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Abstract: We introduce a concept of asymptotic Fredholm module to prove
a non-vanishing theorem for K-theoretic indices of elliptic operators over non-
compact spaces. The non-vanishing theorem is applied to study positive scalar

curvature and spectrum of Laplacian on non-compact spaces.

1 Introduction

In this paper we shall introduce a concept of asymptotic Fredholm module
over a C*-algebra to study non-vanishing of K-theory information. In the
case of non-compact spaces we shall use vector bundles of small variation to
construct asymptotic Fredholm modules and compute their pairings with K-
theoretic indices of elliptic operators. The computation of K-theoretic indices
is used to study non-existence of metrics with positive scalar curvature and
the spectrum of the Laplacian operator acting on the space of L2-forms.
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2 Asymptotic Fredholm modules

In this section we introduce the concept of asymptotic Fredholm module and
define its pairing with K-theory.

Let A be a C*-algebra. We consider sequence of triples (Ey, ¢,, F,,) where
n € Z.., the set of positive integers, E,, is a separable graded Hilbert space, ¢,
is a graded map from A to B(E,), the algebra of all bounded operators acting

on E,, and F}, is a linear bounded operator in B(E,) with degree 1.

Definition 2.1 A sequence of triples (E,,, ¢y, Fy,) is called an asymptotic Fred-
holm module over A if

(1) [Fu, #n(a)], (F2—Dn(a), and (F, — F})}pu(a) are compact for all a € A;
(2) for all a,b € A, X € C, the following norm limits vanish:

nlggo(ﬁt'n(a + Ab) - ¢n(a) - ’\¢n(b)) =0

,}Lr&(¢n(ab) — Pula)pn(d)) =0
nlggo(‘ﬁn(a*) - (nbn(a)') = 0.

Notice that the concept of asymptotic Fredholin module is an asymptotic
version of the usual concépt of Fredholm module [17] {16] and is closely related
to the concept of asymptotic morphism introduced by Connes and Higson [7].

An asymptotic Fredholm module (E,, ¢,, Fy,) is said to be degenerate if
[Fy, dn(a)], (F2 - I¢n(a), and (F, — F2)d,(a) are 0 for all a € A.

A particularly useful class of asymptotic Fredholm modules are asymptotic
quasihomomorphisms, an agymptotic version of Cuntz’s quasihomomorphisms
[9].

For each n € Z,, let H, be a Hilbert space, let ) and ¢{)) be maps from
A to B(H,), the algebra of all bounded operators acting on H,.

Definition 2.2 A sequence of pairs (¢, ¢\1)) is said to be an asymptotic

n

quasthomomorphism over A if
(1) ¢9(a) — ¢V (a) are compact for all a € A;
(2) for all a,b € A, A € C,i=0,1, the following norm limits vanish:

Tim (89(a + ) — 40(a) - A0 (8)) = 0
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lim (¢$)(ab) — ()8 (b)) = 0
lim (6% (a") = ¢ (a)") = 0.

n—o0

Notice that an asymptotic morphism ¢, (in the sense of Connes and Higson)
from A to K, the algebra of all compact operators, naturally gives rise to an
asymptotic quasihomomorphism (¢, 0).

An asymptotic quasihomomorphism (¢, $(1)) gives rise to an asymptotic

Fredholm module (E,, ¢,, Fy,) defined by: E, = H, & H, with the grading
operator 1 @ —1, ¢, = ¢ @ ¢!}, and

01
10

F, =

We shall show that every asymptotic Fredholm module is equivalent to an
asymptotic homomorphism.

An asymptotic Fredholm module (E,, ¢,, F,) is said to be unitarily equiv-
alent to another asymptotic Fredholm module (£, ¢}, F}) if there exists a
unitary in B(E,, E!) interwining ¢, with ¢!, and F,, with F,.

An asymptotic Fredholm module (E,, ¢,, F;,) is said to be a compact
perturbation of another asymptotic Fredholm module (E,, ¢,, F}.) if (F, —
F})¢n(a) is compact for all a € A.

