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THE NIELSEN NUMBERS OF ITERATIONS OF MAPS ON

INFRA-SOLVMANIFOLDS OF TYPE (R) AND PERIODIC POINTS

ALEXANDER FEL’SHTYN AND JONG BUM LEE

Abstract. Utilizing the arguments employed mainly in [2] and [19, Chap. III] for
the Lefschetz numbers of iterations, we study the asymptotic behavior of the sequence
of the Nielsen numbers {N(fk)}, the essential periodic orbits of f and the homotopy
minimal periods of f by using the Nielsen theory of maps f on infra-solvmanifolds of
type (R).
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1. Introduction

Let f : X → X be a map on a finite complex X. A point x ∈ X is a fixed point of f
if f(x) = x; a periodic point of f with period n if fn(x) = x. The smallest period of x
is called the minimal period. We will use the following notations:

Fix(f) = {x ∈ X | f(x) = x},
Per(f) = the set of all minimal periods of f,

Pn(f) = the set of all periodic points of f with minimal period n,

HPer(f) =
⋂
g'f
{n ∈ N | Pn(g) 6= ∅}

= the set of all homotopy minimal periods of f.

Let p : X̃ → X be the universal cover of X and f̃ : X̃ → X̃ a lift of f , i.e., p ◦ f̃ =
f ◦ p. Two lifts f̃ and f̃ ′ are called conjugate if there is a γ ∈ Γ ∼= π1(X) such that

f̃ ′ = γ ◦ f̃ ◦ γ−1. The subset p(Fix(f̃)) ⊂ Fix(f) is called the fixed point class of f

determined by the lifting class [f̃ ]. A fixed point class is called essential if its index is
nonzero. The number of essential fixed point classes is called the Nielsen number of f ,
denoted by N(f) [20].

The Nielsen number is always finite and is a homotopy invariant lower bound for
the number of fixed points of f . In the category of compact, connected polyhedra the
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2 ALEXANDER FEL’SHTYN AND JONG BUM LEE

Nielsen number of a map is, apart from in certain exceptional cases, equal to the least
number of fixed points of maps with the same homotopy type as f .

From the dynamical point of view, it is natural to consider the Nielsen numbers
N(fk) of all iterations of f simultaneously. For example, N. Ivanov [18] introduced the
notion of the asymptotic Nielsen number, measuring the growth of the sequence N(fk)
and found the basic relation between the topological entropy of f and the asymptotic
Nielsen number. Later on, it was suggested in [9, 30, 10, 11] to arrange the Nielsen
numbers N(fk) of all iterations of f into the Nielsen zeta function

Nf (z) = exp

( ∞∑
k=1

N(fk)

k
zk

)
.

The Nielsen zeta function Nf (z) is a nonabelian analogue of the Lefschetz zeta function

Lf (z) = exp

( ∞∑
k=1

L(fk)

k
zk

)
,

where

L(fn) :=
dimX∑
k=0

(−1)ktr
[
fn∗k : Hk(X;Q)→ Hk(X;Q)

]
is the Lefschetz number of the iterate fn of f .

Nice analytical properties of Nf (z) [12, 11, 5, 13] indicate that the numbers N(fk)
are closely interconnected. Another manifestations of this are Gauss congruences∑

d|k

µ

(
k

d

)
N(fd) ≡ 0 mod k,

for any k > 0, where f is a map on an infra-solvmanifold of type (R) [13].
The fundamental invariants of f used in the study of periodic points are the Lefschetz

numbers L(fk), and their algebraic combinations, the Nielsen numbers N(fk) and the
Nielsen-Jiang periodic numbers NPn(f) and NΦn(f).

The study of periodic points by using the Lefschetz theory has been done extensively
by many authors in the literatures such as [20], [7], [2], [19], [29]. A natural question is
to know how much information we can get about the set of essential periodic points of
f or about the set of (homotopy) minimal periods of f from the study of the sequence
{N(fk)} of the Nielsen numbers of iterations of f . Utilizing the arguments employed
mainly in [2] and [19, Chap. III] for the Lefschetz numbers of iterations, we will study
the asymptotic behavior of the sequence {N(fk)}, the essential periodic orbits of f
and the homotopy minimal periods of f by using the Nielsen theory of maps f on
infra-solvmanifolds of type (R).

Acknowledgments. The first author is indebted to the Max-Planck-Institute for
Mathematics(Bonn) for the support and hospitality and the possibility of the present
research during his visit there.

2. Nielsen numbers N(fk)

Let S be a connected and simply connected solvable Lie group. A discrete subgroup
Γ of S is a lattice of S if Γ\S is compact, and in this case, we say that the quotient
space Γ\S is a special solvmanifold. Let Π ⊂ Aff(S) be a torsion-free finite extension of
the lattice Γ = Π ∩ S of S. That is, Π fits the short exact sequence

1 −−−−→ S −−−−→ Aff(S) −−−−→ Aut(S) −−−−→ 1x x x
1 −−−−→ Γ −−−−→ Π −−−−→ Π/Γ −−−−→ 1
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Then Π acts freely on S and the manifold Π\S is called an infra-solvmanifold. The
finite group Φ = Π/Γ is the holonomy group of Π or Π\S. It sits naturally in Aut(S).
Thus every infra-solvmanifold Π\S is finitely covered by the special solvmanifold Γ\S.
An infra-solvmanifold M = Π\S is of type (R) if S is of type (R) or completely solvable,
i.e., if adX : S→ S has only real eigenvalues for all X in the Lie algebra S of S.

Recall that a connected solvable Lie group S contains a sequence of closed subgroups

1 = N1 ⊂ · · · ⊂ Nk = S

such that Ni is normal in Ni+1 and Ni+1/Ni
∼= R or Ni+1/Ni

∼= S1. If the groups
N1, · · · , Nk are normal in S, the group S is called supersolvable. The supersolvable Lie
groups are the Lie groups of type (R).

Lemma 2.1 ([33, Lemma 4.1], [14, Lemma 2.4]). For a connected Lie group S, the
following are equivalent:

(1) S is supersolvable.
(2) All elements of Ad(S) have only positive eigenvalues.
(3) S is of type (R).

Recall [33, Theorem 1] in which it is proved that every infra-solvmanifold is modeled
in a canonical way on a supersolvable Lie group. Hence whenever we deal with infra-
solvmanifolds, we may assume that we are given infra-solvmanifolds M = Π\S of type
(R).

In this paper, we shall assume that f : M → M is a continuous map on an infra-
solvmanifold M = Π\S of type (R) with holonomy group Φ. Then f has an affine
homotopy lift (d,D) : S → S, and so fk has an affine homotopy lift (d,D)k = (d′, Dk)
where d′ = dD(d) · · ·Dk−1(d). By the averaging formula for the Nielsen number N(fk)
[24, Theorem 4.2], we have

N(fk) =
1

#Φ

∑
A∈Φ

|det(I −A∗Dk
∗)|.(AV)

Concerning the Nielsen numbers N(fk) of all iterates of f , we recall the following
results:

Theorem 2.2 ([13, Theorem 11.4]). Let f : M →M be a map on an infra-solvmanifold
M of type (R). Then ∑

d|k

µ

(
k

d

)
N(fd) ≡ 0 mod k(DN)

for all k > 0.

Consider the sequences of algebraic multiplicities {Ak(f)} and Dold multiplicities
{Ik(f)} associated to the sequence {N(fk)}:

Ak(f) =
1

k

∑
d|k

µ

(
k

d

)
N(fd), Ik(f) =

∑
d|k

µ

(
k

d

)
N(fd).

Then Ik(f) = kAk(f) and all Ak(f) are integers by Theorem 2.2. From the Möbius
inversion formula, we immediately have

N(fk) =
∑
d|k

dAd(f).

Theorem 2.3 ([5, Theorem 4.5]). Let f : M → M be a map on an infra-solvmanifold
M of type (R). Then the Nielsen zeta function of f

Nf (z) = exp

( ∞∑
k=1

N(fk)

k
zk

)
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is a rational function.

