorem 2 for new forms in Si(Ty(p)), where k is an even
integer such that k/2 is odd, and p is a prime such that p =3 (mod 4). To obtain
Theorem 3 as an application of Theorem 2, it is necessary to show locally that some
trilinear forms do not vanish on certain pure tensors composed of a combination of
new and old vectors. In particular, we need more information than is contained in
[GP}, where the case of a triple tensor product of unramified representations or a
triple tensor product of special representations is treated. To obtain the required
result, we need to generalize the description of the new vector in a Kirillov model
from [GP] to the case when the central character is not trivial. The result on
trilinear forms appears in Lemma 3, and the new vector in a Kirillov model is
described in the discussion preceding the lemma. We begin the section by giving
the straightforward application of one direction of Theorem 1 to elliptic modular
forms.

Proposition 1. Let N be a nonnegative integer, and let k be a positive even
integer. Let F € Sx(I'o(N)) be a new form. Let M be a nonnegative integer such
that N|M, let x be a Dirichlet character modulo M, and let Fy in Sio(To(M),X)
be an eigenform for T(p) for pt M. If there exists a divisor d of M/N such that

d 0
(F| (0 1>kaFl - F1|[Walk/2)ronans # 0

then

L
L(E

F)#0.

P’I‘OOf. Let F2 = Fll[I’Vﬁ,]]k/g and

, d 0
Pen(t0)
k

Let fr, fr, fr, and fp, be the functions on GI(2,A) corresponding to F', F', F}
and Fj, respectively, as in {Gel, section 3.A. Note that for h € GI(2,A), fr(h) =

fr(hhg), where
d=' 0
ho = H ( 0 1) .
pld p
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Let 7, o and ¢’ be the irreducible cuspidal automorphic representations generated
by fr, fr, and fr,, respectively. Then ¢’ = o¥. Now

f Frhho) fr, (B) fry (h) dh
A% GI(2,Q)\ G1(2,A)

i 0

=(F|( ¢ By F[Woagle 2 mo (a0
0 1),

£0.

Since }}T isine =¢Y and ﬁ; is in o/ = o, the conclusion follows from Theorem
1 of section 1 and Example 6.19 of [Ge]. O

To prove Theorem 3 we need a lemma about new vectors and trilinear forms.
Before stating the lemma we recall some definitions and results. Suppose for the
moment that & is a local nonarchimedean field of characteristic zero, with ring of
integers Oy. Let PBr be the maximal ideal of Dy, and let 7x be a uniformizing
element, i.e., P = mOk. Suppose o € Irr(Gl(2,k)) is infinite dimensional. For
each nonnegative integer n, let L(o,n) be the space of f € o such that o(k)f =
wgy(a) f for

k= (‘; 3) EF()(n)z{((é Z) EQI2,D0) :c=0 (mod B},

It is well known that L{o,n) # 0 for some n and that for the smallest such n, the
conductor ¢(o) of o, ding L{(o,n) = 1. We call any nonzero vector in L(a, c(o)) a
new vector of . It is easy to see that if f € L(o,n) is nonzero, then there exists
a nonzero f¥ € L(cV,n) such that (f, f¥) # 0, where ( ,) is the canonical pairing
between ¢ and V. In particular, ¢(o) = ¢(¢¥). New vectors can be explicitly
described in the Kirillov model K(o,1) of o with respect to a nontrivial additive
character ¥ of k. Assume that the conductor of ¥ is Oy. If o is supercuspidal,
then by {S2], f1 = WoXpx is a new vector in K(o,v). If o is the irreducible prin-
cipal series representation (g, o), then a new vector fi is given by the following
formulas:

( val(x)

Xo. (@)1 (@)pa(z) Y p(me) ™ pg () ™

71=0

if c(pq) = c(p) =0,
pa () xo, (@)|2) 20 () = 0,c(uz) > 0,
(@) xo, @)z Af e(pr) > 0,c(p) = 0,
(B2 () i cliun) > 0, c{oiz) > 0.

fi(z) =<

These formulas can be obtained using the Weil representation model for m(p, p2),
for example. Using a trick, we can also describe a new vector in the model
for 0¥ which has as underlying space K(o,) and action defined by o'(g) =

o (det(g))~ o (g). et
0 x-°
g0 = k -
(™)
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Then a computation shows that fo = o{go)f1 is a new vector for (¢/, K{o,v)).
Recall that by [Go], p. 1.22, the map (¢’, K(a,v¢)) — (¢¥,K{(c",%)) that sends
f tow;!f is an isomorphism of GI(2, k) representations. It follows that w!f, is
a new vector in (¥, K(o¥,v)). Using our explicit description, we find that there
is a nonzero constant ¢ € C* such that if o is supercuspidal representation then
fa = XX and if o is the irreducible principal series representation (g1, p2), then

( val(x)

X0, (@22 D7 g () T g ()
n={}

if ¢(p1) = c(uz) =0,
pa(@)xo, (@) |22 if c(m
pa(z)xo, (@)|z[M? if e
[ X0 () if ¢(u1) > 0, c(pn

) =0,¢c(uz2) >0,
) > 0,c(u2) =0,
) > 0.

