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The Geometry and Topology of 3-Sasakian Manifolds

CHARLES P. BaYER I(RZYSZTOF GALICKI BENJAMIN M. MANN

In recent years quaternionic Kähler and hyperkähler manifolds have received a great
deal of well-deserved attention. They appear, often unexpectedly yet naturally, in many
different areas of mathematics and mathematical physics. This attention has resulted in
the rapid development into the rich theory of quaternionie manifolds that exists today.
It has even been argued that these recent advances in quaternionie geometry vindicate
Hanlilton's conviction that the algebra of quaternions should play an important role in
mathematical physics [At, Hi1].

The purpose of this paper is to describe in detail the geometry and topology of a
dass of Riemannian Einstein manifolds that are closely related to both hyperkähler and
quaternionic I(äWer manifolds. These manifolds, known as manifolds with a Sasakian
3-structure, first appeared in a paper by Kuo in 1970 [Ku]. Incidentally, Kuo's paper
appeared a few years before Ishihara [11] and Calabi [Cal] introduced the now commonly
accepted terms "quaternionic I<ähler" and "hyperkähler" , respectively, into the differential
geometry vocabulary. We shall refer to manifolds with a Sasakian 3-structure as 3-Sasakian
manifolds.

Sasakian structures historically grew out of research in contact manifolds and were
studied extensively in the 1960's especially by the Japanese school (See [YI(] aod references
therein). In 1070 three more papers, [KuTach], [TachYu], and [Tan1], were published in
the Japanese literature discussing Sasakian 3-structures. These structures were then vigor­
ously studied by Japanese mathematicians from 1970-1975, culminating with an important
paper of Konishi in 1975 [I(on] which shows the existence of a Sasakian 3-structure on a
certain principal 50(3) bundle over auy quaternionic Kähler manifold of positive scalar
curvature. Earlier on, in 1973 Ishihara [12] had shown that if the distribution formed by the
three I(illillg vector fields which define the Sasakian 3-structure is regular then the space
of leaves is a quaternionie I(ähler manifold. This then led Ishihara to his foundational
work on quaternionic I(ähler manifolds [11]. It is notable that in this early period the
only examples of 3-Sasakiall lnanifolds that were given were those of constant curvature,
namely the spheres S4k-l, the real projective spaces Rp4k-l, and spherical space forms
in dimension three [Sas]. Even though I(onishi's result mentioned above combined with
the earlier work of Wolf [Wo] on the classification of homogeneous quaternionic I(äWer
manifolds of positive scalar curvature give many new homogeneous examples, no further
work on 3-Sasakian manifolds was done until very recently in [BGM1], and in [FI(] for
dimension 7.

Unlike the current intense interest in quaternionic Kähler and hyperkähler structures,
Sasakian 3-structures appear to have been largely neglected in recent years. For example,
in Besse's comprehensive book on Einstein manifolds [Bes] , there is an entire chapter
devoted to quaternionic I{ähler and hyperkähler manifolds. By contrast, there is uo explicit
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mention of 3-Sasakial1 manifolds which appeal' only implicitly and vel'Y briefly as examples
of homogeneous Einstein spaces. For instance, Besse proves the existence of two Einstein
metries on a certain principal 80(3) bundle Y over any quaternionie !(ähler manifold
with positive scalar curvature [Bes: Proposition 14.85]. The manifold Y with one of these
two metries is an example of a 3-Sasakian manifold, and the fibration is the one given in
the lower right hand corner of diagrarn 0.1 below. Although this result was discovered by
Konishi [Kou] almost 20 years ago, Besse did not seem to be aware of this fact.

We were led to study this geometry because it appears as a natural object in a
new quotient construction for certain hyperkähler manifolds [BGMl]. We found that 3­
Sasakian manifolds provided a natural piece of a puzzle that links together three other
different geometrie structures. In partieular, for any quaternionie Kähler manifold M of
positive scalar curvature there exists a commutative diagram

u
C· /Z2 ~

/ "-
0.1 Z 1H" /z, S,

Cpl Rp3

~ ./
M

whereU is hyperkähler (the Swann bundle associated to M [Sw]), Z is Kähler-Einstein (the
twistor space associated to M [Sall]), and S is 3-Sasakian (the Konishi bundle associated
to M [Kon]). The map t : S ~ U is the inclusion of a level set of a natural real valued
funetion while all the other maps in diagrarn 0.1 are fibrations where we have denoted
each map by its associated fiber. Furthermore, both Z and S are compact, of positive
scalar curvature, and S is a principal circle bundle over Z.

It is important to realize that aH foul' geometries in diagrarn 0.1 axe Einstein. The
important observation, due to Kashiwada [I(a] , that 3-Sasakian manifolds are always Ein­
stein spaces and the relationship of S to the other quaternionic geometries appearing in
diagrarn 0.1 motivated our efforts to study and understand these spaces.

After investigating this intriguing geometry we have arrived at the compelling con­
clusion that 3-Sasakian Inanifolds are by no means less interesting than their hyperkähler
01' quaternionie I(ähler counterparts. In fact, a case ean be made that they are even
richer and more interesting. As we have already mentioned there is always at least one
3-Sasakian manifold assoeiated with every quaternionie Kähler manifold of positive scalax
eurvature. However, as we pointed out in [BGM1], 3-Sasakian manifolds are much more
plentiful than quaternionie Kähler lnanifolds of positive sealar curvature. In all hut five
quaternionie dimensions there are only 3 explicitly known examples of compaet quater­
monie !(ähler manifolds of positive scalax curvature (in dimension 1 there are only two
such examples whereas in dimensions 7, 10, 16, and 28 there are four). Moreover, all of
these examples are sYlnlnetrie spaces and can be found in Wolf's classifieation [Wo]. It is
also known that in quaternionie dimensions 1 and 2 there are no others [Hi2], [PoSal].

By contrast, a 3-Sasakian manifold must be of real dimension 4k + 3 and in each
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such allowable dimension we were surprised to find infinitely many examples of compact
3-Sasakian manifolds. In addition, as we shall show below, these examples range through
infinitely many distinct homotopy types in every dimension. Moreover, in dimension
7, we found countable families of Jtrongly inhomogeneo'lLJ 3-Sasakian manifolds, that is
manifolds which are not homotopy equivalent to any compact Riemannian homogeneous
space. These examples, which are discussed in detail in the later part of this paper, are,
to the best of our knowledge, the only examples of complete inhomogeneous Einstein
manifolds of positive scalar curvature.

Most importantly, as we explain below, in order to recapture the elose relationship
between these new 3-Sasakian examples and quaternionic I<:ähler geometry, one must gen­
eralize diagram 0.1 to allow the base space M to be a quaternionic Kähler orbifold.

We now explain how this paper is organized and highlight some of Dur main results.
In section one we introduce SOlne basic facts about Riemannian foliations and Riemannian
orbifolds which are needed to generalize diagrarn 0.1 and other results to the orbifold
category. Section two begins with the definition of a Sasakian 3-structure on a Riemannian
manifold and continues with abrief discussion of some classical results for such structures.
In particular, we recall both Ishihara's [12} and Konishi's [Kon} constructions, as weil as
Kashiwada's [Ka] observation that every 3-Sasakian manifold is necessarily Einstein. At
this point we make a fundamental extension of these known results to the case of orbifold
fibrations by proving the foilowing theorem.

TH EO REM A: Let (S, g, ~a) be a 3-Sasakian mannoid of dimension 4n +3 such that the
I(i1iing vector neids ~a are conlpiete for a = 1,2,3. Tilen

Ci) (S, g, ~a) is an Einstein lTIallifoid ofposi tive scalar curvature equal to 2(2n+1)(4n+3).

(ii) The nletric 9 is bundie-iike with respec t to the foiiation :F, defined by {~a}a=1,2,3 .

(ili) Eacb ieaf [, of the foiiation :F i8 a 3-dimensiona1i101nogeneous spherical space form.

(iv) The space of ieaves S /:F is a quaternionic I(ähier orbifold of dimension 4n with
positive scalar curvature equal to 16n(n +2).

Hence, every compiete 3-Sasakiall mallifoid is compact with finite fundalnental grOtlp and
diameter ies8 tllan or equal to 7r.

Thus, we show both that every complete 3-Sasakian manifold is necessarily of pos­
itive scalar curvature and that it must also fiber, in the orbifold sense, over a compact
quaternionic I<:ähler orbifold. This observation, first hinted at in [BG MI], turns out to
be crucial, both in tenns of desCl"ibing the geometry of such spaces and constructing noo­
trivial examples.

In section three we prove the converse of the result presented in [BGMIJ, where we
showed that 3-Sasakian manifolds occur naturally as level sets of the hyperkähler potential
function v on a certain hyperkähler manifold. Here we show that every 3-Sasakian manifold
cau be embedded io a hyperkähler manifold as the level set of such a hyperkähler potential.
More precisely we prove:

THEOREM B: Let (S,9S,~a) be a conlpiete 3-Sasak1an manifold. Then the product man­
ifoid M = S X R+ with tbe cone metric gM = dr 2 + r2 gs is hyperkähler so that there is a
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cOlnmutative diagram oE (orbifold) fibrations

0.2 z
./

1
o

./

S,

where 0 is a quaterllionic !(ähler orbifold.

Thus, Theorem B shows that every 3-Sasakian manifold comes from the hyperkähler
quotient construction given in [BGM1]. Moreover, Theorem Band our constructions in the
later sections can be used to give many new examples of compact hypercomplex manifolds.
For details see Corollary 3.12.

In section foul' we classify all 3-Sasakian homogeneous spaces, that is 3-Sasakian man­
ifolds with transitive action of the group of automorphisms of the Sasakian 3-structure.
Combining Wolf's [Wo] classification with results of Ishihara [12], Tanno [Tan1], and The­
orem A we prove the following classification theorein.

THEOREM C: Let (S, g, ~a) be a 3-Sasakian hOlnogeneous space. Then S is precisely one
of tl1e following llolnogelleous spaces:

Sp(n)
Sp(n - 1)

I'"V s4n-1
- l

Sp(n)
Sp(n - 1) X 12

SU(m)
S(U(m - 2) x U(I))'

SO(k)
SO(k - 4) x Sp(l) ,

E6

SU(6) , Spin(12) l

Here n 2:: 1, Sp(O) denotes the identity group, m 2:: 3, and k 2:: 7. Furthermore, the fiber
F over the Wolf space is Sp(l) in only one ease which aceurs precisely when (S,g,e a ) is
siIl1ply eonneeted wit11 constallt eurvature; that is, wben S = S4n-1. In 811 other cases
F = SO(3).

The classifieation of 3-Sasakian homogeneous spaces is an expected consequence of
the combined work of Wolf and Ishihara. However, Theorem A provides the key ingredient
in the proof. The Inetrics on all these cosets spaces are Einstein and they were considered
in this context in Besse. However, with the exception of the constant curvature case, these
are not the normal homogeneous metries, as they are not naturally reductive and thus are
not obtained froin the bi-invariant metric on G by Riemannian submersion.

The key technique for constructing new examples of 3-Sasakian manifolds is the re­
duction procedure described in section five. Explicitly, we prove

TH EOREM D: Le t (S, 9s ,ea ) be a 3-Sasakian manilold witb a conneeted earnpact Lie
group G acting Oll S by 3-Sasakian isometries. Let jJ.s be the carresponding 3-Sasakian
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moment map and assume botll tllat 0 is a regular value of ps and that G acts freely on
tlle sublnanifold J-ls 1 (0). Furtllennore, let

and

denote the eorresponding elnbedding and submersion. Then

is a slnootb 3-Sasakiall mallifold of dimension 4(n - dirn g) -1 with metrie 95 and Sasakian
veetor fields (4 determined uniquely by the two eonditions

. .~

l 9s = 1r 9s

and

Theorem D is then used in the next two sections to obtain explicit new families of 3­
Sasakian manifolds. First, in section six we give an explicit description of the Riemannian
metric for the Sasakian 3-structure on the caset spaces

U(n)
U(n - 2) X U(1)

and
SO(n)

SO(n - 4) X Sp(1)"

These spaces are obtained froln Theorem D as 3-Sasakian quotients of the unit sphere
S4n-l with its canonical rauod metric by actions of U(I) C Sp(n) and Sp(l) C Sp(n),
respectively. Here the group Sp(n) is the automorphism group of the Sasakian 3-structure

on S4n-l. Moreover , this detailed discussion for u(n~ifJU(I) sets the notation for an
important deformation construction given in section seven. We do not know of any such
explicit description of the reulaining five exceptional examples given at the end of Theorem
C, but in this case the Konishi bundle construction gives the existence of the 3-Sasakian
metric on G/ LI.

Next, in section seven we present adeformation theory associated to the 3-Sasakian
homogeneous manifold u(n~2)n2U(I) which we use to generate our most important families
of inhomogeneous 3-Sasakian lnanifolds in every allowable dimension. The point is that, in
the slnooth category under the assumption of positive scalar curvature, the quaternionie
Kähler quotient construction given in [GL] is extremely rigid. The ooly know quotients
which can occur as the base space in diagram 0.1 are the quotients of the quaternionie
projective spaces Hpn-l by U(l) and Sp(I). These two quotients produce the complex
and real Wolf spaces X(n - 2) anel yen - 4), respectively. They lift to the quotients of
the Konishi bundle, giving the two 3-Sasakian quotients of S4n-l mentioned above and
discussed in section six.
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However, these two examples are not the only quotients of S4n-l that yield complete
3-Sasakian manifolds. The U(I)-quotient at this level actually has infinitely many dis­
crete deformations of the standard homogeneous exarnple. Every deformation produces a
SIllooth 3-Sasakian manifold. All these quotients project to orbifold quotients considered
in [GL]. This is why the generalization from diagram 0.1 to diagram 0.2 given in [BGMl]
is so important. In particular, we prove

THEOREM E: Let p = (PI, ... ,Pn) E Z+ be an n-tuple ofpairwiserelatively prime positive
integers. Let S(p) be tbe quotient oE tbe complex Stiefel manifold Vn~2 by a free circ1e
action, or equivaJently, tlle left-rigllt quotient oE the unitary group U(n) by H C G2 =
GL X GR, where H = U(l) x U(n - 2) and the action is given by the formula

Here W E U(n) and (r,B) E U(I) x U(n - 2). Then S(p) is a compact, simply connected
(4n - 5)-dimensional3-Sasakian manifold whose integral cohomology ring H* (S(p), Z) is
generated by two c1asses

which satisfy the following relatiolls:

n

Here O"n-l (p) =L PI ... Pi ... Pn is tlle (n - l).!It elementary symIlletric polynomial in p.
j=1

The computation of the integral cohoIllology ring of S(p), which is based on tech­
niques developed by Eschenburg [Esch], is presented in section eight. Notice that Theorem
D immediately implies that in every dimension of the form (4k - 5) for k ~ 3 there are
infinitely many distinct homotopy types of complete 3-Sasakian manifolds. Theorem C
implies that all of theIn, except in the case when p = (1, ... , 1), are inhomogeneous Ein­
stein manifolds. Moreover, it turns out that sorne of our examples are not even homotopy
equivalent to any compact hornogeneous Riemannian space. We prove this result in sec­
tion nine, where we consider the case of n = 3 in more detail. At this point we rewrite
the 3-Sasakian 7-manifold S(Pt,]J2,P3) as a left-right quotient of SU(3) by a free circle ac­
tion. We also describe the relation of our spaces Sept, P2, P3) to the bi-quotients of SU(3)
considered by Eschenburg in [Esch]. Most importantly, combining a result of Eschenburg
and Theorem E we have the following theoreln.

THEOREM F: H U2(P) = PIP2 + ]J2P3 + P3Pl =2 (mod 3) tben S(PI,P2,P3) is strongly
inhomogeneous; tbat is, it is not llomotopy equivalent to any compact lliemannian bomo­
geneous space.
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In particular, for any odd c > 0, the manifold S(c, c + 1, C + 2) satisfies the condition
that U2(P) = 2 (mod 3). Thus, there exists a countable family of strongly inhomogeneous
Einstein spaces of positive sealar eurvature. To our knowledge, this family (and many other
similar S(Pl, P2, P3) families ) are the only known examples of strongly inhomogeneous
compaet Einstein manifolds of positive scalar curvature. Furthermore, we show that as C

tends to infinity, S(c,c+ 1,c+2) approaehes SU(3)IU(1) with its homogeneous Sasakian
3-structure in the Cheeger p·-topology [Ch1,Ch2]. This, on the other hand, implies that,
for large c, our 3-Sasakian nlanifolds S(c, c + 1, c + 2) admit metrics of positive sectional
curvature. Finally, in the last section we briefly discuss some open problems arising from
our investigations.

We would like to thank Gerardo Hernandez, Jim Milgram, and Stephan Stolz for
helpful discussions concerning this work, Jim Milgram for originally pointing out [KreStl]
and [KreSt2] to us, and Stephan Stolz for giving us a copy of [KreSt3]. The second named
author would also like to thank the Max-Planek Institute and its director Professor F.
Hirzebruch for their hqspitality and support. This article was completed during his visit
there.

§1. Orbifolds and Riemannian Foliations.

