The classification of Pin $_{4}$-bundles over a 4-complex

Christian Weber

Max-Planck-Institut
 für Mathematik
 Gottfried-Claren-Str. 26
 53225 Bonn

Germany

The classification of Pin $_{4}$-bundles
 over a 4 -complex

Christian Weber

September 10, 1996

Abstract

In this paper we show that the Lie-group $P i n_{4}$ is isomorphic to the semidirect product ($S U_{2} \times S U_{2}$) $\rtimes \mathbb{Z} / 2$ where $\mathbb{Z} / 2$ operates by flipping the factors. Using this structure theorem we prove a classification theorem for Pin_{4}-bundles over a finite 4-complex X.

1991 Mathematics Subject Classification: 55N25, 55R10, 57S15.

1 Introduction

Let G be a compact Lie group. The set of isomorphism classes of principal G-bundles over a topological space X is in one-to-one correspondence to free homotopy classes from X to $B G$. The homotopy type of $B G$ is determined by being the orbit space of a free G action on a contractible space $E G$. This means that knowing the homotopy type of the ($k+1$)-skeleton of $B G$ translates the classification of principal G-bundles over a finite k-complex X into calculations in obstruction theory.

We now specialize to X being a finite 4 -complex. The case $G=S U_{2}$ is very easy: The fact that the 5 -skeleton of $B S U_{2}$ is S^{4} and Hopf's classification theorem for $\left[X, S^{4}\right]$ imply that $S U_{2}$-bundles over a four-complex X are in 1-1 correspondence to $H^{4}(X ; \mathbb{Z})$, the isomorphism given by the second Chern class.
A. Dold and H. Whitney clarified the case $G=S O_{n}$. In [DW59] a general classification theorem for $S O_{n}$-bundles is given in terms of obstruction theory. The three dimensional case takes a particular nice form: SO_{3}-bundles over a 4 -complex are classified by the second Stiefel-Whitney class w_{2} and the first Pontrjagin class p_{1}. Moreover, every pair (w_{2}, p_{1}) satisfying $\mathcal{P} w_{2} \equiv p_{1} \bmod 4$, where \mathcal{P} is the Pontrjagin square, is realized as classifying pair for some SO_{3}-bundle P over X.

Let's move on to the case of a disconnected structure group. The case of $G=O_{3}$ follows from the SO_{3}-case since $\mathrm{O}_{3}=\mathrm{SO}_{3} \times \mathbb{Z} / 2$ and therefore $\mathrm{BO}_{3}=\mathrm{BSO}_{3} \times \mathrm{BZ} / 2$. In this paper we want to look at the Lie group Pin_{4}, a double cover of O_{4}, and will give a classification theorem for Pin_{4}-bundles over a 4 -complex.

Acknowledgements: This paper is part of the authors Ph.D. thesis [Web97] written under the supervision of Prof. Ian Hambleton to whom the author is indebted for support and many helpful discussions. Cordial thanks go to Dr. Peter Teichner for many clarifying conversations. The author also thanks the German National Scholarship Foundation for financial support and the Max-Planck-Institut for its warm hospitality and financial support in the final stage of his thesis.

2 Clifford algebras, Pin and Spin

General setup

We'll give a brief review of the basics. A more detailed reference is chapter I in [LM89]. Let (V, q) be a real vector space with quadratic form q. The Clifford algebra $C l(V, q)$ is the algebra generated by all $v \in V$ and 1 subject to the relations $v \cdot v=-q(v) \cdot 1$. We are particularly interested in the case $V=\mathbb{R}^{n}$ and $q^{ \pm}(v)=\mp|v|^{2}$, and will write $C l_{n}^{ \pm}$for $C l\left(\mathbb{R}^{n}, q^{ \pm}\right)$.
$\operatorname{Pin}_{n}^{ \pm}$is the subgroup of the multiplicative group of $C l_{n}^{ \pm}$generated by elements $v \in S^{n-1}$. Conjugation with an element $v \in \mathbb{R}^{n} \subseteq P i n_{n}^{ \pm}$leaves $\mathbb{R}^{n} \subseteq C l_{n}^{ \pm}$invariant and preserves q. Therefore we get a map