In fact, it is well-known that

Lf (z) =
m∏
k=0

det(I − z · f∗k)(−1)k+1

where f∗k : Hk(M ;Q)→ Hk(M ;Q). Hence Lf (z) is a rational function with coefficients
in Q. In [5, Theorem 4.5], it is shown that Nf (z) is either

Nf (z) = Lf ((−1)nz)(−1)p+n

or

Nf (z) =

(
Lf+((−1)nz)

Lf ((−1)nz)

)(−1)p+n

where p is the number of real eigenvalues of D∗ which are > 1 and n is the number of
real eigenvalues of D∗ which are < −1. Here f+ is a lift of f to a certain 2-fold covering
of M which has the same affine homotopy lift (d,D) as f . Consequently, Nf (z) is a
rational function with coefficients in Q.

On the other hand, since Nf (0) = 1 by definition, z = 0 is not a zero nor a pole of
the rational function Nf (z). Thus we can write

Nf (z) =
u(z)

v(z)
=

∏
i(1− βiz)∏
j(1− γjz)

=
r∏
i=1

(1− λiz)−ρi

with all λi distinct nonzero algebraic integers and ρi nonzero integers. Taking log on
both sides of the above identity, we obtain

∞∑
k=1

N(fk)

k
zk =

r∑
i=1

−ρi log(1− λiz) =
r∑
i=1

ρi

( ∞∑
k=1

(λiz)
k

k

)
=
∞∑
k=1

∑r
i=1 ρiλ

k
i

k
zk.

This induces

N(fk) =

r(f)∑
i=1

ρiλ
k
i .(N1)

Note that r(f) is the number of zeros and poles of Nf (z). Since Nf (z) is a homotopy
invariant, so is r(f). This argument tells us that whenever we have a rational expres-
sion of Nf (z), we can write down all N(fk) directly from the expression. However

even though we can compute all N(fk) using the averaging formula, it can be rather
complicated to write down the rational expression of Nf (z), see [8].

On the other hand, we can show that

Nf (z) =

∞∏
k=1

(1− zk)−Ak(f).

This identity shows that ±1 are possible zeros or poles of Nf (z). Indeed, this identity
follows from the following observation

log

( ∞∏
m=1

(1− zm)−Am(f)

)
=

∞∑
m=1

−Am(f) log(1− zm) =

∞∑
m=1

Am(f)

( ∞∑
n=1

(zm)n

n

)

=

∞∑
k=1

( ∑
k=mn

Am(f)

n
(zm)n

)
=

∞∑
k=1

∑
m|k

mAm(f)

k

 zk

=

∞∑
k=1

N(fk)

k
zk.
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Consider another generating function associated to the sequence {N(fk)}:

Sf (z) =
∞∑
k=1

N(fk)zk−1.

Then it is easy to see that

Sf (z) =
d

dz
logNf (z).

Moreover,

Sf (z) =
∞∑
k=1

r(f)∑
i=1

ρiλ
k
i z
k−1 =

r(f)∑
i=1

ρiλi
1− λiz

is a rational function with simple poles and integral residues, and 0 at infinity. The
rational function Sf (z) can be written as Sf (z) = u(z)/v(z) where the polynomials
u(z) and v(z) are of the form

u(z) = N(f) +

s∑
i=1

aiz
i, v(z) = 1 +

t∑
j=1

bjz
j

with ai and bj integers, see (3) ⇒ (5), Theorem 2.1 in [2] or [19, Lemma 3.1.31]. Let
ṽ(z) be the conjugate polynomial of v(z), i.e., ṽ(z) = ztv(1/z). Then the numbers {λi}
are the roots of ṽ(z), and r(f) = t.

The following can be found in the proof of (3)⇒ (5), Theorem 2.1 in [2].

Lemma 2.4. If λi and λj are roots of the rational polynomial ṽ(z) which are alge-
braically conjugate (i.e., λi and λj are roots of the same irreducible polynomial), then
ρi = ρj.

Proof. Let Σ = Q(λ1, · · · , λr) ⊂ C be the field of the rational polynomial ṽ(z) and let
σ be an automorphism of Σ over Q, i.e., σ is the identity on Q. The group of all such
automorphisms is called the Galois group of Σ. Since the σ(λi) are again the roots of
ṽ(z), we have σ(λi) = λσ(i). That is, σ induces a permutation σ on {1, · · · , r}. Applying

σ to the sequence {N(fk)}, we obtain

σ
(
N(fk)

)
= σ

(
r∑
i=1

ρiλ
k
i

)
=

r∑
i=1

ρiσ(λi)
k =

r∑
i=1

ρiλ
k
σ(i) =

r∑
i=1

ρσ−1(i)λ
k
i .

Since the N(fk) are integers, σ(N(fk)) = N(fk) and consequently

r∑
i=1

ρiλ
k
i =

r∑
i=1

ρσ−1(i)λ
k
i .

As a matrix form, we can write
λ1 λ2 · · · λr
λ2

1 λ2
2 · · · λ2

r
...

...
...

λr1 λr2 · · · λrr



ρ1

ρ2
...
ρr

 =


λ1 λ2 · · · λr
λ2

1 λ2
2 · · · λ2

r
...

...
...

λr1 λr2 · · · λrr



ρσ−1(1)

ρσ−1(2)
...

ρσ−1(r)

 .
Since the λi are distinct, the matrices in this equation are nonsingular (the Vandermonde
determinant). Thus ρi = ρσ−1(i) for all i = 1, · · · , r. On the other hand, it is known
that the Galois group acts transitively on the set of algebraically conjugate roots. Since
λi and λj are conjugate roots of ṽ(z), we can choose σ in the Galois group so that
σ(λi) = λj . Hence σ(i) = j and so ρi = ρj . �
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Let ṽ(z) =
∏s
α=1 ṽα(z) be the decomposition of the monic integral polynomial ṽ(z)

into irreducible polynomials ṽα(z) of degree rα. Of course, r = r(f) =
∑s

α=1 rα and

ṽ(z) = zr + b1z
r−1 + b2z

r−2 + · · ·+ br−1z + br

=
s∏

α=1

(zrα + bα1 z
rα−1 + bα2 z

rα−2 + · · ·+ bαrα−1z + bαrα) =
s∏

α=1

ṽα(z).

If {λ(α)
i } are the roots of ṽα(z), then the associated ρ’s are the same ρα. Consequently,

we can rewrite (N1) as

N(fk) =
s∑

α=1

ρα

(
rα∑
i=1

(λ
(α)
i )k

)

=
∑
ρα>0

ρ+
α

(
rα∑
i=1

(λ
(α)
i )k

)
−
∑
ρα<0

ρ−α

(
rα∑
i=1

(λ
(α)
i )k

)
.

Consider the rα × rα-integral square matrices

Mα =


0 0 · · · 0 −bαrα
1 0 · · · 0 −bαrα−1
...

...
...

...
0 0 · · · 0 −bα2
0 0 · · · 1 −bα1

 .

The characteristic polynomial is det(zI −Mα) = ṽα(z) and therefore {λ(α)
i } are the

eigenvalues of Mα. This implies that N(fk) =
∑s

α=1 ρα trMk
α. Set

M+ =
⊕
ρα>0

ρ+
αMα, M− =

⊕
ρα<0

ρ−αMα.

Then

N(fk) = trMk
+ − trMk

− = tr (M+

⊕
−M−)k.(N2)

We will show in Proposition 5.4 that if Ak(f) 6= 0 then N(fk) 6= 0 and hence f
has an essential periodic point of period k. In the following we investigate some other
necessary conditions under which N(fk) 6= 0. Recall that

N(fk) = the number of essential fixed point classes of fk.

If F is a fixed point class of fk, then fk(F) = F and the length of F is the smallest
number p for which fp(F) = F, written p(F). We denote by 〈F〉 the f -orbit of F, i.e.,
〈F〉 = {F, f(F), · · · , fp−1(F)} where p = p(F). If F is essential, so is every f i(F) and 〈F〉
is an essential periodic orbit of f with length p(F) and p(F) | k. These are variations
of Corollaries 2.3, 2.4 and 2.5 of [2].

