
Classical Simulation Complexity of Quantum Branching

Programs

Farid Ablayev∗

Kazan State University

Abstract

We present classical simulation techniques for measure once quantum branching
programs.

For bounded error syntactic quantum branching program of width w that computes
a function with error δ we present a classical deterministic branching program of the
same length and width at most (1 + 2/(1 − 2δ))2w that computes the same function.

Second technique is a classical stochastic simulation technique for bounded error
and unbounded error quantum branching programs. Our result is that it is possible
stochastically-classically simulate quantum branching programs with the same length
and almost the same width, but we lost bounded error acceptance property.

1 Introduction

Investigations of different aspects of quantum computations in the last decade became in-
tensively growing area of mathematics, computer science, and physics. A good source of
information on quantum computations is Nielsen’s and Chuang’s book [7]. The interest in
models of quantum computation has been steadily increasing since the discovery of a polyno-
mial time algorithm for factoring by Peter Shor [13]. During the last decade different types
of quantum computation models based on Turing Machines, finite automata, circuits, and
branching programs have been considered. For several of these models of computations, some
examples of functions were presented for which quantum models appear to be much more
efficient than their classical counterparts.

Complexity of classical simulation of quantum computations for different models of com-
putations were investigated in numerous papers [4, 8, 11, 16, 12].

Branching programs are important model of computations, because of their natural re-
lationships to machines models (Turing machines, automata) and Circuit models. Different
restricted models of branching programs are widely used for hardware verification and in
numerous CAD applications. In the paper we present two classical simulation techniques for
measure once quantum branching programs.

∗Work done in part while visiting Max-Plank Institute for Mathematics Bonn in 2007 Email:
ablayev@ksu.ru

1

Our first result is the following. For bounded error syntactic quantum branching program
[1] see also the journal version [3] of width w that computes a function with error δ we
present a classical deterministic branching program of the same length and width at most
(1 + 2/(1 − 2δ))2w that computes the same function. The construction of corresponding
deterministic branching program is based on the following properties:

1. Quantum states are unit vectors (a set of quantum states form bounded set for || · ||2
norm).

2. Unitary transformations of quantum states preserves a distance.

3. Bounded-error acceptance criteria.

Bounded-error acceptance criteria together with the properties 1 and 2 forms topological
structure on the set of quantum states which leads to a desired deterministic branching
program.

Second technique is a classical stochastic simulation technique for bounded-error quantum
branching programs. Our result is that a resulting stochastic classical branching program is
of the same length and almost the same width, but we lost bounded-error acceptance. Our
construction of classical stochastic branching program is based on:

1. Replacing complex matrices with real ones with dimension doubled and tensor prod-
uct construction as a bridge between || · ||1 norm and || · ||2 norm (Lemma 3). This
construction gives new matrices with quadratic increase in dimension.

2. A Turakainen-type construction [14] to replace arbitrary real matrices with stochastic
ones with ”good properties” of the original ones (Lemma 4).

2 Definitions and Results

We start with definition of branching programs according to [15] (we call it constructive
definition). Then we give an algebraic definition of branching programs and present results
of the paper.

Definition 1 A branching program (BP) on the variable set X = {x1, . . . , xn} is a finite
directed acyclic graph with one source node and sink nodes partitioned into two sets – Accept
and Reject. Each non-sink node is labeled by a variable xi and has two outgoing edges labeled
0 and 1 respectively. An input σ is accepted if and only if it induces a chain of transitions
leading to a node in Accept, and the set of such inputs is the language accepted by the program.

A branching program is oblivious if the nodes can be partitioned into levels V1, . . . , V` and
a level V`+1 such that the nodes in V`+1 are the sink nodes, nodes in each level Vj with j ≤ `
have outgoing edges only to nodes in the next level Vj+1, and all nodes in a given level Vj

query the same bit σij of the input.

2

Definition 2 The size Size(P) of a branching program P is the number of its non-sink
nodes. The length Length(P) of branching program P is the maximum length of a path from
the source to one of the sinks. The width Width(P) of oblivious branching program P is the
number Width(P) = maxj |Vj|.

Clearly we have that length of branching program corresponds to time of computation and
width on a level j corresponds to a space that can be used on the step j of computation.

In this paper we deal with polynomial size branching programs. Recall that arbitrary
branching program can be transformed to oblivious branching program (see for example [6])
with only polynomial increasing the size. So without loss of generality we consider only
oblivious branching programs in this paper.