In this section we review some important properties of both orbifolds and related
Riemannian foliations. Roughly speaking orbifolds are like differentiable manifolds except
that instead of being modelled on Rn they locally look like Rn Ir, where r is a discrete
group of diffeomorphisms of Rn. This idea was first introduced by Satake [Sat] and he called
these spaces V-manifolds. They also beeame known as Satake manifolds or orbifolds. We
will use the tenn orbifold whieh has gained recent acceptanee in the literature. Orbifolds
appear naturally as the space of leaves of certain nicely behaved Riemannian foliations.
In this paper we will not be eoneerned with the .most general type of orbifold nor the most
general type of foliation, but rather only with those orbifolds 0 that arise as the quotient
space of a locally free action of a compact Lie group G on a smooth manifold M (in our
ease G will be either SU(2) or SO(3)). In this case the fundamental vector fields of the
action of G on M define a foliation :F on M and the spaee of leaves MI:F has the structure
of an orbifold. Thus, the smooth lnanifold M can be viewed as a desingularization of the
orbifold MI:F. More generally, the leaf space MI:F of any Riemannian foliation (M,:F, g)
with compact leaves is an orbifold. Satake's original article [Sat] is a good referenee for the
theory of orbifolds and the books of Molino [Mo] and Reinhart [Reil] are good references
for the theory of Rielnannian foliations.

Following Satake [Sat] and Molino [Mo] we define orbifolds and slnooth maps between
them. Let 0 be a second countable Hausdorff space, and U C 0 an open set. A loeal
unijormizing ~Y~fJte1n (1.u.s.) for U is a tripie {Ü, r, 1r} where Ü C Rn is an open subset
of Rn, r is a finite group of diffeolnorphislns on Ü, and 7r : Ü--tU is a eontinuous map
satisfying

(i) 1r 0 U = 1r for all a E r
(ii) 1r induces a homeomorphism 4> : U-'lÜIr.
The pair (U, 4» is called a Ioeal ehart of O.
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In particular, let <9 = ÜIf and V C ÜIf any open set. Then {V, f,1r} is a Iocal
uniformizing systeul for V with V = {p E Ü I if(p) E V} and 1r : V-+V equal to the
restrietion to V of the natural projeetion 1r : [;-+UIr. In this ease the Iocal ehart 4> is the
restrietion of the identity map. Now consider open sets [; c Rn and U' C Rm together
with finite groups of diffeomorphislllS r and f' aeting on Ü and [;', respeetively. We say
that a continuous map f : [;If-+Ü' If' is smooth if f lifts Iocally to a smooth map, that
is, for every point p E UIf there are neighborhoods V C ÜIf of p and V' C [;,If' of
f(p), Iocal uniformizing systems {Ü, r, 1r} and {[;', f', 1r'} for V and V', respeetiveIy, and
a smooth map i :V----tV' such that the diagram

V'

1.1

V
f

-t V'

eommutes. The rank of the smooth lllap f is defined to be the rallk of 1. The notions of
orbifold immersions, submersions, diffeomorphisms, ete., are defined in a similar manner.

Notice that a smooth map f : ÜIf----tU' If' defines a group homomorphism f----tf'
as folIows: Let u E f then by the cOlllmutativity of diagram 1.1 1(u(p)) lies in the fiber
1r,-1 (f(1r(p)) ~ r'. Hence, there is a unique u' E r' such that j 0 u = u' 0 j. One easily
checks that the map u 1-4 U' is a homomorphism. If f is a diffeomorphism outo its image
J(UIr) c Ü' Ir, then the map a 1-4 a' is a group monomorphism. In particular, if ! covers
the identity flIap f = id then Satake [Sat] calls 1an injection.

DEFINITION 1.2: Let.O be a second eountable Hausdorff spaee. A smooth orbi[old atlas
for 0 is a cover {Ui} of 0 by open sets Ui with a loeal uni[orrnizing system {Ui, r i, 1ri}
for each Ui such tllat the homeonlorphisms 4>i satisfy the condition that

is a diffeomorpl]islll for each i, j witl1 Ui n Uj i:. 0. Then <9 together with a maximal
orbifold atlas is ca11ed an orbifold.

A point of 1) E 0 is regular if p has a neighborhood U that has a Iocal uniformizing
system with f = id. Otherwise p is called singular. The regular points of " form a dense
open set.

REMARK 1.3: Satake's original definition included the requirement that the fixed point set
of any of the finite groups f i be of codimension at least 2. This restrictive definition is not
theoretically convenient at this point. For example, Molino's theorem stated below (see
1.8) does not hold for Satake's less general definition of orbifold. However, the orbifolds
that we construct in this paper do have singular sets of codimension greater than or equal
two.
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Satake then generalizes such standard notions of differential geometry as bundles,
differential forms, Riemannian luetrics, etc., to the orbifold category (see [Sat) for further
details). As mentioned above our interest in orbifolds sterns from the fact that they occur
naturally as the leaf space of certain Riemannian foliations.

Recall that a foliation:F on a manifold M is given by an integrable subbundle V of the
tangent bundle TM, that is, a subbundle whose smooth sections form a Lie subalgebra of
the Lie algebra of Sll100th vector fields on M. There is an exact sequence of vector bundles

1.4 o~ V~ TM ~ TM/V~ o.

A Riemannian metric 9 on M splits this exact sequence to yield the Whitney sum

TM = VEB'H

defining the horizontal subbundle 'H. The integrable subbundle V is called the vertical
subbundle. In general, and in our case in particular, the horizontal subbundle 'H is not
integrable. A Riemannian 111anifold (M,9) together with a foliation :F on M is called a
Joliated Riemannian maniJold and is denoted by (M, 9, :F). The following definition is due
to Reinhardt.

D EFIN ITI 0 N 1.5: [Rei2) Let (M,:F, g) be a foliat ed Riemannian manifold. The metric 9 is
said to be bundle·like if for any horizontal vector nelds X, Y in the normalizer of V under
the Lie bracket, tlle equation

V9(X,Y) = 0

holds for any vertical vector neld V.

REMARKS 1.6:

1. Vector fields belonging to the nonnalizer of V are often called Joliate [Mo].

2. Functions that are annihilated by all vertical vector fields, as in Definition 1.5 above,
are known as bUjic [Mo).

3. Definition 1.5 is equivalent to the condition that the horizontal distribution 'H be
totally geodesie (see [Mo) or [Rei1] for details).

We shall make use of the following lemma:

LEMMA 1. 7: Let (M, g,:F) be a foliated Riemanman manifold, and suppose tbat the
vertical distribution V is spanned by I(illing vector nelds. Then 9 is bundle-like.

PROOF: It is enough to show that the condition in definition 1.5 holds when V is auy
I{illing vector field. Let X, Y be horizontal vector fields on M belonging to the normalizer
of V, then we have

Vg(X, Y) = (LVg)(X, Y) + g([V,X], Y) + g(X, [V, YD = 0,

where LV denotes the Lie derivative with respect to V. The first term vanishes since V is
a Killing vector field. The two remaining terms vanish since X and Y are horizontal and
the terms in brackets are vertical. •
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The following resuIt, which is given in Molino, is fundamental to our work:

THEO REM 1.8: [Mo: Proposition 3.7] Let (M,:F, g) be a Riemannian foliation of eodimen­
sion q witb compaet Ieaves and bundIe-likemetrie g. Then tbe space ofleaves MI:F admits
the strueture of a q dimensional orbifold such that the natural projeetion 1r : M --+MI:F
is an orbifold subn1ersion.

Another important eoncept in the theory of foliations is that of the leaf holonomy
group. This group is a certain image of the fundamental group of a leaf in the Ioeal group
of germs of diffeomorphisms of a transverse submanifold to the leaf. It measures how
transversals change as one moves along a Ioop in the leaf. In our situation we have the
following:

PROPOSITION 1.D: Let (M, :F, g) be a lliemannian foliation with compaet Ieaves and bundle
like metde as in theorem 1.8. The dense open set (MI:F)O oE regular points oE MI:F is
predsely the set oE leaves with trivial 11olonolny and there is a unique Riemanman metrie
9 on (MI:F)O such that the natural projeetion 1r : M --+MI:F restriets to a locally trivial
Riemannian sublnersion on 1r- 1((MI:F)0). At a singular point oE MI:F the finite group
r is precisely tl1e 110IollOll1Y oE the leaf. In particular, iE there are no singular points, the
projeetion 1r : M --+ MI:F is a Ioea1Iy trivial lliemannian libration.

PROOF: Except for the loeal triviality statement, this follows frorn Molino [Mo: §3.6]. The
Iocal triviality is a eonsequence of the Ehreslnann fibration theorem. •

Theorem 1.8 and Proposition 1.9 allow one to talk about the quotient MI:F as a
Riemmanian orbifold. The metric 9 is defined only on the dense open set (MI:F)O; however,
the transverse part 9T of the metrie 9 is ametrie on the horizontal distribution H whieh
satisfies

... -
71'" 9 = gT

on the points of 71'" - I ( ( MIF)°). Thus, 9T ean be interpreted as deserihing the metrie on the
whole orbifold including its singular locus. Aecordingly all of Q'Neill's standard formulae
for Riemannian submersions hold for these more general orbifold Riemannian submersions
(see [Rei1: page 160]). Hence, we sha11 freely apply these well-known formulae, given for
example in Besse [Bes], to this more general setting of orbifold Riemannian submersions.

§2. Same Old and New Results on 3-Sasakian Manifolds

In this seetion we review SOlne known results about Riemanian manifolds which admit
3-Sasakian struetures and then give an important generalization. Following Ishihara and
I(onishi [ll(on], we begin by recalling the definitions of Sasakian and 3-Sasakian struetures
on a Riemannian 111anifold.

DEFINITION 2.1: Let (S, g) be a llielnanniBJ1 manifold BJ1d let '9' denote the Levi-Civita
connection oE g. Then (S, g) has a Sasakian structure if there exists a Killing vector neid
~ oE unit lengtl1 on S so that the tensor neid ~ oE type (1,1), defined by

(i)

satislies the condition

(ii) (\7x~)(Y)
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for any pair of vector neids X and Y on S. Here .,., denotes tbe I-form dual to ~ with
respect to g, i.e. g(Y,~) = .,.,(Y) for allY vector neid Y, and satisfies an equation dual to
(i), naJnely,

(iii) (\7 xTJ )(Y) = g(Y, <I>X).

We wri te (<I>, ~, .,.,) to dellote the specific Sasakiall s tructure on (S, g) and sometimes refer
to S with such a structure as a Sasakian manifold.

It is straightforward to verify that the following equations hold.

PROPOSITION 2.2: Let (8, g,~) be a Sasakian IDaJlifold and X and Y any pair of vector
neIds on S. Thell

(i)

(ii)

(iii)

(iv)

(v)

(vi)

<I> 0 <I>(Y) = -Y + .,.,(Y)~,

7](<I>Y) = 0,

g(X,cI>Y)+g(cI>X,Y) - 0,

g( fllY, cI>Z) = g(Y, Z) - ""(Y)1]( Z),

dry (Y, Z) = 29( <I>Y, Z).

Furtllermore, tbe Nijenlulis torsion tensor

N~(Y, Z) = [<I>Y, <I>Z] + <I>2[y, Z] - <I>[Y, <I>Z] - <Jl[<JlY, Z],

of cI> satisfies

(vii)

We now define Dur main objects of interest.

DEFINITION 2.3: Let (8, g) be a RielDaJlllian Inanifold that admits three distmct Sasakian
structures {<I>a, ~a , 1]a} a=1,2,3 such that

(i)

and

(ii)

11



for a, b, c = 1,2,3. Then (5, g) is a 3-SasakiaJl Inanifold witb Sasakian 3-structure (5, g, ~a).

It follows directly from the definition that every 3-Sasakian manifold admits a local
action of either Sp(1) or 80(3) as local isometries, and if the vector fields ~a are complete
these are global isometries. We refer to this action as the ~tandard Sp(1) action on 5. In
the remainder of this paper we sha11 assurne that the vector fields ~a are complete. This
structure has several importal1t implications. First, it is not difficult to verify that the
following relations between the Sasakian structures hold:

l]a(~b) - hab ,
2.4 ~a~b - _eabc~c ,

<I>a 0 <I>b - ~a (9 1]b = _eabc<I>c _ habid.

The following result is we11-known:

THEO REM 2.5: Every 3-Sasakian manifald (5, g, ~a) has diInension 4n + 3 and dennes a
Riemannian foliation (5,:F) oE codimension 4n witb totally geodesie leaves of constant
curvature 1. Furtllermore (5, 9, ~a) is an Einstein manifold.

The first result is due to !(uo and Tachibana [I(uTach] and the important observation
that every 3-Sasakian manifold is Einstein is due to I(ashiwada [I(a]. For more general
almost contact 3-structures I(uo [I(u] has proven:

THEOREM 2.6: [I(u] The structure group of any manifold witb an almost contact 3­
structure is reducible to Sp(n) x b where 13 denotes the three by three identity matrix.

I(uo's theorem has an important corollary:

COROLLARY 2.7: Every 3-Sasakian nlanifold is a spin manifold.

We 5ha11 also deduce Corollary 2.7 by u5ing the embedding techniques given in the
next section.

In addition, using luu'ulol1ic theory on compact Sasakian luanifolds, Kuo [Ku] has
also shown that on a compact (4n + 3)-dimensional 3-Sasakian manifold 5 the i th Betti
number, b,(5), must be of the form 4q whenever i is add and i < 2n + 2.

Much of the previous work on 3-Sasakian manifolds has concentrated on the regular
case when (5, g, ~a) is the total space of a lliemannian submersion [II(an,I2]. The following
is a theorem of Ishihara [12].

THEOREM 2.8: [12] Let (5, 9 1 ~a) be a 3-Sasakian Inanifold s ueh that tbe spaee of leaves
5/:F is a lliemannian InaJlifolcl alld the natural projection

1r: (5,g) ~ (5/:F,{})

is a RiemaJlnian submersion. Then (5/:F, {}) is a quaterruonic !(äbler manifold.

A converse of this theorelll was obtained by Konishi [Kou].

THEOREM 2.9: [Kon] Let (M, g) be a quaternionie Käbler maJlifold with positive sealar
eurvature. Then there is a prillcipal SO(3) bundle 5 over M whose total space admits a
metric 9 with an associated 3-Sasakian structure.

12



Konishi also considers the case when the quaternionie Kähler manifold has nega­
tive scalar curvature. This gives a Sasakian 3-structure on 8 with indefinite signature
(3, 4n). We shall not consider this case. In the positive scalar curvature case, there is
an obstruction to lifting the 80(3) bundle to an 8U(2) bundle. This obstruction is the
Marchiafava-Romani dass f [MaR] of the quaternionic Kähler manifold M, and a result
of Salamon [SaU] says that if the quaternionic !(ähler manifold is complete with positive
scalar curvature then f vanishes if and only if M = Hpn. This result does not hold in
the case of quaternionic !(ähler orbifolds, nor if the completeness assumption is dropped.
Indeed, in Proposition 7.21 below we give a dass of 3-Sasakian manifolds each of which
fibers, in the orbifold sense, over a quaternionic Kähler orbifold with the generic fibre
equal to SP(l).

We generalize these results as follows:

THEOREM 2.10: Let (8, g, ~a) be a 3-Sasakian rnanifold of dimension 4n + 3 such that the
I(illing vector neids ~a are cornplete for a = 1,2,3. Tben

(i) (8, g, ~a) is aJl Einstein Inanifold ofpositive sealar curvature equal to 2(2n+ 1)(4n+3).

(ii) The metrie 9 is bundle-like witb respect to the foliation F.

(iii) Eaeh leaf ~ of tbe foliation F is 3-diInensional homogeneous spherical space form.

(iv) The space of leaves 8/F is a quatenlionic I(ähler orbifold of dimension 4n with
positive scalar curvature equal to 16n(n + 2).

Hence, every conlplete 3-Sasakian manifold is compact witb finite fundamental group and
diameter less tl1an or equal to iT.

PROOF: The last statement is a direct consequence of the first statement and Myers'
theorem [Mi]. Next we prove the first statement. Since the vector fields ~a are Killing
vector fields, the metric 9 is bundle-like by lemma 1.7. Furthermore, since these vector
fields are complete the foliation F has compact leaves. So, by Molino's theorem 1.8, the
space of leaves S / F is an orbifold 0 of dimension 4n, and by proposition 1.9 the natural
projection iT : 8-----+8/F is a Riemannian submersion on the dense open set of regular
leaves. The fact that the space of leaves 8/F has a quaternionic Kähler structure follows
from Ishihara's theorem 2.8 applied to the dense open set of leaves. Now the dimension
of each leaf is three, and allleaves are totally geodesic of constant curvature 1 by 2.5. In
particular, O'Neill's tensor field T vanishes, and so for each a = 1,2,3 the tensor field
cI-arestricted to any leaf L defines a Sasakian structure there. Hence, (g, cI> a , ea ) a=1,2,3

restricted to ~ makes ~ a 3-Sasakian manifold of dimension 3. These were c1assified by
Sasaki [Sas], and it follows that each leaf is a 3-dimensional homogeneous spherical space
form with scalar curvature 6. This proves everything except for the last statement about
the scalar curvature.