Corollary 2.5. If r(f) 6= 0, then N(f i) 6= 0 for some 1 ≤ i ≤ r(f). In particular, f
has at least N(f i) essential periodic points of period i and an essential periodic orbit
with the length p | i, i ≤ r(f).

Proof. Recall that

Sf (z) =

r(f)∑
i=1

ρiλi
1− λiz

=

∞∑
k=1

N(fk)zk−1.

Assume that N(f) = · · · = N(f r(f)) = 0. For simplicity, write the above identity as
Sf (z) = u(z)/v(z) = s(z) where v(z) is a polynomial of degree r(f) and s(z) is the
series of the right-hand side. Then u(z) = v(z)s(z). A simple calculation shows that
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the higher order derivative of v(z)s(z) up to order r(f)− 1 at 0 are all zero. Since u(z)
is a polynomial of degree r(f)− 1, it shows that u(z) = 0, a contradiction. �

Recalling the identity N(fk) =
∑r(f)

i=1 ρiλ
k
i , we define

ρ(f) =

r(f)∑
i=1

ρi, M(f) = max

∑
ρi≥0

ρi,−
∑
ρj<0

ρj

 .

Corollary 2.6. If ρ(f) = 0 and r(f) ≥ 1, then r(f) ≥ 2 and N(f i) 6= 0 for some
1 ≤ i < r(f). In particular, f has at least N(f i) essential periodic points of period i
and an essential periodic orbit with the length p | i, i ≤ r(f)− 1.

Proof. The conditions ρ(f) = 0 and r(f) ≥ 1 immediately implies that r(f) ≥ 2. Since
r(f) 6= 0 by the previous corollary there exists i ∈ {1, · · · , r(f)} such that N(f i) 6= 0.

Assume N(f) = · · · = N(f r(f)−1) = 0. So, N(f r(f)) 6= 0. As in the proof of the
above corollary, we consider u(z)/v(z) = s(z) where u(z) is a polynomial of degree

r(f)− 1 ≥ 1 and s(z) is a power series starting from the nonzero term N(f r(f))zr(f)−1.
The derivative of order r(f)−1 on both sides of the identity u(z) = v(z)s(z) yields that

N(f r(f)) = 0, a contradiction. �

Corollary 2.7. If r(f) > 0, then N(f i) 6= 0 for some 1 ≤ i ≤ M(f). In particular,
f has at least N(f i) essential periodic points of period i and an essential periodic orbit
with the length p | i, i ≤M(f).

Proof. Assume that N(fk) = 0 for all k = 1, · · · ,M(f). From (N2), we have Jk :=
trMk

+ = trMk
−. For simplicity, suppose

m(f) =
∑
ρi>0

ρi ≤ −
∑
ρj<0

ρj = M(f).

Then the matrix M+ has size m(f) and M− has size M(f). We write the eigenvalues
of M+ and M− respectively as

µ1, · · · , µm(f); µ̃1, · · · , µ̃M(f).

Of course, {µ1, · · · , µm(f), µ̃1, · · · , µ̃M(f)} = {λ1, · · · , λr} as a set. Now the identities

trMk
+ = trMk

− yield the M(f) equations

µk1 + · · ·+ µkm(f) + 0 + · · ·+ 0 = µ̃k1 + · · ·+ µ̃kM(f)

where µj = 0 when m(f) < j ≤ M(f). By [3, p.72, Corollary], there exists a permu-
tation σ on {1, · · · ,M(f)} such that µi = µ̃σ(i). If m(f) < M(f) then 0 = µM(f) =
µ̃σ(M(f)) = λj for some j, a contradiction. Hence m(f) = M(f) and the λi’s associated
to ρi > 0 and the λj ’s associated with ρj < 0 are the same. This implies that the
rational function Nf (z) has the same poles and zeros of equal multiplicity and hence
Nf (z) ≡ 1, contradicting that r(f) > 0. �

3. Radius of convergence of Nf (z)

From the Cauchy-Hadamard formula, we can see that the radii R of convergence of
the infinite series Nf (z) and Sf (z) are the same and given by

1

R
= lim sup

k→∞

(
N(fk)

k

)1/k

= lim sup
k→∞

N(fk)1/k.

We will understand the radiusR of convergence from the identityN(fk) =
∑r(f)

i=1 ρiλ
k
i .

Recall that the λ−1
i are the poles or the zeros of the rational function Nf (z). We define

λ(f) = max{|λi| | i = 1, · · · , r(f)}.
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Remark 3.1. In this paper, the number λ(f) will play a similar role as the “essential
spectral radius” in [19] or the “reduced spectral radius” in [2]. Theorem 3.2 below shows
that 1/λ(f) is the “radius” of the Nielsen zeta function Nf (z). Note also that λ(f) is a
homotopy invariant.

If r(f) = 0, i.e., if N(fk) = 0 for all k > 0, then Nf (z) ≡ 1 and 1/R = 0. In this
case, we define customarily λ(f) = 0. We shall assume now that r(f) 6= 0. In what
follows, when λ(f) > 0, we consider another homotopy invariant:

n(f) = #{i | |λi| = λ(f)}.
First we can observe easily the following:

(1) lim sup z
1/k
k = lim sup(rke

iθk)1/k = lim sup r
1/k
k eiθk/k = lim sup r

1/k
k .

(2) lim sup(λk)1/k = |λ| by taking zk = λk in (1).

(3) When lim zk = 0 in (1), lim sup z
1/k
k = 0.

(4) lim(zk + ρ)1/k = lim z
1/k
k when lim zk =∞. For, in this case (1) induces

lim

(
zk + ρ

zk

)1/k

= 1.

Assume |λj | 6= λ(f) for some j; then we have

N(fk)

λkj
=
∑
i 6=j

ρi

(
λi
λj

)k
+ ρj , lim

∑
i 6=j

ρi

(
λi
λj

)k
=∞.

It follows from the above observations that 1/R = lim sup(
∑

i 6=j ρiλ
k
i )

1/k. Consequently,

we may assume that N(fk) =
∑

j ρjλ
k
j with all |λj | = λ(f) and then we have

1

R
= lim sup

 ∑
|λj |=λ(f)

ρjλ
k
j

1/k

.

Remark that if λ(f) < 1 then N(fk) =
∑
|λj |=λ(f) ρjλ

k
j → 0 and so the sequence of

integers are eventually zero, i.e., N(fk) = 0 for all k sufficiently large. This shows that
1/R = 0 and furthermore, Nf (z) is the exponential of a polynomial. Hence the rational
function Nf (z) has no poles and zeros. This forces Nf (z) ≡ 1; hence λ(f) = 0. If

λ(f) > 1, then N(fk)→∞ and by L’Hopital’s rule we obtain

lim sup
k→∞

logN(fk)

k
= lim sup

k→∞

log
(∑

j ρjλ
k
j

)
k

= log λ(f) ⇒ 1

R
= λ(f).

If λ(f) = 1, then N(fk) ≤
∑

j |ρj | <∞ is a bounded sequence and so it has a convergent

subsequence. If lim supN(fk) = 0, then N(fk) = 0 for all k sufficiently large and so
by the same reason as above, λ(f) = 0, a contradiction. Hence lim supN(fk) is a finite
nonzero integer and so 1/R = 1 = λ(f).

Summing up, we have obtained that

Theorem 3.2. Let f be a map on an infra-solvmanifold of type (R). Let R denote
the radius of convergence of the Nielsen zeta function Nf (z) of f . Then λ(f) = 0 or
λ(f) ≥ 1, and

1

R
= λ(f).(R1)

In particular, R > 0.

By Theorem 3.2, we see that the sequence N(fk) is either bounded or exponentially
unbounded.
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Remark 3.3. Recall that

Sf (z) =

r(f)∑
i=1

ρiλi
1− λiz

,

Nf (z) =

r(f)∏
i=1

(1− λiz)−ρi =

∏
ρj<0(1− λjz)−ρj∏
ρi>0(1− λiz)ρi

.