Now we give a definition of a linear branching program based on oblivious model. This
definition is a generalization of the definition of quantum branching program presented in [2].
Deterministic, stochastic, and quantum oblivious branching programs are particular cases of
linear branching programs. Let Vk be a k-dimensional vector space. We use |µ〉 and 〈µ| to
denote column vectors and row vectors of Vk, respectively, and 〈µ1 | µ2〉 denotes the complex
inner product. We write µ when it is not important whether µ is a column or a row vector.

Definition 3 (Linear branching program) A Linear Branching Program (LBP) P over
Vk is defined as

P = 〈T, |µ0〉,Accept〉 ,

where T = (T1, . . . , T`) is a sequence (of length `) of instructions. Each instruction Tj is
a triple Tj = {ij,Mj(0),Mj(1)}, where ij determines a variable xij tested on the step j,
Mj(0) and Mj(1) are k-dimensional linear transformations of the vector space Vk. Vectors
|µ〉 ∈ Vk are called states (state vectors) of P , |µ0〉 ∈ Vk is the initial state of P , and
Accept ⊆ {1, . . . , k} is the accepting set.

According to the definition 2 it is natural to define the Width(P) of linear BP as the
dimension of state space Vk. Further for LBP P it is natural do define its size as Size(P) =
Width(P)Length(P).

We define a computation on P with an input σ = σ1 . . . σn ∈ {0, 1}n as follows:

1. A computation of P starts from the initial state |µ0〉;

2. The j’th step of computation of P applies instruction Tj: program P queries a variable
xij , and applies the transition matrix Mj(σij) to the current state µ to obtain the state
µ′ = Mj(σij)µ;

3. The final state (i.e., the state after step `) is

|µ(σ)〉 =
1

∏

j=`

Mj(σij)|µ0〉 .

Now oblivious deterministic, stochastic, and quantum branching programs can be pre-
sented as follows:

3

Deterministic branching programs. A deterministic branching program is a linear
branching program over a vector space F

k for a corresponding finite field F. A state µ
of such a program is a vector with exactly one 1, the rest elemants are 0. The transition
matrices M have exactly one 1 in each column, the rest elements of the column are 0.

Stochastic branching programs. A stochastic branching program is a linear branching
program over a real vector space R

k. The concept of deterministic branching programs
naturally generalizes to stochastic branching programs (SBP), by letting µ be a probability
distribution, and by letting the Mj be stochastic matrices, i.e., matrices with non-negative
entries where each column sums to 1.

For a deterministic and stochastic branching program P , for an input σ ∈ {0, 1}n we
define the acceptance probability of σ as follows

PrP (σ) = Pr(µ(σ)) =
∑

i∈Accept

|〈i | µ(σ)〉| = ‖ΠAcceptµ(σ)‖1 . (1)

Here |i〉 is the basis vector with support on the node i (unit vector with value 1 at i and
0 elsewhere), and ΠAccept is a projection operator on the accepting subspace span{|i〉 : i ∈
Accept}.

Quantum branching programs. We define a quantum branching program (QBP) as a
linear branching program over a Hilbert space Hk. The µ for such a program are complex
state vectors with ‖µ‖2 = 1, and the Mj are complex-valued unitary matrices. For a quantum
branching program P , for an input σ ∈ {0, 1}n we define the acceptance probability of σ as
follows

PrP (σ) = Pr(µ(σ)) =
∑

i∈Accept

|〈i | µ(σ)〉|2 = ‖ΠAcceptµ(σ)‖2
2 , (2)

that is, the probability that if we measure µ(σ), we will observe it in the accepting subspace.
Note that this is a “measure-once” model analogous to the model of quantum finite automata
in [9], in which the system evolves unitarily except for a single measurement at the end.

Notice that in contrast to algebraic definition of quantum and stochastic BPs one can de-
fine these models in a (so called) constructive form. See for example book [15] for constructive
definition of SBP and the paper [11] for constructive definition of QBP.

Acceptance criteria. We say that a LBP P computes a Boolean function f with un-
bounded error if PrP (σ) > 1/2 if f(σ) = 1 and PrP (σ) ≤ 1/2 if f(σ) = 0. We say that P
computes f with threshold 1/2.