To compute the scalar curvature we first determine the Einstein constant A of g.
Using proposition 1.9 we can apply [Bes: 9.62] to the dense open set of regular points to
gIve

2.11

where A is O'Neill's tensor. In particular, A is positive and it remains to compute the
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O'Neill tensor A to determine the scalar curvature explicitly. Again proposition 1.9 shows
that 7r : S-+CJ is a locally trivial orbifold bundle. The generic fibres have the form
SU(2)/r where r is a discrete subgroup of SU(2). In the case that r = id 01' Z2, S is
a principal orbifold bundle with group SU(2) 01' SO(3), respectively. Otherwise S is an
assoeiated bundle. In either case we show that the three l·forms 1]t1 for a = 1,2,3 define
the components of a connectioll in the orbifold bundle S, and that we can compute the
tensor field A from the curvature of this connection. We have

LEMMA 2.12: The three 1-forlTIS Tl a witll a = 1,2,3 are the components of a connection
I-form in tbe orbifold bUlldle S.

PROOF: Choosing a basis eu where a = 1,2,3 for the Lie algebra .sp(I) and defining
Tl = Tl t1 ea we obtain a Lie algebra valued I-form which annihilates the distribution H
orthogonal to V with respect to the metric g. Ta see that the horizontal distribution H is
equivariant and thus defines a connection on S with connection form Tl, we use Proposition
2.2 (vi) to compute

o = 2g(~ueb,X) = dTla(~b,x)

~bTla(x) - XTla(~b) - Tla((~b,X])

= 1]U((eb
, Xl).

Here X is a horizontal vector field and 1 ~ a, b ~ 3. But this implies that [e a
, X] IS

horizontal for all a = 1,2,3. •

LEMMA 2.13: For any pair of horizontal vector fields X and Y on S

(i) AxY - L::=lg(~ax,y)ea.

(ii) Ax(t1 _ ~aX.

PROOF: (i) follows from Proposition 2.2 (vi) and the fact that if n is the curvature two
form of the principal connection 1], then [Bes: 9.54] shows that

where (} : V-+5p(1) denotes the isolll0rphism between the vertical vector space V at a
point of S and the Lie algebra sp(l). (ii) now follows from equation (i) and [Bes: 9.21d] .

•
Returning to computation of the scalar curvature in the proof of theorem 2.10, we let

Xi for 1 :::; i :::; 4n denote a Iocal orthonormal basis of the horizontal distribution 'H, and
compute using lelnlna 2.13, Proposition 2.2 (vi), and [Bes: 9.33a], viz.

2.14

4n 4n 3

IA 1
2 = 2:: g(Ax ;, Ax;} = 2:: 2:: g(AXie a

, AXiea
)

i=l i=l a=1

4n 3 4n 3

= 2::2::g(~aXi,<I»aXd = 2::2::g(Xi ,Xd = 12n.
i=l a=1 i=l t1=1

Substituting equation 2.14 illtO equation 2.11 and using the relation between the scalar
curvature and the Einstein constant establishes Theorem 2.10 part (iv). •
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REMARK 2.15: The hOlnogeneous spherical space forms in dimension 3 are weil known.
They are Sp(I)/r where r is Olle of the finite subgroups of Sp(I), namely:

(1) r = id,

(2) r = Zm the cyclic group of order m,

(3) r = D:n a binary dihedral group with m is an integer greater than 2,

(4) r = T'" the binary tetrahedral group,

(5) r = o· the binary octahedral group,

(6) r = I· the binary icosahedral group.

Thus Theorem 2.10 part (iii) shows that every leaf of any 3-Sasakian manifold is of the
form Sp(l)/r where r"is oue of the groups listed above.

An interesting corollary of Theorem 2.10 and a theorem of Berard-Bergery [BeBer],
which rescales the lnetric along the fibres, is

COROLLARY 2.16: Every 3-Sasakian maniIold has two distinct Einstein Inetrics of positive
scalar curvature. Tlle first is given in TJleorem 2.10 part (i) and the second Einstein metric
bas scalar curvature

12n
2(2n + 1)(4n + 9) - 2n + 3

By distinct here we meaJl nonhomothetic.

PROOF: The first stat.elnent follows from theorem 2.10 and [Bes: 9.73]. It only needs to be
checked that the cannection I-form t] defined by Lemma 2.12 is a Yang-Mills connection.
In fact, one can show directly that this connection I-form t] is anti-self-dual in the sense
of [GPo] and [MCS]. To compute the scalar curvature for the" second Einstein metric we
use [Bes: 9.70d] and [Bes: 9.74]. •

REMARK 2.17: Given any Einstein metric we cau easily obtain a one parameter family
of Einstein metrics by scaling the metric. The scale factar, however, for the 3-Sasakian
metric 9 is fixed by the 3·Sasakian structure. This is not the case for the second Einstein
metric. Perhaps a more meaningful invariant for the second Einstein metric is not its scalar
curvature, but the ratio of the scalar curvature of the second (non 3-Sasakian) Einstein
metric to the scalar curvature of the first (3-Sasakian) Einstein metric. This ratio is given
by

2.18 1 6(n + 1)
+ (2n + 3)(2n + 1)'

Now let 0 be al1Y quaternionie I(ähler orbifold of positive scalar curvature. In general
Konishi's principal 50(3) bundle over the dense open set of regular points of 0 extends to
an orbifold bundle aver 0 whose total space is an orbifold, but not necessarily a smoath
manifold. We will say that the quaternionic Kähler orbifold is a good orbifold if the total
space S of the principal 80(3) bundle over 0 is a smooth manifold. We have the following
corollary of our main theorem.
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COROLLARY 2.19: There is a one-to-one correspondence (up to covering) between slinply
connected 3-Sasakian InaniEolds oEdiInension4n+3 and good quaternionie Kähler orbifolds
oE dimension 4n with positive scalar curvature equal to 16n(n + 2).

REMARK 2.20: A complete.quaternionic Kähler rnanifold M of positive scalar curvature is
necessarily simply connected [Sall]. This follows frorn a theorem ofKobayashi [Koh] which
says that auy complete I(ähler manifold with positive definite Ricci curvature is simply
connected, and a theorem of Salamon [Sall] saying that the twistor space of a quaternionie
Kähler manifold with positive scalar curvature is Källler-Einstein with positive scalar
curvature. lt would be interesting to see whether this result generalizes to the case of
quaternionie Kähler orbifolds.

Finally, we give sorne general results concerning the curvature of auy 3-Sasakian
manifold. Since the curvatw'e of auy Riemannian manifold is completely determined
by its sectional curvature and the sectional curvature of auy Sasakian manifold [YK] is
completely determined by the ep-sectional curvature, we essentially give the latter.

PROPOSITION 2.21: Let (8, g, ea ) be a 3-Sasakian manifold and let K and k denote the
sectional curvatures oE 9 and its transverse component g, respective1y. Then iE X is any
horizontal vector field oE unit lellgth on 5, we bave

(i) K(e a
, eh) = 1 where a + 1 == b (mod 3).

(il)) K(X, ea
) = 1.

(iii) K(X, epa X) = j((X, <I>a X) - 3.

PROOF: (i) follows from theorem 2.5, but is also easy to compute directly. Next, notice
that proposition 1.9 implies that we can use [Bes: 9.29] applied to the dense open set
of regular points of 5/Fand that the equations in proposition 2.2 show that if X is
horizontal of unH length, then the set {X, epl X, ep2 X, ep3 X} is an orthonormal 4-frame.
Thus, (ii) follows frorn [Bes: 9.29b] and part (ii) of lemma 2.13. Finally part (i) of lemma
2.13 implies AXq>R X = ea and thus (iii) follows frorn this fact and [Bes: 9.29c]. •

Thus the local geometry of any 3-Sasakian manifold determines and is determined by
that or"the associated good quaternionie Kähler orbifold.

§3. An Elnbedding Theorem for 3-Sasakian Manifolds

In [BGM1] we showed how certain 3-Sasakian manifolds naturally arise as the level
sets of hyperkähler manifolds with certain additional properties. In this section we prove a
converse to this result by ernbedding every 3-Sasakian manifold (5, g, ~a) in a hyperkähler
manifold. To begin we recall

THEOREM 3.1: [BGM1] Let G be either 8p(1) ar SO(3) and let M be a hyperkäbler
InaniEold adlnitting a loca1ly Eree iS01l1etric action oE G pennuting tbe camplex structures
on M. Then there is an Sp(l) invariant Eunction v and an obstruction section rP oE the
fourth order symlnetric product oE tbe spin bundle 8 4 H on M. H tbis obstruction section
4> is constant on M then each level set oE v admits a 3-Sasakian structure.

To construct the desired hyperkähler manifold associated to (8, g, ea
) notice that the

cartesian product manifold 5 X R+ has a natural Sp(l) action defined to be the standard
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Sp(l) action on S and the trivial action on R+.

THEOREM 3.2: Let (S,gS,~a) be a complete 3-Sasakian manifold. Then the product
Inanifold M = S X R+ with the cone 111etric

3.3

is hyperkäbler in sud] a way that the obstruction sectioD 4J associated to the natural Sp(l)
action is constant. Moreover, S X R+ is not complete witb respect to metric 9M and cannot
be completed by filling in the cone point uuless S = S4n+3 with its standard Sasakian
3-structure.

PROOF: We construct a hyperkähler structure on M = S X R+ as follows: Let 'lT = r :r
denote the Euler field on M and for each a = 1,2,3 define smooth sections Ja of End TM
by the formulae

3.4
rlY _<I>ay +7]a(y)'lT

Ja'lT = _~a.

Here Y is any vector field on M that is tangent to S. Now the action of Sp(l) on
M = S X R+ extends the ~a to vector Belds on M and, by abuse of notation, we let 7]a
denote the I-forms 7]a on S pulled back to M. Hence, on TS we have

Ja 0 Jb _ Ja 0 ( _<pb + 'lT fi) 7]b)

-( _<I>a + Wfi) 1}a) 0 <pb + Ja'lT 0 7]b

= <I>a<I>b + fabc'l! 01]c - ea 0 1]b

= _€abc<I>c _ 8ab id + fabc'1f 0 1{

_ fabc JC _ 8ab id,

where we have used 2.2 and the easily verified identity 1]a 0 <pb = _€abc1]c. Additionally,
in the normal clirection to S we have

Thus, the Ja,s fonn an ahnost quaternionic structure on M. Furthermore, if X and Y are
tangent to S then equation 2.2.v shows that

9M(IaX, Jay) 9M( _<pa X +1]a(x)'lJ, _<I>ay +7]a(y)'lJ)

- gM(<PaX, <I>ay) +7]a(X)1}a(Y)9M('1J, 'lJ)

_ r2 gs( <I>a X, <I>a Y) + 1J a(X)l1 a(Y)r2

_ r29S(X, Y) - r21Ja(X)1]a(y) + r21]a(X)l1a(y)

- r 2 gs(X, Y) = 9M(X, Y),

whereas, in the nonnal direction,
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Henee, gM is almost hyperhermitian.

To prove that (M, gM) is hyperkähler we show that the eomplex struetures Ja are
parallel, Le., that \7Ja = O. This then implies that the almost eomplex struetures Ja are
integrable and that Hermitian strueture (M,9M,Ja) is Kähler for eaeh a = 1,2,3. We
begin by eomputing the seeond fundamental form of the embedding 5 '-+ M obtained as
the level set r = 1. Aetually, it is just as easy to eompute the seeond fundamental form
for the family of embeddings determined by arbitrary r.

LEMMA 3.5: Let 5 be a Riemannian manifold of dimension n, and M = 5 X R+ the cone
on 5 with cone metric given by 3.3. Then the second fundamental form s ofthe embedding
5'-+ M as tbe level set for any fixed nonzero r is given by s(X, Y) = -gs(X, Y)w. Hence,
tbe embeddiug is totally umbilical.

PROOF: Let {Bi} denote a loeal orthonormal eofrarne for the metrie gS on 5, then we
obtain a loeal orthononnal eofranle {q)/-'} for the eone metrie gM on M by setting

3.6 ifJi = rO i </>0 = dr,

where 1 ::; i ::; n + 1. The first Cartan strueture equations for Mare

3.7

Here w~ denotes the eonneetion 1-forms with respeet to the Levi-Civita eonneetion \7M
on M, i.e., if {Xp } denote the loeal orthonormal frame on M dual to {</>P}, then for any
veetor field X on M,

\7~XJl = w;(X)Xv '

Similarly, the strueture equations on S are

3.8

This together with 3.6 ilnplies that

The lemma now follows from this formula and Gauss' formula

\7~Y = \7~Y + s(X, Y),

where X and Y are both veetor fields on M that are tangent to S. •

Returning to the proof of theorelU 3.2, we next show that \7MJa = O. First let X
and Y be veetor fields on M that are both tangent to S. Then, using equation 3.4, Gauss'
formula, and lenlma 3.5, we have

(\7~[a)(y) _ yrM([ay) - JavitY

= \7~(_q>üy + l1 a (y)W) - JÜ(ViY - gs(X, Y)'IJ)

_ - Vi(q>ay) + gs(X, q>ay)'1J + X ryß(Y)'l1 + rya(y)vM 'l1

+ q>a(\7iY) - ry aCviY)'1J + gs(X, Y)Ja'l1.
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Now Weingarten 's equation and lemma 3.5 implies that V'~ 'l! = X. Thus, using 2.1 and
2.2, the equation above beeolnes

3.9
- (V'~<I>a )(Y) - <I>a(V'~Y) - gs( <I>a X, Y)'l! + X 7]a(y)W

+1]a(y)x + <I>a(V'~Y) - 1]a(V'~y)'l! - gs(X, y)~a.

But equation 3.9 ean be rewritten as

Clearly, the first tenn in braekets vanishes, and 2.1.ii implies that the seeond term in
brackets also vanishes. This shows that Ia is parallel when X and Y are both tangent to
S. Similar computations show that

(V'ifJa)('l!) V'~(Ja'l!) - Ja(V'flj'l!)

_ -V'ftj~a - Ja X

_V'~~a + 9s(X, ea)'l! + <I>a X - 7]a(x)'l!

== o.

Finally, we note from the proof of lemlna 3.5 that the eonnection 1-forms w~ have no dr
component. This implies that V'~Y = 0 for any veetor field Y on M, and henee, that
V'WJa = O. This completes the proof that (M, 9M) is hyperkähler.

To compute the obstruetion section </> defined in [BGM1] notice that equations 2.4
and 3.4 give

3.10

COlnparing this with equation 2.16 of [BGM1] does indeed show that the obstruction
section ~ is eonstant. This proves the first statement of theoreln 3.2. The second statement
follows from a result of Yano [Y] as pointed out in [BGM1]. •

REMARKS 3.11:

1. The proof given here that Ja is parallel with respect to the Levi-Civita eonnection
V'M shows that any Sasakian manifold embeds into a I(ähler manifold with a cone
metric. This is a previously known result of Tashiro [Tas].

2. Using the second Cartan structure equations it is easy to show that any cone metric
gM is Einstein if and only if 9s is Einstein. In particular, the second Einstein metric
on our 3-Sasakian Inanifold S gives an Einstein metric on M with positive scalar
curvature. Gf course, the 3-Sasakian Einstein metric on S induces a Rieci flat metric
on M, as it must sinee M is hyperkähler.

3. Corollary 2.6 also follows from theorem 3.2.

Finally, we ean use Theorem 3.2 to give a generalization of the standard Hopf sur­
face eonstruction which we can then use to construct many new compact hypercomplex
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I
I

manifolds. Consider the 1uanifold S x SI obtained from S X R+ as the quotient by the
multiplicative action of Z on R+ generated by r ......-+ ar where a # 1 is a fixed positive real
number.

COROLLARY 3.12: Let S be a complete 3-Sasakian maniEold, tben tbe manifold S X 51

constructed above haS a Ilatura11y induced hypercomplex strllctllre. In fact, tbe product
metric is loca11y cOllfoTlllaliy llyperkäJller. .

PROOF: The Euler vector field 'lJ passes to the quotient manifold and generates the stan­
dard circle action on Sl. Thus, it follows from equation 3.4 that tensor fields [4 pass to
the quotient and define an alnl0st hypercomplex structure on S X 51. Moreover, the proof
of Theorem 3.2 implies that the hypercomplex structure is integrable. Setting r = eU we
see that the product metric

is conformally equivalent to the cone metric from equation 3.3 restricted to an open set in
the fundamental domain of the multiplicative action given above. •

Combining Corollary 3.12 with the results of sections 4 and 6 give explicit examples of
homogeneous hypercomplex lual1ifolds while combining Corollary 3.i2 with the results of
section 7 give, for each n 2: 2, infinitely luany homotopically distinct, non-homogeneous,
4n-dimensional hypercomplex manifolds (4-dimensional compact hypercomplex manifolds ,
were classified in [Boy]). Gf course, these manifolds described by Cor?llary 3.12 are not
simply connected. However, Joyce [Joy] noticed that by twisting an asso~iated space with
a certain circle bundle one can obtain simply connected hypercomplex manifolds. Thus,
twisting the mal1ifolds constructed in sections 4 and 6 give explicit examples of simply
connected, hOluogeneous hypercomplex manifolds. Moreover, Joyce's twisting construc­
tion generalizes to the orbifold category to give, together with the results of section 7,
non-homogeneous, SilUply connected, hypercomplex manifalds in dimension 4n for n ;:::: 2.
These nlallifolds are analyzed in [BGM2].