We define an equivalence relation on the set of all asymptotic Fredholm
modules over A to be the equivalence relation generated by unitary equiva-
lence, compact perturbation and addition of degenerate asymptotic Fredholm
modules.

The following useful lemma is an asymptotic version of a result of Cuntz

[9)-

Lemma 2.3 Fvery asymptotic Fredholm module is equivalent to an asymp-

totic quasthomomorphism.

Proof: Let (E,, ¢, Fy.) be an asymptotic Fredholm module over A. We can
assume Fy = F, by replacing F,, with (F,,+ F}})/2 (this is a compact perturba-
tion). We can further assume ||F || < 1 by replacing F, with its compact per-

turbation g(F,), where g is the continuous function on R such that g(z) = —1
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forz < -1, 9(z) =z for -1 <z <1, and g(z) =1 for z > 1. (E,, ¢y, F,) is
equivalent to (E, ® E,, ¢, ®0,G,), where the grading on E, & E,, is given by

the grading operator € = ¢ ® —¢ (e is the grading operator on E,), and

o F, efT—F
“\efI-F2 F '

Notice that G, = G, = G;'. Let El, = E, ® E,, ¢, = ¢, ®0. (E, ®
E., ¢ ®0,G,) is equivalent to (E] @ E;, ¢, &0,G, ®—G,), where the grading
operator on E @ E) is defined to be ¢ @ —¢’. But this is unitarily equivalent
to (E!, @ EJ, (ad U)(¢, ®0), F), where

Fz(g;).

This gives rise to an asymptotic homomorphism. ‘ |
With the help of Lemma 2.3 we can now define the pairing between asymp-
totic Fredholm modules and K-theory.
We shall first assume that our asymptotic Fredholm module is an asymp-
totic quasihomomorphism (¢, ¢(1'). Let p be a projection in Mg (A)* repre-

senting an element in Ky(A). ¢{¥ and ¢{)) can be naturally extended to maps
from A* to B(H,). Let

O = (60 (p) + ¢V (9)7)/2)

p) = f((6M () + oV (p)")/2),

where f is a continupus function on R such that f(z) =1 all z € [2/3,4/3]
and f(z) = 0 for all z € [—-1/3,1/3]. By the properties of asymptotic quasi-

homomorphism we know that there exists N > 0 such that (p®,p{)) is a

n 'in
pair of projections in B(H,) such that p{® — (! is compact for all n > N.
(©

n

This implies that p{Up(® is a Fredholm operator from p® H,, to p{M) H,, for all

n > N. We define the pairing between the asymptotic quasihomomorphism
(69, ¢(1) and the K-theory element [p] by:

< (9, ¢, [p] >= index(pMp{?),



Where n > N and indez(p{p{”) is the Fredholm index of the operator p{lp{®
from p(® H, to p{} H,,.

The pairing of a general asymptotic Fredholm module with the K-theory
can be defined by using the asymptotic quasihomomorphism equivalent to the

given asymptotic Fredholm module in the proof of Lemma 2.3.

3 Vector bundles with small variation

In this section we introduce the concept of vector bundles with small varia-
tion over a non-compact proper metric space X and show how to construct
asymptotic Fredholm modules using vector bundles with small variation.

Let X be a proper metric space. Recall that the properness of X means

that every closed ball in X is compact.

Definition 3.1 A sequence of compactly supported vector bundles V,, (n € Z,)
over X is said to have small variation if each V,, can be represented by a
projection P, in My, (Co(X))t for some positive integer k,, such that for every

r>0

ullirgo SuP(fﬂ,y)EXxXﬂ(:c,y)Srl|pn($) — (Wl =0,

where Cy(X) is the algebra of all continuous functions vanishing at infinity
over X, My, (Co(X)) is the the algebra of all k,, X k, matrices over Co(X),
and My, (Co(X))" is obtained from My, (Co(X)) by adjoining an identity.

A sequence of vector bundles with small variation asymptotically does not
distinguish points within bounded distance. So it can be considered as a
notion of “large scale” vector bundle. The concept of vector bundles with
small variation is in spirit closely related to the concept of almost flat bundles
[5] [13] although there does not seem to be a direct connection between the
two concepts.

