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WEAK POSITIVITY AND THE STABILITY

OF CERTAIN HILBERT POINTS

by

Eckart Viehweg

The notion of weakly positive sheaves was originally
developed by the author in order to express positivity of
direct images of powers of dualizing sheaves, needed to study
the generalized Iitaka - conjecture C;’m (seg (171, [18},
[20] and the excellent survey articles [2] and [13]). Beside

of "weak positivity" applied to families of complex projective

varieties over certain projective bundles, in all cases where

one was able to prove C; m ©ne had to use some md&uli
I
theory. For example, in order to show C; m for families of
’

manifolds of general type one could use the existence of
quasi-projective moduli schemes (as in [18] for curves and
surfaces), or local Torelli theorems for cyclic covers ([19]
or in a more general situation: Kawamata [9]) or, as Kollar
did in [12], Hodge theoretic estimates on the kernel of the

multiplication map.

Reconsidering the link between moduli theory and C; m
!

for complex manifolds of general type, we tried to use "weak

positivity" and other methods from classification theory to



construct quasi-projective coarse moduli spaces for certain
moduli functors (1.1). This aim is not achieved, due to a
technical statement (1.10) which I am not able to prove in a
sufficiently general situation. We have to resign ourselves to
a partial result, saying that smooth points of the reduced
Hilbert scheme of canonically polarized manifolds are stable
(in the sense of Mumford [14]) under the usual group action

and with respect to some ample sheaf (1.7).

Since we hope that the "gap" 1.10 can be filled some day,
may be using more advanced technics from Hodge theory, we

formulate our article such that we can state as well:

"An affirmation answer to 1.10 implies that guasi-projecttive
modull spaces exlst for complex canonically polarized

manifolds."

Of course our proof is based on Mumford’s geometric invariant

theory [14].

Sometimes it is easier to obtain coarse moduli spaces M
in the category of Moisezon spaces or algebraic spaces (see
[10], [14]), [15] and {16]). If M happens to be a fine moduli
space, our approach to construct an ample invertible sheaf on
M becomes quite elementary. The same method works for
arbitrary families of Gorenstein varieties of general type

provided the map to the moduli functor is finite over some



open set (see 1.18 and 1.19 for the exact statements) and it
shows the existence of natural sheaves on the base having lots

of sections.

As an obvious corollary we obtain an elementary proof of

<+

C,p for morphisms whose general fibre is of general type
I

(see 1.20), a result obtained by Kollar [12] before.

This paper was written during the "Special year on
Algebraic Geometry"™ at the Max-Planck-Institut filir Mathematik,
Bonn. I am grateful to its permanent staff for giving me the

possibility to participate.

Héléne Esnault had a great influence on the content of
this paper. She pointed out several ambiguities in the first
version and some of the methods and some improvements are due
to her. The approach presented here is partly based on our

common work, especially on [3].
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Leitfaden

The proof that certain Hilbert points are stable (1.7) uses

only §1, A and B, %3 and §5.

The existence of ample sheaves on the base of a family of
certain varieties (1.18 and 1.19) is based on §1, B and C, §2,

§3 and §4.

The reader just interested in a "simple" proof of C;,m for
fibre spaces whose general fibre is a manifold of general type
(1.20) should read §1, ¢ and D, §2 and §4. The weak
positivity results contained in [17] or [18] are strong enough

for those applications (see remark 1.21).



§1 Notations and discussion of the main result

All varieties and schemes are supposed to be defined over
the field C of complex numbers. We try to use the notations

of [6].

A. Moduli and Hilbert schemes

1.1 Let h(T) be a polynomial of degree n. As in [14] we
consider the moduli functor Jﬁ of complex projective normal
irreducible varieties X with at most rational Gorenstein
singularities and with an ample canonical sheaf Oy
satisfying x(x,w;) = h(v). In érder to have "nice" Hilbert

schemes we need further restrictions and therefore we define:

a) If n (which is nothing but dim X for X € ﬂﬂ(C)) is

= v“’.

one or two we define jh n

b) If n > 2 we define jh by ﬂh(S) = {f : ¥ — S € #ﬁ(S):

f smooth or h%(X,u,) > 0 for all fibers X of f)

Results due to Matsusaka, Tankeev and Kollar (see for
example [10]) show that the families in Jh(S) are bounded
with respect to the canonical polarization and that for
v >> 0 the v-canonical embedded X € Ah(C) are parametrized

by a scheme H:



Theorem 1.2. Let #h be as in 1.1.

i) There exists some number v such that for all X € ﬂh(C)
w; s very ample.

ii) There exists a "Hilbert scheme" H and a universal

family h : X — H € ﬂh(H) together with

it % — P(hoyy) = Pl x u

such that all vuv-canonical embedded 15 ] Pr-l x S with
l£s l
S = S

fS € ﬂh(S) are obtained as pullback of ¥ — Pr_l x H

under a unique morphism S — H.

iii) The action of 8l(r,C) on H corresponding to "change

[Pr-lll

of coordinates in is proper.

Notations 1.3. If f : X — Y is a proper flat Gorenstein

morphism (respectively a proper surjective morphism between

Gorenstein schemes) we denote by w the relative dualizing

X/Y
sheaf (respectively the difference of the dualizing sheaves
vy © f*wY_l). If Y is irreducible we will allways try to
use:

= n = n
r(n) = rank(f*mx/y) and An = det(f*wx/y)



l.4. For p >> 0 the sheaf ¢ = Agfz) 8 AST(VHITH g
ample on the Hilbert scheme H introduced in 1.2. Moreover
there exists a Sl(r(v),C)-linearization of 20 ({14]), Def.

1.6).

In fact, 90 is the ample sheaf arising from the Pliicker
coordinates on H and u has to be choosen such that for all
X € 4 (C) the ideal of X in P(H°(x,m§)) is generated by
polynomials of degree pnu ([1l], in 4.3 we will use a similar

construction).

1,5, Mumford introduced in [14] the notion of a stable point
under a group action and with respect to any linearized
invertible sheaf ¢ (see 5.3). If we consider the Hilbert
scheme and the: Sl(r(v),C) action we will denote the set of
stable points by H(!)s. We freely use the notations and

results from [14]. Remark, that there it is shown that:

i) H(‘.’)s is an open subscheme of H, the gquotient
H(S)S/Sl(r(u),C) exists as a quasiprojective scheme and the
Sl(r(v),C)-tnvartant sections of some power of ¢ define an

embedding of this quotient into some projective space

ii) If H = H(¢)® then M = H/S1l(r(v),C) 1is a

quasiprojective coarse modull scheme for ‘h'



1.6. Mumford [14] for curves and Gieseker [4] for surfaces
verified the stability for all points of H and showed that
for v,pu >> 0 and 90 as in 1.4 one has H = H(So)s.

Regarding Gieseker’s proof one finds that
(*) 20 is ample on H by construction.

(**) It is difficult to decide whether a glven point lies in
s
H(QO) .

The approach presented in this paper shifts the

difficulty from (**) to (*). We will observe in §5:
Let ¢ =¢_® A", Then

n 0 v
(*) It is difflicult to show that Qn is ample on H.

(**) If one Rnows that for =n >> 0 2n is ample on some open
Sl(r(v),C) invariant subscheme HO of H, then it is easy to

S
show that Ho CH (Sn) .