§4. The Classiflcation of 3-Sasakian Hom?geneous Manifolds.

In this sectian we classify 3-Sasakian homogeneous spaces. To begin notice that the
I(illing vector fields <1, ~2, and ~3 which give aRiernanman manifold (5, g) a Sasakian
3-structure generate non-trivial isometries. Thus, every 3-Sasakian rnanifold (5, g, ea ) has
a non-trivial isoluetry group and we denote the connected cornponent of the identity by
1(5,g). Let 10(5,9) denote the subgroup of [(S,g) cansisting of those isometries that
leave the tensor fields ~a invariant far all a = 1,2,3. We refer to elements of 1o(5,g) as
3-Sasakian isometries. The following theorem was proven by Tanno.

THEOREM 4.1: [TanI] Let (5, g, <a) be a complete 3-Sasakian manifold which is not oE
constant curvature. Then

diln 1(S , g) = diln 10 ( S , g) + 3.

Furthermore, the I(illing vector fields ~a generate the three dimensional subspace of
isometries that are not 3-Sasakian isometries. Let i and io denote the Lie algebras of
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1(5,9) anel 10 (5,9), respectively. Hence, Tanno's theorem says that if (5,9) is not of
constant curvature, then

4.2 i = io + sp(I),

where + indicates vector space direct sumo However, more is true, namely

LEMMA 4.3: Tbe direct sum in equation 4.2 is a direct sum of Lie algebras, i.e.,

i = io ffi sp(I).

This lemma is implicit in Tanno's work, although he never stated it explicitly there.
It follows immediately from

LEMMA 4.4: Let (5, g, ~a) be a 3-SasakiaJl manifold and X Eibe a Killing vector field on
5. Let LX denote the Lie derivative witb respect to X. Then the following conditions are

equivalent

(i) Lx~a = 0, a = 1,2,3,

(ii) LX1]a = 0, a = 1,2,3,

(iii) Lx~a = 0, a = 1,2,3.

Furthennore, if any (hence, all) of the conditions above is satisfied, then for any vector
field Y on 5 we bave

(iv) X 1Ja(y) = t]a([x, Y]).

PROOF: Let X E i, then it follows from equation 2.2.vi and the definition of the Nijenhuis
tensor that the following three conditions are equivalent

L:x~a = 0,

and so X E in if any one of the these conditions is satisfied. Thus, equation 2.2.vii implies
that

This shows that (i) iInplies (iii). Hut since t]a is dual to ca through the metric 9 and X is
a I(illing vector field, (iii) holds if and only if (ii) holds. Next we show that (iii) implies
(i): Since any infinitesimal isolnetry is an infinitesimal affine transformation with respect
to the Levi-Civita connection, we have for any vector field Y

But the left hand siele is
(L:X <I-a)(Y) + <I>a [X, Y]

which proves (i). Finally (iv) follows easily from (ii). •

Notice that any of the first three conditions in Lemma 4.4 can be used to describe
the Lie subalgebra in E i. Moreover, the equivalence of conditions (iii) and (i) says that
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the Lie algebra c(5p( 1» of the eentralizer of Sp(1) in I (S , g) is precisely io. G10bally, on
the group level we have:

PROPOSITION 4.5: Let (S, g, ea
) be a complete 3-Sasakian manifold. Tben botb tbe isoIn­

etry groups I(S, 9) and 10(S, g) are COlnpaet. Furtllermore, if (S, g, ea
) is not oE constant

curvature then either I(S, g) = Io(S, g) X Sp(l) or I(S, g) = [o(S, g) X SO(3). Finally, iE
(S, g, ea ) does have COllstallt curvature thell 1(S, g) strictIy contains either 10(8,9) X Sp(l)
01' 10 (8,9) X SO(3) as a proper subgroup alld 10 (5,9) is tbe centralizer of Sp(l) 01' SO(3).

PROOF: The first assertion follows from theorem 2.10 and a standard result of Myers and
Steenrod (cf. [Bes]). Next, since 10 (5,9), Sp(l), and SO(3) are all compaet, the direet
sum on the Lie algebra level given in lemma 4.3 also gives a direct product of Lie groups.
The last assertion follows ilnmediately from lemma 4.4 •

We are particularly interested in the case of a transitive isometry group.

DEFINITION 4.6: A !l-Sa.<takilLn homogeneou... 3pace is a 3-SasakiaJl nlaJluoId (8,9, ea ) Oll
which 10 (5,9) aets trallsitively.

PROPOSITI0 N 4.7: Let (8, 9, ea) be a 3-Sasakiall homogeneous space. Then all Ieaves are
diffeomorphic and S / F is a quaternionie [(ähler manilold where the natural projeetion 1r :

8 --+5/ F is a loca11y triviallliemannian libration. Furthermore, 10 (5, g) acts transitively
on the space oE leaves S / F.

PROOF: Let ,p : 10 (8,9) X 8--+5 denote the action map so that, for each a E 10 (5,9),
1/;a = 1/;(a, .) is a diffeolnorphism of 5 to itself. Proposition 4.4 implies that the isometry
group I(8,9) contains 10 (5, g) x Sp( 1) where either Sp(l) acts effectively or its Z2 quotient
SO(3) ~ Sp(l )/Z2 acts effectively. Since the IGlling vector fields ea for a = 1,2,3 are both
the infinitesimal generators of the group Sp(l) and a basis for the vertical distribution V,
it follows that Sp(l) acts transitivelyon each leaf with isotropy subgroup of a point some
finite subgroup r c Sp(l). Now let PI and P2 be any two points of Sand let LI and
L2 denote the corresponding leaves through PI and P2, respectively. Since 10 ( 8, 9) acts
transitivelyon 5, there exists an a E 10 (5,9) such that 'l/Ja(PI) = P2. Now 'l/Ja restricted to
LI maps L) diffeoluorphically onto its image, and, since the Sp(l) factor acts transitively
on each leaf and COlun1u tes wi th 10 ( S, 9), the hnage of ljJa lies in L2. Bu t the same holds for
the inverse map 1/;a-1 with LI and 122 interchanged, so the leaves must be diffeomorphic.
Thus, the leaf holonoluy is trivial and 7r : 5--+5/:F is a locally trivial Riemanman fibration
by proposition 1.9. The fact that the space of leaves 5/Fis a quaternionic !(ähler manifold
now follows from Ishihal'a's theorem 2.8. Finally, the constructions above shows direct1y
that 10 (5,9) acts transit.ively on 51:F. •

The following proposition is now ilnlnediate from Proposition 4.6 and Theorem 2.10.

PROPOSITION 4.8: Let (5,9, ea) be a 3-Sasakian homogeneous space. Then 5 is the total
space oE a Ioca1Iy trivial llienlannian libration over a quaternionie [(äh]er homogeneous
space M oE positive scalar curvature (i.e., a WolE space) with libre F = Sp(l)/r where r
is one 01 tbe finite subgroups oE Sp(l) (cf. 2.15).

While this proposition enumerates a complete list of possibilities for all the 3-Sasakian
homogeneous spaces we now show that not all of them actually arise. The following
classification theoren1 is the main result of this section.
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THEOREM 4.9: Let (S, g, ~a) be a 3-Sasakian hOlnogeneous space. Then S is precisely one
oE the following bomogeneous spaces:

Sp(n) '" s4n-I
Sp(n - 1) - ,

Sp(n)
Sp(n - 1) X 12

SU(m)
S(U(m - 2) x U(I)) 1

SO(k)
SO(k - 4) x Sp(I) ,

G2

SpeI)'
E6

SU(6) , Spin(12) ,
Es
E

7
•

Here n 2:: 1, Sp(O) denotes the trivial group, m 2:: 3, and k 2:: 7. Furthennore, the Fiber
F over tbe Wolf space is Sp(l) in only Olle case wbicb occurs precisely wben (S,g,~a) is
simply connected witb constcult curvature; tllat is, wben S = S4n-1. In a1l other cases
F = SO(3).

PROOF: If S is a 3-Sasakian homogeneous manifold then each fibre must be a 3-Sasakian
homogeneous 3-manifold. But the fibres are all of the form SpeI)/r where r is a finite sub­
group of SpeI). These space forms are both hOluogeneous and 3-Sasakian [Sas]; howeve1',
they are not 3-Sasakian homogeneous unless r = id 01' 1 2 . To see this notice that there
are two equivalent Sasakian 3-structures on SpeI) ~ S3 both with the constant curvature
bi-invariant metric. One Sasakian 3-structure is obtained from the right invariant vector
fields on SpeI) while the other structure comes from the left invariant vector fields. Con­
sider the right invariant structure. Then to obtain a compatible 3-Sasakian homogeneous
st1'uctu1'e r must act on Sp(l) from the left. But if r is neither the identity subgroup nor
12 then r is not in the center of Sp( I). Hence, the centralizer of r inSp( I) is a proper
subgroup of Sp(l). So its dimension is less than two, and thus cannot act transitivelyon
Sp(I). This proves that the fibre is eithe1' SpeI) or Sp(1)/1 2 ~ SO(3).

It follow from this fact and proposition 4.7 that S is a prineipal Sp(I) 01' 80(3) bundle
over a Wolf space W. The Wolf spaces are weIl known [Wo] to have the form G/ LI . Sp(I)
where G is a simple compact Lie group and LI (Wolf's notation) is a certain subgroup of
G. Wolf showed that each homogeneous quaternionie I(ähler manifold W = G/ LI . Sp(I)
is the base space of an S2 bundle whose total space is one of the homogeneous complex
contact manifolds Z ~ G/ LI . SI (since identified as the twistor space of W) which were
classified by Boothby [Boo]. Let ge denote the cOluplexification of the Lie algebra 9 of G.
Swann [Sw] has identified the total space of the dual of the contact line bundle on Z with
the highest root nilpotel1t adjoint orbit N in ge. The nilpotent orbits N are weH known
[1(1'0] to have a hype1'kähler structure and Swann has further identified N with his H* /12

bundle U(W). It follows frolll [BGM1: Proposition 4.21] (see also theorem 3.1) that the
level set v -1 (1/2) of the hyperkähler potential has a Sasakian 3-structure. This level set is
easily identified with S ~ G/ LI' It is a principal SO(3) bundle over W and a principal SI
bundle over Z. Furthermore, as explained in the remark about the Marchiafava-Romani
class made after Theorem 2.9 the only time that this SO(3) bundle lifts to a SpeI) bundle
is when the base space is Hpn-I. The theorem now follows from the classification of Wolf
spaces [Wo] (cf. [Bes: pg. 409]) 01' the classification of homogeneous complex contact
manifolds [Boo]. •
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Using a similar result for Wolf spaces or homogeneous complex contact manifolds we
have the following iUUllediate corollary.

COROLLARY 4.10: There is a one-to-oue correspondence between the simple Lie algebras
and the simjJly conllected 3-Sasakian homogeneous manifolds.

As mentioned above and used in the proof of Theorem 4.8, Sasaki [Sas], classified 3
dimensional 3-Sasakian manifolds. They are precisely the homogeneous spherical space
forms Sp(1)jr where the finite subgroups r are listed explicitly in remark 2.15. However,
as we have just seen they are not 3-Sasakian homogeneous manifolds unless r = id or Z2.
Sasaki asked the natural question: Which spherical space fonus in dimension 4n -1 admit
a Sasakian 3~structure? We do not solve this problem here, but only mention that Sasaki
also noticed that taking the quotient of the diagonal embedding r---+sp(n + 1) gives a
3-Sasakian manifold r\S4n-l. In this case 10 (8,9) = Sp(n + 1) acts on the left where
the sphere S4n-l is represented by a quaternionie valued column vector of unit length.
The infinitesimal isometries which generate multiplication by a unit quaternion on each
component from the right then give 54n - 1 and hence r\S4n-l a Sasakian 3-structure.
However, as the homogeneous structure and Sasakian 3-structure are not compatible,
r\S4n-l is not a 3-Sasakian hOluogeneous manifold. This construction of 3-Sasakian
manifolds appears to be special to the spheres. If one attempts a similar procedure for the
other homogeneous spaces, one obtains a double eoset space r\G jLI which, in general, is
an orbifold.

§5. 3-Sasakian Reduction

In this section we give a general 3-Sasakian reduction procedure which constructs
new 3-Sasakian manifolds from a given 3-Sasakian manifold with a non-trivial 3-Sasakian
isometry group. In section 6 we apply this technique to explicitly construct the Riemannian
metries for the 3-Sasakian homogeneous manifolds arising from the simple classical Lie
algebras. Then, in section 7, we apply this same technique to explicitly construet new
infinite families of homotopy distinct, non-homogeneous, 3-Sasakian manifolds.

The key to this construction is the quaternionie reduction of 3-Sasakian manifolds
constructed in [BGM1]. Actually, this is a reduction that is associated with a quadruple
of spaces, namely, the quaternionie I(ähler space, the corresponding twistor space, Swann
bundle, and the 3-Sasakian I<onishi bundle. It incorporates the quaterrnonic Kähler,
twistor space, and hyperkähler reductions as weH as the 3-Sasakian reduction presented
in this section. For example, diagl'alll 6.1 given in the next section pictorially represents
how all these various reductions follow from the flat hyperkähler metric on Hn \ {O} in the
homogeneous case.

To begin let (S, 95, ~a) be a 3-Sasakian manifold with a nontrivial group 10 (8,95)
of 3-Sasakian isoluetl'ies. By the elnbedding Theorem 3.1, M = S X R+ is a hyperkähler
manifold with respect to the cone lnetric 9M given in equation 3.2. The isometry group
10 (8,95) extends to a gl'OUP 10 (M,9M)""'" 10 (8,9s) of isometries on M by defining eaeh
element to act triviaHy on R+. Furthenuore, it follows easily from the definition of the com­
plex structures 1a given in equation 3.3 that these isometries 10 (M, 9M) are hyperkählerj
that is, they preserve the hyperkähler structure on M. Recall [HKLR] shows that any
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subgroup G C [o(M, 9M) gives rise to a hyperkähler moment map

JL: M ~ g* ® R~

where 9 denotes the Lie algebra of G and g* is its dual. Thus, we can define a 3-Sasakian
moment map

5.1

by restrietion Jls = JL IS. We denote the components of Jls with respect to the standard
basis of R3

, which we have identified with the imaginary quaternions, by JLs. Recall that
ordinarily moment maps detennined by Abelian group actions (in particular, those asSQ­
ciated to I-parameter groups) are only specified up to an arbitrary constant. This is not
the case for 3-Sasakian moment maps since we require that the group Sp(l) generated
by the Sasakian vector fields ~a acts on the level sets of Jls. However, we shall see that
3-Sasakian moment nlaps are given by a particularly simple expression.

PRO PosITI0 N 5.2: Le t (S, 9s , ~a) be a 3-Sasakian Inanifold wi th a connected compact Lie
group G acting Oll S by 3-Sasakian isonletries. Let T be an element ol the Lie algebra 9
ol G and let XT denote the corresponding infinitesiInal isometry. Tllen there is a uruque
3-Sasakian monlellt nlap JLS SUell tllat the zero set J-<~l (0) is invariant under the group
Sp(l) generated by the vector neIds ca. This momellt map is given by

5.3

Furtllermore, tlle zero set 11s1 (0) is Ginvariant.

PROOF: Dsing the embeclding Theorem 3.1 we can define the 2-forms Ws on S as the
restriction of the hyperkähler 2-forms w a . Then any 3-Sasakian moment map Jls(T) deter­
mined by T E 9 satisfies

As XT is a 3-Sasakiall infinitesimal isometry, lemma 4.3 implies that

and thus that

Hence, locally we have

5.4

for some locally defined coustants C:. Now the Lie bracket relations appearing in definition
2.3 and lemma 2.12 imply that
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Using this equation and 5.4 we cau compute the Lie derivative of the moment map to
obtain

Le < 1-'5' T > = _2f
abc < /ls, T > +fabcc~.

It follows that Ps] (0) is invariant under the group generated by ea if and only if the
constants C; vanish. So locally 5.4 becomes 5.3, and locally the moment map fls( T) is
clearly unique. But the functions 7]a(X T

) are globally defined on 8 so equation 5.3 must
hold globally.

To prove the last statelnent we can work infiuitesimally since C is compact. Let
(, T E g, then by 4.4.iv we have

5.5

Since the bracket in the last ternl is in 9 this term vanishes on the zero set JLs1(0) which
proves the G invariance. •

Henceforth by the 3-Sasakian moment map, we shall mean the moment map /l-s
determined in Proposit.ion 5.2. The embedding Theorem 3.1, Proposition 5.2, and the
results of [BGM1] now iInply the following fact.