We say that a LBP P computes a Boolean function f with bounded error if there is some
ε > 0 such that PrP (σ) ≥ 1/2 + ε if f(σ) = 1 and PrP (σ) ≤ 1/2− ε if f(σ) = 0. We say that
P computes f with error δ = 1/2 − ε (with margin ε).

2.1 Deterministic Simulations of Stochastic and Quantum Branch-
ing Programs

Syntactic Stochastic and Quantum Programs For unbounded and bounded error
stochastic and quantum branching programs we define two subsets A and R of the set F of

4

sink state vectors (consistent and inconsistent) as follows. For unbounded error programs,
we define

A = {µ ∈ V`+1 : Pr(µ) > 1/2} and R = {µ ∈ V`+1 : Pr(µ) ≤ 1/2};

and for bounded error programs, we define

A = {µ ∈ V`+1 : Pr(µ) ≥ 1/2 + ε} and R = {µ ∈ V`+1 : Pr(µ) ≤ 1/2 − ε}

We call A and R the accepting and rejecting sets respectively.
Recall that V`+1 includes the final states reachable by all possible paths, both consistent

and inconsistent. Then:

Definition 4 ([1]) We call a stochastic or a quantum branching program syntactic if its
accepting and rejecting set of state vectors form a partition of the set of sink states, i.e., if
V`+1 = A ∪R.

Note that without the syntactic restriction, it might happen that V`+1 6= A ∪ R, and that
some inconsistent final state vector µ ∈ V`+1 has the property that 1/2−ε < Pr(µ) < 1/2+ε.

Theorem 1 (Deterministic Simulation Theorem) Let function f be bounded error δ
(δ ∈ (0, 1/2)) computed by syntactic QBP P . Then there exists deterministic BP P ′ that
computes f and has the following complexity characteristics: Length(P ′) = Length(P) and

Width(P ′) ≤

(

1 +
2

1 − 2δ

)2Width(P)

.

Similarly, we can deterministically simulate classical stochastic BP.

Theorem 2 If a function is computed with bounded error δ (δ ∈ (0, 1/2)) by a width-w
syntactic stochastic branching program, then it is also computed by a deterministic branching
program of the same length, and width

w′ ≤

(

1 +
2

1 − 2δ

)w

.

The proof of Theorem 1 and Theorem 2 is in the section Proofs.
Notice that Theorem 1 and Theorem 2 imply that constant width quantum and stochastic

branching programs can be simulated by a constant width deterministic branching programs
and hence — by an NC1 circuits. For more information and results see [1].

2.2 Stochastic Classical Simulation of Quantum Branching Pro-
grams

Theorem 3 (Stochastic Simulation Theorem) Let function f be unbounded error (bounded
error) computed by QBP Q. Then there exists SBP P that unbounded error computes f of
the same length Length(P) = Length(Q) and width Width(P) = 4Width2(Q) + 3.

5

We present the proof of Theorem 3 in the section Proofs.
Now we define probabilistic and quantum complexity classes based on branching programs

as follows.

Definition 5 Let BPP -BP and PP -BP be the classes of functions computable with bounded
error and unbounded error respectively by stochastic branching program of polynomial size;

Let BQP -BP and PrQP -BP be the classes of functions computable with bounded error
and unbounded error respectively by quantum branching program of polynomial size.

Theorem 4

PrQP -BP ⊆ PP -BP

BQP -BP ⊆ PP -BP

Proof. The proof of the Theorem is the consequence of the Simulation Theorem 3. 2

Notice that Sasaki in [12] proved that BQP -BP ⊆ BPL/poly where BPL/poly is a class
of languages accepted by Logarithmic-space bounded error nonuniform probabilistic Turing
machines.

3 Proofs

3.1 Proof of Theorem 1 and Theorem 2

We start with the idea of lower bounds proof and notations we use for formal proof.
Let us denote (w, l)-P an w width and l length BP . The idea of proofs of Theorem 1 and

Theorem 2 is that having syntactic stochastic (quantum) (w, l)-P that computes a function
f with margin ε we construct a deterministic BP (w′, l) - P ′ such that P ′ computes the same
function f and

w′ ≤

(

1 +
1

ε

)w

when P is stochastic BP and

w′ ≤

(

1 +
1

ε

)2w

when P is quantum BP .
The construction of P ′ is based on the following properties. We will view on computation

by oblivious (stochastic and quantum) BP (w, l)-P as an l step linear process of transforma-
tion of vectors α of a current internal description (ID) of P . In stochastic case α = µ, where
µ = (p1, . . . , pw) is a current probability distribution of a states of P , and in quantum case
α = |ψ〉, where |ψ〉 = (z1, . . . , zw)T is a current distribution of amplitudes of states of P .