The precise statement, which will be shown in §5, is:

Theorem 1.7. Let ‘h be one of the moduli functors

consldered in 1.1 and let H be the Hilbert scheme (for some

v >0 as in 1.2).



a) Let Ho C H be the largest open subscheme of H such

that (HO) Ls non singular. Then H, = HO(AS. ® AS)S for

red 0

K
a,b,up >> 0.

b) An affirmative answer to problem 1.10 implies that for
a,b,p >> 0 one has H = H()\g_p ® RS)S and hence that a

coarse quasiprojective moduli scheme exists for ‘h'

B. Weak postivity and some open problems

Definition and Notation 1.8.

i) Let Y be a scheme (or an analytic space) and UC Y an
open subscheme (or Zariski open subspace). We say that an
OY-module $ 1s globally generated over U, if the natural
map HO(Y,ﬁ) @COY — ¥ 1is surjective over U (respectively:
HS(Y,?) OCOY — ¥, where Hg denotes the meromorphic

sections, as in 1.16).

ii) If % 1is a coherent sheaf on Y and i : U — Y is

maximal open subscheme (or space) where ¥ 1is locally free,

then we define SY (%) = i*sr(i*s), AT (%) = i*Ar(i*s) and

det (%) = i*det(i*$). In §2 we will introduce tensor-bundles
* *

T(1i ¥) and then T(¥) is supposed to be 1,T(i ¥). For

simplicity we write ¥ indstead of Sr(g) when % is of

rank one.
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1.9. There are several slightly different definitions of
weakly positive sheaves in the literature (See [13] for a
discussion). We will return here to the original one and - in
order to formulate 1.10 - we have to extend this notion to
sheaves on arbitrary reduced quasi projective schemes. In all
applications (even when we will sometimes forget to mention
it) we will assume that the open set U meets all components
of Y and that the sheaf % is locally free on some

neighbourhood of the non normal locus of Y.

Definition Let % be a coherent torsion free sheaf on a
reduced quasiprojective scheme Y and U C Y be an open
subscheme. Let #* be an ample invertible sheaf on Y. Then %
is called weakly positive over U if $|U is locally free

and if for all a > 0 there exists some b > 0 such that

b

Sab(ﬁ) ® * is globally generated over U.

Obviously this definition is independent of the ample

invertible sheaf #® choosen. Moreover, we can say that for

all a > 0 there exists some bo > 0 such that Sab(ﬁ) ® xb

is globally generated over U for all b 2 b. (see [19],

0
3.2.1). Weakly positive sheaves have properties similar to

those of ample sheaves. Some are recalled in §3.

Problem 1.10. Let Y, be a reduced quasi projective scheme

and (fo : xo — Yo) € Jh(Yo) for one of the moduli functors

‘h considered in 1.1. Is for v > 1 the sheaf fo*wv

XO/Y0

weakly positive over Yo?
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In fact, 1.10 should not depend on the ampleness of

@ _q . Moreover the generating sections should come from
£ (y)
some compactification. Therefore, being more optimistic, we

could ask:

Problem 1.11. Iet f : X — Y be a surjective projective
flat Gorenstein morphism of reduced quasi projective schemes.

Assume that for some v > 0 f*w;/Y is locally free. Let

Yo C Y be an open subscheme, such that for all y € YO'

f-l(y) is normal with at most rational singularities. Is
v . -
f*GX/Y weakly positive over YO.

As we will show in 3.7 both, 1.10 and 1.11 have an
affirmative answer if one assumes in addition that YO is non

singular. If moreover f0 : xo = f-l(Yo) — YO is smooth,
then this has been obtained in [17]) and [18] building up on
Kawamata’s positivity theorem (v = 1, see [8]). This last
mentioned theorem has also been obtained by Kollar [11] as a
corollary of his vanishing theorem for semi ample sheaves.
Using his idea and some of [3], one can give now a quite

simple "algebraic" proof (see (20], 6 and 8’). Let us remark

that 1.11 would follow from 3.7 and an affirmative answer to

Problem 1.12 ILet ¢ be an invertible sheaf on Y and

. * »
T ¢ Y/ — Y a desingularization. Assume 7 ¢ is weakly

positive over f-l(U). Is then ¢ weakly positive over U?
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Several unsucessful attempts to answer this question let

me doubt however whether the answer to 1.12 is yes.

1.11 has also an affirmative answer if Y 1is projective
and if the fibres of f are not too bad. In some way our
problems have to do with the problem how to find "“good"
compactifications of morphisms. Instead one could try to

compactify the bundles coming from Hodge theory:

1.13. Let f0 : Xo - Yo be a smooth equidimensional

projective morphism of quasi projective schemes, let

To ¢ Y6 — Y, be a desingularization and 1 : Y6 — Y’ be a

compactification. We call Y’ a good compactification if Y’

is non singular, projective and if Y’ - Yj is a normal

crossing divisor. If f6 : X! — Y6 is the morphism obtained

0
as pullback of fo, we assume that (for k = dim Xo - dim Yo)
the monodromy of ka6* C around the components of Y’/ - Y6

r
x0
is unipotent. By W. Schmid’s nilpotent orbit theorem one has a
natural locally free sheaf %’/ on Y’ such that

k
i'IY, = (R'£4,Cy,) 8:0,, and the subbundle fé*mx,/y,
0 0 0 0’70
extends to a subbundle %’ of #’. Both sheaves are

compatible with further blowing ups of Y’.

Problem Can one find a compactification Y of Y, and a

locally free sheaf ¥ on Y (or even a locally free sheaf %

on Y) such that for any good compactification Y’ of Y6
*

with a morphism T : Y'— Y one has %’ = 7*F (or &' =71 #%)?
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In 3.12 we will indicate how an affirmative answer to
1.13 implies one to 1.11 and 1.10, at least under the
additional assumption that f0 is smooth. Studying base
change properties of powers of dualizing sheaves more
carefully than we will do, one should also be able to deduce

1.10 and 1.11 as stated.

Convention 1.14. Throughout this article we formulate the
proofs such that an affirmative answer to 1.11 allows to erase
the words "non singular locus" in all statements of the form
"... is weakly positive over the npon singular }locus of ..." or

"... is ample with respect to the pnon singular locus of ..."
Especially this holds for 1.18 and 1.19.

C. Application to fibre spaces

Convention 1.15

i) All analytic spaces Z occuring should be Zariski open
subspaces of a reduced irreducible separated compact analytic

space 2.

ii) All coherent sheaves ¥ on Z should extend as coherent
sheaves to Z. Thereby it makes sense to talk about

meromorphic sections of ¥ and those are denoted by Hg(z,ﬁ).
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iii) Each morphism between analytic spaces should extend to

some compactification.-

Definition 1.16. Let Y be an analytic space, UC Y be a
Zariski open subspace and ¢ be a coherent torsionfree sheaf
of rank 1 on Y. We call ¢ ample with respect to U if ¢|U
is invertible and if for some a > 0 there exists a finite
dimensional subspace V C Hg(Y,Qa) such that V @COY — ¢°

is surjective over U and the natural morphism U — P(V) an

embedding.

Of course, if U ¥ #, this implies that Y is Moisezon
and U quasiprojective. As promised in the introduction we
will show that a fine moduli space carries a rank one sheaf,
ample with respect to its non-singular points. In fact, we can

weaken the assumptions:

Assumptions 1.17. Let £ : X — Y be a flat surjective
projective Gorenstein morphism of analytic spaces (remember

1.15) and YO C Y be a non empty Zariski open subspace.

Assume that:

i) All fibres of f0 : f_l(Y = X, — Y are irreducible

0) 0 0
normal varieties of general type with at most rational

singularities.

ii) For all y € YO, there exists only a finite set of

y’ € Y. such that £ ! -1

0 (y’) is birational to £

(y).
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iii) ¥ is normal (or at least f_ w and the sheaf 4% in

* X/Y
1.19 are both locally free in some neighbourhood of the non

normal locus of Y).