These show that all of the 1/λi are the poles of Sf (z), whereas the 1/λi with correspond-
ing ρi > 0 are the poles of Nf (z). The radius of convergence of a power series centered
at a point a is equal to the distance from a to the nearest point where the power series
cannot be defined in a way that makes it holomorphic. Hence the radius of convergence
of Sf (z) is 1/λ(f) and the radius of convergence of Nf (z) is 1/max{|λi| | ρi > 0}. In
particular, we have shown that

λ(f) = max{|λi| | i = 1, · · · , r(f)} = max{|λi| | ρi > 0}.

Notice this identity in Example 3.6.

On the other hand, we can understand the radius R of convergence using the aver-
aging formula. Compare our result with [13, Theorem 7.10]. Let {µ1, · · · , µm} be the
eigenvalues of D∗, counted with multiplicities, where m is the dimension of the manifold
M . We denote by sp(A) the spectral radius of the matrix A which is the largest modulus
of an eigenvalue of A. From the definition, we have

sp(D∗) = max{|µj | | i = 1, · · · ,m},

sp
(∧

D∗

)
=

{∑
|µ|>1 |µ| when sp(D∗) > 1;

1 when sp(D∗) ≤ 1.

Note |det(I −Dk
∗)| =

∏m
j=1 |1− µkj |. If some µj = 1, then det(I −Dk

∗) = 0 for all k > 0

and hence lim sup |det(I −Dk
∗)|1/k = 0. Assume now all µj 6= 1; then det(I −Dk

∗) 6= 0
for all k > 0. Remark further from [13, Theorem 4.1] that

log

(
lim sup
k→∞

|det(I −Dk
∗)|1/k

)
= lim sup

k→∞

m∑
j=1

log |1− µkj |
k

=

{∑
|µ|>1 log |µ| when sp(D∗) > 1

0 when sp(D∗) ≤ 1.

Now we ascertain that if D∗ has no eigenvalue 1, then

1

R
= lim sup

k→∞
| det(I −Dk

∗)|1/k = sp
(∧

D∗

)
.(R2)

From the averaging formula, we have N(fk) ≥ |det(I −Dk
∗)|/|Φ|. This induces

1

R
= lim sup

k→∞
N

1/k
k ≥ lim sup

k→∞

(
| det(I −Dk

∗)|
|Φ|

)1/k

= lim sup
k→∞

| det(I −Dk
∗)|1/k.

Furthermore, for any A ∈ Φ, we obtain (see the proof of [13, Theorem 4.3])

|det(I −A∗Dk
∗)| ≤

m∏
j=1

(1 + |µj |k)
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and hence from the averaging formula

N(fk) ≤
m∏
j=1

(1 + |µj |k) ⇒
1

R
≤
∏
|µ|>1

|µ|.

This finishes the proof of our assertion.

Following from (R1) and (R2), we immediately have:

Theorem 3.4. Let f be a map on an infra-solvmanifold of type (R) with an affine
homotopy lift (d,D). Let R denote the radius of convergence of the Nielsen zeta function
of f . If D∗ has no eigenvalue 1, then

1

R
= sp

(∧
D∗

)
= λ(f).

We recall that the asymptotic Nielsen number of f is defined to be

N∞(f) : max

{
1, lim sup

k→∞
N(fk)1/k

}
.

We also recall that the most widely used measure for the complexity of a dynamical
system is the topological entropy h(f). A basic relation between these two numbers is
h(f) ≥ logN∞(f), which was found by Ivanov in [18]. There is a conjectural inequality
h(f) ≥ log(sp(f)) raised by Shub [31]. This conjecture was proven for all maps on
infra-solvmanifolds of type (R), see [27, 28] and [13]. Now we can state about relations
between N∞(f), λ(f) and h(f).

Corollary 3.5. Let f be a map on an infra-solvmanifold of type (R) with an affine
homotopy lift (d,D). If D∗ has no eigenvalue 1, then

N∞(f) = λ(f), h(f) ≥ log λ(f).

Proof. From [13, Theorem 4.3] and Theorem 3.4, we have N∞(f) = sp(
∧
D∗) = λ(f).

Hence by Ivanov’s inequality, we obtain that h(f) ≥ logN∞(f) = log λ(f). �

The following example shows that the assumption in Theorem 3.4 and its Corollary
that 1 is not in the spectrum of D∗ is essential.

Example 3.6. Let f : M →M be a map of type (r, `, q) on the Klein bottle M induced
by an affine map (d,D) : R2 → R2. Recall from [22, Theorem 2.3] and its proof that r
is odd and q = 0, and

(d,D) =



(
−1

2

[
∗
`

]
,

[
r 0

0 q

])
when r is odd;([

∗
∗

]
,

[
r 0

2` 0

])
when r is even and q = 0,

N(fk) =


|qk(1− rk)| =

{
qk(rk − 1) when r is odd and qr > 0

(−1)kqk(rk − 1) when r is odd and qr < 0

|1− rk| =


1 when q = r = 0

rk − 1 when r > 0 and q = 0

(−1)k(rk − 1) when r < 0 and q = 0.

A simple calculation shows that
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q, r N(fk) Nf (z) Sf (z) (λ(f), sp(
∧
D∗))

r = 1 0 1 0 (0,max{1, |q|})

r odd, qr > 0 (qr)k − qk 1− qz
1− qrz

qr

1− qrz
− q

1− qz
(qr, qr)

r odd, qr < 0 (−qr)k − (−q)k 1 + qz

1 + qrz
− qr

1 + qrz
+

q

1 + qz
(−qr,−qr)

q = 0, r = 0 1
1

1− z
1

1− z
(1, 1)

q = 0, r > 0 rk − 1
1 + z

1− rz
r

1− rz
− 1

1 + z
(r, r)

q = 0, r < 0 (−r)k − (−1)k
1 + z

1 + rz
− r

1 + rz
+

1

1 + z
(−r,−r)

These observations show that when one of the eigenvalues is 1, the invariants Nf (z),
sp(
∧
D∗) and λ(f) still strongly depend upon the other eigenvalue. Remark also in this

example that the identity λ(f) = max{|λi| | ρi > 0} holds.

4. Asymptotic behavior of the sequence {N(fk)}

In this section, we study the asymptotic behavior of the Nielsen numbers of iterates of
maps on infra-solvmanifolds of type (R). Compared to the asymptotic behavior of the
Lefschetz numbers, see [2, Theorem 2.6] or [19, Theorem 3.1.53], the Nielsen numbers
on infra-solvmanifolds have rather very restrictive asymptotic behavior. For example,
the case (b) of [2, Theorem 2.6] does not occur.

Theorem 4.1. For a map f of an infra-solvmanifold of type (R), one of the following
two possibilities holds:

(1) λ(f) = 0, which occurs if and only if Nf (z) ≡ 1.

(2) The sequence {N(fk)/λ(f)k} has the same limit points as a periodic sequence
{
∑

j αjε
k
j } where αj ∈ Z, εj ∈ C and εqj = 1 for some q > 0.

Proof. For simplicity, we denote λ(f) by λ0. Recall that λ0 = 0 if and only if all
N(fk) = 0 and otherwise, λ0 ≥ 1. Suppose that λ0 ≥ 1. Let

λ1 = λ0e
2iπθ1 , · · · , λn(f) = λ0e

2iπθn(f)

be all the λi of modulus λ0 in the identity N(fk) =
∑r(f)

i=1 ρiλ
k
i .

First we observe that the sequence {N(fk)/λk0}k has the same asymptotic behavior

as the sequence {
∑n(f)

j=1 ρje
2iπ(kθj)}k. Indeed, we can write N(fk) = Γk + Ωk, where

Γk = λk0

n(f)∑
j=1

ρje
2iπ(kθj)

 , Ωk =

r(f)∑
i=n(f)+1

ρiλ
k
i with |λi| < λ0.

Consequently, ∣∣∣N(fk)

λk0
−
n(f)∑
j=1

ρje
2iπ(kθj)

∣∣∣ ≤ r(f)∑
i=n(f)+1

|ρi|
|λi|k

λk0
→ 0,

since |λi| < λ0.
Suppose all θj = pj/qj (j = 1, · · · , n(f)) are rational. Then every λj/λ0 = e2iπθj

is a qjth root of unity, and thus all λj/λ0 = e2iπθj are roots of unity of degree q =

lcm(q1, · · · , qn(f)), and hence the sequence {
∑n(f)

j=1 ρje
2iπ(kθj)}k is periodic of period q.