Next we shall use a sequence of vector bundles with small variation to
construct an asymptotic Fredholm module over the C*-algbera C*(X). C*(X)

plays a key role in the index theory for non-compact spaces since its K-theory



is the receptacle of K -theoretic indices of elliptic operators on X. For the

convenience of the readers we shall briefly recall the definition of C*{X).
Throughout this paper an X-module is a separable Hilbert space equipped

with a faithful and non-degenerate representation of Cy(X') whose range con-

tains no non-zero compact operator.

Definition 3.2 Let Hx be an X -module. The support of a bounded operator
T : Hy — Hx is defined to be the complement (in X x X ) of the set of all
points (z,y) € X x X for which there exist functions f € Cy(X), 9 € Co(X)
such that gTf =0, and f(z) #0, g(y) # 0.

Definition 3.3 Let Hy be a X-module; let T' be a bounded linear operator
acting on Hyx.

(1) The propagation of T is defined to be: sup{d(z,v): (z,y) € Supp(T)};
(2) T is said to be locally compact if fT and T f are compact for oll f € Cop(X).

Definition 3.4 ([19]) Let Hx be an X -module. C*(X, Hy) is defined to be
the C*-algebra generated by all locally compact operators acting on Hy with

finite propagations.

It is easy to show that C*(X, Hy) does not depend on the choice of Hy
(up to isomorphisin) [19]). For this reason C*(X, Hx) will sometimes be ab-
breviated as C*(X).

Let

Eno = @, Hy,

Eﬂ,l = Pn(eaf;lH,\')'l

where [, is the rank of the vector bundle V,, in the Definition 3.1 and k,, is as
in Definition 3.1. Define
En = En.,O @ En,l:

where the grading operator on E,, is defined to be 1@ —1. We define a graded
map ¢, from C*(X) to B(E,) by:

¢n = ¢n,0 b ¢’n,11



where ¢, is the s-homomorphism from C*(X) to B(E, ) defined by:
qbu,()(a) = @i’;]a
for all a € C*(X), and ¢y, is the map from C*(X) to B(E,,) defined by:

On1(a) = Pu(®iz,a)

for all @ € C*(X). Without loss of generality we can choose P, such that for

each n there exists a compact subset K, of X' for which
Pu(z) =@, ] @fiz,,ﬂ 0

for all z € X — K,,. Let v, be a unitary operator from E, ; to E, ¢ such that
(1) Supp(anv) C K, if Supp(v) C K, where Supp(v) is the complement of
the set of all points z in X such that there exists f € Co(X), f(z) # 0, fv = 0;
(2) apv = v if Supp(v) C X — K.

We define an operator F,, on E, by:

2 B ) .
a, 0

A metric space X is said to have bounded geometry if there exists a sub-
space I" such that
(1) there is ¢ > 0 such that d{(z,T") < ¢ for all z € X;
(2) for each 7 > 0, there is N(r) such that the number of elements in By (v, 7)
is at most N(r) for all v € T, where Bp(y,7) ={z € [ : d(z,v) < r}.

Lemma 3.5 If X is a proper metric space with bounded geomelry, then the
sequence of triples (Ey, ¢n, Fy) defined as above is an asymptotic Fredholm
module over C*(X).

Proof: All we need to do is to verify that
JLHgO((ﬁn,](a')QSn,l(b) - ¢n,1(ab)) =0

for all a and b. It is enough to show that for any operator a acting on Hy

with finite propagation
(V) ﬂli_{{.lo(Pn(@f;ﬂ) — (®iz,a)P,) = 0.
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We assume that ¢ has propagation r. The bounded geometry property of
X implies that we can decompose X = UL, X; for some finite m such that
X;NXy =0 if 2 # 7, and each X; is the disjoint union of a sequence of
uniformly bounded Borel sets {U;}; such that d(Us;, Uyy) > 7 if j # j'. Let
Xi; be the characteristic function of Uj;. The representation of Cp(X) on
Hx can be extended to that of the algebra of bounded Borel functions. The
properties of the decomposition of X and the fact that ¢ has propagation =

imply that there is C > 0 such that
(2) IPu(@i21a) = (@Zia) P

< Csupijirjr||xi (Pa(@®fz,a) — (B52,0) Po)xirs ||
But
(3) x5 (Pa(@fz,a) — (&52,0) Pu)xirs ||