$$
\begin{array}{ccc}
\widetilde{A d}: & \operatorname{Pin}_{n}^{ \pm} & \rightarrow \\
\phi & \mapsto & O_{n} \\
& \left.\mapsto \mapsto(\phi) y \phi^{-1}\right),
\end{array}
$$

where $y \in \mathbb{R}^{n}$ and α is the endomorphism of $C l_{n}^{ \pm}$which extends $v \mapsto-v$ on \mathbb{R}^{n}. $\widetilde{A d}$ is a twofold cover, [LM89, I.2.10]. For $v \in \mathbb{R}^{n} \widetilde{A d}(v)$ is just the reflection at the hyperplane perpendicular to v.

The preimage of $S O_{n}$ under $\widetilde{A d}$ is called $S p i n_{n}^{ \pm}$and is the subgroup of $P i n_{n}^{ \pm}$ consisting of products of an even number of $v \in S^{n-1}$. Since $\alpha(\phi)=\phi$ for $\phi \in \operatorname{Spin}_{n}$ we see that restricted to $\operatorname{Spin}_{n} \widetilde{\operatorname{Ad}}(\phi)$ is just given by conjugation with $\phi \in \operatorname{Spin}_{n}$. We will write $A d$ for the map $\operatorname{Pin}_{n}^{ \pm} \rightarrow O_{n}$ given by conjugation, and therefore $\widetilde{A d}_{\mid S p i n_{n}}=A d_{\mid S p i n_{n}}$.
$\operatorname{Pin}_{n}^{ \pm}$has a nontrivial one dimensional representation $\chi: \operatorname{Pin}_{n}^{ \pm} \rightarrow \mathbb{Z} / 2$ which is given by extending $V \ni v \mapsto-1$ to all of $\operatorname{Pin}_{n}^{ \pm}$. We see that $\operatorname{Ker}(\chi)=\operatorname{Spin} n_{n}^{ \pm}$.

Since $S O_{n}$ is connected, $\pi_{1}\left(S O_{n}\right)=\mathbb{Z} / 2$ and both of $S p i n_{n}^{ \pm}$are nontrivial coverings, we see that $\operatorname{Spin}_{n}^{+}$and $\operatorname{Spin}_{n}^{-}$must be isomorphic as groups and coverings of $S O_{n}$. Keeping the ambiguity in mind we will from now on drop the superscript and refer only to Spin $_{n}$.

Spin $_{4}$ and quaternions

Recall that $\mathbb{H}=\mathbb{R}\langle i, j, k\rangle$ subject to the relations $i^{2}=j^{2}=k^{2}=i j k=-1$. The conjugate of a quaternion $q=a+b i+c j+d k$ is given by $\bar{q}=a-b i-c j-d k$, and $N(q):=q \bar{q}$ defines a norm on \mathbb{H}. The group of unit quaternions, i.e. the 3 -sphere,
can be identified with $S U_{2}$, in particular

$$
i=\left(\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right), \quad j=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), \quad k=\left(\begin{array}{cc}
0 & i \\
i & 0
\end{array}\right) .
$$

Consider the map

$$
\begin{array}{ccc}
\mu: S U_{2} \times S U_{2} & \rightarrow & G L_{4}(\mathbb{R}) \\
(p, q) & \mapsto & \left(x \mapsto p x q^{-1}\right)
\end{array}
$$

given by quaternionic multiplication. μ maps into SO_{4} since $\mu(p, q)$ is norm preserving and has determinant 1. μ defines a double cover of SO_{4} and hence there is an isomorphism $\Phi: S U_{2} \times S U_{2} \rightarrow S p i n_{4}$.