We represent this l step linear process as an (l+1)-leveled deterministic branching program
DP , as follows: each node of DP labeled by vector α corresponds to an ID of P , and

6

each level i ∈ {0, . . . , l} represents a step of the computation. The level 0 contains initial
node labeled α0 — the initial distribution of P . From each node α on the level i, i ∈
{0, . . . , l − 1}, out goes two edges labeled xji

= 0 and xji
= 1 where xji

is a variable tested
in the computational step i. Edge xji

= 1, directed from parent α on a level i to child α′ on
the level i+ 1 iff P being on the step i of computation in ID α tests xji

= 1 and transforms
its ID on the step i+ 1 to α′.

Denote Accept (Reject) a set of all accepting (rejecting) sink nodes of P . Sink nodes
of DP on the level l are labeled in addition by 1 (”accept”) and 0 (”reject”) as follows: in
stochastic case sink node α = (p1, . . . , pw) labeled 1 if Pr(α) =

∑

j∈Accept pj ≥ 1/2 + ε, and

labeled 0 if Pr(α) =
∑

j∈Accept pj ≤ 1/2− ε; in quantum case node α = (z1, . . . , zw)T labeled

1 if Pr(α) =
∑

j∈Accept |zj|
2 ≥ 1/2 + ε, and labeled 0 if Pr(α) =

∑

j∈Accept |zj|
2 ≤ 1/2 − ε.

Denote A (R) a set of all sink nodes of DP labeled 1 (0).
¿From the above we have the following property.

Property 1 Deterministic branching program DP computes the same Boolean function f
as P .

In the next section we use metric point of view to DP for constructing deterministic BP
(w′, l)-P ′ that computes the same function as DP and hence the same function as P .

Metric Properties of DP Denote Ψi, i ∈ {0, . . . , l}, a set all possible IDs of P on step
i of computation. Let Ψ = ∪l

i=0Ψi. For stochastic P we define metric on the space Ψ based
on norm || · ||1. That is, for α = (p1, . . . , pw) and α′ = (p′1, . . . , p

′
w) ρ(α, α′) = ||α − α′||1 =

∑w

i=1 |pi − p′i|. For quantum P we define metric on the space Ψ based on norm || · ||2: for
α = (z1, . . . , zw) and α′ = (z′1, . . . , z

′
w) ρ(α, α′) = ||α − α||2. We will also use notation || · ||

for norm || · ||2.
Recall known notions of metric spaces we need in the proof (see for example [5]). Let Vw

be an w-dimensional vector space (real valued or complex valued) with metric ρ. Points µ, µ′

from Vw are connected through θ-chain if there exists a finite set of points µ1, µ2, . . . , µm

from Vw such that µ1 = µ, µm = µ′ and ρ(µi, µi+1) < θ for i ∈ {1, . . . , m − 1}. For Vw

its subset C is called θ-component if arbitrary two points µ, µ′ ∈ C are connected through
θ-chain. It is known [5] that if D is a finite diameter subset of a subspace of Vw (diameter
of D is defined as supµ,µ′∈D{ρ(µ, µ

′)} then for θ > 0 D is partitioned to a finite number t of
its θ-components.

Lemma 1 Let f be a Boolean function (1/2+ ε)-computed by P . Let DP be a corresponding
deterministic BP for P . Let θ > 0 and let for sink nodes of DP the following holds: for
arbitrary α ∈ A and α′ ∈ R it is holds that ρ(α, α′) ≥ θ. Then, there exists a deterministic
BP (w′, l)-P which computes f and

w′ ≤

(

1 +
2

θ

)w

when P is stochastic BP, and

w′ ≤

(

1 +
2

θ

)2w

when P is quantum BP.

7

Proof. Consider D a sphere of radius 1 with center in (0, . . . , 0). We clearly have that
Ψ ⊆ D. From the condition of the lemma it follows that subsets A and R of Ψl is a union of
some θ-components of Ψl. Next. Oblivious property of BP P provides the following: on the
each level i, i ∈ {0, . . . , l − 1}, of DP for all nodes α ∈ Ψi it is tested the same variable xji

and applied the same linear transition Mxji
(1) if xji

= 1 (Mxji
(0) if xji

= 0) where Mxji
(a) is

stochastic matrix when P is stochastic BP and Mxji
(a) is unitary when P is quantum BP .