< lixis(Po = P@)) (@i a)xiy || + |xi; (B2, a) (Pu = Palzirjr))xirs |
+J|Xu(®féla)(Pn($ij) — Palma)) x|,

where z;; is a point in Uj; and zyy is a point in Uy .
(3), together with (2) and the small variation property of Py, implies the
desired identity (1). [

4 A non-vanishing theorem for K-theoretic in-
dices over non-compact spaces

The main result of this section is the following:

Theorem 4.1 Let X be a non-compact proper metric space with bounded ge-
ometry, and let (D] be a K-homology class in Ko(X) = KK(Co(X),C). If V,,
is a sequence of vector bundles V,, with small variation on X and (E,, ¢n, Fr)

18 its associated asymptotic Fredholm module, then

< (Eq, ¢n, Fn), Indez[D] >=< [D], [Va] >



for alln > N, where N is some large integer, and < [D],[V,] > is the pairing
between the K-homology class [D] and the K-theory class [V,] — [X x C*]
(1, is the rank of the vector bundle V; ).

Proof: Our theorem follows from Lemmas 4.3 and 4.4 in this section. n

We emphasize that < [D],[V;,] > is computable. In the case that X is a
complete Riemannian manifold, < [D], [V,] > can be computed by the Atiyah-
Singer index formula. For example, if X is a complete Riemannian spin man-
ifold and D is a Dirac operator, then < [D], [V,] >=< A(X)ch(V,), [M] >.

Roe’s index theorem [19] obtained using the Higson corona vX is a special
case of Theorem 4.1 since every element in the range of the boundary map from
KY(vX) to Ko(Cp(X)) has a sequence of representatives with small variation
(see [26] for more details on the boundary map).

The following non-vanishing theorem is a consequence of Theorem 4.1.

Corollary 4.2 Let X be a non-compact proper metric space with bounded
geometry and let (D} be a K-homology class in Ko(X). If there ezists a se-
quence of vector bundles V,, with small variation on X such that the pairing
< [D), [Va] ># 0 for infinitely many n, then Index([D]) # 0 in Ko(C*(X)).

For the convenience of readers we shall briefly recall the definition of the
index map from K;(X) to K;{(C*(X)). A K-homology class [D} in Kp(X) can
be represented as a pair (Hy @ Hy, D), where the grading on Hy & Hy is
given by the grading operator 1 @ —1, and D is a bounded operator of degree
one on Hx @& Hy such that (D* — D)f, (D? — I)f and [D, f] are compact
operators for all f € Cp(X). If X is a complete Riemannian manifold, then
Dirac type operators on X naturally give rise to I{-homology classes.

Without loss of generality we can assume D* = D, ||D|| < 1. Let {U;};
be a locally finite and uniformly bounded open cover of X and {¢;}; be a

continuous partition of unity subordinate to the open cover. Define

D' =Y ¢:D¢?,



where the infinite sum converges in strong topology. It is not difficult to verify
that (Hx @ Hyx, D'} is equivalent to (Hx @ Hy, D) in Ky(X). Write

0 A
D= .
A0

Let So=1—- AA* S, =1 — A*A. We define

I - 2 2 A*
Indez[D] = ( St (Si+57) ) .

Sod S
Similarly we can define the index map from K,(X) to K,(C*(X)).

Let H,o be the graded Hilbert space ®i~,(Hy @& Hy) with the grading
operator €y = @,(1® —1). Define D, ¢~ to be the operator @, D acting
on H,o. Let H,, be the graded Hilbert space P,(®i2,(Hx & Hx)) with the
grading operator ¢; = P,(®% (1 ® —1)), where P, is as in Definition 3.1.
Define Dy, to be the operator P,(®¥, D) acting on H,,. Let a, be as in
section 3 and let 3, be the operator from H,, ; = P, (@ Hy)® P, (@, Hy) to
Hyo = (@, Hyx)® (&2, Hy) defined by: f, = an @ an. Let Hy = Hyo® Hn
be the graded Hilbert space with grading given by € = ¢y @ —e;. Define D,
to be the operator DXxC"‘ €0 ® Dy, €; acting on the graded Hilbert space H,.