The structure of Pin_{n}

The exact sequence of groups

$$
1 \rightarrow \operatorname{Spin}_{n} \rightarrow \operatorname{Pin}_{n}^{ \pm} \xrightarrow{\chi} \mathbb{Z} / 2 \rightarrow 1
$$

with $n \geq 3$ splits via

$$
\sigma(-1)= \begin{cases}e_{1} & \text { in the } \operatorname{Pin}_{4}^{+} \text {case } \\ e_{1} e_{2} e_{3} & \text { in the } \operatorname{Pin}_{4}^{-} \text {case } .\end{cases}
$$

The center of $S p i n_{n}$ is given by

$$
C\left(\text { Spin }_{n}\right)= \begin{cases}\mathbb{Z} / 2=\langle-1\rangle & n \text { odd } \\ \mathbb{Z} / 2 \oplus \mathbb{Z} / 2=\langle\omega\rangle \oplus\langle-\omega\rangle & n \equiv 0 \bmod 4 \\ \mathbb{Z} / 4=\langle\omega\rangle & n \equiv 2 \bmod 4\end{cases}
$$

where $\omega=e_{1} \ldots e_{n}$ is the volume element. We'll always assume that $\left(e_{1}, \ldots, e_{n}\right)$ is an orthonormal basis of \mathbb{R}^{n}. Moreover if $\sigma^{ \pm}$is any splitting element of the extension above then $\sigma^{-1} \omega \sigma=(-1)^{n-1} \omega$.

Recall that for group extensions of the form

$$
1 \rightarrow N \rightarrow G \rightarrow Q \rightarrow 1
$$

with nonabelian N there may not be -unlike in the case where N is abelian- a welldefined operation of Q on N given by conjugation with a (set theoretic) section $Q \rightarrow G$. However any two choices for a section differ by an element in N which induces an inner automorphism of N. This means that there is a well defined homomorphism from Q to $\operatorname{Out}(N)=\operatorname{Aut}(N) / \operatorname{Inn}(N)$.

Since $S p i n_{4} \cong S^{3} \times S^{3}$ we see that $\operatorname{Out}\left(S p i n_{4}\right)=\mathbb{Z} / 2$. The higher dimensional even Spin groups are simple and looking at their Dynkin diagram we can read of their outer isomorphisms. The list for the dimensions divisible by 4 is

$$
\operatorname{Out}\left(\text { Spin }_{4 n}\right)= \begin{cases}\mathbb{Z} / 2 & n=1 \\ S_{3} & n=2 \\ \mathbb{Z} / 2 & n \geq 3\end{cases}
$$

Moreover, in all cases the automorphism class is detected by the induced automorphism of the center.

Now extensions $N \rightarrow G \rightarrow Q$ with fixed homomorphism $\phi: Q \rightarrow \operatorname{Out}(N)$ are if there is any - in one-to-one correspondence to $H^{2}(Q ; C N)$, where we view $C N$ as a Q module, see [EM47]. Therefore we calculate

$$
H^{2}\left(\mathbb{Z} / 2 ; \text { CSpin }_{n}\right)=\left\{\begin{array}{lll}
\mathbb{Z} / 2 & n \text { odd } & \\
0 & n \equiv 0 & \bmod 4 \\
\mathbb{Z} / 2 & n \equiv 2 & \bmod 4
\end{array}\right.
$$

Putting the information together we see
Proposition 2.1 If $n \equiv 0 \bmod 4$ then Pin n_{n}^{+}and Pinn are isomorphic as groups.
In general it might be quite difficult to give a more concrete description of the operation of $\mathbb{Z} / 2$ on $S_{\text {Sin }}^{n}$ than just saying that is is given by conjugation with a split element. However for $S_{p i n}^{4}$ this is very easy:
Theorem A Pin ${ }_{4}^{+}$and Pin_{4}^{-}are both isomorphic to the semidirect product

$$
\left(S U_{2} \times S U_{2}\right) \propto \mathbb{Z} / 2
$$

where -1 operates by flipping the factors.
A word of warning: The isomorphism between Pin_{4}^{+}and Pin_{4}^{-}is one of Lie groups and is not compatible with the projection to O_{4}. Therefore the obstructions for the existence of Pin_{4}^{+}and Pin_{4}^{-}structures on a given O_{4} bundle are different in general. However, since we are only interested in Pin_{4} principal bundles and isomorphisms between them, we can drop the superscript again and refer to Pin_{4} as given by the semidirect product above.