THEOREM 5.6: Let (8, 9s, ea
) be a 3-Sasakian manifold witll a connected compact Lie

group G acting on 8 by 3-Sasakian isolnetries. Let fls be the corresponding 3-Sasakian
11lOlllellt map and assume botll tllat 0 is a regular value of fls alld that C acts freely on
tbe submanifold J-L.s 1 (0). Furtllennore, let

alld

denote tlle corresponding enlbedding alld submersion. Then

is a snl00tb 3-Sasakialllnftllifold oE diInellsion 4(n - diln g) -1 Witll Inetric 9s and Sasakian
vector fields ~a determined uniquely by tlle two conditions

* * ~i 9S = 7r 9S

and

Next we have the following fact concerning 3-Sasakian iSOlnetries:

PROPOSITION 5.7: Asstune tllat tlle hypothesis of Theorem 5.6 holds. In addition assume
tlui-t (8,9s) is cOlllplete aJld ]lence cOlllpact. Let C(C) C 10 (8,9S) denote the centralizer
oE G in 10 ( 8 , 9s) ancl let Co(G) denote tlle subgroup oE C(G) giyen by tbe connected
cOlnpollent oE t}le identity. Thell Co(G) acts on tlle subrnanifold J.Ls l (0) as isometries
witll respect to the restricted Inetric i*gS and the 3-Sasakian isometry group [0(5,9s) oE
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the quotient (S,9S) detennilled in Theorem 5.6 eontains an isomorphie eopy oE Co(G).
Furtbermore, iE Co(G) acts trallsitively Oll S, thell S is a 3-Sasakian homogeneous space.

PROOF: By Proposition 4.5 10 (8, 9S) is compact and connected, so it suffices to prove the
corresponding result on the Lie algebra level. Let 10(5,95), g, and c(g) denote the Lie
algebras of [0(8,95), C, and Co(G) respectively. For any x E 10(8,95) we let Xx denote
the corresponding vector field on S. Then lemma 4.4 implies that for any y E c(g) and for
all T E 9 we have

Hence, Co(G) acts on the zero set J-ls 1 (0). Furthermore, this action is an isometry on
J-ls 1 (0) since the metric is the restricted metric and Co(C) C 10 (8,95). This proves the
first statement.

Next, by Proposition 5.2, G acts by isoilletries on J-ls 1 (0) so the action of Co(G) on
fLs 1(0) passes to an action of Co(C) on the quotient S = JJs1(0)/C. It is easy to check that
Co(G) acts as 3-Sasakian isoilletries on (S,9S,~a). Notice here that if C is commutative
then G C Co(G), and so we do not require that [o(S, 9S) acts effectively. •

§6. The Classical 3-Sasakian Homogeneous Metries

We now apply the reduction procedure given in Theorem 5.6 to the round unit sphere
S4n-l to explicitly construct the Riemannian metrics for the 3-Sasakian homogeneous
manifolds arising froln the siInple classical Lie algebras. These metries are precisely the
ones associated to the three infinite families appearing in Theorem 4.6. We used this
reduction technique in [BGM1] to show that these hOlnogeneous spaces admit a Sasakian
3-structure; however, the general 3-Sasakian reduction construction given in Theorem
5.6 was not fonnulated there and, except for the trivial case of the S4n-l sphere, the
Riemannian metrics were not explicitly given.

Recall that the unit sphere 5 4n- 1 with its canonical round metric 9can is the simplest
example of a 3-Sasakian manifold and that the quaternionic Hopf fibration exhibits this
sphere as the total space projecting to the quaternionic projective space Hpn-1 with fibre
5p(I). This is a locally trivial Riemannian fibration where base space Hpn-l has its
standard quaternionic I<ähler Iuetric. This example is quoted in almost every article on
3-Sasakian geonletry. It is iInportant to notice that the canonical round metric on 54n

-
1

is not the standard homogeneous lnetric on the homogeneous space 5 p(n ) / S p(n - I) with
respect to the reductive decoolposition sp(n) ~ sp(n - 1) + m. While it is, of course, the
standard homogeneous metric with respect to the naturally reductive decomposition of
the orthogonal Lie algebra, 0(411) ~ o(4n - 1) + m this is quite special to the sphere and
orthogonal group. As we shall see, in general the 3-Sasakian metrics given in Theorem 4.6
are not naturally reductive with l'espect to any reductive decomposition.

The following diagram scheluatically represents the reduction in this homogeneous
case from the flat hyperkähler luetric on Hn \ {O} of the hyperhähler, quaternionic Kähler,
twistor, and 3-Sasakian reductions which result in the corresponding Swann bundle, quater­
nionic I{ähler base space, twistor space, and 3-Sasakian I<onishi bundle. We will consider
examples of the luore general orbifold reduction in the next section.
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Hn \ {O}
Q(F)
~

R+ C· t(C) t(R)
,/ '" ,/ '"

6.1 S4n-l jH" cp2n-l
Q2(F) jllH)-+- Z S

~ ./ ~ ./
Hpn-l

Q2(F)
-+- W

Here

a. F denotes any of the three (skew) fields R, C, and H.

b. F* denotes the group of nonzero elements of F.

c. R+, the positive reals, is the component of R* connected to the identity.

d. Q(F) c F* denotes the subgroup of F* consisting of elements of norm one. Explicitly
the groups Q(F) are Q(R) = Z2, Q(C) = U(I), and Q(H) = Sp(I), respectively.

e. Q2(F) = Q(F)/Z2.

f. t(F) = F· /Z2'

g. n ~ 1 + [F : R] where [F : R] is the dimension of F over R.

To carry out this reduction we IUUst set some conventiolls. We describe the unit
sphere s4n-l by its embedding in Hat space and we represent an element

u = CJ E W

as a column vector. The quaternionie components of this vector are denoted by UO for
the real component and by u a for the three imaginary components. Then the quotients
by the groups R+, C*, and H* in the Ieft IUOst diagram in 6.1 are given by right scalar
multiplication, i.e., u 1-+ uq where q E R+, q E C., and q E H*, respectively. In particular,
the infinitesimal generators of the subgroup Sp(l) C H* acting from the right are the
defining vector fields ~a for the Sasakian 3-structure. These vector fields are given explicitly
by

6.2

where the dot indicates SUI11 over the vector components tLi and the subscript r means
that these vector fields are the generators of the right action.

The group Q(F) C Sp(l) used for the reduction procedure is then given by Ieft scalar
111ultiplication; Le., u 1-+ au for a E Q(F). The non-commutativity of the quaternions
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distinguishes these two actions. Notice, however, that any r E R commutes with any
U E Hn and this gives rise to the Z2 factor that appears in the reduction. Dur choice of
hyperkähler structure on Hn\ {O}, and hence the 3-Sasakian structure on S4 n-1, is such
that the left action preserves the hyperkähler structure and hence the 3-Sasakian structure.
Notice here that the corresponding induced left actions on the quotients cp2n-1 and
Hpn-1 preserve the corresponding complex contact and quaternionic Kähler structures,
respectively. The infinitesimal generators of the group Q(H) = SP(l) acting from the left
are

6.3 ca 0 D a D abc b D
~l = U . -- - U . -- + f U· --.Dua DuO DuC

Our first task in the reduction procedure is to find the zero set of the moment map.
We identify the imagjnary quaternions R3 with the Lie algebra sp(l) in equation 5.1 and
let q(F) denote the Lie algebra of Q(F). Then equation 5.1 becomes

6.4 ps : s4n-1 ----+ q(F)* ® sp(I).

Now q(F) can be identified with the pure imaginary elements in the field F. Notice that
q(R) = 0, so that Ps is the zero map and PSI (0) is the entire sphere S4n-1 in the real
case. Thus, it is convenient to l1lake the following definition.

DEFINITION 6.5: Let F = R, C, H. Tllen N(F) 18 tlle zero set ps} (0).

Next, we need to recall SOlue facts about Stiefel manifolds. Let Fn denote the n­

dimensional vector space over F with its natural inner product which we denote by ü . v,
where u ~ ü denotes conjugation in F on each component. Let U(n, F) denote the
subgroup of GL(n, F) that preserves this inner product so U(n, R) = D(n), U(n, C) =
U(n), and U(n,H) = Sp(n). Now let Vtk denote the Stiefel manifold F-orthonormal k
dimensional frames in Fn. It is convenien't to introduce the notion of an "opposite field"
FOp as follows ROp = H, cop = C, and HOP = R. The Stiefel manifolds that appear in our
3-Sasakian reduction are V7~[;:Rl' As usual these can be represented in matrix terminology
as folIows. Let Mn, k (F) denote the n by k luatrices over F, then

6.6

where * denotes transpose together with conjugation in Fand Ik denotes the k by k
identity matrix. There is a natural Rielnannian metric on V:i;:R] given by restricting the
Bat metric

6.7 h = tr(dA*' dA)

on Mn,[F:Rj(FOP) to V:[;:R]' We denote this restricted metric by h}. The Stiefel mani­

fold V:t;:R] with this Riemannian metric is a honlogeneous Riemannian manifold with
homogeneous structure given by

6.8
U(n - [F : Rl, Fop)"
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PROPOSITION 6.9: Under a rescaling N(F) is precisely tbe Stiefel manifold V:l;:R]' Tbus,

i : N(F) ~ s4n-l

is a smooth compact sublnanifold of dimension 4n +2 - 3[F : R] on which Q(F) acts freely.
Furthermore, tlle llienlannian metries are related by the equation

i·gcan =

PROOF: As mentioned above when F = R we have N(F) = S4n-l which is just the Stiefel
manifold VnH1 • For the renlaining two cases we eompute the moment map 5.3. First, let
F = H. Proposition 5.2 shows to eOlllpute J-Ls we need the 1-forms 7Ja which we can easily
obtain from the fiat spaee metric go and the Sasakian vector fields ~~ given explicitly by
equation 6.2 as

6.10

6.11

6.12

The vector fields that generate the left action of Sp(l) = Q(H) are given by the ~i In
equation 6.3. Thus, equation 5.3 aod a straightforward computation shows that

(3uD • UD - U C
• U C

) sab
< Ps, ~t > = 6 sab + fabcuc . UD + (u a . u

b
- U

C
• U

C

3 )·

The three terms in this equation correspond to the decomposition of

sp(lr C9 sp(l) =::: sp(l) C9 5p( 1)

into irredudble representations under the action of S p(1), nalnely the identity represen­
tation, the adjoint representation sp(l), and the 5-dimensional representation of three by
three traeeless symmetrie matriees over R. Henee, the zero set of the moment map is
determined preeisely by the vanishil1g of the eomponents of the moment map in each of
these three irredudble representations. It is direetly to check that this implies that the
quaternionie eomponents (UD 1 u B

) are mutually orthogonal and satisfy

Thus, a simple seale transfonnatiol1 identifies N(H) with the Stiefel manifold Vn~4 in 6.6
and Riemannian metries are related by the faetor of 1/4.

Finally, when F = C, the group Q(C) is a U(I) subgroup of Sp(I). This corresponds
to stabilizing one eOlllponent in the iInaginary quaternions R3

1 say the i component (for
example b = 1 in equat.ion 6.11). Then the components of the moment map Ps are

2 < J-L1, ~l > - UD. UD +u 1
. u 1

- u 2
. u 2

- u 3
. u 3

< P~, ~l > - u 2
. u 1

- u 3
. UD

< 11,1, ~l > - u 3
• u 1 + u 2

• u O
•
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Defining the complex vectors Z1 = Uo + iu1 and Z2 = U 2 + iu3 permits us to rewrite
u = ZI + j z2. The vanishing of the moment map in 6.12 gives the conditions

-2 2 1Z1 . ZI = Z . Z = -
2

and
Z2 . ZI = O.

Again a simple scale transformation identifies N(C) with the complex Stiefel manifold Vn~2

with the Riemannian metrics correspol1dil1gly related.

In each case the Stiefel manifolds are known to be smooth compact submanifolds of
S4n-l of dimension 4n + 2 - 3[F : R]. Lastly, it is easy check that the left action of Q(F)
is free in each case. •

The free action of Q(F) on N(F) lnakes N(F) a principal Q(F) bundle over the quo­
tient N(F)/Q(F). Moreover, given the metric ,,- 9can on N(F) there is a unique Riemannian
metric 9 on N(F)/Q(F) such that

1r : N(F) -+ N(F)/Q(F)

is a Riemannian submersion. The group I(S4n-l, 9can) of 3-Sasakian isometries acting on
S4n-1 is precisely Sp(n) acting froIU the left and we have

LEMMA 6.13: The centralizer C(Q(F» oE Q(F) in Sp(n) in precisely U(n, FOP).

PROOF: Of course Sp(n) C Mn,n(H) ~ Mn,n(R) 0R H. By R linearity it suffices to prove
the result on a simple element A 0 q E M n,n(R) 0R H. But Q(F) CHis a subgroup for
F = R, C, Hand, in every case, is enlbedded in Sp(n) as the diagonal embedding (j f-+ (jln.

So finding C(Q(F» amollnts to finding the centralizer CQ(F)(H) of Q(F) in H. But it is
direct to check that CQ(F)(H) = FOP. So A 0 q COIUIuutes with (jln for all a E Q(F) if and
only if q E FOP. •

Thus, Lemma 6.13, Theorem 5.G, Proposition 5.7, equation 6.8, and Proposition 6.9
imply the following fact.

THEOREM 6.14: Witb tlle restrietions Oll n givell in Theorem 4.7, tbe Riemanman mannold
(N(F)/Q(F), g) is one oE tlle c1assical 3-Sasakian llomogeneous maniEolds

U(n - [F : R], FOp) x Q(F)

listed in Tbeorelll 4.7. Furtllermore1 the Inetric 9 is given explicitly by

REMARKS 6.15:

1. Except for the real case F = R, when the reduction is just given by taking a Z2
quotient, the Iuetric !J is _not naturally reductive with respect to the homogeneous
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space strueture and henee 9 is not the standard homogeneous metric on 5. In fact,
the standard homogeneous 11letric for F = C, H is not Einstein [Bes].

2. There are sOlue duplieations in low dimensions due to the following isomorphisms of
the classical Lie groups 50(5) ~ Sp(2)/Z2 and 80(6) ~ 8U(4)/Z2'

Notiee that we have the following sequenee of fibrations:

Q(F) U(n,FOP)
(N(F), t! 9can)

L
(84n - 1 )~ U( n-[F:RJ ,F"p)

,...... C-t- ,9can

1~
6.16 80(3) C-t-

U(n,FOP~ ,...... (5,g)U( n-[F:R],Fop xQ(F)

1~o
U(n,F"P) FOp ~

U( n-[F:R] ,Fop) xQ(F)·Sp(l)
,......

(Grn,[F:R),g),

where (Gr~~[~:R]'g) denotes the eorresponrnng Wolf spaee Grassmannian with its quater­
nionie Kähler metrie.

Thus far we have not been ahle to explieitly ohtain the metries in the eases of the
exceptional groups appearing in Theorem 4.7 by a reduetion proeedure from the eanonical
unit sphere 54n - 1 . Nevertheless, Theorem 4.7 guarantees the existence of eorresponding 3­
Sasakian homogeneous metries. As in the classical ease they can not be naturally reduetive.
This follows from the fact that naturally reductive homogeneous metrics of a compact Lie
group have non-negative sectional curvature (cf. [Bes: 9.87]). But then Proposition 2.21
implies that the Wolf space W with its symmetrie quaternionic I(ähler metric would have
positive sectional curvat.ure greater than 01' equal to 3. For n 2:: 3 a theorem of Berger
([Bes: 14.43]) implies that W = Hpn-l. If n = 2 then W = CP2 with its Fubini-Study
metric which has positive sectional curvature. However, with our normalization one can
check that the seetional curvature takes on all values between 2 and 5. Summarizing we
have

PRO POSITION 6.1 7: Let (5, 9) be a 3-Sasakian homogeneous manilold wbich is not oE
constant curvature. Then tlle Inetric 9 is not llatura1ly reductive with respect to its
11omogeneous structure.

To end this seetion we show how elnbeddings of spheres in spheres give rise to similar
embeddings of 3-Sasakian nlanifolds into 3-Sasakian manifolds. Consider the embeddings
'ljJk : 54n - 1 --. S4n+3 defined by

6.18

Here it is understood that for k = 1 or n, Ul or U n is set equal to 0, respectively. Let
Bq : 5 4n - 1 --.. 54n - 1 denote the action map for each q E Q(F) and for auy positive integer
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n. Then the following diagralll comluutes

6.19

-
Now consider the Stiefel manifold N'(n)(F) where l(n) = dim N(F) = 4n + 2 - 3[F : R]
indicates its dimension. Since the gl'OUP Q(F) acts on the corresponding submanifolds
N'(n)(F) C S4n-l and N '(n+l)(F) C S4n+3, there is a similar diagram with the spheres
replaced by the subluanifolds N1(n)(F) and N 1(n+l)(F), and corresponding map .,pk is
obtained by restriction. Again the commutivity of the inclusions 1/;1; with the action
of Q(F) guarantees that there are weH defined inclusions 1/J1; on the quotients, which by
Theorem 6.14 are the classical3-Sasakian homogeneous spaces. Thus, for each k = 1, ... ,n
we have elubeddings

6.20
U(n - [F : R], FOp) X Q(F) U(n + 1 - [F : R], FOP) x Q(F)'

Furthermore, the luaps ;jJk are 3-Sasakian in the sense that, for each k, -J; is an isom­
etry with respect to the corresponding 3-Sasakian metrics and that the corresponding
3-Sasakian vector fields ~a are ?/Jk related. As with spheres one can iterate this procedure
to obtain nested embeddings of the corresponding 3-Sasakian homogeneous spaces. Also
there is nothing special about the hOlllogeneous examples except that there are sequences
of them labelled by n. One can obtain a sequence of embedded 3-Sasakian manifolds by
3-Sasakian reduction from another sequence of 3-Sasakian manifolds as long as the em­
bedding maps cOlnnnlte with (intertwine) the actions. A non-homogeneous example will
be given at the end of the next section.