Let
c,,=(° ﬁn).
B, 0

Finally we define an operator G, of degree one on the graded Hilbert space
H, by:

Gp=D,+4/1-D2C,.
We can easily check that G2 = I mod K. Hence we can define indez(G,,) to
be the Fredholm index of the operator G,|g, , from the positive eigenspace

H, ; of € to the negative eigenspace H, _ of .

Lemma 4.3

< [D], [Va] >= indez(G,).

Proof: Let a be a continuous non-negative function on X such that a(z) <1

for all z € X, a(z) = 0 for all z € K, and a(r) = 1 for all z outside
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some compact subset of X, where K, is as in Section 3. The K-theory el-
ement [V,] — [X x C™] can be represented as a Kasparov module (E, ¢, F)
for (C, Cy(X)), where E is the graded Hilbert module over Cy(X) defined by
E = (&r,Co(X)) ® P (0F,Co(X)) with the grading given 1® —1, ¢ is the
homomorphism from C to B(F) satisfying ¢(1) = I, and

Fz(zg).

We need to compute the Kasparov product (E, ¢, F)®cyx)(D, Hx & Hx).
To do this we first identify E®co(x)(H x ® Hy) with H, by the following
isomorphism h:

h(((eai;ﬂi) @ Pn(®:§‘:]$i+ln))®co()\')y) = (@gllxi?}) ® Pn(®§;1$i+lny)

for all ((BiL,2:) ® Pa(@I2)%i44,))Bco(x)y € EQco(xy(Hx ® Hx).

Next we shall show that G, is D,-connection in the sense of Connes
and Skandalis [8]. Given z € E, let T, be the operator from Hy & Hy
to E®co(x)(Hx @ Hy) defined by: T,y = m®c0(x)y for all y € Hy & Hy.
Write z = (@'2,2;) ® Pu(®,7iy1,) according to the decomposition B =
(@i, Co(X)) @ P, (@, Co(X)). Using the isomorphism h we can identify 7,
with the operator from Hy @ Hx to H,, defined by:

Ty = (@f’;lmiy) @ Pn(eaf;l-";i—klny)
for all y € Hy @ Hy. Now we can easily check that
T.D, — (=1)%*9 G, T, ¢ K(Hy ® Hy, H,,)
for a homogeneous element z. Similarly we can verify that

D, T! — (=19 F ¢ K(H,, Hx ® Hy).

Hence by definition G,, is Dp-connection.

Using the isomorphism A we can identify the operator F&®I from E@Co( x)(Hx®

Hx) to EQcy(x)(Hx & Hx) with the operator from H, to H, defined by:

N 0 o
FRI =
a 0
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with respect to the decomposition H,, = H, o ® H,, ;. We can verify that

[F&I,G,) = /1 — D2(F&I)% mod K.

Now by Definition 18.4.1 and Theorem 18.4.3 in [1} our lemma follows from
the above identity and the fact that G,, is D,-connection. [

Lemma 4.4

< (Ey, ¢n, Fy), Index[D) >= indexz(G,,)

for alln > N, where N is some large integer.

Proof: Let Hx and HY% be two X-modules, £ = Hx @ Hy with the grading
operator 1 ® —1 and F' = H) & H) with the grading operator 1 & —1;
let (T,T",U) be a triple where T is an operator of degree one acting on E
satisfying T* = T,||T|| < 1, T* - T € C*(X,Hx) ® C*(X,Hx), T' is an
operator of degree one acting on E' satisfying (T")* = T',||T'|| < 1, (T")? -1 €
C*(X,H)) ® C*(X, H), and U is a unitary operator of degree 0 from E to
E' such that T2 — U*(T")2U is compact. We shall first define the index of the

triple (7, 7",U). Let
0 A
T= .
Let Sg=1I— AA*, S, =1— A*A. We define

I—52 (S5 484
e(T) = (St 21) .
SpA S2

e(T') is similar to the following projection
p(T) = e(T)e"(T)(I + (e(T) — e"(T)(e'(T) = e(T))) ™

Similarly we can define p(T"). We define ind(T,T',U) to be the element in
Z = KK(C,C) represented by the quasihomomorphism (¢, ¢') from C to C,
where ¢ is the homomorphism from C to B(Hx ® Hy) satisfying ¢(1) = p(T),
and ¢ is the homomorphism from C to B(Hy @& Hx) satisfying ¢'(1) = (U &
U)yp(T)(U e V).