It is known (and it can be easily verified) that transformations determined by stochastic
matrix M does not increase the distance. That is, if α′ = Mα and β ′ = Mβ then ρ(α′, β ′) ≤
ρ(α, β). Unitary matrix M preserves the distance. That is, it is holds that ||α′ − β ′|| =
||α− β||.

Denote Ci the set of all θ-components of Ψi. For C ∈ Ci and matrix M we denote MC =
{α′ : α = Mα,α ∈ C}. From the property of non increasing distance linear transformations
(stochastic or uniform) it is holds that for C ∈ Ci and for a ∈ {0, 1} there exists C ′ ∈ Ci+1

such that MC ⊆ C ′ for the stochastic P and MC = C ′ for the quantum P .
Now we describe deterministic BP P ′ that computes f as follows: P ′ is an l-leveled

oblivious BP . On the level i tested variable xji
(as in BP) and all nodes are labeled by

θ-components C ∈ Ci. From the node C ∈ Ci edge labeled xji
= a goes to to node C ′ ∈ Ci+1

iff Mxji
(a)C ⊆ C ′.

¿From the above it follows that P ′ computes the same function as DP
The width w(P ′) of P ′ is w′ = max{t0, . . . , tl} where ti is the number θ-components of

Ψi. Let w′ = ti. We estimate the number t of θ-components (number of nodes of B) of Ψj

as follows.
For each θ-component C ∈ Ci select one point α ∈ C. If we draw a sphere of the radius

θ/2 with the center α ∈ C then all such spheres do not intersect pairwise. All these w′

spheres are in large sphere of radius 1 + θ/2 which has center (0, 0, . . . , 0). The volume of
a sphere of a radius r in Hw is crw when Hw is real space and is cr2w when Hw is complex
space (in the complex space Hw each complex point is a 2-dimensional point). Constant c
depends on the metric of Hw. Now for stochastic and quantum case we have respectively
that

w′ ≤
c (1 + θ/2)w

c (θ/2)w =

(

1 +
2

θ

)w

, w′ ≤
c (1 + θ/2)2w

c (θ/2)2w
=

(

1 +
2

θ

)2w

,

2

Below we present technical lemma that estimates parameter θ of the lemma 1 depending
on margin ε of computation.

Lemma 2 Let f be a Boolean function (1/2 + ε)-computed by (w, l)-P . Let DP be a corre-
sponding deterministic BP for P .

Then for arbitrary α ∈ A and α′ ∈ R for the case of stochastic P it is holds that:

||α− α′||1 ≥ θ = 2ε,

for the case of quantum P it is holds that:

||α− α′|| ≥ θ = 2ε.

8

Proof. Consider the case of stochastic P . α = (p1 . . . , pw)T , α′ = (p′1 . . . , p
′
w)T ,

||α− α′||1 =

w
∑

i=1

|pi − p′i| ≥
∑

i∈Accept

|pi − p′i| ≥ |
∑

i∈Accept

pi −
∑

i∈Accept

p′i|

From the condition of the lemma we have that
∑

i∈Accept pi ≥ 1/2+ε and
∑

i∈Accept p
′
i ≤ 1/2−ε.

From this we have that

||α− α′||1 ≥ 1/2 + ε− (1/2 − ε) = 2ε.

Consider the case of quantum P . α = (z1, . . . , zd)
T and α′ = (z′1, . . . z

′
d)

T .
¿From the condition of the lemma it is holds that

2ε ≤
∑

i∈Accept

(|zi|
2 − |z′i|

2) =
∑

i∈Accept

(|zi| − |z′i|)(|zi| + |z′i|) ≤
∑

i∈Accept

(|zi − z′i|)(|zi| + |z′i|)

and similarly

2ε ≤
∑

i∈Reject

(|z′i|
2 − |zi|

2) =
∑

i∈Reject

(|z′i| − |zi|)(|zi| + |z′i|) ≤
∑

i∈Reject

(|zi − z′i|)(|zi| + |z′i|)

or

4ε ≤
w

∑

i=1

(|zi − z′i|)(|zi| + |z′i|).