There are also corresponding enlbeddings for the Wolf spaces, together with a com­
mutative diagram of fibrations. Finally, an analogons diagram for the inhomogeneous case
is given in the next section.

§7. Reductions by Defornled Circle Actions

In this section we apply the 3-Sasakian reduction technique described in the previous
section to a "deformed" circle action giving rise to new infinite families of homotopy dis­
tinct 3-Sasakiall llUtuifolds. These manifolds can be thought of as "discrete deformations"
of the 3-Sasakian hOlllogeneous manifolds U(n~2)nJU(l) obtained from the circle action
whose moment map is given by equation 6.10. The idea is quite simple. Instead of con­
sidering a circle SI elubedded in Sp(n) = [0(S4n-l, 9can) as a diagonal subgroup with
equal weights, we now consider the 1110St general circle subgroup of the maximal torus of
Sp(n) embedded diagonally but with unequal weights. By applying the 3-Sasakian reduc­
tion method desCl'ibed in the previous section to this general circle action, we are ahle to
construct new 3-Sasakian manifolds in all dimensions 4n - 1 for n ~ 2, In the next section
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we will study the topology of these Inanifolds and in section 9 we will give a more detailed
analysis of both the geoluetry and the topology in dimension 7.

We begin by considering a nlaximal torus Tn of Sp(n) = I o(S4n-l,9can). Up to
conjugacy Tn is urnque and cau be taken to act on 54n- 1 as the subgroup of norm
preserving diagonal matrices acting on the quaternionic coordinates U of Hn. Here, aB in
the paragraph preceding 6.2, we view u as a column vector and the action is given by
matrix multiplication fi.·onl the Ieft. Explicitly, we have that the action

is given by

7.1 8(t, u)

where tj E R and Uj E H denote the jth component of t and u, respectively.

Now consider a sequence P = (PI,' .. ,Pn) of nonzero integers. For each P E (Z >1<) n ,

we can define a "general" circle subgroup U(l)p C TU by setting

for each 1 :::; i :::; n in 7.1, where t E R. Then the action 8 restricts to the circle action

given by

7.2 6 (t u) - (e211'iP 1 t Ul ••. e2 1'l'iPn tu )p, - " n .

Notice that the case P = 1 = (1, ... , 1) is precisely the circle action of the previous section.

Next we compute the monlent map J-ls(p) : 54u
-

l -+iR3 associated to the circle action
7.2. Here we identify the Lie algebra u(1) with the pure imaginary numbers iR, and we
shall write J-Ls (p)(u) for < J.l S (p)(u), i > . The infinitesimal generators for the action 7.1
of the maximal torus TU are given by

7.3a

where there is 00 S111TI on the repeated index j. The vector field corresponding to the action
of the circle subgroup U(1)p is

7.3b
n

The moment map can now be obtained !rom 7.3b, 5.3, and 6.8. This computation yields
the following lemma.
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LEMMA 7.4: Tlle conlponents of tbe mOlnent Inap Jls(p) oE the circ1e action given by 7.2
are

n
2J-l1(p)(u) = -i LPj(u~u~+ ujuj - u~u~ - u~u~)

j=l

n

Jl~(p)(U) - -iL Pj(uju~ - uju~)
j=1

n

Jl~(p)(U) - -i Lpj(ujuj + ujuj).
j=1

Notice that these equations specialize to equations 6.10 in the case that p = 1. That is,
Jls(l) is precisely J-lS of section 6 when F = C. Just as in the homogeneous case considered
in the last section the zero set of this mOlnent map is a fundamental object of interest.

DEFINITION 7.5: N (p) = Ils(p)-1 (0).

PROPOSITION 7.6: For eac11 p E (z*)n tbe zero set N(p) of tbe moment map !ls(p) is
diffeolnorpllic to tlle complex Stiefel manifold Vn

c
2 . Thus, N(p) is a smooth compact sub-

manifold oE 54n
-

1 of dimension 4n -4. Furtherm~re, the circ1e action Bp on 54n - 1 restricts
to a circ1e action on N(p) wbic11 is free iE tbe absolute values I Pi 1 oE tbe components oE p
are pairwise relatively prinle.

PROOF: For each P E (z*)n we define a linear map Tp : Hn-+Hn by the equation

7.7

Clearly Tp is an isolllorphism of quaternionic vector spaces for each p E (Z *)n j however,
it is norm preserving only if IPj 1= 1 for a11 j = 1,"', n. Thus, we define maps 4>p :
54n-l-+54n-l by

7.8

where 11 . 11 denotes the stand.ard norm in Hn
. The map 4>p is clearly a diffeomorphism for

each p E (z·)n. Let J-ls(l) and Jl(l) denote the 3-Sasakian and hyperkäWer moment maps,
respectively, of the homogeneous case given explicitly by equation 6.10. Then using lemma
7.4, equations 6.10, 7.7, and 7.8, and the fact that the moment maps are homogeneous
functions of degree 2 in the variables u we have the string of equalities

7.9

JlS(p)(U) = Jl(l)(Tp u)

= Jl(l)(11 Tpu 11 cPp(u))

= 11 TpU 11
2 Ils(l)(4>p(U)).

Hence, U E N (p) if and only if cPP(u) E N (C). Thus, the diffeomorphism cPP restricts to
a diffeomorphism 4>p : N (p)-+N (C). But recall that the identification of N (C) with Vn~2
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in Proposition 6.7 requires a dilation by a factor of \1'2. Composing tPP with this dilation
gives the required diffeolnorphism.

Since the circle action Bp given by 7.2 is a linear map on Hn, it clearly restriets to the
zero set N(p). Now assluue that the integers IPj I are pairwise relatively prime. It follows
from equation 7.2 that the only fixed points on the S4n-l ean oecur along a quaternionie
coordinate axis, say the kth axis given by Uj = 0 for all j =1= k. In this case the isotropy
subgroup of auy such point is the eyelie group ZPIc' It is convenient to reeall the eomplex
coordinates ZI = Uo + iu1 and Z2 = u 2 + iu3 introduee after equations 6.10. In terms of
these coordinates the mOluent map /l.s (p) takes the form

7.10

n

2Jl1(p)(ZI ,Z2) = -<E pj(1 z) I - Izi D - 0,
j=1

n

= ..;" p ·z-2 z 1- .. L.t } j j'

j=l

where Jls = IL~ - iJl~' Henee, the vanishing of the moment map restricted to the k th

quaternionie coordinate axis takes the fonn

These two equations imply that zk = z~ = 0 which cannot happen on N(p) C S4n-l.

Thus, the circle action Bp is free on N(p). •

REMARK 7.11: Notice that there is nothing in the proof that the zero sets N(p) are
compaet submanifolds of S4n-l diffeomorphie to the Stiefel lllanifolds Vn

c
2 that prohibits

p from being any real vector in (R*)n. In this sense the N(p) can be thought of as smooth
deformations of Vn~2' Of course, for general p E (R*)n the quotients defined below in
Definition 7.15 will not be luanifolds. Nevertheless, we ean think of 3-Sasakian manifolds
S(p) defilled below as "discrete" deformatiolls of the 3-Sasakian homogeneous manifold
5(1).

Let t p : N(p) l:-..+ S4n-l denote the embedding given by the zero set of the moment
lnap ILS(p). We define a R.ielnaunian metrie g(p) on N(p) by restrieting the eanonical
metric on S4n-l, that is g(p) = t~gcan' We shall make use of the following simple ob-

servation: Any infillitesiInal isometry (I(illing vector field) on (S4n-l, gcan) that has the
property that when it is restricted to N(p) it is tangent to N(p) is also an infinitesimal
isometry of (N (p), g(p»). In particular, the 3-Sasakian veetor fields ~~ aod the infinitesimal
generator 6 (p) of the circle group U (1)p satisfy this property by Proposi tion 5.2. More
generally, it follows from equation 5.5 that any Killing veetor field in c( u(1 )p) also satisfies
this property. In particular, the InaxiInal torus Tn aets as isometries on (N(p), g(p».
Let W n denote the Weyl group of Sp(n). Wn is isomorphie to the semidireet produet
(Z2)n)(J En where En is the symlnetric group on n letters, and W n aets on the Lie algebra
tu of the lnaxinuu torus by penl1utations alld sign changes. Notice that (Z2)n ><I En also
acts naturallyon (z*)n by permut.ations and sign changes. We shall identify this group
with the Weyl group and denote this action by p 1--+ wp for w E W n . Now the Weyl group
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Wn ean be realized as a subgroup of 5p(n) = Io(54n
-

I ,gean) by the following action on the
quaternionie coordinates u E H7I

: The symmetrie group acts by permutations of the vector
eomponents (UI,· .. ,un ) E Hn. The [eh refleetion of Wn acts by sending the.[th component
Ul of u to jUI and leaving all other components fixed. Taking the direct product of these
actions gives an action of Wn on 5 4n - 1 X (Z2)n. It is now easy to check that

PROPOSITION 7.12: The action oEW7I on 5 4n - I X (z·)n described above induces an isome­
try between (N( wp), g(wp)) alld (N(p), g(p)) whidl preserves the 3-Sasakian vector neids
~~.

It follows fronl this proposition that without 10ss of genera1ity we can take the integers
Pi to be positive integers and order p = (PI,··', Pn) such that PI ~ P2 ~ ... ~ pn.
Heneeforth, we shall assulne this to be the case un1ess otherwise specified.

PROPOSITION 7.13: Let p = (PI,· .. ,Pn) be an n-tuple oE pairwise relatively prime positive
integers, and let k be tlle nUl1lber oE 1 's in p. Tllen the centralizer C(U(1)p) oE U(1)p in
Sp(n) is U(k) x Tn-k.

PROOF: An argument silnilar to that given in the proof of Lemma 6.13 shows that
C(U(1)p) must lie in U(n). It is then a standard computation to check that the centralizer
is as stated. •

Let F : VnC2~N(p) denote the diffeomorphism of Proposition 7.6, and consider the

metric F* g(p ) ~n Vn~2' Then the following corollary follows immediately from Proposition
7.13.

COROLLARY 7.14: Let p =1= 1. Tl](~ll the metric F· g(p) is not U(n) invariant; hence, it is
not llolnotlletic to tlle 110111ogeneous metric th1 oE Proposition 6.9.

We now eOlne to our major objects of study.

DEFINITION 7.15: Let p = (P],P2,··· ,Pn) be an n-tuple oE relatively prime ordered posi­
tive integers. Tllen

(S(p), g(p))

is the lliemallllian 111aniEold N (p)/ U(1) p witll the unique Riemanniall m etric 9(p) that
makes 7r : N(p )-JoN(p )/U(l)p a llielnallnian submersion.

The following theorem is a direct corollary of Theorems 2.10, 5.6, and Corollary 2.16.

THEOREM 7.16: For eac1l n-tuple p oE ordered relatively priJne positive integers, the
lliemalmian maniEold (S(p), g(p)) is a cOlnpact 3-Sasakian manifold; hence, it is a compact
EiJlstein manifold oE positive scalar curvature equal to 2(2n - 3)(4n - 5). The space oE
leaves S(p)/:F is a cOlnpact 4(n - 2)-dimensional quaterniomc !(ähler orbifold O(p) oE
scalar curvature equal to 16n(n - 2). Furthennore, S(p) has a second Einstein metric

nonbomothetic to g(p) lviUl positive scalar curvature equal to 1 + (2n~\~(21l_3) times the
scalar curvature oE fi(p).

Dur next task is to understand the mallifolds S(p) group theoretically. Consider the
subgroup U(2) x U(n - 2) of U(n) given by the block diagonallnatrices of the form

7.17
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where A E U(2) and B E U(n - 2). The Stiefel luanifold Vn
c

2 is the homogeneous space
U(n)/U(n - 2) where the subgroup U(n - 2) is obtained by setting A = 12 , the 2 by 2
identity matrix, in 7.17, and the multiplication is from the right. The generators of the
SU(2) subgroup of U(2) obtained by taking A E SU(2) pass to the quotient and can be
identified with the 3-Sasakian vector fields ~~ in equation 6.2 restricted to the submanifold
Vn~2' The subgroup U(I)p acting from the left then shows

PROPOSITION 7.18: The 3-Sa..c;;akian manuold S(p) can be identified with the double coset
space

U(I)p \U(n)/U(n - 2).

Hp = 1 then the subgroup U(I)p is central and tbe tbe 3-Sasakian manuold S(I) is the
homogeneous space given in Theorem 6.14 when F = C.

REMARK 7.19: Notice that for any p f:. 1, it follows from Proposition 7.13 that S(p) is
not homogeneous with respect to the U(n) action described above. Actually, in section
9 we shall prove allluch stronger result in dimension 7 for a certain infinite subset of the
p; namely, that those S(p) are not homotopy equivalent to any homogeneous space.

Dur construction of the 3-Sasakian manifolds S(p) can be summarized in the following
diagrarn

F
(N(p),g(p» (S4n-l )

, geon

7.20

1"~ / lI"p

(S(p), g(p»

O(p) = S(p)/F.

Here 7t'o is the orbifold projection outo the quaternionic I(ähler orbifold O(p) = S(p)/F,
and 1r~ is the unique Riemannian subnlersion map that makes the triangle commute. The
quaternionic Kähler luetric y(p) is iSOllletric to the associated transverse metric 9T(p) to
the bundle-like metric g(p) on S.

PROPOSITION 7.21: Let p = (PI,"', Pn) be an n-tuple of positive pairwise relatively
prime llltegers, so tllat S(p) is a smooth compact 3-Sasakian manuold. A generic leaf oE
the foliation F Oll S(p) is iSOlnOlphic to:

(i) 50(3) if a1l Pi are odd,

(ii) Sp(l) otherwise.

The jsotropy subgroup oE any singular leaf is a cyc1ic subgroup oE the circ1e group U(I) C
Sp(l)r corresponding to tlle cOlnplex direction i.

PROOF: The proof of the first statell1ent amounts to whether or not the central Z2 in
Sp(1) lies in the circle group U (1)p' The conditions für this are that for all i, j = 1, ... ,n
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there exist positive integers k i , kj such that

7.22
Pi

2kj + 1

Pj

Now take j > i, then Pj ;::: Pi and equality holds if and only if Pi = Pj = 1. Equation 7.22
becomes

7.23 Pj - Pi = 2(kjPi - kiPj)

whose left hand side is even if Pj are odd for all j. On the other hand, the condition that
the p/s be pairwise relatively prime implies that at most one Pj is even, so if the pj are
not all odd equation 7.23 cannot hold over the integers.

To prove the second statenlent we compute first on S4n-l. The condition for the
existence of fixed points is that

7.24

for some a E Sp(l) and each 1 ::; 1 ::; n. Recall !rom the proof of Proposition 7.6 that on
N(p) at least two such Ul must be nonvanishing. In terms of the complex coordinates of
equation 7.10 these conditions are

7.25 e21f'ipl t zl a = zl, and

where not all z's vanish. This implies that a must be of the form e2
1f'ill for some real

number s; that is, a E U(I) corresponding to the complex direction i. Eut the isotropy
subgrotlp of a leaf must be of the form given in 2.14 and the only such groups that are
subgroups of a circle axe the cyclic groups. •

The singular locus E(p) c O(p) of the 4(n - 2)-dimensional quaternionic Kähler
orbifold O(p) can be rather cOlnplicated depending on the choice of p. We shall describe
E(p) in detail, when n = 3, in the Section 9. Here, we make the following two observations.
First, notice that O(p) is a leaf space of a Seifert fibration [OWagJ. Recall that the group
Sp( I ) r generated by the 3-Sasakian vector fields e~ acts as isometries on (N(p), 9(p)).
Moreover, since Sp(l)r acts freely on S4n-l, it acts freely on the submanifold N(p).
Thus, N(p) is a principal Sp(l) bundle over its quotient N(p) / Sp(I).

DEFINITION 7.26: M(p) = N(p)/Sp(l)r'

PROPOSITION 7.27: Tlle group U(I)p acts loca11y freely on M(p), and thus delines a Seifert
libration 1r" : M(p)~O(p) over tlle quaterniollic I(äbler orbifold O(p). Furthermore,
M(p) is a subnuulifold oE quaternionie projective space Hpn-l and is diffeomorphic to the
homogeneous space

U(n)
U(n - 2) x SU(2)'

PROOF: First we can check as in the proof of Proposition 7.20 above that the circle
group U( I)p acts locally freely on M (p). The relnainder of the proof then follows from
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Proposition 7.6 and the following commutative diagrarn

S(p)
1fp

N(p) S4n-l- t......t

1~o ! !

LJ(p)
1r.