For information about trilinear forms, see [P]. The following result should be
compared to Propositions 6.1 and 6.3 of [GP].

Lemma 3. Let k be a nonarchimedean local field. Let o,m € Irr(GI(2,k)), with
wr = 1. Let f1 € o and fo € ¢V be new vectors. Then there exists a nonzero f € 7
fixed under T'o(c(o)) and T € Homg(z 4)(0 ® 0¥ @ 7, 1) such that

TH®f2®f)#0

in the following two cases:

(1) The representation o is either supercuspidal or an element of the continuous
series, and there exists an unramified unitary character p of k™ such that

™=, t);
(2) There exist unitary characters ju; and py of k* with c(py) = 0 and ¢(pz) > 0
or c¢{p1) > 0 and ¢(ug) = 0 such that o = w(u1, p2), and ™ = Sp.

Proof. By our remark concerning pairing of vectors in L(m, n) and L(mV,n} it suf-
fices to construct an element of Homg 1y(¢ ® ¢V, 7V) that is nonzero on fi ® fo.
To cover both of the cases of the lemuna, let v be a quasi-character of k*. By
Frobenius reciprocity,

Homgyz k) (0 ® 0¥, p(v,v™1)) = Homp(ec ® 0¥, o),

where « is the quasi-character of the Borel subgroup B defined by

t T _
¢ ([; t7 ) = v(t)v(t) "t /ta]2.
2

Let H be the subgroup of B of all elements of the form

(6 1)
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for a € k* and b € k. Then
Homp(o ®c 0", a) = Homy (o ®c 0¥, o).

Let us consider case (1). Suppose that ¢ and 7 are as in (1). In the last
paragraph, let v = p. To prove the lemma in this case, it suffices to produce an
element L of Homy (o ®¢ ¢V, a) such that L{f1 ® f2)} # 0. We will use the Kirillov
model of ¢ and the model (¢/, K(o,)) for ¢V from the paragraph preceding the
lemma. Define L: o ®c¥Y — a by

@)= [ f@F (=l (@) @) ol 2 0%

It is easy to check that this integral always converges. Using the descriptions of f;
and f; from above, a computation shows that L(f; ® f2) # 0.

Case (2) requires a different argument. Suppose that ¢ and 7 are as in (2). In
the first paragraph of the proof, take v = | |*/2. Recall that p(| |'/2,| |~}/?) contains
Sp as a subspace of codimension one, and that the quotient p(| |'/2,| |=1/2)/ Sp is
1. Since p(} |'/2,| |~1/?) is pre-unitary and Sp is admissible, by Lemma 5.2 of [P], it
follows that Sp is a direct summand of p(| [/2,]|71/2) as a representation of G1(2, k)
and that moreover p(| [V/2,| |71/2) = Sp @1 as representations of GI(2, k). Thus,
to complete the proof, it suffices to construct an element L of Hompy (0 ®@¢ ¢V, @)
such that if J is the corresponding element of Homg(z ) (6 @c oV, p(| 112, 171/2)),
then J(f1 ® f2) has nontrivial projection to Sp; and for this, it suffices to show that

L(f1 ® f2) # L(6(g90) /1 ® 0" (90) f2)-

We will use the same models for ¢ and ¢V as in the last paragraph. We let f; and
fa2 be as in the discussion preceding the lemima. Now

o(90)fr ® 0¥ (g0) fa = wo (1) f2 ® f1.

Thus, it will suffice to construct for each € € {1} an element L € Homy (c®co ", @)
such that L(f; ® f2) # 0 and

L(f2® f1) = eL{f1 ® f2).

To construct such an L, let $(k*) be the C subspace of K(o,%) of all functions
in K (o,4) that vanish in a neighborhood of 0, and let V = K (o, v)/8(k*). Since
S(k*) is an H subspace with respect to ¢ and ¢’, V inherits two actions & and o’
from o and o', respectively. There is a natural map

Homy ((V,7) ®@c (V,0’), @) — Homy (o ¢ o', a).