Theorem 1.18. Under the assumptions made in 1.17 assume that

for some v > 1 the sheaf 0 is very ample for each fibre

F
F of f0 : X — Y . Then for some a,b,p > 0 the sheaf
£ = det(f, v X/Y) ® det(f, X/Y) 1ls ample with respect to the

non singular locus of Yo.

Theorem 1.19. Under the assumptions made in 1.17 assume that

£,0%,y ® C(¥) € H°<f‘1(y),w:_l(y))
-1

Then for some a,b,p > 0 and

deflnes a birational map

of £ 7(y) for all yE€ Y

0.
$

Im(s" (£, 0% x/v) — £a0 x/Y) the sheaf

det(%) ® det(f,

¢ is ample with respect to the non

X/Y)
singular locus of the open subset U C YO where both f*mX/Y

and 49 are locally free.

Of course 1.18 is just a special case of 1.19. In fact,

since o
Xo/¥q

Grauert-Riemenschneider vanishing theorem (see [6]) to show

is ample on each fibre of f one can use the

0

that fO*mxo/Yo is locally free for v > 1. Moreover, for
g >> 0 the multiplication map is surjective over Yo.
Therefore we can assume that the inclusion % C f*QX/Y is an

isomorphism over Y, and choose U = YO in 1.19.
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The reader interested in stability of Hilbert points and
familiar with [14] can use the proof of theorem 1.19 in §4 as
an illustration how the proof of the stability theorem 1.7
will work. In some way, the Reynolds-operator used in [14] can
be replaced by the splitting obtained in 2.6 and in 4.5 the
Hilbert-Mumford criterium is hidden behind the curtain (see

remark 4.4 and 4.6).

D. Proof of C; m for certain fibre spaces

i

We will use the notations coming from classification
theory and the reader not familar with this theory should
consult the excellent survey articles [2] and [13] for the

exact definitions, references and historical remarks.

Theorem 1.20. (Kollar [12], Kawamata and myself, under more

restrictive assumptions [2], [19]).

Let £ : X — Y be a morphism of projective manifolds with an

irreducible general fibre Xw of general type.

i) (¢

n'm) If x(Y) 2 0 then

k(X)) 2 Max{x(Y) + (X)),Var (£) + x(X)}

ii) If Var(f) = dim Y, then for p,v >> 0 the sheaf

Su(f*w contains an ample subscheaf of full rank.

v
x/Y)
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iii) If vVvar(f) = dim Y, then for some 7 >> 0 the reflexive

hull of £ contains an ample invertible sheaf.

n
*x/y
Proof. As explained in [19], 3.4 ii) and iii) are equivalent.
In [18] it was shown that ii) implies C; n for the

’
corresponding type of morphism. To prove ii) we use 1.19

together with the constructions developped in [18]:

We can replace Y by the complement of a codimension two
subvariety (as in 3.3.d) and thereby we may assume that
f : X — Y satisfies the assumptions made in 1.17. As in
[18], 6.1 we can make semistable reduction in codimension one
and, leaving again out a codimension two subvariety, we may

assume that f is semi-stable. 1.19 tells us that for some

v )b
X/Y

maximal Iitaka dimension «(¥£). Therefore, choosing a and b

v,u,a,b > 0 the sheaf ¢ = det($)? ® det(f,v has

big enough, we can assume ¥ to contain an ample invertible

sheaf. Since det(¥) is contained in some wedge product of

£,0y %

0% /v we may find some 4 and n, such that ¢ lies in

n ) n
©® .0V ") 8 (8 °f

w W )
*X/Y *X/Y

(see §2, for example, or [7]).

a
By (18], 3.4 and 3.5. ©® £
(a), v
f W
* X(a)/Y

u
*% /Y is nothing but

where X(a) is a desingularization of the a-fold
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(n,)
fibre product Xx Xxyo X X The product map for X 2
2 2 noo

f*wX/Y — 9 f*QX/Y and therefore ¢ is a

n vep - .
subsheaf of @ f*“X/Y for n =1u g+ 0, The equivalence

of ii) and iii), applied to the fibre space x™M)  shows that

induces s! @

for some ~+ >> 0 S @n(f contains an ample subsheaf of

* X/Y)
full rank. Then the same must hold for the quotient
gv" ﬂ(f* X/Y)
Remark 1.21. The proof of C;,m given above does not use
anymore analytic methods from Hodge theory, except of the
degeneration of the Hodge-Deligne spectral sequence, hidden
behind the vanishing theorem of Kollar (see [3], §3). Since
the degeneration of this spectral sequence has been shown by
Deligne and Illusie using characteristic p methods we can
say that the proof of C n,m for families of manifolds of

general type, presented here, is algebraic and "easier" than

the ones given before.

If Y is a curve, the necessary tools from "weak

positivity" are quite trivial, and the proof of Cn 1

obtained from 1.19 is quite simple.
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§2 Tensor bundles

2.1. Throughout this section we consider an algebraic scheme

X or an analytic space X together with a locally free sheaf
£ which is of rank r on all components of X. As described in
[7] for example, a finite dimensional representation

T : Gl(r,€) — G1(n,C) gives rise to a bundle T(¢&).

Definition, We call T(&) the tensor bundle (of T). If T
is an irreducible representation we call T(&) an irreducible

tensor bundle.

2.2. Let T be an irreducible representation. Then the
irreducible tensor bundle T(&) is, up to isomorphism,
uniquely determined by the "upper weight" c(T) - (nl,...,nr).
This, as well as the following construction of c¢(T), can be
found in [7], A.6: Let P be the group of upper triangular
matrices. There is a unique one dimensional subspace of ch

consisting of eigenvectors of T|P. If A : P — c”* is the

corresponding character, then A applied to a diagonal matrix

n
, i .

(h;;) gives IT h,;, if <(T) = (n;,...,n). One has

n, 2 eee 2 n..

Definition. We call c¢(T) the upper weight of the

irreducible tensor bundle T(&). T(&) is called positive if
n. 2 0 and n_>0 (for all irreducible summands if T is

reducible).
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2.3. Examples of tensor bundles are the symmetric products

s’ (&), the tensor products " (&). If T,(¢) are
tensorbundles, for i = 1,2, then the same holds for

Tl(a) ® Tz(c) and Tl(a) ® T2(8). The determinant det(&), as
well as det(z)n for m € Z, are irreducible tensor bundles

of upper weight (n,...,mn).

r
Lemma 2.4. Let p : det(f) — ® & be the map

p(Xynerunx ) = =t 2 sign(0)X, ;,@...8X

. Then for all
o(r)
o€y

r

n € N the image of pn embedds det(e)" as direct summand

r
in © s"(e).

Proof. If AR is a basis of c¥ then, with respect
to the standard representation,
1 r
u==F 2 51gn(a)ea(1)@...0eo(r) €0C
a€9r

r L 3
is an eigenvector
of P. The induced irreducible subrepresentation has upper

weight (1,...,1). As in [7], p. 75, let u" be the image of

nr r
T under the multiplication map & © ¢t — ¢ s"c’. Then uf

@
u
is again an eigenvector, and the corresponding upper weight is
(m,.-+,m). Since the irreducible subrepresentation is uniquely

determined by the upper weight it must be det(cr)n.
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2.5. A more geometric interpretation of the map p from

(2.4) can be given by considering the projective bundle

r r r
P=P(@®¢) — X of ®¢ =doa, (£,0 0,). We have
X
r r ' r u.
T 0p(v) =s"@®¢') =8 8 s LYy,

where the direct sum is taken over all (ul,...,ur) with
o
E By = v, Therefore the map p gives rise to
i=1
r

1 _L8¢ — w*op(r). We denote the induced

p : det(&)
section of Om(r) ® v*det(é) again by p and write D for

its zero divisor. On P we have the universal map

r
e —s Om(l) or, taking its dual, a "universal basis"

r
*
(sl,...,sr) : OP(_I) — & 7T &.