This proves (2).
Now we claim that all θj must be rational. For the given map f : Π\S → Π\S on

the infra-solvmanifold Π\S, let ϕ : Π → Π be the homomorphism induced by f and
let (d,D) : S → S be an affine map such that ϕ(α)(d,D) = (d,D)α for all α ∈ Π ⊂
S oAut(S). Then ϕ induces a function ϕ̂ : Φ→ Φ on the holonomy group Φ satisfying
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that ϕ̂(A)D = DA for all A ∈ Φ. Recall from [6, Lemma 3.1] the following: Given
A ∈ Φ, we choose a sequence B1 = A and Bi+1 = ϕ̂(Bi) so that there exist j, k ≥ 1
such that Bj+k = Bj . Furthermore,

(1) ∀i ∈ N, det(I − ϕ̂(Bi)∗D∗) = det(I − ϕ̂(Bi+1)∗D∗),
(2) ∃` ∈ N such that (ϕ̂(Bj)∗D∗)

` = D`
∗.

Let µ1, · · · , µm be the eigenvalues of D∗, and ν1, · · · , νm the eigenvalues of ϕ̂(Bj)∗D∗.

Since (ϕ̂(Bj)∗D∗)
` = D`

∗, (ϕ̂(Bj)∗D∗)
` has the eigenvalues {µ`1, · · · , µ`m} = {ν`1, · · · , ν`m}.

We may assume that |µi|` = |νi|` and so |µi| = |νi| for all i = 1, · · · ,m. Now, we have

det(I −A∗D∗) = det(I −D∗A∗) = det(I − ϕ̂(Bj)∗D∗)

=

m∏
i=1

(1− νi)

= 1−
m∑
i=1

νi +
∑

1≤i<j≤n
νiνj − · · ·+ (−1)mν1 · · · νm.

Let µ1, · · · , µs be all the eigenvalues with absolute value > 1 and let µs+1, · · · , µs+t (s+
t ≤ m) be the eigenvalues of modulus 1, which are roots of unity by a well-known result
of Kronecker: Every nonzero algebraic integer that lies with its algebraic conjugates in
the closed unit disc is a root of unity. In the above expression for det(I − A∗D∗), the
largest modulus of a term is

∏
|µ|≥1 |µ| = sp(

∧
D∗) and the terms of this modulus are

of the form
∏s
i=1 νi

∏
J⊂{s+1,··· ,s+t} νJ . Remark that det(I−A∗D∗) is a real number (in

fact, an integer). Hence

N(f) =
1

|Φ|
∑
A∈Φ

±

1−
m∑
i=1

νi +
∑

1≤i<j≤n
νiνj − · · ·+ (−1)mν1 · · · νm

 ,

Γ1 =

n(f)∑
j=1

ρjλj =
1

|Φ|
∑
A∈Φ

±

 s∏
i=1

νi
∏

J⊂{s+1,··· ,s+t}

νJ

 .

Since λ(f) ≥ 1, by Lemma 4.2 below λ(f) = sp(
∧
D∗). Consequently, we must have

{λj | |λj | = λ(f)} =


s∏
i=1

νi
∏

J⊂{s+1,··· ,s+t}

νJ | A ∈ Φ

 .

Remark that νs+j (j = 1, · · · , t) is a root of unity because |νs+j | = |µs+j |. Remark also
that if some νi (i = 1, · · · , s) is a complex number then its complex conjugate ν̄i is νj
for some j ∈ {1, · · · , s}. That is, the collection {ν1, · · · , νs} with modulus > 1 contains
complex conjugate pairs. This shows that

∏s
i=1 νi is a real number. Hence it follows

that the θj associated to λj is a rational number. �

In Theorem 3.4, we showed that if D∗ has no eigenvalue 1 then λ(f) = sp(
∧
D∗).

In Example 3.6, we have seen that when D∗ has an eigenvalue 1, there are maps f for
which λ(f) 6= sp(

∧
D∗) with λ(f) = 0, and λ(f) = sp(

∧
D∗) with λ(f) ≥ 1. In fact, we

prove in the following that the latter case is always true.

Lemma 4.2. Let f be a map on an infra-solvmanifold of type (R) with an affine ho-
motopy lift (d,D). If λ(f) ≥ 1, then λ(f) = sp(

∧
D∗).

Proof. Since λ(f) ≥ 1, by Corollary 2.7, N(fk) 6= 0 for some k ≥ 1 and then by the
averaging formula, there is B ∈ Φ such that det(I − B∗Dk

∗) 6= 0. Choose β ∈ Π of
the form β = (b, B). Then β(d,D)k is another homotopy lift of fk. We have observed
above that there are numbers ν1, · · · , νm such that det(I − B∗Dk

∗) =
∏m
i=1(1− νi) and

{(µki )`} = {ν`i } for some ` > 0. Since det(I − B∗Dk
∗) 6= 0, B∗D

k
∗ has no eigenvalue 1.
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Hence by Theorem 3.4, we have λ(fk) = sp(
∧
B∗D

k
∗). Recall that N(fk) =

∑r(f)
i=1 ρiλ

k
i

and λ(f) = max{|λi|}. Since λ(f) ≥ 1, it follows that λ(fk) = λ(f)k. Observe further
that sp(

∧
B∗D

k
∗) =

∏
|µi|≥1 |νi| =

∏
|µi|≥1 |µki | = sp(

∧
D∗)

k. Consequently, we obtain

the required identity λ(f) = sp(
∧
D∗). �

Example 4.3. Consider the 3-dimensional orientable flat manifold with fundamental
group G2 generated by {t1, t2, t3, α} where

t1 =

1
0
0

 , I
 , t2 =

0
1
0

 , I
 , t3 =

0
0
1

 , I
 ,

α = (a,A) =

1
2
0
0

 ,
1 0 0

0 −1 0
0 0 −1

 .

Thus,

G2 =
〈
t1, t2, t3, α | [ti, tj ] = 1, α2 = t1, αt2α

−1 = t−1
2 , αt3α

−1 = t−1
3

〉
.

Let ϕ : G2 → G2 be any homomorphism. Every element of G2 is of the form αktm2 t
n
3 .

Thus ϕ has the form

ϕ(t2) = αk2tm2
2 tn2

3 , ϕ(t3) = αk3tm3
2 tn3

3 , ϕ(α) = αktm2 t
n
3 .

The relations αt2α
−1 = t−1

2 and αt3α
−1 = t−1

3 yield that k2 = k3 = 0, (−1)kmi = −mi

and (−1)kni = −ni. Hence when k is even, we have mi = ni = 0. Further, ϕ(t1) = tk1.
Now we shall determine an affine map (d,D) satisfying ϕ(β)(d,D) = (d,D)β for all

β ∈ G2.

Case k = 2`.
In this case, we have ϕ(t2) = ϕ(t3) = 1 and ϕ(α) = αktm2 t

n
3 = t`1t

m
2 t

n
3 , and hence we

need to determine (d,D) satisfying

(d,D) = (d,D)(e2, I)⇒ D(e2) = 0,

(d,D) = (d,D)(e3, I)⇒ D(e3) = 0,

(`e1 +me2 + ne3, I)(d,D) = (d,D)(a,A)

⇒ `e1 +me2 + ne3 + d = d+D(a), D = DA.

Hence the second and the third columns of D must be 0 and so D = DA is automatically

satisfied and the first column of D is 2
[
` m n

]t
. That is,

(d,D) =

∗∗
∗

 ,
 2` 0 0

2m 0 0
2n 0 0

 .

The eigenvalues of D are 0 (multiple) and 2`, and N(fk) = |(2`)k − 1| and

Nf (z) =


1

1−z when ` = 0;
1−z

1−2`z when ` ≥ 1;
1+z

1+2`z when ` ≤ −1.

It follows that λ(f) = max{1, 2|`|} and r(f) = 1.