3 Bundle theory

3.1 Spin_{4} bundles

The adjoint representation $\mathrm{Ad}: \mathrm{Spin}_{n} \rightarrow S O_{n}$ defines an associated $S O_{n}$ bundle $P_{S O}$ for every $S_{\text {Sin }}^{n}$ bundle P. We denote the Euler and Pontrjagin classes of $P_{S O}$ by $e(P)$ and $p_{i}(P)$ respectively. The isomorphism $\mathrm{Spin}_{4} \cong S U_{2} \times S U_{2}$ implies that $B S p i n_{4} \simeq B S U_{2} \times B S U_{2} \simeq \mathbb{H} P^{\infty} \times \mathbb{H} P^{\infty}$. Recall that $H^{4}\left(\mathbb{H} P^{\infty} ; \mathbb{Z}\right) \cong \mathbb{Z}$ is generated by $c_{2}(\gamma)$ where γ is the universal $S U_{2}$-bundle. The homotopy class of a map $f: X \rightarrow B S p i n_{4}$ therefore defines an ordered pair (a, b) $\in H^{4}\left(X ; \mathbb{Z}^{2}\right)$ by pulling back ($\left.c_{2}\left(\pi_{1}^{*} \gamma\right), c_{2}\left(\pi_{2}^{*} \gamma\right)\right)$ where $\pi_{1 / 2}$ is the projection to the first and second factor. Using the Borel-Hirzebruch formalism for charactersitc classes one calculates (see [HH58])
Lemma 3.1 The characteristic classes a, b and e, p_{1} of a $S_{p i n}^{4}$ bundle are subject to the relations

$$
e=-a+b \quad p_{1}=2(a+b)
$$

Combining Hopf's classification theorem for $\left[X, S^{4}\right]$ with the above lemma we see
Proposition 3.2 i) Two $S_{\text {Spin }}^{4}$ principal bundles over a compact 4 -complex X are isomorphic iff their characteristic classes (a, b) in $H^{4}\left(X ; \mathbb{Z}^{2}\right)$ coincide as ordered pairs. Moreover, every ordered pair (a, b) can be realized.
 Euler and first Pontrjagin class coincide.
iii) A Spin 4_{4} bundle over an oriented 4-manifold is characterized by its Euler- and Pontrjagin number.
Moreover, the pairs (e, p) which can be realized are exactly the ones satisfying $2 \mid p$ and $4 \mid(p+2 e)$.

3.2 Pin_{4} bundles

Let us start by fixing some handy notation for weakly associated Pin $_{4}$-bundles:
Lemma 3.3 Any Spin 4 -principal bundle with characteristic classes (a, b) is isomorphic to $P+Q$, where P and Q are $S U_{2}$-bundles with second Chern class equal to a and b, and $P+Q:=\Delta^{*}(P \times Q), \Delta: X \hookrightarrow X^{2}$ is the diagonal. The weakly associated Pin ${ }_{4}$-bundle has the form

$$
(P+Q) \times_{S p i n_{4}} P_{i n_{4}} \cong P+Q \coprod Q+P
$$

and right multiplication on the right hand side with an element $(\alpha, \beta ; \epsilon) \in \operatorname{Pin}_{4}$ is given by

$$
\begin{aligned}
& (p, q)(\alpha, \beta ; \epsilon)= \begin{cases}(p \alpha, q \beta) & \epsilon=1 \\
(q \beta, p \alpha) & \epsilon=-1\end{cases} \\
& (q, p)(\alpha, \beta ; \epsilon)= \begin{cases}(q \alpha, p \beta) & \epsilon=1 \\
(p \beta, q \alpha) & \epsilon=-1\end{cases}
\end{aligned}
$$

Proof: A typical element of the LHS looks like $[(p, q, a, b, e)]$ with $p \in P, q \in Q$ and $(a, b, e) \in P_{i n} n_{4}$. Moreover $[(p, q, a, b, e)]=\left[\left(p s^{-1}, q t^{-1}, s a, t b, e\right)\right]$ for all $(s, t) \in$ Spin_{4}. An element of the LHS thererefore has a unique representative of the form $[(p, q, 1,1, e)]$ for which we will write $[p, q, e]$.