The wedge product of Sqree-sS, factors over

rr* r & *
OIP(-r) — ST (@ 7w &) — @ w & — det(m ¢&).

Since this is just the dual of p we find D to be the

degeneration locus of SpseeesB- Altogether we obtain:

r
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r
*
Lemma 2.6, Let s : @ OP(_l) — 7w & be the universal basis

and D the degeneration locus of g. Then the corresponding
*
section pn H OP e OP(n-D) = Ow(r-n) e r det(&)n glves rise
to a direct summand Ox _ r*OP(n-D).
The following proposition is the key of the proof of
theorem 1.18 and 1.19 in §4. We remind the reader of the

convention 1.15 on analytic spaces and of definition 1.16.

Proposition 2.7. Let X be an analytic space, ¢ be a
coherent torsionfree rank one sheaf on X and UG X be a
Zarisky open subspace. Let T : P? — P be a proper
modification of P with center in D (we kReep the notations
from 2.5) and 1w’ = wor., Let D’ be an effective divisor of

- *
P’ with support in T 1(D). Assume that <’/ =%’ ¢ @ OP'(D')

ls ample with respect to w’-l(U). Then ¢ 1is ample with

respect to U.

Proof, For v > 0 we can find some 7 such that

*
0 ¢ vD’ { T (n*D) and such that one has an inclusion
T*OP,(UD') e OP(n-D). By 2.5 we obtain Ox —_— w;OP,(uD')
as a direct summand. The inclusion =’ ¢’ — ¢V gives

thereby rise to a natural splitting of

0 v 0 v
Hm(x,w ) — Hm(P’,w' Y .



- 23 -

"Natural" means:

If 2 1is a (not nessarily reduced) analytic subspace of X
and Pé the proper transform of Z in P’, the splitting of

0 v 0 U
Ho(2,27]2) — H_ (Pg,2'7[P})

is compatible with the one given above.
We have a commutative diagram

HO (P’ ,27Y) —— HO(x,¢")

| o | .

0 v 0 v
Ho(Ps,2' 7 |Pg) —— H (Z,2")

If we take 2 = x U y, for two points x,y € U, a finite
dimensional subspace of HS(P',Q'U) embedds a neighbourhood
of Pé in a projective space. Choosing v bigger we may
assume that a’ 1is surjective. Then a 1is surjective as well
and we find v, € HO(X,QU) generating ¢ in x and y and

seperating the points x and vy.

In the same way we can take Z to be the subspace
defined by the square of the ideal of x, in order to see that
(for v >> 0) some subspace VU seperates the tangent
directions in x. If we define Vn-v for nn € N to be the

subspace spanned by monomials in elements of v,r the
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same holds for vn.v.

topology we can find for n >> 0 some lager finite

Since U 1is compact in the Zariski

dimensional space V'’ C Hg(x,sv'") giving an embedding of U.
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§3 Weak postivity, revisited

Since the notation of "weakly positive sheaves over a
given open subscheme" introduced in 1.9 is central for this
article we recall and extend the properties of weakly positive
sheaves (see also [17], [18], [19] and [13]). Some of them
will be needed in 3.7, where we verify 1.10 and 1.11 under the
additional assumption that Yo is smooth.

Assumptions 3.1. Y 1is a reduced quasiprojective scheme,

UC Y an open subscheme and # 1is an ample invertible sheaf
on Y. We assume that U meets all components of Y. Let ¢
be a coherent torsion free sheaf which is locally free in some

neighbourhood of the non normal locus of Y.

Lemma 3.2. Assume that F 1is of rank one. Then F 1s weakly
positive over U {if and only if 32 9 X% s ample with res-—

pect to U for all a > 0.

Proof. If ¥ 1is weakly positive over U then $2ab ® ﬁb is

b

globally generated over U for b >> 0, and therefore # is

2ab

a subsheaf of % ® ﬁzb, isomorphic over U. This implies

that %2 @ ¥ is ample with respect to U. The other direction

is obvious.
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3.3. Some simple properties

a) ¥ 1is weakly positive over U if and only if each u € U
has a neighbourhood V(u) such that % is weakly positive

over V(u).

b) If % and %’ satisfy the properties asked for in (3.1),
and if both are weakly positive over U then ¥ ® ¥’ |is

weakly positive over U.

c) If ¥ — %’ is surjective over U and ¥ weakly
positive over U, then %’ 1is weakly positive over U as

well.

d) If UC Y’ €Y are open subschemes and depthy_y,oY 2 2
then % 1is weakly positive over U if and only if ﬁly, is
weakly positive over U. Especially we can leave out sub-
varieties of Y of codimension bigger than or equal to two,
as long as they do not meet the non normal locus of Y, and

thereby we may - whenever it is convenient - assume that J

is locally free.

e) 1If, for some n > 0, S87'(F) or @7(3) 1is weakly positive

over U, then the same holds for %.

Proof, a,b and c¢ follow directly from the definition. 4)
follows from [5], 1.9 and 3.8 and to verify e) one just has to
use the natural maps "l — Sn(ﬁ) and Sasn($) -— Sa'n(g),

which are both surjective over U.
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3.4. Functorial properties
1

a) If T : ¥’ — Y is a morphism such that 7 ~(U) meets
all components of Y/, and if % is weakly positive over U,

then 1'% is weakly positive over t 1(U).

b) Let v : ¥’ — Y be a projective surjective morphism such

1

that T ~(U) meets all components of ¥’ and such that

T_l(U) — U 1is finite. Assume moreover that OU — 7,0 -1
T T (U)

is a direct summand (for example this holds if U is normal).
Then % 1is weakly positive over U if and only if s is

weakly positive over T-l(U).

c) ¥ 1is weakly positive over U if and only if there exists
some p > 0 such that for all finite surjective morphisms
T ¢ Y — ¥ and for all ample invertible sheaves #*’ on Y’

the sheaf 7*9 o #'" is weakly positive over T-l(U).

d) Assume that % is locally free, and let w : P(¥) — Y be
the projective bundle of %. Then % is weakly positive if

and only if Op(g)(l) is weakly positive over w-l(U).

e) Assume that the non singular locus of U is compact. Let
T : Y — Y be a surjective projective generically finite
morphism. Then % is weakly positive over U if and only if

"% is weakly positive over T 1(U).
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Proof,
a) is obvious. Using it together with 3.3d we may assume that

¥ 1is locally free in the sequel.

b) The "only if" follow from a). Let us assume 7*5 to be
weakly positive over T—l(U). We may choose # such that
T*Oy, ® %7 is generated by its global sections for all

11 >> 0. By a) we can replace Y’ by any blow up and hence we

may find an effective divisor E such that Oy,(-E) is

relative ample for T and such that T 1(Y-U) = Ereq-

*
Moreover we may assume 71 #(-E) to be ample on Y’. By

assumption OY —_ r*oy, splits over U. Therefore for

b >> 0 we obtain a map p : T*Oy,(-b'E) — 0 surjective

Y
over U. For given a and b >> 0, we have a map

L L] * *
e 0., — s2*a'b*sy g +¥*5(-E)° ,

surjective over T—l(U). Then the induced map

b 2°b

o 7,0, 83 — %P3 e a*P e 10, (-bE) £

Y'

2+a- b

— g2'2'b gy g 42
is also surjective over U.