Case k = 2`+ 1.
In this case, we have ϕ(t2) = tm2

2 tn2
3 , ϕ(t3) = tm3

2 tn3
3 and ϕ(α) = αktm2 t

n
3 = αt`1t

m
2 t

n
3 ,
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and hence we need to determine (d,D) satisfying

ϕ(t2)(d,D) = (d,D)t2 ⇒ D(e2) = m2e2 + n2e3,

ϕ(t3)(d,D) = (d,D)t3 ⇒ D(e3) = m3e2 + n3e3,

ϕ(α)(d,D) = (d,D)α

⇒ a+A(`e1 +me2 + ne3) +A(d) = d+D(a), AD = DA.

These yield

(d,D) =

 ∗−m
2
−n

2

 ,
2`+ 1 0 0

0 m2 m3

0 n2 n3

 .

Now we consider some explicit examples of such D. First we take D to be

D =

−1 0 0
0 d e
0 −e d

 .
Then D has eigenvalues −1 and µ = d± ei. Thus

det(I −D) = 2((1− d)2 + e2), det(I −AD) = 2((1 + d)2 + e2),

N(f) = ((1− d)2 + e2) + ((1 + d)2 + e2) = 2(1 + d2 + e2) = 2(1 + |µ|2).

Clearly N(fk) = 0 for all even integers k > 0. Now for an odd k, Dk has eigenvalues
−1 and µk and consequently N(fk) = 2(1 + |µ|2k). This yields that

Nf (z) = exp

( ∞∑
k=1

2(1 + |µ|2(2k−1))

2k − 1
z2k−1

)

= exp

( ∞∑
k=1

2

2k − 1
z2k−1 +

∞∑
k=1

2

2k − 1
(|µ|2z)2k−1

)

= exp

(
log

1 + z

1− z
+ log

1 + |µ|2z
1− |µ|2z

)
=

(1 + z)(1 + |µ|2z)
(1− z)(1− |µ|2z)

.

Moreover, λ(f) = max{1, |µ|2}, and r(f) = 2 when λ(f) > 1 and r(f) = 1 when
λ(f) ≤ 1.

Secondly, we take D to be

D =

−1 0 0
0 2 1
0 1 1

 .
Then the eigenvalues of D are −1 and µi = (3±

√
5)/2 and N(fk) = (1− (−1)k)(µk1 +

µk2). We then have the case (2) of Theorem 4.1. Observe also that Nf (z) = (1 +

µ1z)(1 +µ2z)/(1−µ1z)(1−µ2z) and so λ(f) = max{|µi|} = (3 +
√

5)/2 with r(f) = 2.
Another remark about the eigenvalues of AD is: The eigenvalues of AD are −1 and
νi = (−3±

√
5)/2; hence |µi| = |νi| but µi 6= νi.

It is important to know not only the rate of growth of the sequence {N(fk)} but
also the frequency with which the largest Nielsen number is encountered. The following
theorem shows that this sequence grows relatively dense. The following are variations
of Theorem 2.7, Proposition 2.8 and Corollary 2.9 of [2].

Theorem 4.4. Let f : M → M be a map on an infra-solvmanifold of type (R). If
λ(f) ≥ 1, then there exist γ > 0 and a natural number N such that for any m > N
there is an ` ∈ {0, 1, · · · , n(f)− 1} such that N(fm+`)/λ(f)m+` > γ.
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Proof. As in the proof of Theorem 4.1, for any k > 0, we can write N(fk) = Γk + Ωk,
where

Γk = λ(f)k

n(f)∑
j=1

ρje
2iπ(kθj)

 , Ωk =

r(f)∑
i=n(f)+1

ρiλ
k
i with |λi| < λ(f).

Then Γk/λ(f)k =
∑n(f)

j=1 ρje
2iπ(kθj). Consider the following n(f) consecutive identities

Γk+`

λ(f)k+`
=

n(f)∑
j=1

(
ρje

2iπ(kθj)
)
e2iπ(`θj), ` = 0, · · · , n(f)− 1.

Let W = W (θ1, · · · , θn(f)) be the Vandermonde operator on Cn(f)

W (θ1, · · · , θn(f)) =


1 1 · · · 1

e2iπθ1 e2iπθ2 · · · e2iπθn(f)

e2iπ(2θ1) e2iπ(2θ2) · · · e2iπ(2θn(f))

...
...

...

e2iπ(n(f)−1)θ1 e2iπ(n(f)−1)θ2 · · · e2iπ(n(f)−1)θn(f)


and let 2γ = ||W−1||−1. Then the vector ~ρ =

(
ρ1e

2iπ(kθ1), · · · , ρn(f)e
2iπ(kθn(f))

)
satisfies

||W~ρ|| ≥ ||W−1||−1||~ρ|| = 2γ||~ρ|| ≥ 2γ
√
n(f). Thus there is at least one of the coordinates

of the vector W~ρ whose modulus is ≥ 2γ. That is, there is an ` ∈ {0, 1, · · · , n(f) − 1}
such that |Γk+`|/λ(f)k+` ≥ 2γ.

On the other hand, since all |λi| < λ(f), we have Ωk/λ(f)k → 0. Thus we can choose
N so large that m > N ⇒ |Ωm|/λ(f)m < γ.

In all, whenever m > N there is an ` ∈ {0, 1, · · · , n(f)− 1} such that

N(fm+`)

λ(f)m+`
≥ |Γm+`|
λ(f)m+`

− |Ωm+`|
λ(f)m+`

> 2γ − γ = γ.

This finishes the proof. �

Proposition 4.5. Let f : M →M be a map on an infra-solvmanifold of type (R) such
that λ(f) > 1. Then for any ε > 0, there exists N such that if N(fm)/λ(f)m ≥ ε for
m > N , then the Dold multiplicity Im(f) satisfies

|Im(f)| ≥ ε

2
λ(f)m.

Proof. From the definition of Dold multiplicity Ik(f), we have

|Ik(f)| =
∣∣∣∑
d|k

µ

(
k

d

)
N(fd)

∣∣∣ ≥ N(fk)−
∣∣∣ ∑
d|k,d6=k

µ

(
k

d

)
N(fd)

∣∣∣.
Let C be any number such that 2M(f) ≤ C. Then for any d > 0

N(fd) ≤
r(f)∑
i=1

|ρi|λ(f)d ≤ 2M(f)λ(f)d ≤ Cλ(f)d.

Thus we have

|Ik(f)| ≥ N(fk)− C
∑

d|k,d6=k

λ(f)d ≥ N(fk)− Cτ(k)λ(f)k/2

= N(fk)− C τ(k)

λ(f)k/2
λ(f)k

where τ(k) is the number of divisors of k. Since τ(k) ≤ 2
√
k, see [19, Ex 3.2.17], and

since λ(f) > 1, we have limk→∞ τ(k)/λ(f)k/2 = 0, and so there exists an integer N such
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that Cτ(k)/λ(f)k/2 < ε/2 for all k > N . Let m > N such that N(fm)/λ(f)m ≥ ε. The
above inequality induces the required inequality

|Im(f)| ≥
(
N(fm)

λ(f)m
− C τ(m)

λ(f)m/2

)
λ(f)m ≥ ε

2
λ(f)m. �

Theorem 4.4 and Proposition 4.5 imply immediately the following:

Corollary 4.6. Let f : M → M be a map on an infra-solvmanifold of type (R) such
that λ(f) > 1. Then there exist γ > 0 and a natural number N such that if m ≥ N then
there exists ` with 0 ≤ ` ≤ n(f) − 1 such that |Im+`(f)|/λ(f)m+` ≥ γ/2. In particular
Im+`(f) 6= 0 and so Am+`(f) 6= 0.

Remark 4.7 (Compare with [19, Remark 3.1.60]). We state a little bit more about the
density of the set of algebraic periods A(f) = {m ∈ N | Am(f) 6= 0}. We consider the
notion of the lower density DA(f) of the set A(f) ⊂ N:

DA(f) = lim inf
k→∞

#(A(f) ∩ [1, k])

k
.