We now define $\Phi:$ LHS \rightarrow RHS by

$$
\Phi([p, q, a, b, e]):= \begin{cases}(p a, q b) & e=1 \\ (q b, p a) & e=-1 .\end{cases}
$$

This is well-defined, and one checks that Φ is equivariant with respect to the right multiplication with elements of Pin_{4} on both sides.

Lemma 3.4 The classifying space $B P i_{4}$ is homotopy equivalent to the $\mathbb{H} P^{\infty} \times$ $\mathbb{H} P^{\infty}$ bundle over $\mathbb{R} P^{\infty}$ given by the quotient

$$
\left(\mathbb{H} P^{\infty} \times \mathbb{H} P^{\infty} \times S^{\infty}\right)_{/(\bar{x}, \hat{y}, z) \sim(\bar{y}, \bar{x},-z)}
$$

Proof: It suffices to give a free $P i n_{4}$ right operation on a contractible space with quotient as claimed. Think of S^{∞} to be the unit sphere in \mathbb{H}^{∞}. Now define an action

$$
\begin{array}{rll}
\left(S^{\infty} \times S^{\infty} \times S^{\infty}\right) & \times \quad \operatorname{Pin}_{4} & \rightarrow \\
(x, y, z) & \cdot(\alpha, \beta, \epsilon) & =\left\{\begin{array}{cc}
\left(x \alpha^{-1}, y \beta^{-1}, z\right) & \epsilon=1 \\
\left(y \alpha^{-1}, x \beta^{-1},-z\right) & \epsilon=-1
\end{array}\right.
\end{array}
$$

One easily checks that this is a free action with the right quotient.
Before we can prove our classification result for Pin_{4} bundles we need two technical lemmas:

Lemma 3.5 Let X and Y be two connected $C W$ complexes with basepoints x_{0} and $y_{0} . \tilde{Y} \xrightarrow{\pi} Y$ the universal covering. Identify $\pi_{1}\left(Y, y_{0}\right)$ with the group of covering transformations of \tilde{Y}. Let $\tilde{f}, \tilde{g}: X \rightarrow \tilde{Y}, f:=\pi \circ \tilde{f}$ and $g:=\pi \circ \tilde{g}$.

Then: $f \simeq g$ iff $\tilde{f} \simeq \alpha \circ \tilde{g}$ for some $\alpha \in \pi_{1} Y$.
This can quickly be proved using covering space theory. On the algebraic side we have:

Lemma 3.6 Let X be a finite $C W$ complex of dimension n, $w: G:=\pi_{1} X \rightarrow \mathbb{Z} / 2$ a nonzero map, $H:=\operatorname{Ker}(w)$ and $\Lambda:=\mathbb{Z}[G / H]$ considered as a G-module. Let furthermore $\pi: X^{w} \rightarrow X$ be the twofold covering associated to w with covering transformation τ. Then there is an isomorphism

$$
\Phi^{*}: H^{*}(X ; \Lambda) \rightarrow H^{*}\left(X^{w} ; \mathbb{Z}\right)
$$

Since $\operatorname{Res}_{H} \Lambda \cong \mathbb{Z} \oplus \mathbb{Z}$ is a trivial H module, the map in cohomology induced by π is given by

$$
\begin{array}{ccc}
H^{*}(X ; \Lambda) & \xrightarrow{\pi^{*}} \\
x & \mapsto & H^{*}\left(X^{w} ; \operatorname{Res}_{H} \Lambda\right)= \\
\left(H^{*}\left(X^{w} ; \mathbb{Z} \oplus \mathbb{Z}\right)\right. \\
\left(\Phi^{*} x, \tau^{*} \Phi^{*} x .\right)
\end{array}
$$