c) The "only if" part follows from a) and the obvious fact,

that a weakly positive sheaf keeps this property if it is
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tensorised by an ample sheaf. For the other direction we
choose * to be very ample on Y and Y — PN to be the
corresponding embedding. For a given and d = 1+2a-'u we
choose a non singular finite cover =* : Z — pY such that

d

w0 (1) = %%, If ve take ¥’ =« 1(¥) =5 ¥, then

P
0Y — r*oy, splits. By assumption, for b >> 0,

2*a+*b

s (t*s & #*) ¢ 2P

= t75%2P(g) g +¥%P

is globally generated over T-l(U). The same argument as in b)

finishes the proof.

d) Since 06(1) := ow(g)(l) is a quotient of 7%  the "only
if" is obvious. For the other direction we choose #¥ such
that T+ # @ 0(1) 1is very ample. For given a we find some b
such that 0(2+*b(a-1)) ® O0(b) © T*ﬁb is globally generated

over 7 1(U). Then 6(2+a+b) ® T *#2P

will have enough global
sections to embed all fibres of # over U into some pro-
jective space. Therefore for 7 >> 0 the multiplication map

7,sT(® 0) — 7, 0(2+a-bem) ® #2°P°7

is surjective over U.

e) By part d) we only have to consider an invertible sheaf

%. Using b) we may assume that the singular locus of Y 1lies
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in U. Moreover we may assume T : Y’ — Y to be a desingu-
larization (The general case then follows from b)). Let us
consider first the case where Tt 1is an isomorphism outside of
the singular locus S of Y. Since S8 C U, the invertible
sheaf SIS is numerically effective and (using Seshadri’s
criterion) 32 ¢ xls is ample for all a > 0 and all ample

invertible sheaves ¥.

As in b) let E be an effective exceptional divisor such

* -
that + %(-E) as well as T #(E) ® mY}

*
that 1.7 Oy,(-uE) —_ 0Y for all v. We claim that for some

are ample and such

v > 0, independent of a, and all b 2 0 the sheaf

T*(ga @ ﬁu+b) @ Oy,(-vE) is globally generated over T-l(U),
that RiT*OY,(—UE) = 0, for 1 > 0, and that one has a
surjection

o (v,52 & #¥*P) — s HO(v,¢ © 32 & aVtP)

for € = coker(r*ﬂy,(—uE) — OY).

These three statements follow easily from the vanishing
theorem for integral parts of Q-divisors (see for example [3]
2.13) applied to some compactification of Y’. Replacing a
and v by a sufficiently high multiple, we may assume that
e ® 32 @ ¥ is globally generated over S and hence that

32 @ %V is globally generated over U.
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Let Y be non singular and T : Y’ — Y be an arbitrary
blowing up. By induction, we may assume T to be the blowing
up along a non singular center. We take for E the reduced
exceptional locus. Then T*ﬁ(-E) can be assumed to be ample

and R. (T"%(-E) ®
Ta

Y') =% @ Wye Using again the vanishing

theorem for integral parts of Q-divisors, one obtains that
dim Y+1

32 @ % ® Oy is globally generated over U.

Remark 3.5. Obviously the proof of e) shows that an affirma-
tive answer to Problem 1.12 would imply 3.4e without the as-
sumption on the compactness of the non singular locus. If this

holds theorem 3.7 and the usual base change arguments ([3]), §3

for example) would imply affirmative answers to 1.11 and 1.10.

Lemma 3.6. Let % be weakly positive over U, and let T (%)
be any tensor bundle (see 1.8). If T(¥) 1is a positive tensor

bundle (see 2.2) then T(¥) is weakly positive over U.

Proof, (see also [19], 3.2) Let #* Dbe ample on Y. By 3.4,cC
it is enough to show that T(% © ¥) is weakly positive over

U. By (7], 5.1, Sn(T($ ® ¥)) will be a direct summand of

vy Ve
S '(FO %)@ ... 8 S “(3 & %)
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for somne vy which are growing like n. Therefore
Sn(T($ ® ¥)) will be globally generated over U for n >> 0

and 3.3e implies the weak positivity of T(% © ¥).

Examples of positive tensor bundles are: det(%), SU(S) and

A (%). Especially, if r is the rank of $ and

r-1
g" = %om (%,0,) then A (%) = ¥ @ det(¥) is a positive

tensor bundle. Using 3.3b and the equality
s?(F @ 37) = s%(F) ® S°(%’) © F & 3’

one sees that weak positivity is compatible with tensor

products.

Theorem 3.7. Let v > 0 and f : X — Y be a surjective

projective flat Gorenstein morphism of reduced quasi projec-
v

tive schemes. Assume that f*wx/Y is locally free. Let

YO C Y be an open subscheme meeting all components of Y

such that f-l(Yo) is normal with at most rational singulari-
v

tles, for Yo € Yo. Then f*wx/Y is weakly positive over the

non singular locus of YO.
Of course 3.7 will be shown by reducing it to the case
v = 1, where it is nothing but the positivity theorem of
Kawamata & Fujita (dim Y = 1). Since we really need to keep
track of the locus where the sheaves are weakly positive we

sketch the proof:
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Proof. We may assume Y to be non singular. Iet T : ¥/ — Y

0
be a morphism. We write £’ : X’ — ¥’ for the fibre product
-1
’ ’ r =
X xYY — Y and Yo T (YO).

Claim 3.8. We may assume that Y is normal.

Proof. Let Y’ — Y be the normalization and ¢ an ideal
sheaf such that 7. § C OY and such that the support S of
the quotient does not meet YO. Using 3.4,a and b, we are
allowed to replace Y by a blowing up with center in S and
hence we may assume §$ to be invertible. By flat base change

[6], one has
pr f'*y co
1* X :

This implies that 7 ((flw X /Y') ® #) 1is contained in

S — - 3
f*wx'/Y" Let £° : x® =X xy...xYx — Y be the s-fold fibre

product. f° is again a Gorenstein morphism and

s v .
fLw = @ f*wX/Y ([18], 3.4, for example). Repeating our

XS/y
calculation for X° instead of X, we obtain

s s

TL((® flo X'/Y') @ ) as a subsheaf of & f*UX/Y The same

s
holds for S° instead of ® . Choose the ample sheaf % on
b

*
Y and ¢ such that T % @ § is ample and T*Oy, ® *

generated by its global sections for all b > 0. If 3.7 holds

for £’ : X’ — ¥’, then s22'P(f10 0%, jys) 8 5P o 3P is

globally generated over Y! for some b >> 0. Then

0
2a b 2b
(f o X/Y) ® % is as well globally generated over Y-
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Claim 3.9, Let Y be normal, Y’ non singular and
T : Y — Y a projective generically finite morphism. Assume

that 3.7 holds for £f’. Then the base change map ([6], III,

. * v 3 4
9.3.1) p : T f*mx/Y — f*wx,/Y, is an isomorphism over Yo
Moreover 3.7 holds for ¢£.
Proof. Since f*”X/Y is locally free and T generically
flat p 1is injective. If p were not surjective over Y6 we
could find some effective divisor F meeting Y6 such that
T det(f* X/Y) @ Oy,(F) = det(f v X’/Y’)' Since F must be an

exceptional divisor this contradicts the weak positivity of
det (£ X'/Y') over Y’. In order to see that 3.7 holds for £
we just remark that f*”X/Y is a direct summand of

T,T f*wX/Y = T*f*wx,/y,. The weak positivity of f_ w over

*¢ X/Y
Y follows as in 3.4.e.