M(p) Hpn-l.C-..+

•
The embedding M(p) t.......t Hpn-l is realized as the inclusion of the zero set of the

quaternionie !(ähler moment map of Galicki and Lawson [GL]. Also when n = 3 it is
easy to see that M(p) ~ 8 5 . We discuss this case in section 9. Finally, we give an
inhomogeneous analog of the 3-Sasakian embeddings described in diagram 6.20 for the
homogeneous case. First, we define lnaps PI;; : zn ---+ zn-l by

7.28

where 1 ~ k ::; n and the -:- means that we have deleted that integer. The embeddings
defined in 6.18 intertwine the actions of the circle groups U(l)p and U(l)p.ll(p) as follows

7.29

Thus, the analysis at the end of section 6 gives the following commutative diagram

7.30

S(p)

O(p).

The corresponding diInensions should be kept in mind here. For example, S(p) has di­
mension 4n - 5 whereas S(pk(p)) has dimension 4n - 9. Diagrarn 7.30 can be used to
simplify the analysis of the singular locus E(p) of the orbifold O(p). In particular, there
are cases when E(p) = Uk Ek , where Ek are singular sets of orbifolds O(?j11;; (p)).

In the next section we compute the cohomology ring of the manifolds S(p).

§8. The Integral Cohomology Ring of S(p)

We now prove the following theorelll
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THEOREM 8.1: Let p = (PI, ... ,Pn) E Z+. be any n-tuple of pairwise relatively prime posi­
tive in tegersj tllat is, gcd(p i , Pj) = 1 for 1 ::; i < j ::; n. Tben the 3-Sasakian manifold S(p)
i8 a compact, simply connected (4n - 5)-dimen8ional manifold wbose integral cohomology
ring H* (S(p), Z) is generated by two c1asses

Wllich satisfy the followlllg relations:

n

Here u n -1 (p) = L PI ... Pi ... Pn is the (n - 1)ßt elemen tary symlnetric polynomial in p.
j=1

COROLLARY 8.2: As abelian groups

wllen i = 1,3, ,2n - 3, 2n, 2n + 2, ... , 4n - 6,
when i = 0,2,4, ,2n - 4, 2n - 1, 2n + 1, ... ,4n - 5,
when i = 2n - 2.

This immediately gives the following

COROLLARY 8.3: There are iufinitely many non-homotopy equivalent simply-connected
conlpact 3-Sasakian manifolds in dimension 4n - 5 for every n 2: 3.

PROOF: Let p(n, d) = (1, ... , 1, d). Then S(p(n, d» is a simply-connected, compact, 4n - 5
dinlensional 3-Sasakian Iuanifold with H2 n-2 (S(p), Z) "J Zen-l)d+l' •

Recall that from Definition 7.15 and Proposition 7.6 we have the fibration

8.4

~
U(Jl=2)

S(p).

The long exact sequence in hOOlotopy then iluplies that S(p) is simply connected and that

7r2(S(P») = H 2 (S(p») = Z. Furthennore, since. the Stiefel manifold Vn~2 = U~~~~) is 2n - 4
connected, it follows froIn the SeITe spectral sequence for 8.4 that

when i = 1,3, , 2n - 5,
when i = 0,2,4, , 2n - 4.

But, as S(p) is oriented and compact, Poincare duality then shows that

when i = 2n, 2n + 2, ... ,4n - 6,
when i = 2n - 1, 2n + 1, ... , 4n - 5.
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Thus simple considerations applied to 8.4 directly compute all the cohomology groups with
the exceptions of the two groups in dimension 271 - 3 and 2n - 2. Up to this point the
answer is independent of p. However, it is not easy to see how to use the Serre spectral
sequence associated to the fibration 8.4 to compute the two key groups H 2 n-3(S(p); Z)
and H 2n-2(S(p); Z).

Thus, to prove theorem 8.1 w~ use a spectral sequence argument of Eschenburg [Eseh]
which exploits ideas of Borel [Borl]. To begin let M be a compact manifold and U a
cOlupact Lie Group that acts freely on M. Further assurne that the cohornology rings of
both M and U are known and one wants to cornpute the cohomology of M /U. Rather
than using the principal U bundle

8.5
7t

U~M~M/U

analogous to 8.4 above, Borel replaced M and M /U by homotopy equivalent models so as
to construct a fibration whose SeITe spectral sequence is easier to analyze. More precisely,
let U --+Eu--+Bu be the universal classifying space bundle for U. Then M is homotopy
equivalent to Eu x M as Eu is contractible and M /U is homotopy equivalent to

M//U = Eu xu M ,

where U acts diagol1ally on M and Eu. The point is that the fibration

M~M/U~Bu

which classifies 8.5 has a good homotopy model

8.6
1r

Eu x M ~ M//U ---. B u

whose associated Serre spectral sequence is easier to work with than the one associated to
the fibration 8.5.

Eschenburg [Eseh] showed that when M = G is a compact Lie group and U is a
subgroup of G x G acting on G by left and right multiplication then it is possible to
compute the differentials in the SeITe spectral sequence associated to 8.6. Notice that
while U is a subgroup of G x G and acts freely on G it is not necessary that U be a
subgroup of G. He then lllade explicit calculations when G = SU(3) and U = U(l) x U(l).
We can use his methods here as Proposition 7.18 shows that

S(p) = U(1)p\U(n)/U(n-2)

is such aspace. That is, setting M = G = U(71) and U = U(l)p x U(n- 2) the computations
necessary to prove theoreID 8.1 follow directly from the methods of [Eseh: §3]. Since these
computations are essential to prove corollary 8.3 (and are the first step in understanding
the possible hOIDOtOpy types of the S(p)), we have included sufficient detail in order to
make the discussion here self-contained.
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Eschenburg notes that, as U is a subgroup of G x G, one ean use Ea 2 for Eu and
thus construct a bundle map

G "'" G

1 1
G/U G//U

P
EC 2 xa2G8.7 "'" - EC 2 Xu G --+

Ip Ip·
p

Bu --+ Bc '2

whieh is an equivalenee on the fibres. Next he points out that the bundle in the right hand
vertieal column of 8.7 is easily seen to be isomorphie to the bundle

8.8
ß

G --+ Bc --+ B a'2,

where Ll = Bö is induced by the diagonal map fJ : G~G2. Here the map on the total
spaces

EG'2/fJ(G)~Ec'2 XC 2 G

is given by fJGx t-+ G2(x, 1) for all x E Ec '2.

It is well-known [Bor2] that

H""(U(n);Z) = E[el,e3, ... ,ezn -l]

is an exterior algebra on generators e2i-l of dimension 2i - 1 for 2 ::; i ::; n. In fact,
H"" (U(n ); Z) is a connected, associative, coassociative, commutative, cocommutative, finite
dimensional Hopf algebra. Next,

where Ci is the restrietion of the i th universal ehern dass to U(n) and is thus of dimension
2i. Furthermore, the differentials in the cohomology Serre spectral sequence associated to
the universal bundle U(n)----4EU(n)----4BU(n) are generated by the transgressive differen­
tials

As B C 2 = Bc X Bc we have

8.9

where ai = Ci CO 1 and bi = 1 CO Ci.
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The Serre spectral sequence associated to 8.8 (for G = U(n)) has

as the cohomology of the base and fibre are torsion free. Let

denote the natural projection of the E;'o(.6.) term along the base.

PROPOSITION 8.10: [Bor1]

.6. * = koo : H*(BU(n)2; Z) ~ E~O(.6.) C H*(U(n); Z).

Using this proposition of Borel and the fact that .6.- induces the cup product in
H*(Bc ) so

.6.*(u01) = .6.-(l®u) = u,

Eschenburg computed the differentials in Ej'*(.6.). Actually, he makes the computation
explicitly when G = 5U(3) but correct1y points out that it is direct to generalize his
computations anel obtain

LEMMA 8.11: [Esch] For a11 U(n) with n 2: 3 the differentials

dj : E;''(.6.)~E;+j,t-j+l(.6.)

in tbe collomology spectral sequence Ej'*(.6.) converging to H*(BU(n); Z) are generated
by

1. dj(e2i-l)=Oforj~i,

2. d2i (e2i-l) = ±k2i(ai - b.-) for 1 ::; i S n.

Up to bundle isomorphislu we luay replace 8.8 for the vertical right hand column in
8.7 to obtain the commutative lllap of fibrations

8.12

U(n)

1
S(p) rv U(l)p\U(n)/U(n - 2)

p
~

U(n)

1
BU(n)

which is an equivalence on the fihres. Thus, by naturality of the Serre spectral sequence,
we have
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LEMMA 8.13: For all U(n) with n ~ 3 the differentials

dj : Ej't(p)~E;+j,t-j+l(p)

in tbe eobomology spectral sequenee Ej'*(p) eOllverging to H*(S(p); Z) are generated by

1. dj(e2i-l) = 0 for j ~ i,

2. d2i (e2i-l) = ±k2i p*(Gi - bd for 1 :5 i :5 n.

Onee again,

denotes tlle natural projeetion of tl1e E; ,0 (p) tenn along tbe base in the speetral sequenee.

PROOF: That these differentials exist follows directly from naturality. Moreover, the
id

identity map gives an isomorphismE~'*(ß)~ E~'*(7f) along the fibres and the differentials
in the first eohomology spectral sequence are all transgressively generated. •

With these preliluinaries established we are now able to prove theorem 8.l.

PROOF OF THEOREM 8.1: Gllee we COlupute

p* : H*(Bu(up; Z) ~ H*(Bu(l)pj Z) ® H*(BU(n-2); Z),

we can apply leiunla 8.13 to compute the differentials in the SeITe spectral sequence con­
verging to H*(S(p); Z). Recall from Proposition 7.18 that S(p) is a double coset space.
We now describe the action in more detail. We begin with the indusion

U(l)p x U(n - 2)~ U(n) x U(n)

which is the product of the composition mapping

8.14
6 p

U(l) ~ T n
~ U(n)

on the first factor and the natural indusion

8.15
Jn

U(n - 2) ~ U(n)

on the second factor. Here the maximal torus Tn includes as diagonal matrices into U(n)
in the standard way, and the Iuaps ß p and jn are given by

Then the action of U(l)p x U(n - 2) on U(n) is given by the map sending W E U(n) to
ß p ( t)W jn (8).
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We now compute in cohomology. The inclusiou map 8.15 implies that

8.16

for 1 ::; i ::; n - 2. Here the classes Ci and Yi are the ith ehern classes in H*(BU(n)j Z)
and H*(BU(n - 2)j Z), respectively and bi is defined in equation 8.9.

Next, recall that if Tn = U(l) x U(l) x ... x U(l) is a maximal torus in U(n) then
the map in cohomology iuduced by the natural inclusion in : Tn-+U(n)

8.17

is an injection. Here Xi E H 2 (BU(l) = CpOOj Z) is the two dimensional generator of the
i th factor. In fact, i~ is an isomorphism

8.18

Qj

i~ : Z[c}, ... ,cn ] ~ Z[x}, ... , xn]En

outo the polynoll1ial subalgebra of En invariant polynomials whieh are freely generated by
the elementary symmetrie functions in the Xi 's.

Returning to the eomposition 8.14 notice that if X E H 2(Bu(l)p; Z) is the two dimen­
sional generator then

8.19

for 1 ~ i ::; n. This imnlediately inlplies that for 1 ::; i ::; n

8.20

where O'i(p) is the i th elemelltary symmetrie function of the coordinates of p and ai is
defined in equation 8.9.

Finally, the E;'*(S(p» term for the spectral sequence converging to H*(S(p); Z) is
isomorphie to

8.21 Z[x 0 1,1 0 Y1,' .. ,1 Q9 Yn-2] Q9 E[e1" .. ,e2n-1]'

Equations 8.19, 8.20, and leIllIlla 8.13 imply there are differentials

1. d j ( e2 i -1) = 0 for j ~ i,

2. d2i( e2i-1) = ±k2i (0'i(p)x2i Q9 1 - 1 0 Yd for 1 ~ i ::; n - 2,
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3. d2i (e2i-1) = ±k2i(ai(p)x 2i 01) for n - 1 ~ i ~ n.

A direct calculation using items 1. anel 2. shows that

8.22

where the classes on the right hand side are understood to be the E2n - 3 level equivalence
classes. Theorem 8.1 now follows by using the differentials in item 3. and the fact that
a n-1 (p) and 0'n (p) are relatively prime. •

As pointed out in the introduction, Corollary 8.3 shows that there are infinitely many
distinct homotopy types for the S(p) in every dimension 4n - 5 for n 2 3. Gf course,
two CW complexes may have isomorphie cohomology rings and still not be homotopy
equivalent as Whitehead's theorelu requires the existenee of a eontinuous map on the
space level indueing the isomorphism. Here the invariant 0'n -1 (p), whieh is the order of
the torsion group H2n-2(S(p); Z), merely determines the first non-trivial attaching map
in a CW decomposition for S(p).

I

§9. Strongly Inholnogeneous Einstein Spaces

We now consider the 7-dimensional 3-Sasakian manifolds S(p1 ,P2, P3) in more detail.
This case, when n = 3, is special as Va~2 ::: 5U(3) which will let us write S(p) as a quotient
of 5U(3) by a certain circle action. This alternative description permits us to analyze the
associated leaf orbifold space appearing in diagram 7.12 and Proposition 7.27. Finally,
we show, in a very precise way, just how far some of our examples are from homogeneous
spaces.

We begin by considering the diffeo1llorphism Q : 5U(3) x U(1)-+U(3) defined by

9.1

where A E 5U(3), 7 E U(l), and Ar is a matrix obtained from A by multiplying the 3rd

column by 7. In other words the map Q is given by the following composition

9.2
Jl

5U(3) x U(l) ----+ U(3) x U(3) ----+ U(3),

where the first arrow is the natural inclusion on the first factor and the inclusion ja given
by 8.15, when n = 3, on the second factor. The second map J-l is the group multiplication
in U(3). Here the map ja is given explicitly by

(

1 0
]a(7) = 0 1

o 0

Notice that Q is not a group h01uomorphisffij however, U(1) acts on SU(3) x U(1) by
multiplication in the second factar, and on U(3) by the inclusion ]3 followed by right mul­
tiplication. Furthennore, Q' intertwines these two actions, that is we have a commutative
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diagram:

9.3

0'

5U(3) x U(l) -+

1
U(3)

1
8U(3) x U(1) -t U(3).

Thus, 0:' induces a map of homogeneous spaces

9.4
A U(3)
a : 8U(3) -+ U(1)

that is, Ci is a diffeomorphisIU satisfying

a(DA) = D&(A)

for 0 E 5U(3). Explicitly, & is the composition of the natural inclusion 5U(3)-4U(3)
followed by the natural projection U(3)---.U(3)/ia(U(1)). To describe the inverse map we
recall that any 8 E U(n) can be viewed as n column vectors in Cn that are mutually
orthogonal with respect to the standard Hermitian inner product in Cn . Thus, writing
any 8 E U(3) in terms of its column vectors, 8 = (bI, bz, b 3), the map &-1 is given by

9.5

It is easy to check that this is independent of the representative of the coset.

Now consider the circle subgroup U(l)p C T 3 of the maximal torus of U(3) with the
conventions adopted in section 7; in particular, p = (Pl,P2,Pa) and the action on the zero
set N(p) = N(Pt,PZ,p3) is given by restricting the action Tp given in equation 7.2. We
have a diffeomorphism given by the cOluposition

9.6

where F is the diffeoluorphislu given in Proposition 7.6. Thus, the free circle action Bp on
N(p) induces a free circle action t?p on 5U(3). A straightforward computation shows that

9.7
o 0) (1 0o A 0 1

T P3 0 0

where p = (PI ,P2,P3). Notice that the iInage of U(l)p under t9 p is a subgroup of 5(U(3) x
U(3)) acting on 5U(3) by Ieft-right multiplication. We 8hall denote the quotient of 5U(3)
by this circle action by T(Pl, P2, ]Ja). Thus, we get an isomorphism of 3-Sasakian manifolds

9.8
N(Pl,PZ,P3) G 8U(3)

S(Pl,PZ,P3) = U(1)p ::::: U(l)p = T(Pl,PZ,P3),
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where G is the diffeomorphislll given in equation 9.6. The metric on SU(3) is ob­
tained by pulling back the metric on N (Pt, P2 , Pa), namely er *(F* 9(p)), and the metric
on T(Pb P2 ,Pa) is (G- t )*g(p). Thus, (T(PI' 1'2, Pa), (G-I )*g(p» is an isometrie model for
(S(Pt, P2, pa), g(p». In addition, it is direct to verify that the corresponding 3-Sasakian
vector fields are G-related. Explicitly, the action of the group Sp(l) generated by the
3-Sasakian vector fields on T (Pt, P2 , P3) is that induced by the action of Sp(1) ~ S U(2)
on SU(3) given by

9.9
(f,a') (€

A ------+ A - a
o

where (€ ~) E SU(2).
-a €

We shall now see why this alternative lTIodel is so usefu!. To begiu recall the manifold
M (p) = N (p)/ 5p( 1) r frolll Definition 7.26. Here M (p) is actually isomorphie to S5 uuder
the isomorphism above as the quotient SU(3) by SU(2) with action given by equation 9.9.
The circle action 1?p on SU(3) given in equation 9.7 eommutes with the 5U(2) action
given in equatioll 9.9, and thus passes to act on the quotient 55. However, this action is,
in general, not free but only locally free. There is a commutative diagrarn

9.10

SU(3) --+

1
1r,

--+

SU(3)jU(1 )p

1~o
O(Pt, P2, P3)'

where the maps 71"0 anel 71".! are orbifold submersions. In fact, 71".! is a Seifert fibration. Now
aceording to Proposition 7.21 the generic fibre of 7T"0 is

1. 50(3) if 0"1 (p) = Pt + P2 + P3 is odd,

2. Sp(l) if at (p) is even.

Thus, we need to distinguish the two cases. We have

PROPOSITION 9.11: Let (Pt, 112, P3) be a triple oE ordered pairwise relatively prime positive
integers. Tllen tlle quaternionie !(älller orbiEolds appearing in diagram 9.10 are:

(i) O(PbP2,Pa) = Cp2(zJI + P2,PI + P3,]J2 + P3) when PI + P2 + P3 is even,

(ii) O(PbP2,P3) = CP2(~,~,~) wllenpl +1'2 +P3 is odd.