¿From the above using known inequality
∑d

i=1 aibi ≤
√

∑d

i=1 a
2
i

√

∑d

i=1 b
2
i and triangle in-

equality for the norm we get that

4ε ≤ ||α− α′||(|| |α|+ |α′| || ≤ ||α− α′||(||α||+ ||α′|| = 2||α− α′||

2

Now the lower bounds of Theorem 1 and Theorem 2 follows immediately from lemmas 1
and 2. This completes the proof of theorem 1 2

3.2 Proof of Stochastic Simulation Theorem 3

We call LBP P a program of Type I, if it uses metric (1) when defining the acceptance
probability, and a program of Type II, if metric (2) is used.

The proof is based on three lemmas we present below.

Lemma 3 Let function f be computed by QBP Q. Then there exists LBP P of Type I
that computes f with Width(P) = 4Width(Q)2 and Length(P) = Length(Q) such that
PrQ(σ) = PrP (σ) for each σ ∈ {0, 1}n.

9

Proof sketch. First using the known real-valued simulation of complex-valued matrix multi-
plication from QBP Q over Ck we construct LBP P ′ of Type II over R2k with Width(P ′) =
2Width(Q) and Length(P ′) = Length(Q) such that PrP ′

(σ) = PrQ(σ) for each σ ∈ {0, 1}n

(see [2] for more details).
Next we construct LBP P of Type I from LBP P ′ of Type II withWidth(P) = Width(P ′)2

and Length(P) = Length(P ′) such that PrP ′

(σ) = PrP (σ) for each σ ∈ {0, 1}n. Here we
use relation among LBP of Type I and Type II (among “linear” and “non linear” extracting
a result of computation) used in [9]. For completeness of presentation we display it here for
branching programs.

Let d = 2k. Let LBP P ′ = 〈T, |µ0〉,Accept〉 where T = ({ij,Mj(0),Mj(1)})`
j=1. We

construct P = 〈T ′, |τ0〉,Accept′〉 as follows. The initial state |τ0〉 = |µ0 ⊗ µ0〉 — is d2-
dimension vector, T ′ = ({ij,Wj(0),Wj(1)})`

j=1 where Wj(σ) = Mj(σ) ⊗ Mj(σ) is d2 × d2

matrix. Accepting set Accept′ ⊆ {1, . . . , d2} of states is defined according to Accept ⊆
{1, . . . , d} as follows Accept′ = {j : j = (i− 1)d+ i, i ∈ Accept}.

Using the fact that for real valued vectors c, b it holds that 〈c|b〉2 = 〈c⊗ c|b⊗ b〉 we have
that

∏1
j=`Wj(σij) =

∏1
j=`(Mj(σij) ⊗Mj(σij)) =

∏1
j=`Mj(σij) ⊗

∏1
j=`Mj(σij).

PrP (σ) =
∑

i∈F ′

〈i|

1
∏

j=`

Wj(σij)|τ0〉 =
∑

i∈F

〈i⊗ i|

1
∏

j=`

(Mj(σij) ⊗Mj(σij))|µ0 ⊗ µ0〉

=
∑

i∈F

〈i|
1

∏

j=`

Mj(σij)|µ0〉
2 = PrP ′

(σ).

¿From the construction of LBP P we have thatWidth(P) = 4Width(Q)2 and Length(P) =
Length(Q). 2

Lemma 4 Let function f be computed by LBP P of Type I. Then there exists SBP P ′ that
computes f with Width(P ′) = Width(P) + 2, Length(P ′) = Length(P) such that for each
σ = {0, 1}n it is true that

PrP ′

(σ) = c`PrP (σ) + 1/(d+ 2)

where ` = Length(P), d = Width(P) , constant c ∈ (0, 1] depends on program P .

Proof sketch. Let P = 〈T, |µ0〉,Accept〉, where T = (T1, . . . , T`) and Tj = {ij,Mj(0),Mj(1)}.
Without loss of generality we suppose that a set Accept consists only of one node. One can
easily construct LBP with unique accepting node from LBP with several accepting nodes
(without increasing width and length) using standard technique from Linear Automata The-
ory (see for example [10, 14]).

Let d = Width(P). We construct SBP P ′ = 〈T ′, |µ′
0〉,Accept′〉 as follows. For each

instruction Tj of program P we define instruction T ′
j = {ij,Wj(0),Wj(1)} of P ′ as follows.