By Corollary 4.6, when λ(f) > 1, we have DA(f) ≥ 1/n(f). On the other hand,
when λ(f) ≥ 1 by Theorem 4.1, the sequence {N(fk)/λ(f)k} has the same limit points

as the periodic sequence {
∑n(f)

j=1 ρje
2iπ(kθj)} of period q = lcm(q1, · · · , qn(f)). Hence by

Theorem 4.4, we have DA(f) ≥ 1/q.

5. Essential periodic orbits

In this section, we shall give an estimate from below the number of essential periodic
orbits of maps on infra-solvmanifolds of type (R).

First of all, we recall the following:

Theorem 5.1 ([32]). If f : M → M is a C1-map on a smooth compact manifold M
and {L(fk)} is unbounded, then the set of periodic points of f ,

⋃
k Fix(fk), is infinite.

This theorem is not true for continuous maps. Consider the one-point compactifica-
tion of the map of the complex plane f(z) = 2z2/||z||. This is a continuous degree two
map of S2 with only two periodic points. But L(fk) = 2k+1.

However, when M is an infra-solvmanifold of type (R), the theorem is true for all
continuous maps f on M . In fact, using the averaging formula, we obtain

|L(fk)| ≤ 1

|Φ|
∑
A∈Φ

|det(I −A∗Dk
∗)| = N(fk).

If L(fk) is unbounded, then so is N(fk) and hence the number of essential fixed point
classes of all fk is infinite.

Remark 5.2. The inequality |L(f)| ≤ N(f) for any maps f on an infra-solvmanifold
was proved in [34]. On the other hand, we can prove this inequality using averaging
formula for infra-solvmanifolds of type (R) as above and then using the fact [33, The-
orem 1] that every infra-solvmanifold is modeled in a canonical way on a solvable Lie
group of type (R). In fact, the term supersolvability is used in [33]. But it can be seen
easily from Lemma 2.1 that the supersolvable groups are the Lie groups of type (R).

Recall that any map f on an infra-solvmanifold of type (R) is homotopic to a map
f̄ induced by an affine map (d,D). By [13, Proposition 9.3], every essential fixed point
class of f̄ consists of a single element with index sign det(I − dfx). Hence N(f) = N(f̄)
is the number of essential fixed point classes of f̄ . It is a classical fact that a homotopy
between f and f̄ induces a one-one correspondence between the fixed point classes of f
and those of f̄ , which is index preserving. Consequently, we obtain

|L(fk)| ≤ N(fk) ≤ #Fix(fk).
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This induces the following conjectural inequality (see [31, 32]) for infra-solvmanifolds of
type (R):

lim sup
k→∞

1

k
log |L(fk)| ≤ lim sup

k→∞

1

k
log #Fix(fk).

We denote by O(f, k) the set of all essential periodic orbits of f with length ≤ k.
Thus

O(f, k) = {〈F〉 | F is a essential fixed point class of fm with m ≤ k}.

Theorem 5.3. Let f be a map on an infra-solvmanifold of type (R). Suppose that the
sequence N(fk) is unbounded. Then there exists a natural number N0 such that

k ≥ N0 =⇒ #O(f, k) ≥ k −N0

r(f)
.

Proof. As mentioned earlier, we may assume that every essential fixed point class F of
any fk consists of a single element F = {x}. Denote by Fixe(f

k) the set of essential
fixed point (class) of fk. Thus N(fk) = #Fixe(f

k). Recalling also that f acts on the
set Fixe(f

k) from the proof of [13, Theorem 11.4], we have

O(f, k) = {〈x〉 | x is a essential periodic point of f with length ≤ k}.
Observe further that if x is an essential periodic point of f with least period p, then

x ∈ Fixe(f
q) if and only if p | q. The length of the orbit 〈x〉 of x is p, and

Fixe(f
k) =

⋃
d|k

Fixe(f
d),

Fixe(f
d)
⋂

Fixe(f
d′) = Fixe(f

gcd(d,d′)).

Recalling that

Am(f) =
1

m

∑
k|m

µ
(m
k

)
N(fk) =

1

m

∑
k|m

µ
(m
k

)
#Fixe(f

k),

we define Am(f, 〈x〉) for any x ∈
⋃
i Fixe(f

i) to be

Am(f, 〈x〉) =
1

m

∑
k|m

µ
(m
k

)
#
(
〈x〉 ∩ Fixe(f

k)
)
.

Then we have

Am(f) =
∑
〈x〉

x∈Fixe(fm)

Am(f, 〈x〉).

We begin with new notation. For a given integer k > 0 and x ∈
⋃
m Fixe(f

m), let

A(f, k) = {m ≤ k | Am(f) 6= 0} ,
A(f, 〈x〉) = {m | Am(f, 〈x〉) 6= 0} .

Remark that if Am(f) 6= 0 then there exists an essential periodic point x of f with
period m such that Am(f, 〈x〉) 6= 0. Consequently, we have

A(f, k) ⊂
⋃

〈x〉∈O(f,k)

A(f, 〈x〉)

Since N(fk) is unbounded, we have that λ(f) > 1, see the observation just above
Theorem 3.2. By Corollary 4.6, there is N0 such that if n ≥ N0 then there is i with
n ≤ i ≤ n+ n(f)− 1 such that Ai(f) 6= 0. This leads to the estimate

#A(f, k) ≥ k −N0

n(f)
∀k ≥ N0.
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Assume that x has least period p. Then we have

Am(f, 〈x〉) =
1

m

∑
p|n|m

µ
(m
n

)
#〈x〉 =

p

m

∑
p|n|m

µ
(m
n

)
.

Thus if m is not a multiple of p then by definition Am(f, 〈x〉) = 0. It is clear that
Ap(f, 〈x〉) = µ(1) = 1, i.e., p ∈ A(f, 〈x〉). Because p | n | rp ⇔ n = r′p with r′ | r,
we have Arp(f, 〈x〉) = 1/r

∑
p|n|rp µ(rp/n) = 1/r

∑
r′|r µ(r/r′) which is 0 when and only

when r > 1. Consequently, A(f, 〈x〉) = {p}.
In all, we obtain the required inequality

k −N0

r(f)
≤ #A(f, k) ≤ #O(f, k). �

We consider the set of periodic points of f with minimal period k

Pk(f) = Fix(fk)−
⋃

d|k,d<k

Fix(fd).

It is clear that Fix(f) ⊂ Fix(f2), i.e., any fixed point class of f is naturally contained
in a unique fixed point class of f2. It is also known that Fixe(f) ⊂ Fixe(f

2). We define

EPk(f) = Fixe(f
k)−

⋃
d|k,d<k

Fixe(f
d),

the set of essential periodic points of f with minimal period k. Because

Fixe(f
k) =

∐
d|k

EPd(f),

we have

N(fk) = #Fixe(f
k) =

∑
d|k

#EPd(f).

Proposition 5.4. For every k > 0, we have

#EPk(f) =
∑
d|k

µ

(
k

d

)
N(fd) = Ik(f).

In particular, if Ik(f) 6= 0 then N(fk) 6= 0.

Proof. We apply the Möbius inversion formula to the above identity and then we obtain
#EPk(f) =

∑
d|k µ

(
k
d

)
N(fd), which is exactly Ik(f) by its definition. �

Definition 5.5. We consider the mod 2 reduction of the Nielsen number N(fk) of fk,

written N (2)(fk). A positive integer k is a N (2)-period of f if N (2)(fk+i) = N (2)(f i) for

all i ≥ 1. We denote the minimal N (2)-period of f by α(2)(f).

Proposition 5.6 ([29, Proposition 1]). Let p be a prime number and let A be a square
matrix with entries in the field Fp. Then there exists k with (p, k) = 1 such that

trAk+i = trAi

for all i ≥ 1.

Recalling (N2): N(fk) = trMk
+ − trMk

− = tr (M+ ⊕−M−)k, we can see easily that

the minimal N (2)-period α(2)(f) always exists and must be an odd number.
Now we obtain a result which resembles [29, Theorem 2].
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Theorem 5.7. Let f be a map on an infra-solvmanifold of type (R). Let k > 0 be an

odd number. Suppose that α(2)(f)2 | k or p | k where p is a prime such that p ≡ 2i

mod α(2)(f) for some i ≥ 0. Then

#{〈x〉 | x ∈ EPk(f)} = #EPk(f)/k

is even.