Here tbe terms on tlle right are weigllted projective spaces.

PROOF: The circle act.ion 9.7 on 5U(3) passes to the action on the quotient S5 given by

9.12

For each tripie (Pt, P2, Pa) the quotient space of 55 by this action is known to be a weighted
projective spaces (cf. [GL]). If PI +P2 +P3 is even, then precisely one of the Pi is even,
so two of the sums Pi + Pi are odel anel one is even; whereas, if Pt + P2 + P3 is odd, all the
p;'s are odd and so all the SUIllS Pi +Pi are even. •
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Next we analyze the singular locus E(Pt, P2 , P3) of the 01'bifold S(Pt, P2 , P3 ). This is
a straightforward exercise using the action 9.12. Again we distinguish two case:

CASE 1: Let Pt + P2 + P3 be even. There are two possibilities for E(PllP2,P3) :

1. Three isolated points. This occurs when the entries in the tripIe (Pt +P2 , Pt +P3 , P2 +P3)
are pairwise relatively priIue.

2. A single copy of 8 2 und an isolated point. This occurs when two of the Pi +Pi have
a common factor.

CASE 2: Let Pt + P2 + P3 be odd. Then there are foul' possibilities for E(Pb P2, P3):

1. The empty set. This occurs when p = (1,1,1) and corresponds to the regular case
when 8(1,1,1) is homogeneous and fibres over the standard CP2.

2. Three isolated points. This occurs when the entries in the tripIe (PI +P2 , PI +P3 , P2 +P3 )
are pairwise relatively prirue modulo 2.

3. A single copy of 8 2 . This occurs when p = (1,1, 2k + 1).

4. A single 8 2 with an additional isolated orbifold point. This occurs in all the other
cases not covered in items 1,2, and 3.

Thus we see that the 01'bifold locus E(PI, P2 , P3) is ei ther empty (only in the one
regular case), 01' it consists of either three isolated orbifold points, a 2-sphere with an
additional isolated orbifold point, 01' a single 2-sphere.

Summarizing the results of this section with the results of previous sections implies
the following theorem.

THEOREM 9.13: Let (PI, P2, P3) be a tripie of ordered pairwise relativeiy prime positive
illtegers. Tilell tile 11l811ifoid T(p}, P2, P3) defined in equatioll 9.8 is isometrie to tbe 3­
Sasakian manifold S(Pr, ])2, P3) eonstrueted in section 7. Therefore T(pl, P2, P3) admits a
3-Sasakian structure witil a nOll-holllogeneous Einstein Inetric with scalar curvature equal
to 42. The ieaf space O(PI, P2, P3) of the associated 3-Sasakian foiiation i8 an orbifold
which js smootllly equivalent to the weighted projective space

(1) CP2 (PI + P2,Pl + P3,P2 + P3) wllen PI + P2 + P3 i8 even,

Oi) Cp2(~,~,~) when PI + P2 + P3 i8 odd.

Here tile base orbifold lIas the quaternionie !(ähler orbifoid Illetric (with a fixed scale) COD­

structed by Galicki find Lawson {CL}, und the singular locus E(PI,P2,P3) that is described
above.

Although we know from Corollary 7.14 that the 3-Sasakian structure on T(PbP2,P3)
is not homogeneous (except in the case when PI = P2 = P3 = 1) one can still ask if
T(PI, P2, P3) is diffeomOllJhic 01' hOlueomorphic 01' even horuotopy equivalent to a homo­
geneous space. To answer this question it is worthwhile to notice that there is a very
elose connection between our 7-manifolds T(Pl' P2, P3) and the construction of Eschen­
btug [Esch] which ruotivated the cohomology calculations described in section 8. More
precisely, Eschenburg considers quotients of 5U(3) by free cirele subgroups of

Tl'rnn C 8U(3)L X 8U(3)R ~ 8U(3)2.
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It is easy to see that all such circle actions are given by the following left-right quotients

9.14 o ) (Tmo A 0
T-(k+l) 0

o

o
o )o ,

T-(m+n)

where A E SU(3), T E SI, and the quadruple of integers (k, I, m, n) must satisfy same addi­
tional conditions in order that Tllmn acts freely (see (Eseh; Proposition 21] for the precise
constraints). When the action is free, Eschenburg denoted the quotient space by M kIm n •

Now, Mkl mn is a simply connected, compact 7-manifold and using the ideas described in
section 8, Eschenbllrg computed H*(Mk1mn ; Z) as a graded ring. Not surprisingly, the
result is strikely silnilar to Theorem 8.l.

THEOREM 9.15: [Esch] As a graded ring H*(Mklmn; Z) is generated by two c1asses

b2 E H2(Mklmn, Z) and 15 E H 5(Mklmn , Z)

which satisfy the following relations

rb~ = 0, b~ = 0, I; = 0, 15b~ = O.

Here r = Ik2 + 12 + kl- (m 2 + n 2 + mn)l.

Eschenburg's M klmn manifolds are related to several other manifolds of general inter­
est. For example, when m = n = 0, Eschenburg's construction recovers the homogeneous
Aloff-Wallach spaces M kl extensively studied from many different points of view [AlWal,
!(reSt1, KreSt2, !(reSt3, Wan, WanZi]. Most interesting to us here is that a straightfor­
ward computation shows that if Pl + P2 + P3 =0 (mod 3) then the Tl (p], P2 , P3) circle
action giyen in equation 9.7 can be rewri tten as an Eschenburg action in 9.14 with the
following relations between Pt ,P2, P3 and k, 1, m, n:

9.16

1
k = 3(2PI - P2 - P3),

1
I - 3"(2]>2 - P3 - Pl),

1
m - n - '3 (PI + P2 + P3 ).

Consequently, we have

PROPOSITION 9.17: Ifpl +P2+P3 == 0 (nlod 3) tllen tlle 3-Sasakian manifoldT(PI,P2,P3)
is diffeomorphic to tlle Eschenburg l11anifold MHmn where (k, I, m, n) is detennined by
equations 9.16.

However, the M k1mn Riemannian manifolds with the metries constructed by Eschen­
burg are not 3-Sasakian mallifolds so the diffeomorphism in Proposition 9.17 are not
isometries (except, of course, in the homogeneous case when p = (1,1,1)).

Most inlportantly, in his papel' Eschellburg introduces the concept of a 3trongly in­
homogeneotl.3 space. Such aspace is a compact topological space which is not homotopy
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equivalent to any COlupact Rieluannian homogeneous space. He then proves that his maIl­
ifolds M klm n are strongly inholDogenoous if r =2 (mod 3). Recall here that r is the
order of the finite cyclic group H4(Mklmn; Z). Actually, Eschenburg's proof shows much
more. He assurnes that M is a compact, closed, oriented connected 7-dimensional smooth
manifold such that

9.18 7rl (M) = 0, 7r2(M) = Z, 7r3(M) = Z, 7r4(M) = 0,

and then he completely classifies the homogeneous spaces with these properties. In partic­
ular, he deduces that if H4 (M; Z) is a finite cyclic group of order r then r ~ 2 (mod 3).
Thus, the actual proof appearing in [Esch: §4] ituplies

THEOREM 9.19: H G2(P) = PIP2 +P2P3 +P3PI =2 (mod 3) tbell T(PI,P2,P3), and hence
S(PI ,P2, P3) are strongly inllo11logeneous.

To see that this result is not vacuous notice that

a2(c, c + 1, c + 2) = 3c2 + 6c + 2 =2 (mod 3)

for all odd integers c so we have produced an infinite family of 3-Sasakian strongly inhomo­
geneous 7-manifolds. Moreover, this family exhibits a rather interesting limiting behavior
as c grows. In order to explain this precisely we need to recall that Cheeger [ChI], [Ch2]
has constructed a distance p* ((M, g), (M' , g')) between two compact n-dimensional Rie­
mannian manifolds. Considering the convergence in the p·-topology we get the following

THEOREM 9.20: Let c be allY positive odd integer. Then there is a sequence

{S(c,c+ 1,c+2)}~1

01 manilo]ds sucll tllat no e1emen t S (c, c + 1, c +2) is hOlnotopy equivalen t to any compact
bomogeneous space. Furtllermore, tllis sequence converges in tlle Cheeger p. -topology to
tbe homogeneous space S(I, 1, 1) witll respect to the Aloff-Wallach metrics.

PROOF: Let c be any positive odd integer. Then the triple (c, c + 1, c + 2) consists of
pairwise relatively prilne integers. We have just seen that G2(P) = 3c2 + Bc + 2 =2
(mod 3) so each S(c, c + 1, c + 2) is strongly inhomogeneous. Thus {S( c, c + 1, c + 2)} c is
a sequence of simply connected, strongly inhomogeneous, 3-Sasakian manifolds of distinct
homotopy types. Furthermore, since

P1 + P2 + P3 = 3c + 3 == 0 (mod 3),

Proposition 9.17 implies there is a s1l1ooth equivalence

S(c, c + 1, c +2) ~ M_1,o,c+1,c+1.

But Eschenburg shows that the curvatures of the elements in the smoothly equivalent
sequence {M(-1,O,c+l,c+1)}c converge to the curvature of the homogeneous Wallach space
M1,1 [Esch: Proposition 22]. Finally, Wang and Ziller [WanZi: Proposition 4.3] observed
that the curvature convergence considered by Eschenburg is equivalent to convergence
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in the Cheeger distance p•. The theorem now follows from the simple observation that
MI,I ::::: 5(1,1,1). •

Notice that the Ieaf space associated to the 3-Sasakian foliation of S(C, C + 1, C + 2)
is the weighted projective space CP2(2c + 1, 2c + 2,2c + 3), which is a 4-dimensional
quaterniomc I(ähler orbifold with exactly 3 disjoint isolated points. Theorem 9.20 is a
much stronger result than the statel11ent that the Einstein metric compatible with the 3­
Sasakian structure on 5 (C, C+1, c +2) fails to be homogeneous. This weaker fact is a simple
implication of the theory of homogeneous 3-Sasakian structures presented in section 4 and
was, in fact, already mentioned in [BGM1]. To our knowledge the 3-Sasakian manifolds
appearing in Theorel11 9.20 are the first examples of compact, strongly inhomogeneous,
Einstein manifolds of positive scalar curvature.

Theorem 9.20 has an important corollary:

COROLLARY 9.21: For all sufflciently large odd positive integers c, tbe mannolds

5(c,c+1,c+2)

admit metries oE positive sectional curvature.

These metries are obtained as left-right quotients of SU(3) induced by submersions
from a special Riemannian l11etric 9 on SU(3) such that 9 is SU(3)L X HR-invariant. Here
H = U(2) C SU(3) is the canonical embedding, and the quotient M pq has strictly positive
curvature for arbitrary p and q. As shown in [AlWal], all such metrics are given by the
following scalar product in the Lie algebra .5u(3) :

9.22 < X,Y > = B(X,Y)+tB(XH,YH),

where t E (-1,0) U (0,1/3), B is an Ad-invariant scalar inner product and XH is the
orthogonal projection of X to H = U(2).

§10. ConcIuding Remarks

The geometry of the Einstein l11anifolds considered in the last three sections is quite
rieh. In particular, it is natural to ask about reiationships between S(p) and S(p') under
the various types of equivalence: homotopy type, homeomorphism, diffeomorphism, and
isometry. The first problel11 is to classify the 3-Sasakian manifolds 5(p) up to homotopy
type. In dimension seven, theorel11 8.1 implies that, as a CW cOl11plex,

and the order of the torsion group H4 (S(p); Z), determines the first non-trivial attaching
map

[f] = (1, U2(Pt,P2,Pa» E 1l"a(S2 VSa) "J Z EB Z.

Similarly, the othel' attaehing maps 9 and h are funetions of (PI, P2, Pa) which must be
determined explieitly to c1assify the 5(PhP2,Pa) spaces up to homotopy type. We note
that a similar question reulains unanswered even in the case of the homogeneous Aloff­
Wallach spaces Mk,l [AlWal].
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Next it would be very interesting to classify the spaces S(p) up to homeomorphism
and diffeomorphism type. Again, in dimension seven, this ean be done in prineiple by
computing the I(reck and Stolz invariants [I(reStl, KreSt2]. We recall that Kreek and Stolz
studied smooth eonlpact closed oriented seven manifolds M 7 whose integral cohomology
ring is generated by two classes b2 E H2(M7

, Z) and /5 E H5 (M7
, Z) subjeet to the

relations:
i(M7)b~ = 0, b~ = 0, /i = 0, f5b~ = 0.

Here i(M 7 ) E Z. I(reek and Stolz assoeiate to each such M 7 three homeomorphism invari­
ants

and three diffeomorphism invariants

which taken together completely determine the homeomorphism and diffeomorprnsm type
of M 7 . As an application of the general theory they compute these invariants [KreStl,
KreSt2] for the vVang-Ziller spaces Wk,l = (S3 X S5)/Tk1 [WanZi], and for the Aloff-Wallach
spaces Mk,l' In particular, they discovered that there are examples of Aloff-Wallach spaces
which are h0111eoulorphie but not diffeomorphic [KreSt2].

Thus, Theorem 8.1 iluplies that the I(reck-Stolz invariants exist and determine the
homeomorphismand diffeomorphism type ofthe S(PI,P2,P3) spaces. Once again, it is nec­
essary to compute Si ( S (PI, P2 , P3 )) and 8"i ( S (p I , P2 , P3 )) as explicit functions of (Pb P2 , P3 )
to classify these manifolds. Given the paralieis between our manifolds as bi-quotients of
SU(3) by circle subgroups of S(U(3) x U(3)) and the Aloff-Wallach spaces, it is reasonable
to also expect examples that are homeomorphic but not diffeomorphie in our case. Notiee
that, in some sense, our eXaluples are nlore plentiful in that every odd integer is realized as
the order of H 4

( S (PI, P2 , P3 ); Z) for SOlue p. Also it is worth noting that the two sequences
of 3-Sasakian 7-manifolels

{S(C,c + l,c +2)}cEZOdd and {S(l 1 (3c
2 +6c + I))}

, , 2 CEZodd'

are indistinguishable in ternlS of their integral eohomology rings. Yet geometrieally, for
each fixed c, the cOl'responding pairs are very different. For instance, the spaces of leaves
are not the same, anel the 3-Sasakian metrics are clearly not isometric. Also, a.s c tends
to infinity in the p. Cheeger distallCe, it is clear that the limits are different. There are
many luore sub-families in S(PI ,P2,P3) with similar interesting properties. All this makes
the homeolllorphislll alld diffeolllorphism classification problem for these spaces even more
intriguing.

Finally, it seenlS likely that for p, p' E (Z·) n the Riemannian manifolds (S(p), 9 (p))
and (S(p'), g(p')) are isometrie if and only if there is an element w in the Weyl group W n

of Sp(n) such that p' = wp.

More recently, I(reck a.I1d Stolz [I(reSt3] considered a Q-valued invariant s(M, g) for
positive scalar curvature nletrics on closed (4k - l)-dimensional spin manifolds M with
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vanishing real Pontrjagin classes. They computed this invariant for the Wang-Ziller spaces
Wk,l and for the Aloff-Wallach spaces Mk,l' They showed that there are manifolds in the
Wk,l family for which the moduli spaces 'R~ic(M)/Diff(M) of Riemanman metries of
positive Ried curvature have infinitely many components. Furthermore, they showed that
there are manifolds in the Mk,l family for which the moduli space 'R.~ec(M)/Diff(M) of
metries of positive sectional curvature is not connected. Each S(pl' P2, P3) manifold admits
two Einstein metries of positive scalar curvature. These are in the same component of the
moduli space R~cal(M)/Diff(M). As shown in section 9, some of the S(Pl ,Pl,p3) spaces
admit metries of positive sectional curvature as well. In principle, one could compute the
Isl-invariant of Kreck and Stolz [KreSt3] for our spaces. It would be interesting to see if
there are manifolds (perhaps in the S(c, c + 1, c + 2) family?) for which the moduli space
of positive sectional curvattue lnetrics R~ec(M)/Diff(M) has more than one component.

Lastly, how much of the discussion above for the 7-dimensional case extends to the
general (4n - 5)-dilnensional situation? For example, should oue expect some strougly
inhomogeneous Einstein lnanifolds among S(p)? Is it possible that S(p) admit metries of
positive sectional curvature? This last question seems particularly intriguing as the only
known simply connected nlanifolds of dimension> 24 adlnitting such metries are spheres
and projective spaces over C and H.
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