To determine the structure of (V,7) and (V, ¢’), note that every element of K (o, )
has the form

f=vumn| |1/2 + Qoo |1/2,
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where 1,2 € 8(k), the space of Schwartz functions on k. The map from K(o,)
to C? that sends f to (p1(0),2(0)) is well defined, C linear, surjective, and has
kernel §(k*). Hence, V = C? as a vector space, and

v = xou| V2 +8(E),  vo = xouue| [V +8(kX)

form a basis for V. Moreover, we see that

o] (g E{) v = pi(a)|al P, T (8 E{) vy = pp(a)lalt v,
and
o (g llj) v = po(a) " Hal Py, o (g l{) vz = (@)™ o]y,
for « € k™ and b € k, so that
Vo) =m| VP eu 12 (Via)=u P our!| V2

Define Ly, L_ : (V,7) @c (V,0') — a by

Li((avy + bup) @ (cv1 + duz)) =ad + be,
L_((avy + bug) ® (cvy + dvz)) =ad — be,

for a,b,c,d € C. Then Ly and L. are H maps, and
Li(v@v')= LM ®v), L_(v®v)=-L{ ®v)

for v,v" € V. Now since c(y1) = 0 and c(u2) > 0 or ¢(peg) > 0 and c(pa) = 0, it
follows from the above explicit expressions for fi and fy that Ly (fi ® f3) # 0 and
L_(E ® f2) # 0; here, fi and f, are the images of fi and fa in V, respectively.
This completes the proof. O

To state Theorem 3, we need some notation. Let £ be an imaginary quadratic
extension of @, and let x be a unitary Hecke character of A} that does not factor
through Ng. We let M (x) be the conductor of 7{x). We say that yx is of elliptic
modular form type if 7(x)eo is of elliptic modular form type. An element 7 €
Irr(G1(2,R)) is of elliptic modular form type if and only if there exists a positive
integer ! such that if [ = 1 then 7 = =(1, sign), and if I > 1, then

of| |4=D/2 | [=U=1/2) if [ is even,
B o] |(l_1)/2,| |_“’])/2 sign) if I is odd.
Here, the notation is as in [Ge]. The terminology is motivated by the following facts.
If for some positive I, nonnegative integer N, and Dirichlet character ¢ modulo IV,

F € Si(To(N), ) is a nonzero new form, and = = ®,m, is the irreducible cuspidal
automorphic representation associated to F, then 7., is as above. Conversely, if
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T = ®,7, is an irreducible cuspidal automorphic representation of GI(2,A), and
Too 18 Of elliptic modular form type and as described as above, then 7 canonically
induces a new form in S;{Co(N),v), where N is the conductor of 7, and ¢ is
related to the central character of m. For more, see Lemma 5.16 and the discussion
in section C of [Ge]. Let xoo(z) = 2™2%(2%)", where m and n are nonnegative
integers, with at most one nonzero, and v € C. Then yx is of elliptic modular form
type if and only if there exists a positive integer [ such that

m-tn=1[0-1, = —

See [Ge], Remark 7.7.

Theorem 3. Let p be a prime such that p = 3 {mod 4), and let k be an even
positive integer such that k/2 is odd. Let F € Sk(Io(p)) be a new form. Let S be
a finite set of primes of Q not including p and oo that do not split in E = Q(\/=p),
and let xg, q € S, be a collection of unitary characters of E;. Then

L( F)L(2.F,(5)) £0,
if and only if there exists a unitary Hecke character x of Ay, of elliptic modular form
type that does not factor through NE and a positive integer d such that p divides
M = M(x) exactly, xp, = 1, xq¢ = x5 for ¢ € S, Xeo(2) = 2121 (57)(A=k/2)/2
d|(M/p) and

d 0
k

where F| is the new form of weight k/2 and level M associated to x, as in the
preceding discussion.

Proof. Let m be the irreducible cuspidal automorphic representation of GI(2, A)
associated to F' as in [Ge], Proposition 5.21. Then the product from the statement,
of the theorem does not vanish if and only if L(1/2,m)L(1/2,m @ wgsq) # 0.

Assume that L(1/2,7)L(1/2,7m @ wg,q) # 0. Since L(1/2,7) # 0, it follows
that €(1/2,7) = 1. By Theorem 6.15 and Theorem 6.16 of [Ge], it follows that
€(1/2,m,) = —1; here, and in the following, the e-factor at the place v of Q is defined
with respect to the standard additive character of Q,. Now 7, = Sp ®n where 5
is an unramified quadratic character; see {GP], Lemma 4.1. Since €(1/2,7,) = —1
it follows that 7 = 1. Now let D be the quaternion algebra over QQ ramified at
exactly p and oo. By [V], E is contained in D. For an explicit description of D,
see [S2]. Since 7, and 7o are in the discrete series, it follows that JL{7) # 0; let
o = JL(7). Since p, = 1, we have Hom (0p, 1) # 0. By [W1], Hompx (0q,1) #0
for all ¢ < 0o, q # p. Since k is even, Too = o(| |F=D/2 | |7(5=1}/2) 'in the notation
of [Ge], p.58. Hence, by p. 142 of [Ge], 72 = N@-%)/2 . Identifying Eoo with
C., it is easy to see that

k—2
_ @ i+ (2—k)/25—i—(2—k)/2

i=0

D
Woo'E;‘o
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It follows that Hom px (0co, 1) # 0.