0
Due to 3.8 and 3.9 we may assume Y to be non singular.
Moreover, whenever it is convenient, we may replace Y by a

generically finite cover. Let 6 : Z — X be a desingulariza-

tion and g=f o & : Z2Z — Y. Since f-l(Yo) has rational

Gorenstein singularities & wu — w; is an isomorphism over
-1 v .

£ (Y,): and g*wz/Y — f*mX/Y is an isomorphism over Y- 9

is no longer flat. Nevertheless we get:
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Claim 3.10. Let 7 Y’ —m Y be either a finite cover or a

blowing up. Let g’ : 2’ — Y’ be a desingularization of X’.
: . e o1, U * v -

Then we have an inclusion p : g*“Z'/Y' — T g*”Z/Y isomor

phic over Y-

Proof. The existence of p has been shown in [17] 1.8 and

(18], 3.2. p 1is an isomorphism over Y, by 3.9.

For v =1 3.7 follows from Kawamata’s positivity
theorem ([8] or [11]). It says that g*wZ/Y is weakly

positive over Y, if there exists some U C Y such that:

i) Y - U is a normal crossing divisor.

ii) g Y() — U smooth

iii) For k = dim Z - dim ¥ the monodromy of ng*c -1
g “(U)

around the components of Y - U is unipotent.

Those three conditions hold if one replaces Y by a
finite cover of a blowing up, and 3.7 follows from 3.10 and

3.4.e.

For v > 1 we have to argue as in [18] §5:

v

Claim 3.11. Assume that SM(f ® ¥°) 1is globally genera-

wu
* X/Y
v-1

v .
ted over YO for some p >> 0. Then f*GX/Y ® % is weak-

ly positive
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If # 1is any ample sheaf on Y one obtains, as in (18]

2
5.3, that f*w;/Y ® #° Y is weakly positive over YO' This

holds as well for the pullback morphism £/, if T : Y/ — Y

is a finite cover. By 3.4,c, we finished the proof of 3.7.

Proof of 3.11. (see [17]) If T : ¥’ — Y 1is generically
finite 3.9 tells us that S"(f;w;,/y, ® T*iv) is globally

*_u-1

generated over Y6. Moreover, adding T % does not change

the argument indicated in 3.9 and the weak positivity of

PR * v-1 . . v v-1
f*wX'/Y' @ T X implies that of f*wX/Y ® %

again we can replace Y by a generically finite cover,

. Therefore

whenever we want to do so.

Let §£=mx/

ted by global sections. Let & : Z — X be a desingulariza-

v ® f*ﬁ and A the subsheaf of ¥ genera-

tion such that d’ = 6*ﬂ/torsion is invertible and such that
for ¢’ = v'¢ and an effective normal crossing divisor D

one has og(n) = ¢/V"" @ 471, 4+ again is generated by its
global sections. Let g’ : 2’ — Y be the cyclic cover ob-
tained by taking the v-.p-th root out of a general section of

d’. As, for example, in [3] §2 or [18] §5

g, (¢’ T -(5H DY) e 0, )

is a direct summand of g;mz,/Y.
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Replacing Y by some generically finite cover, we may
again assume that g’ satisfies the assumptions of Kawamata’s
positivity theorem, and therefore that
g*(s'v-l(—[igﬁ%%lg]) ® wZ/Y) is weakly positive over Y. By

the choice of A the map f*f*l — M is surjective over

-1

f (Y We have inclusions

O"

A — 5,4 — 5*2'”'1(-{—(‘;{%112]) ® 0,y © £*%.

Then the natural inclusion

v-1

g*(glu_l(_[12:lllg]) ® o

v-1
oeou 2/ ® %

® w = f

Y) — f£.¢ X/Y

wU
*x/y

is an isomorphism over Y and we obtain 3.11.

0

Remark 3.12. Let us assume in addition to the assumptions

made in 3.7 that Xy = f-l(Yo) — Y, is smooth. Then an
affirmative answer to problem 1.13 implies that f*m;/Y is

weakly positive over Yo-

"Proof." Even if Y is not normal we can find a finite

0
cover T : Y6 — Yo such that 0Y is a direct summand of
4]
7,0y, and such that the morphism Xy — Yg obtained as
0

pullback of f satisfies the assumptions made in 1.13. By

3.4.6 we may assume that £, = f| : X, — Y satisfies

0 XO 0 0
those assumptions. Blowing up the boundary Y - Yo and using
1.13 we can extend f_ o to a locally free sheaf % on

* XO/YO
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some compactification Y of Y.. If Y’ is a good

0°
desingularization of Y the pullback %’ of % to Y’ is
weakly positive over Y’. Then by 3.4.e % is weakly positive
over Y. It is well known that %’ is the direct image of the
relative dualizing sheaf of some desingularization of

Y’ Xy X. Therefore one has a natural map from % to f*wX/Y'
isomorphic over Y, If v > 1 one has to repeat the

arguments used in 3.11.

A similar argument should work as well if xo — Yo is
not smooth. However one has to try to study the necessary base
change properties more carefully. Since, anyway, we do not

know an answer to 1.13 we do not insist on this implication.
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§4 e spaces

We want to prove 1.19. As we have seen already in %1, C

1.19 implies 1.18 as well.

4.1, Let f : X — Y and Yo C Y satisfy the assumptions

made in 1.17 and 1.19. As in 3.3,d it is easy to see that we

can assume that f*UX/Y is locally free. Let ¢ = f*”X/Y and

r be the rank of ¢. Let w7 : P(&) — Y Dbe the projective

bundle and p : X — P (&) the induced rational map.

For y €Y

we have assumed that pr-l( is bira-

Y Y)
tional. If ¢ 1is the ideal sheaf of p(X) we can find some

u >> 0 such that w m (9 ® Op gy (1)) — $ 00 is sur-

jective. For simplicity we assume that r divides p. Let us

consider m : Su(f ) — fo By our assumption

* X/Y 2 X/Y
¥ = Im(m) 1is locally free over U, and, leaving out some co-
dimension two subspace of Y - U, we may again assume that ¢
is locally free over Y. For simplicity we write U = Y, and
assume Y to be already non singular.

0
4.2. Recall that we have to show that ¢ = det(‘ﬁ)a ® det(&)b

is ample with respect to Y0 for some a,b > 0,
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Let r’ = rank(4) and consider

r’ PR ST v r’ 13X371
ATm oz AT ST (faey ) T AT £y e
’
The image of Af 'm is det(9). For
- r'-g ¢
’
90 = det(¥) ® det(?) r we obtain from A m a’'surjection
- e
' ‘
v : AT sH(e) @ det() T — 25 -

Let us return to the construction made in 2.5, i.e.: Let

r
P@® ¢') — Y be the projective bundle.

o
%
]

r
s : @ OP(-I) —_ v*s the universal basis and D the degenera-

tion locus of s.

*
; . .
claim 4.3. 7 QOIP-D is ample with respect to
v Y(y,) n P - D.

Proof. By definitions §|P-D is an isomorphism. Therefore
ou,(-r)lu,_D = w*det(z)IP_D. r"(v) 1is a surjection
AT s*(eT) oy 0, o — TE,

P-D lP—D'

This implies that w*$0|P_D is globally generated over P-D,
Let #.28(P'"!) be the Hilbert scheme of subschemes of P¥ 1,
Since v*GIP_D is a direct sum of r copies of OP-D(-I)

the v-canonical rational map gives rise to a morphism
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r-1

h : w_l(Yo) N P-D — *iL86 (P ). Let H be the component con-

taining the image of h. H can be embedded in a projective
space by the Pliicker coordinates ([1], 2.6 for example). Com-
posing with h we obtain a rational map h from P - D in
some projective space. By [1], 2.6, this map is given by the
surjection w*(7). Especially h:P-D— P(Arlsu(cr)) is a
morphism and 5*0(1) = w*20|P-D' We have assumed that only
finitely many fibres f£ Y(y) are birational, for y € Y-

=l . p is given by a uni-

Since the map X x P — w(w*a) ~ P

Y
versal basis this implies that the fibres of

h: (P-D)N w'l(yo) — H are finite. Then = ¢
1

olp-p must

be ample with respect to (P - D) N w (Y

0)'

Remark 4.4. If ¥ = f*w;}g the sheaf wg is just the same
as the sheaf considered in 1.4. If Y = Yo, in addition, the
map h already appeared in 1.2 and 1.3. The bundle

P -D~— Y has PGl(r,C) as fibres. If one considers the
corresponding group action the invariant sections of "*20

are those coming from Y.