12



Without loss of generality we can assume that D has finite propagation.

Using identity (1) in the proof of Lemma 3.5 it is not difficult to see that
(1) < (En, $n, Fr), Indez{D] >=ind(D i, Dy,, B;)

for all n > N, where NN is some large integer V.
Let T = DXxCI"’T’ = Dan U= ﬁ; Let

B= T €0U'\/I — (T’)2U ,
eU* /I — (T")2U UrT'u

' T €1 I— (T")2
B' = .
61\/[ - (TI)2 T
Notice that B is an operator of degree one acting on H, o @ H,, with the
grading operator €y @ —ep, and B’ is an operator of degree one acting on
H,, ® H,, with the grading operator ¢, & —¢;. We can easily verify that
B? = I mod K and (B’)? = I. Observe that we are using the same matrix
trick here as in the proof of Lemma 2.3.

1t is easy to see that
ind(UT'U,T',U) = 0.
Hence
(2) nd(T,T",U) =ind(ToU'TUT @T U U)

= ind(B,B",Ua U),

where the last equality follows from the fact that B—(T@U*T'U) is an element
in C*(X,H,o® Hy,p), and B'— (T"@®T') is an element in C*(X, H, 1 ® Hy ).
The invertibility of B’ implies that

ind(T,T',U) = index(B),
where indez(B) is the Fredholm index of Bly, from the positive eigenspace

H.. of the grading operator eg @ —ep to the negative eigenspace H_ of ¢y @ —¢p.

13



An easy computation shows that

2
Gn — DXXC‘" € V I— D,\’x(cln ﬁn ]
c‘/I — D%/n ﬂ; DV,,EI

Let V' be the unitary operator of degree 0 from H, o @ Hypp to Hyo @ Hy
defined by V =1@ U. We have

_ 2
VBV* = ( Dy b [T= D% on ) :

eI — D} B Dy,

n

This implies that
(€0 ® €)G, = VBV* mod K.

Hence we have

index(G,) = index(B).

Now our lemma follows from (1}, (2) and the above identity. |

5 The odd dimensional case

In this section we shall briefly discuss an odd dimensional analogue of Theorem
4.1.

Definition 5.1 A sequence of elements in K1(Cy(X)), the compact supported
Ky-group of X, is said to have small variation if it can be represented by a
sequence of unitaries u, (n € Z,) n My, (Co(X))* for some positive integer

k, such that for everyr >0

lirl;n Sup(z.y)EXxX:d(I‘y)Sr|Iun(m) - un(y)H =0,

where Co(X) is the algebra of all continuous functions vanishing at infinity
over X, My (Co(X)) is the the algebra of all ky, x k. matrices over Co(X),
and My, (Co(X))*t is obtained from My, (Co(X)) by edjoining an identity.

We shall associate a sequence of elements with small variation in K, (Cp(X))

to an asymptotic Fredholm module over SC*(X), the suspension C*-algebra
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over C*(X). Recall that for any C*-algebra A, SA is defined to be the
C*-algebra {f € C([0,1],4) : f(0) = f(1) = 0}. For each n, define a
projection P, in My (SCo(X)t by: P, = wi(u,)(I & 0)(wy(u,))~!, where
wy(u) = (u® Hu(u™' @ Iy’ and

o = cos(mt/2) —sin(nt/2)
t sin(mt/2) cos(mt/2) .