Now we apply Theorem 2. In addition to the x; for ¢ € S, let x;, = 1 and
Xhoo(2) = 26271 (2Z)(1=%/2/2. Then by p, = 1, the characterization of g, and
[W1],

) Hom ;x (0v, Xv©°—/Xxv) #0

for v € SU {p,00}. By Theorem 2, it now follows that there is a unitary Hecke
character x of A% such that x, = x,, for v € SU {p,0} and T(c @ ¥ @ 7) # 0,
where 0 = 7(x).

Next, we show how the nonvanishing of the trilinear form gives the nonvanishing
of the inner product from the statement of the theorem. To begin, note that
0o = 0% = o] |B/2-D/2 | |=R/2=D/26i0n) if k > 1 and 04 = 0 = 7(1,sign)
if & = 1. For each finite prime ¢ of Q, let f,, € o, and fo, € 0':]" be new
vectors, and let fi1 0 € 0o and f2 oo € 0, be nonzero vectors of weight k/2. Let
f1 =®ufi1v and fo = @, f2,,. Then f1 € oY and f, € 0. Moreover, f is a nonzero
multiple of ®,f2, ® f3 ., and J2 is a nonzero multiple of ®¢f1,4 ® f1 00, Where
fl.eo and f; ., are nonzero vectors of weight —k/2 in 0 and oY, respectively.
We claim that there exists f' = ®,f; € 7 such that for all finite primes ¢ of @,
fq € L(mg,c(aq)); foo is a vector of weight k, and T(fa® fLi ® f)) # 0. To see
this, note first that for all ¢ < oo, 0, and m, satisfy the hypotheses of Lemma 3;
in particular, o, = m(l,wg, ;¢,). Now by Lemma 3, since for all places v of Q we
have dimg Homgyz,g,)(0v ® 0 @7y, 1) = 1 by [P], and since T # 0, it follows that
T(fo® fL® f) # 0 for some f' = ®, f" with fq € L(mq,c(og)) for cach finite prime
g. To show that we can take f.  to be nonzero of weight k, it suffices to prove
the following claim: the nonzero element of Homg)(z,0.,)(00 ® 0% ® m,1) takes
a nonzero value on fi ., ® f3 ., ® f”, where f” is of weight k. To sec this, note
that for sufficiently large level, an integral like that in the proof of Proposition 1 is
nonzero. Since the components at the infinite place of the representations involved
are Oeo, 0oy and e, our claim follows.

Before we show the nonvanishing of the inner product we define d. Let M be the
conductor of o, i.e., M = Hq q*°s). Note that since o, = m(Lwe,/g,): clop) =1,
and p divides M exactly. For each finite prime g of Q let f,; be a new vector for m,,
and let foo be a nonzero vector of weight k& in 7. Let f = &, f,. We may assume
that fr = f. Let ¢ be a finite prime of Q. It is well known that L(m,,c(o,)) is
spanned by the vectors

-1 —c{og)+c(my)
q 0 q q 0
fq:ﬂ'q( 0 1)fq:---:7rq (q 0 l)fq‘

By writing each f(; as linear combination of these vectors, it follows that we may
assume that each f! is of the form
q

q 9 0
fé:‘]‘l’q( 0 l)fq:

where 0 < j, < ¢(o,) — ¢(m,). Thus, we may assuine that ' = w(hg)f, where

d=t' 0
h0=H( 0 1) )
q

gqld
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and d =[], ¢’*. As ¢(mp) = ¢(Sp) = 1, ptd, and djM/p.

Define a Dirichlet character of «v: (Z/MZ)* — C* by a(a) = [[ 5 wo,q(a). Let
Fy € Sij2(To(M), o) correspond to fy, i.e., define Fy by Fi(g-i) = fi (900 )i (g,1)k/2.
Let F' = Fi|[Wag]rj2. Consider fr. As in the proof of Proposition 2.1, the
space generated by fr is 0V, and fpis a nonzero multiple of f. It follows that
Fy € Sppa(To(M ),a~1) corresponds to fo, and so Fy is a nonzero multiple of F”.
Thus, there is a nonzero constant ¢ such that

] (g (1)) ,Fy - Py W) roaane =cT(f2 @ /L @ w(ho) f)
k

=T(fa® f1® f)
#0.

Finally Lemma 2, combined with an argument as in the proof of Proposition 1,
shows that if x as in the theorem exists, then the inner product from the theorem
does not vanish. O
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