In particular π^{*} is injective.
Proof: Recall some facts from algebra: If $H \subset G$ is a subgroup of finite index, M some H-module, N some G-module, then there is a natural isomorphism

$$
\Phi: \operatorname{Hom}_{G}(N, \underbrace{\operatorname{Hom}_{H}(\mathbb{Z} G, M)}_{=: \operatorname{Coind}_{H}^{G} M}) \cong \operatorname{Hom}_{H}(N, M)
$$

see [Bro82, p.64]. In. our situation $\Lambda=\operatorname{Coind}_{H}^{G} \mathbb{Z}$, where \mathbb{Z} is the trivial H-module. Now let $N_{i}:=C_{i}(\tilde{X})$ be the chain complex of the universal covering of X, thought
of as a G - and H-module. Since the isomorphism Φ is natural it commutes with differentials, and so induces an isomorphism

$$
\Phi^{*} ; H^{*}(X ; \Lambda) \rightarrow H^{*}\left(X^{w} ; \mathbb{Z}\right)
$$

as claimed.
To see the second claim note that on cochain level the map induced by π is given by

$$
\begin{array}{ccc}
\operatorname{Hom}_{G}\left(C_{i} \tilde{X}, \Lambda\right) & \rightarrow & \operatorname{Hom}_{H}\left(C_{i} \overline{X^{w}} ; \mathbb{Z} \oplus \mathbb{Z}\right) \\
\alpha & \mapsto & (\Phi \alpha, \Phi \alpha \circ \tau) .
\end{array}
$$

This implies the lemma since the differential on the right hand side respects the direct sum decomposition given by $\mathbb{Z} \oplus \mathbb{Z}$.

The one dimensional nontrivial representation of $P_{i n_{4}}$ defines a map w_{1} from $B P i n_{4}$ to $\mathbb{R} P^{\infty}$. The corresponding characteristic class $w_{1}(P)$ of a $P i n_{4}$ bundle P is equal to the first Stiefel-Whitney class of the associated O_{4} bundle P_{O}. Using the cell decomposition of $B P_{i n}$ given by 3.4 one calculates that $H^{4}\left(B P i n ; \mathbb{R}^{-}\right)=\langle\tilde{e}\rangle \cong \mathbb{Z}$. If $f_{P}: X \rightarrow B P i n_{4}$ is the classifying map of P we set $\tilde{e}(P):=f_{P}^{*}(\tilde{e}) \in H^{4}\left(X ; \mathbb{Z}^{w_{1} P}\right)$ and call it the twisted Euler class of P.

Now let X be a compact 4-complex and $P \rightarrow X$ a Pin $_{4}$ principal bundle with $w_{1}(P)=: w$. Let $\pi: X^{w} \rightarrow X$ be the twofold covering corresponding to w, Then $\pi^{*} P$ lifts to a $S p i n_{4}$ bundle \tilde{P} and hence, by propsition 3.2, there are two classes (a, b) in $H^{4}\left(X^{w} ; \mathbb{Z}\right)$ which we will call the classifying pair of P.
Theorem B Let P and Q be two Pin $_{4}$ bundles over a compact 4-complex X with $w_{1}(P)=w_{1}(Q)=: w$. Then P is isomorphic to Q iff their classifying pairs $\left(a_{P}, b_{P}\right)$ and (a_{Q}, b_{Q}) coincide as unordered pairs in $H^{4}\left(X^{w} ; \mathbb{Z}\right)$.

- If $w=0$ then every unordered pair (a, b) in $H^{4}(X ; \mathbb{Z})$ is realized.
- If $w \neq 0$ let $\tau: X^{w} \rightarrow X^{w}$ be the covering transformation. Then every unordered pair ($\left.a, \tau^{*} a\right), a \in H^{4}\left(X^{w} ; \mathbb{Z}\right)$ is realized.