First for each d× d matrix M of instruction Tj we define (d+ 2) × (d+ 2) matrix

10

A=







0 0 . . . 0 0

b M
...

β q 0






,

such that sum of elements of each row and each column of A is zero (we are free to select
elements of column b, row q and number β).

Matrix A has the property: sum of elements of each row and each column of A is zero.
It is easy to verify that product of such matrices also would be a matrix of the such type.

Now let R be stochastic (d + 2) × (d + 2) matrix who’s (i, j)-entry is 1/(d + 2). Select
positive constant c ≤ 1 such that matrix W , defined as

W = cA +R

is stochastic matrix. Further by induction on ` we have that the product of matrices of type
W is also stochastic matrix of the same structure. Now for an input σ = σ1 . . . σn we have
that

W (σ) =
1

∏

j=`

Wj(σij) = c`
1

∏

j=`

Aj(σij) +R.

By selecting suitable initial probabilities distribution |µ′
0〉 and accepting nodes we can pick

up from W (σ) entry we need (entry that gives σ accepting probability). From the con-
struction of SBP P ′ we have that Width(P ′) = Width(P) + 2, Length(P ′) = Length(P),
PrP ′

(σ) = c`PrP (σ) + 1/(d+ 2) for each σ = {0, 1}n. 2

Lemma 4 says that having Type I LBP P that process its input σ with threshold 1/2
one can construct SBP P ′ that process σ with threshold λ = c`1/2 + 1/(d + 2), where
` = Length(P) and d = Width(P).

Lemma 5 Let SBP P computes f with threshold λ ∈ [0, 1). Then for arbitrary λ′ ∈ (λ, 1)
there exists SBP P that computes f with threshold λ′ such that Width(P ′) = Width(P) + 1,
Length(P ′) = Length(P).

Proof: The proof uses standard technique from Probabilistic Automata Theory (see for ex-
ample the book [10]) and is omitted. 2

Lemmas 3,4,5 prove the statement of Theorem 3.

References

[1] F. Ablayev, C. Moore, and C. Pollett, Quantum and Stochastic Branching Programs of
Bounded Width, Electronic Colloquium on Computational Complexity, TR02-013, 2002,
available at http://www.eccc.uni-trier.de/eccc/

[2] F. Ablayev, A. Gainutdinova, and M. Karpinski. On computational Power of quantum
branching programs. Proc. FCT 2001, Lecture Notes in Computer Science 2138: 59–70,
2001.

11

[3] F. Ablayev, A. Gainutdinova, M. Karpinski, C. Moore, C. Pollett, On the computa-
tional power of probabilistic and quantum branching program Inf. Comput. 203(2): 145-
162 (2005)

[4] L. Adleman, J. Demarrais, M. Huang. Quantum computability, SIAM J. on Computing.
26(5), 1997, 1524–1540.

[5] P. Alexandrov. Introduction to set theory and general topology. Berlin, 1984.

[6] D. Barrington. Bounded-width polynomial branching programs recognize exactly those
languages in NC1. Journal of Computer and System Sciences 38(1): 150–164, 1989.

[7] M. Nielson and I. Chuang. Quantum Computation and Quantum Information. Cambridge
University Press. 2000.

[8] L. Fortnow. One complexity theorist’s view of quantum computing. Theoretical Computer
Science, 2003, 292(3), 597–610.

[9] C. Moore, J. Crutchfield. Quantum Automata and Quantum Grammars. Theoretical
Computer Science, 2000, 237, 275–306.

[10] A. Paz. Introduction to Probabilistic Automata. Academic-Press, 1971.

[11] M. Sauerhoff and D. Sieling. Quantum branching programs and space-bounded nonuni-
form quantum complexity. ph/0403164, March 2004.

[12] Y. Sasaki. Nonunifrom Quantum Complexity: Bounded-error quantum branching pro-
grams and their computational power. Poster of Tokyo Office Quantum Computation
Seminar, 2002.

[13] P. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on
a quantum computer. SIAM Journal on Computing 26(5): 1484–1509, 1997.

[14] P. Turakainen. Generalized automata and stochastic languages, Proc. of AMS 21, 1969,
303–309.

[15] I. Wegener. Branching Programs and Binary Decision Diagrams. SIAM Monographs on
Discrete Mathematics and Applications. 2000.

[16] J. Watrous. On quantum and classical space bounded processes with algebraic transition
amplitudes. Proc. of FOCS 1999, 341-351.

12