4.5. Let 7T : P! — P be a proper modification with center

in D such that the rational map

r
h’ =hoer : P’ — P(As*(’)) is a morphism. We can as well

assume that there exists an exceptional divisor F of * and
a divisor E supported outside of v'-l(Yo), where
! =7 o T, such that OP,(—E—F) is relatively ample for h’.

*
i = ’ ’
If we write (T D) 2 Di' We have Fred < ZDi. Therefore

red
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we can find some a > 0 and 11 € Z such that

a

r’*2
0

@ OP,(E 71Di - E) is ample on P’.

Remark 4.6, Under the assumptions made in 4.4, the Hilbert-
Mumford criterium ([14), Ch. II, §1) for the PGl(r,C) action
on P - D seems to say that one can choose Ty > 0. Since we
can not verify this criterium we just add some effective
divisor supported in 2 Di and use "weak positivity" to show

that this does not effect "ampleness".

4.7. By 3.7 & 1is weakly positive over Yo and from 3.4 a)

r
and 3.6 it follows that @ ﬂ'*(év ® det(8)) is weakly posi-

tive over r'-l(YO). Then the quotient sheaf

T*UP(l) ® v’*det(a) and its r-th power are again weakly posi-

1

tive over w’ (Y By definition of D (see 2.5) this is

0)'
nothing but

Op,(v'D) & v’ det(s)T 1.

D’ will be

I

For some 7 >> 0 the divisor n - T*D + 2 7iDi

effective., By 3.2
mE® oP,(z 7,0} - E) 8 (0p,(T D) ® w’ det(¢) y1

= w22 8 get(e) TV M) 8 0, (D7) @ 0, (-E)

[PI(

- . ’ L]
is ample with respect to 7=’ 1(Y ). For b = - ar *p
0 r

(r-1)+n this sheaf is w’"(2) 8 0,,(D’) @ 6, (-E). Since E
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is not meeting YO the sheaf w’*(g) ® OP,(D') is also ample

with respect to v'-l(Yo). We can apply 2.7 and we find ¢ to

be ample with respect to U.

Remark 4.8. Some ingrediants used before in the proofs of
C;,m are reappearing in this chapter: The Hilbert-Mumford
criterium and stability (see 4.6) which was used in {18]. The
multiplication map, used by Kollar in [12]. The "mysterious
covering trick" used in [12] and [19] is of course hidden in

the construction of P and 2.7.
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§5 Stability of certain Hilbert points

In this section we want to prove 1.7. Recall that for

each of our moduli functors A we have some v > 0 and the

h
Hilbert scheme H of v-canonical embedded varieties of Ay .
We have a universal family h : ¥ — H. & := h*U;/H is a
direct sum of r copies of an invertible sheaf ¥ and
A, = det(e) = #F (see 1.2). Moreover the sheaf
20 = Agfx) ® k;r(u-u)-u introduced in 1.4 is ample on H.

Similar to our arguments in 34 we will use the results on

weak positivity (&83) to show that:

Replacing 20 by Qn = 20 ® Ag for m >> 0 we get enough
sections of Qn, "positive™ at the boundary of an orbit, and
this implies that all points, where Qn is ample, are stable

with respect to the G = S1(r,C) action on H.

Due to our "gap" 1.10 we are only able to prove that Qn
is ample with respect to the largest open subscheme H, of H

with (H smooth.

O)red
Before we recall the tools needed from Mumford’s
geometric invariant theory (14] we have to prove an unpleasent

technical lemma:
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Temma 5.1. Let x € H be gluven and Hx the corresponding
G-orbit. Then there exists a quasi projective scheme H’
containing H as an open subscheme and a prolongation
h’ : ¥’ — H’ € #h(H’) of h such that the closure Hé of
Hx in H’ 1is projective and h'-l(Hi) — H; Ls isomorphic
to Hl x hTl(x) — H .

gof; Let us start with an arbitrary projective H’ such
that H’-H 1is a divisor. Let ¢’ be a coherent extension of
& to H’ , which we can assume to be locally free (blowing up

H’ a little bit). Since h‘l(nx) — H_ is trivial
r

0, -1 v
¢, 2@ 0, =0, © H (h (x),0 _ ). Let s, ... s_ be
Hx Hx Hx cC h l(x) 1 r
the "trivial sections" of 8|H coming from a basis of
X
Ho(h_l(x),mu_1 ). Adding some multiple of H’-H we may
h ~(x)

s_ give rise to sections of ¢/|

assume that s. ...
1 r

’ !
Hy
which we denote again by sy - let o be a very ample sheaf
on H’ such that &’ & 4 @ ¥ is generated by its sections
and has no higher cohomology, where % is the ideal sheaf of
HI

x

et A 2 be divisors of « in general position

AR
such that N Aj = 8. For each j we have sections

. o , _
sij) € H (H;,s' ® OHL(Aj n Hx)) and we can find a tuple of

sections

s te0, —2r0 Or (B3)



- 46 -

such that each of the sections, restricted to H;, gives sij)
and such that ﬁij) is surjective over H’ - H;. We denote
the induced map ® # > — &’ again by §§3). Adding up over

all i and j we obtain S : & @& 471 - ¢!, surjective over
i,3

H’ - Hy, and Im(§|H,) is just the subsheaf generated by
X
SpreeerSp. Blowing up with center in H; - H , we obtain a

similar map where the image is locally free.

Therefore we may assume that we have choosen &’ from
the beginning to be a locally free sheaf such that Syres+sSp

generate 8'|H,. We have a diagram
X

£ — P(8) — P(L')

A

H

H— H! .

We choose h’ : A’ —» H’ by taking the compactification of %
in P(&’). h’ need not be flat, but (as we did in [18] p.
345) we can blow up H’ with center in H’ - H such that the
dominating component of the pullback family becomes flat. So
we may assume that %’ is a subscheme of P(&’), flat over

H!.
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Restricting everything to H; we have

-1 r-1
h' “(H) —> P(G’lﬁi) = P x HI

| |

H; = Hi
and - over H  the family, as well as the embedding, is
constant. Then h’-l(Hé) must be the product of Hé with

h~1(x).

The condition that a fibre of h’ belongs to jh(C) is
open (otherwise we would not have a Hilbert scheme, see [10]).
Therefore, replacing H’ by some open neighbourhood of H;

which contaings H we are done.

5.2. Let G = 81(r,C) be acting on an algebraic scheme X

and let ¢ be an invertible G-linearized sheaf on X ([14],

Def.: 1.6).

Definition 5.2. ([14], Def. 1.7)

(i) A geometric point x € X 1is called stable (with respect
to ¢) if there exists, for some N > 0, a G-invariant section
8 € HO(X,QN) such that: s(X) # 0, xs = X - (zero set of s)

is affine and the action of G on xs is closed.