The classifying classes a, b of P are related to Euler- and Pontrjagin class via

$$
e(\tilde{P})=-a+b, \quad p_{1}(\tilde{P})=2(a+b)
$$

Proof: We do the case $w=0$ first: In this case the classifying maps f_{P} and f_{Q} lift to BSpin. The model for BPin implies that the covering transformation ϕ operates as 'flip' on $H^{4}(B S p i n ; \mathbb{Z}) \cong \mathbb{Z} \oplus \mathbb{Z}$. Therefore if $f: X \rightarrow B$ Pin $_{4}$ lifts to $B S \mathrm{Bin}_{4}$ the classifying classes coincide as unordered tupel for every possible lift of f. Now apply Lemma 3.5 and Proposition 3.2.

Now let w be nonzero. The fibration B Spin $_{4} \rightarrow B P i_{4} \rightarrow \mathbb{R} P^{\infty}$ inplies a commutative diagram

Since $w_{1}(P)=w_{1}(Q)$ there is a homotopy $H: X \times I \rightarrow \mathbb{R} P^{\infty}$ connecting $w_{1} \circ f_{P}$ and $w_{1} \circ f_{Q}$. We try to lift this homotopy to $B P i_{4}$. The obstructions for doing this on the i-skeleton of X are

$$
\mathfrak{o}_{i} \in H^{i}\left(X,\left\{\pi_{i}\left(B \operatorname{Spin}_{4}\right)\right\}\right)
$$

Since $\pi_{i}\left(B S \operatorname{pin}_{4}\right)=0$ for $i \leq 3$ we see that H can be lifted over the 3 -skeleton $X^{(3)}$.
Now let X^{w} be the two fold covering of X associated to w. Under these conditions there exist lifts $f_{\bar{P}}$ and $f_{\bar{Q}}$ of $\pi^{*} f_{P}$ and $\pi^{*} f_{Q}$ to $B S$ pin.

The preceeding case implies that $\pi^{*} f_{P} \simeq \pi^{*} f_{Q}$ iff the classifying pairs of P and Q coincide as unordered pairs. The assumptions therefore imply that $\pi^{*} o_{4}=0 \in$ $H^{4}\left(X^{w} ; \pi^{*} \pi_{4} B\right.$ Spin $\left._{4}\right)$. But $\pi_{4} B$ Spin $_{4}$ is as $\pi_{1} X$-module isomorphic to $\mathbb{Z}\left[\pi_{1} X / \pi_{1} X^{w}\right]$. Therefore lemma 3.6 implies that

$$
\pi^{*}: H^{4}\left(X ; \pi_{4} B \operatorname{Spin}_{4}\right) \rightarrow H^{4}\left(X^{w} ; \pi^{*} \pi_{4} B \operatorname{Spin}_{4}\right)
$$

is injective. Hence $o_{4}=0 \in H^{4}\left(X ; \pi_{4} B\right.$ Spin $\left._{4}\right)$, and therefore $f_{P} \simeq f_{Q}$.
To see that $a_{P}=\tau^{*} b_{P}$ observe that the diagram

where t is the covering transformation of $B S P i n_{4}$ over $B P i n_{4}$, is commutative since the 2-fold covering $X^{w} \rightarrow X$ is the pullback of $B S p i n \rightarrow B P i n$ under f_{P}. Since T^{*} flips the chosen generators a, b of $H^{4}\left(B \operatorname{Spin}_{4} ; \mathbb{Z}\right)$ this shows that

$$
\left(\tau^{*} \tilde{f}^{*} a, \tau^{*} \tilde{f}^{*} b\right)=\left(\tilde{f} *, \tilde{f}^{*} a\right)
$$