P, is a sequence of projections with small variation. The method of Section
3 can be then used to construct an asymptotic Fredholm module (E,, ¢y, F},)
(associated to P,) over SC*(X). (B, ¢én, F) can be used to construct a
pairing with K,(C*(X)) as follows. For any unitary u in M (Co{X))™ rep-
resenting an element [u] € K;(C*(X)), there is an associated projection p(u)
in Mp(SC*(X))* defined by: p(u) = wi(u)(I & 0)(w(u))™'. The pairing
< (Ey, On, Fr), [u] > is defined to be the pairing of the asymptotic Fredholm
module (E,, ¢, F,,) with p(u) for large n as in Section 2.

Theorem 5.2 Let X be a non-compact proper metric space with bounded ge-
ometry and let {D] be a K-homology class in K1(X) = KK'(Cy(X),C). If uy,
is a sequence of elements with small variation in K,(Co(X)) and (E,, ¢n, Fy)

is its associated asymptotic Fredholm module, then
< (Ep, ¢n, ), Indez[D] >=< [D], [un] >

for alln > N, where N is some large integer, and < [D}, [u,] > is the pairing
between the K-homology class [D] and the K-theory class [uy].

The proof of theorem 5.2 is similar to that of Theorem 4.1 and is therefore

omitted.

6 Applications

In this section we shall apply our main results to study the positive scalar
curvature problem and the spectrum of Laplacian. For simplicity we shall

concentrate on the even dimensional case, i.e. the case of vector bundles with
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small variation. The odd dimensional analogues can also be proved using
Theorem 5.2.

We shall first introduce a concept of large scale equivalence.

Definition 6.1 ([11]) Let dy and dy be two melrics on a space X. d; is said
to be large scale equivelent to dy if for any v > O there exists R > 0 such that
(1) if di(z,y) <7 for any pair of points © and y in X, then dy(z,y) < R;
(2) if do(z,y) < 1 for any pair of points x and y in X, then di(z,y) < R;

Notice that the concept of a sequence of vector bundles with small variation
is invariant under large scale equivalence of metrics.

The following result follows from Corollary 4.2, the invariance of vector
bundles with small variation under large scale equivalence and a standard

Lichnerowicz type argument.

Theorem 6.2 Let M be a spin complete Riemannian manifold with bounded
geometry. If there is a sequence of vector bundles V,, on M with small varia-
tion such that < A(M)ch(V,),[M] ># 0 for all n, then there is no complete
Riemannian metric on M which is large scale equivalent to the given metric

and has uniform positive scalar curvature.

The above result indicates that the existence of vectors bundles of small
variation has stronger geometric implication than the existence of almost flat
bundles since the concept of almost flat bundles does not seemn to be invariant

under large scale equivalence.

Theorem 6.3 Let M be a complete ortented Riemannian manifold with bounded
geometry. If there is a sequence of vector bundles V,, on M with small variation
such that < L{M)ch(Vy,),[M] ># 0 for all n, then 0 belongs to the spectrum

of Laplacian acting on the space of L%-forms.

The above result follows from Theorem 4.1.
An idea of Gromov and Lawson in [13] can be used to construct vector
bundles of small variation over a proper metric space X as follows. Let f, be

a sequence of continuous maps from X to a compact metric space Y such that
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(1) for any € > 0,7 > 0, there exists N such that d(f,(z), fu(z'})) < € for all
n > N and d(z, 7'} < 7;
(2) fn is constant outside a compact subset K, of X.

If V is a vector bundle over Y, then f}V is a sequence of vector bundles of
small variation over X. The most interesting case is perhaps when Y = S*,
the standard sphere of dimension k.

Recall that X is said to be uniformly contractible if for any » > 0, there

exists R > 7 such that every ball B(z,r) can be contracted to a point within
B(z, R).

Question 6.4 If X is a uniformly contractible Riemannian manifold with
bounded geoemrty, do there exist a sequence of continuous maps f, from X
to SHM) satisfying the above conditions (1) and (2) such that each f, has

nonzero degree?

A positive answer to the above question would imply Gromov and Law-
son’s conjecture that no compact K (m, 1) manifold admits a metric with pos-
itive scalar curvature and Gromov’s conjecture that the Laplacian acting on
the space of L2-forms on a uniformly contractible Riemannian manifold with

bounded geometry contains 0 in its spectrum.
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