(11) We write X(¢)® for the set of stable points with finite

stabelizers.
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Remark 5.4. X(¢)°® is an open subscheme and glx(g)s is

5 (We changed the

(0)

notation since H?o)(w) looks too much like a cohomology

ample. In [14] X(&B)s is denoted by X

group). The subscheme X(Q)S is independent of the

G-linearization choosen ([14], Cor. 1.17).

Temma 5.5 Assume that X ts a projective vartiety contalning

a dense orbit Xo on wvhich G acts with finite stabelizers.

Assume moreover that the N-th power of the sheaf ¢ has a

section 8 with zero set D such that X - XO = Dred' Then
s

X(<£€)™ D Xo.

Proof, Dred is invariant under G. Therefore D has only

finitely many conjugates under G and taking the product of
the corresponding sections we may assume D to be

G-invariant. Therefore we have one G-linearization of
N

¢" = OX(D) such that s is a G-invariant section. By [14],
Prop. 1.4, there exists at most one G-linearization of QN. So
we found a G-invariant section s with xo = xs. Since G is

affine and acts on XO with finite stabelizer Xo is affine.

Proposition 5.6. ([(14] Prop. 1.18, 1.16 and Thm. 1.19) Let

i: Y — X be a G-linear embedding. Then:

a) Y n x@)Scyi®es
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b) If Y =X then (X(£)%) 4 = ¥(1'¢)®

red’

c) If Y s proper and ¢ ample, then Y N X(if)s = ‘.1!(1*518)s

Remark., The open subscheme X(&t)s of X depends on the
G-linearized sheaf ¢ choosen. By [14], converse 1.13, one
knows however that for an open G-invariant subscheme U C X

one has an equivalence of:

(1) For some G-linearized invertible sheaf ¥’ one has

4

UC x(¢)®
(ii) The action of G on U is proper and a geometric

quotient of U by G exists as a quasi projective scheme.

5.7. Let us return to the notations introduced in §1, A) and
recalled in the beginning of this chapter. We know from 3.7,

3.5 and 3.2 that for all 7n 2 0 the sheaf $n = 20 ® RE is

ample with respect to (Ho)red‘

It is only here that we need (H to be smooth. In

0)rad

order, not to distinguish between part a and b of 1.7 we write
H = H, in case a) and leave H unchanged in case b). Then
Qn is ample with respect to (H)red‘ We have seen that
stability is a Zariski-open condition. Therefore 1.7 follows

if we show that:
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Claim 5.8. For a given point x € H there exists some Mo
such that x € H(Qn)s for all n 2 n,.

Proof. By 5.6,b we can replace H by (H) and - again by

red
abuse of notations - we assume X and H to be reduced. The
orbit H is a quotient of the 81l(r,C) by the stabelizer of

x or of PGl(r,C). PGl(r,C) can be compactified by

r
P=P(@®CF).

If H’ and H; are choosen as in 5.1, we can blow up
the boundary P - PGl(r,C) to obtain another compactification
P? of PGl(r,C) and a finite map v : P’ — H;. The sheaf

IH = 0y . Blowing H’ up we may

¢ is ample on H and e
X X

0
assume that 23 extends to an ample sheaf wéa) on H’ and

that
*
el = op, ()ny0y),
with n, € Z and ) D, = P’ - PGL(r,C).

By 3.7 the sheaf ¢&’ = h;w;/H, is weakly positive over the

non singular locus of H’ .

If (1.10) holds for X — Y € Jh(Y) then ¢’ is weakly

positive over H’
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Since we replaced H by its non singular locus in case a) we
may assume H’ to be non singular in this case and &’ to be

weakly positive over H'’ as well.

r
Remember that ¢& = 8'|H ~ ® ¥ . We can choose an extension X/
of X such that this isomorphism gives an inclusion
r r
8 : ® N —— &' or N' — ©® &’ . Blowing up centers in
H’-H , we may assume that ¥’ is a subbundle. As in 2.5 we

obtain natural maps

r r
T —5 st g7y — 8 &/ — det(2’) .

et A be the divisor of the corresponding section of

det(€’) ® ¥ % .

Regarding the dual construction we get surjections

r
s¥@ ¢y — ¥ T ana

r

st e’V

® det &) — X' T @ det(£7)" = 0,,(4) ® det(e/)T T .
From 3.5 and 3.3 c) we find that OH,(A) ® de.t:(@')r-1 is

weakly positive over H'’.

If r-1 divides a we write

sé“) = 2{®) e (0,,(4) & get(e/)TTH L,
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One has Eéa)IH = wz. As a tensor product of an ample and a
0

weakly positive sheaf Qéa) is ample (see 3.2).

Claim 5.9. There exists some Mo such that, for all n > Ny
T*Qéa) = 0p,(D’) for an effective divisor D’ with
= P’ - PGL(r,C).

(D')red

Préoﬁ, Since T*Q(G) = 0 (2 D,), for € Z and
0 priL Mivile i

), = P’ - PG1(r,C), we just have to verify that

(T*A)red = P’ - PG1l(r,C). This is however contained in 2.5:

r r

The inclusion 7 K’ — ® ¢’ =@ ¢ 8c0p: Wwas induced by
. .
*
s :® 1T N —CF ®.0p,- Restricted to PGl(r,C) s is just

given by the action of PGl(r,C) on I]’(Ho(h-l(x),mv_1 )).
h ~(x)

Therefore s coincides with the universal basis considered in
2.5 and T N’ is the pullback of OP(—l) to P’. Therefore
r*A is the pullback of the degeneration locus of g and

*
P’/ = (174) o4 = PCL(r,C).
Now a ish the (o]e) :

*
T Qéa) has a section s whose zero divisor is supported
exactly on P’ - PGl(r,C). Since 1 : P’ — H; is finite we

may assume that Qéa)lHé has a section s’ whose zero set

D’ satisfies (D’) = H, - H (replacing a by some

red
multiple, if necessary) and we may assume !éa) to be very

ample. ﬁéa) extends to a very ample invertible sheaf on some
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compactification H’ of H’. By Serre’s vanishing theorem
some power of the section s’ of 2#“)|H§ is the image of a

section o’ € Ho(ﬁ',eéa)°n). Again we may assume that N = 1.

Since Ho(ﬁ',ﬁéa)) C HO(H,Qéa)) we can use [14], Ch. I,
§1, to find a G-invariant finite dimensional subspace V
containing Ho(ﬁ',séa)). Let i1 : H— P(V) the corresponding
embedding and H the closure of i(H). We have a birational
map p : H’ — H. We can blow up H’ along centers in H’ - H
toget 6§ : H" — H’ and a morphism p ¢ 6. Choosing a big
enough we will still get a section o" of an ample subsheaf
of 5*2£a) with a zero divisor B such that H is closed

in H" - (B) . Hence, to simplify notations, we may assume

red
p to be a morphism.

Let 0g(1) = 0 . Since 21‘7“’ — p"05(1) the sec-

tion o’ 1is the pullback of some section o of Oﬁ(l). By
construction G operates on P(V), on H and on the closure
H, of H in H. Both OP(V)(I) and Oﬁ(l) are G-linearis-

ed. Since the zero locus of 0|ﬁ is exactly supported on
X

= = s
H, - H, we can apply 5.5 and find H,_C Hx(oﬁ(l)lﬁx) .

By 5.6,c
= s _ = T on_ s
H (05(1) |ﬁx) = H, N H(0f(1))

and Hx Cc ﬁ(oﬁ(l))s. On the other hand 5.6, a tells us that
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I s =
H, € H N H(0F(1))" € HOF(L) )~

a

Since oﬁ(1)|H = Qn our given point x 1lies in

a,s _ S
H(&‘.’n) = H(Stn) for all n > Mo*
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