Since for $w=0$ the existence follows from the existence part of 3.2 we can restrict ourself to the case $w \neq 0$. To see that every pair $\left\{a, \tau^{*} a\right\}, a \in H^{4}\left(X^{w} ; \mathbb{Z}\right)$, is realized for some Pin_{4}-bundle over X let P_{a} be the $S U_{2}$-bundle with $c_{2}=a$ and form the Spin $_{4}$ bundle $P_{a}+P_{\tau^{*} a}$. According to lemma 3.3 the weakly associated $P_{P_{4}}$ bundle $\hat{P}:=\left(P_{a}+P_{\tau^{*} a}\right) \times_{S p i n_{4}} P i n_{4}$ is equal to $P_{a}+P_{\tau^{*} a} \amalg P_{\tau^{*} a}+P_{a}$. Since $P_{\tau^{*} a}=\tau^{*} P_{a}$ as $S U_{2}$-bundles there is a map $\tau^{\prime}: P_{\tau^{*} a} \rightarrow P_{a}$ covering τ. To simplify notation we'll write τ^{\prime} also for $\left(\tau^{\prime}\right)^{-1}: P_{a} \rightarrow P_{\tau^{*} a}$.

Having the notation set up we define an involution $\hat{\tau}$ on \hat{P} by

$$
\begin{array}{clcccccc}
\hat{\tau}: & P_{a}+P_{\tau^{*} a} & \text { ل } & P_{\tau^{*} a}+P_{a} & \rightarrow & P_{a}+P_{\tau^{*} a} & \text { II } & P_{\tau^{*} a}+P_{a} \\
(p, q) & & & \mapsto & \left(\tau^{\prime} p, p\right) & \mapsto & \left(\tau^{\prime} q, \tau^{\prime} p\right) & \\
& & &
\end{array}
$$

This map is a Pin A_{4} equivariant involution on \hat{P} covering τ on X^{w} and flipping the components of \hat{P}. The quotient $\hat{P} / \hat{\tau}$ is therefore a Pin $_{4}$ bundle over X with data $\left(w, a, \tau^{*} a\right)$.

The relation between (a, b) and Euler and Pontrjagin class follows from Lemma 3.1.

Corollary 3.7 Let $H^{4}\left(X^{w} ; \mathbb{Z}\right)$ contain no 2-torsion.
i) Two Spin ${ }_{4}$ bundles are isomorphic as Pin $_{4}$ bundles iff p_{1} coincides and e coincides up to sign.
ii) Two Pin ${ }_{4}$ bundles with $w_{1} \neq 0$ are isomorphic iff they have the same w_{1} and their twisted Euler classes coincide up to sign.

Corollary 3.8 Pin $_{4}$ bundles over a nonorientable 4 -manifold X with $w_{1}=w_{1}(X)$ are classified by the absolute value of their Euler number.

Moreover, every number $k \geq 0$ is realized as Euler number for some Pin $_{4}$ bundle P.

References

[Bro82] Kenneth S. Brown. Cohomology of Groups, volume 87 of Graduate Texts in Mathematics. Springer-Verlag, NewYork, Heidelberg, Berlin, 1982.
[DW59] A. Dold and H. Whitney. Classification of oriented sphere bundles over a 4-complex. Ann.Math.(2), 69:667-77, 1959.
[EM47] S. Eilenberg and S. MacLane. Cohomology theory in abstract groups II. Ann.Math.(2), 48 No.2:326-41, 1947.
[HH58] F.-Hirzebruch and H. Hopf. Felder von Flächenelementen in 4dimensionalen Mannigfaltigkeiten. Math. Ann., 136:156-172, 1958.
[LM89] H. Blaine Lawson, Jr. and Marie-Louise Michelson. Spin Geometry, volume 38 of Princeton Mathematical Series. Princeton University Press, Princeton, New Jersey, 1989.
[Web97] Christian Weber. Gauge theory on nonorientable four-manifolds. Verlag Dr. Kovač, Hamburg, 1997.

Max-Planck-Institut für Mathematik
Gottried-Claren-Strasse 26
D-53225 BONN
E-mail adress: weber@mpim-bonn.mpg.de