Proof. By Proposition 5.4, #EPk(f) = Ik(f). Hence it is sufficient to show that Ik(f)
is even.

Let α = α(2)(f). Consider the case where α2 | k. If d | k and µ(k/d) 6= 0 then it

follows that α | d. By the definition of α, N (2)(fd) = N (2)(fα). This induces that

Ik(f) ≡
∑
d|k

µ

(
k

d

)
N (2)(fd) = N (2)(fα)

∑
d|k

µ

(
k

d

)
= 0 mod 2.

Assume p is a prime such that p | k and p ≡ 2i mod α for some i ≥ 0. Write k = pjr
where (p, r) = 1. Then

Ik(f) =
∑
d|r

µ
(r
d

)∑
e|pj

µ

(
pj

e

)
N((fd)e)


=
∑
d|r

µ
(r
d

)(
µ(1)N((fd)p

j
) + µ(p)N((fd)p

j−1
)
)

= Ir(f
pj )− Ir(fp

j−1
).

Since α is a N (2)-period of f , it follows that the sequence {Ir(f i)}i is α-periodic in its
mod 2 reduction, i.e., Ir(f

j+α) ≡ Ir(f
i) mod 2 for all j ≥ 1. Since p ≡ 2i mod α, we

have Ir(f
ps) ≡ Ir(f

2is) mod 2 for all s ≥ 0. Recall [4, Proposition 5]: For any square

matrix B with entries in the field Fp and for any j ≥ 0, we have trBpj = trB. Due to
this result, we obtain

N (2)(f2j ) ≡ tr (M+ ⊕−M−)2j ≡ tr (M+ ⊕−M−) ≡ N (2)(f) mod 2

and it follows that Ir(f
2is) ≡ Ir(f) mod 2. Consequently, we have

Ik(f) = Ir(f
pj )− Ir(fp

j−1
) ≡ Ir(f2ij )− Ir(f2i(j−1)

) ≡ Ir(f)− Ir(f) = 0 mod 2.

This finishes the proof. �

6. Homotopy minimal periods

In this section, we study (homotopy) minimal periods of maps f on infra-solvmanifolds
of type (R). We like to determine HPer(f) only from the knowledge of the sequence
{N(fk)}. This approach was used in [1, 15, 21] for torus maps, in [19] for maps of
compact nilmanifolds and certain solvmanifolds and in [25] for expanding maps on

infra-nilmanifolds. Recalling that N(fk) =
∑r(f)

i=1 ρiλ
k
i and λ(f) = max{|λi| | i =

1, · · · , r(f)}, we define

N |λ|(fk) =
∑
|λi|=|λ|

ρiλ
k
i , Ñ |λ|(fk) =

1

|λ|k
N |λ|(fk).

Lemma 6.1. If λ(f) ≥ 1, then we have

lim sup
k→∞

N(fk)

λ(f)k
= lim sup

k→∞
|Ñλ(f)(fk)|.
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Proof. We have

N(fk)

λ(f)k
= Ñλ(f)(fk) +

1

λ(f)k

∑
|λi|<λ(f)

ρiλ
k
i .

Since for |λi| < λ(f), limλki /λ(f)k = 0, it follows that the proof is completed. �

Theorem 6.2. Let f be a map on an infra-solvmanifold of type (R). Suppose that
the sequence N(fk) is unbounded. Then there exist m and an infinite sequence {pi} of
primes such that {mpi} ⊂ Per(f). Furthermore, {mpi} ⊂ HPer(f).

Proof. Since the sequence N(fk) is unbounded, by Theorem 4.1, there exists q such that

all λi/|λi| with |λi| = λ(f) are roots of unity of degree q, and the sequence {Ñλ(f)(fk)}
is periodic and nonzero, because lim supk→∞ |Ñλ(f)(fk)| > 0 by Lemma 6.1. Conse-

quently, there exists m with 1 ≤ m ≤ q such that Ñλ(f)(fm) 6= 0.

Let h = fm. Then λ(h) = λ(fm) = λ(f)m ≥ 1. The periodicity Ñλ(f)(fm+`q) =

Ñλ(f)(fm) induces Ñλ(h)(h1+`q) = Ñλ(h)(h) for all ` > 0. By Lemma 6.1 or Theo-
rem 4.1, we can see that there exists γ > 0 such that N(h1+`q) ≥ γλ(h)1+`q > 0 for all
` sufficiently large. From Proposition 4.5 it follows that the Dold multiplicity I1+`q(h)

satisfies |I1+`q(h)| ≥ (γ/2)λ(h)1+`q when ` is sufficiently large.
According to Dirichlet prime number theorem, since (1, q) = 1, there are infinitely

many primes p of the form 1+`q. Consider all primes pi satisfying |Ipi(h)| ≥ (γ/2)λ(h)pi .
Remark that for a prime p,

Ip(h) =
∑
d|p

µ
(p
d

)
N(hd) = µ(p)N(h) + µ(1)N(hp) = N(hp)−N(h)

= #Fixe(h
d)−#Fixe(h) = #(Fixe(h

p)− Fixe(h))

where the last identity follows from that fact that Fixe(h) ⊂ Fixe(h
p). Since p is a

prime, the set Fixe(h
p)−Fixe(h) consists of essential periodic points of h with minimal

period p.
Because |Ipi(h)| > 0, each pi is the minimal period of some essential periodic point

of h. Thus mpi is a period of f . This means that mipi is the minimal period of f for
some mi with mi | m. Choose a subsequence {mik} of the sequence {mi} bounded by
m which is constant, say m0. Consequently, the infinite sequence {m0pik} consists of
minimal periods of f , or {mpi} ⊂ Per(f).

These arguments also work for all maps homotopic to f . Hence {mpi} ⊂ HPer(f),
which completes the proof. �

In the proof of Theorem 6.2, we have shown the following, which proves that the
algebraic period is a homotopy minimal period when it is a prime number.

Corollary 6.3. Let f be a map on an infra-solvmanifold of type (R). For all primes p,
if Ap(f) 6= 0 then p ∈ HPer(f).

Corollary 6.4. Let f be a map on an infra-solvmanifold of type (R). If the sequence
{N(fk)} is strictly monotone increasing, then there exists N such that the set HPer(f)
contains all primes larger than N .

Proof. By the assumption, we have λ(f) > 1. Thus by Theorem 4.4, there exist γ > 0
andN such that if k > N then there exists ` = `(k) < r(f) such thatN(fk−`)/λ(f)k−` >
γ. Then for all k > N , the monotonicity induces

N(fk)

λ(f)k
≥ N(fk−`)

λ(f)k
=

N(fk−`)

λ(f)k−`λ(f)`
≥ γ

λ(f)`
≥ γ

λ(f)r(f)
.

Applying Proposition 4.5 with ε = γ/λ(f)r(f), we see that Ik(f) 6= 0 and so Ak(f) 6= 0
for all k sufficiently large. Now our assertion follows from Corollary 6.3. �
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We next recall the following:

Definition 6.5. A map f : M → M is essentially reducible if any fixed point class of
fk being contained in an essential fixed point class of fkn is essential, for any positive
integers k and n. The space M is essentially reducible if every map on M is essentially
reducible.

Lemma 6.6 ([1, Proposition 2.2]). Let f : M →M be an essentially reducible map. If∑
m
k

: prime

N(fk) < N(fm),

then any map which is homotopic to f has a periodic point with minimal period m, i.e.,
m ∈ HPer(f).

Lemma 6.7. Every infra-solvmanifold of type (R) is essentially reducible.

Proof. Let f : M →M be a map on an infra-solvmanifold M = Π\S of type (R). Then
Π fits a short exact sequence

1 −→ Γ −→ Π −→ Φ −→ 1

where Γ = Π ∩ S and the holonomy group Φ of Π naturally sits in Aut(S). By [24,
Lemma 2.1], we know that Π has a fully invariant subgroup Λ of finite index and Λ ⊂ Γ.
Therefore Λ ⊂ Γ ⊂ S and M̄ = Λ\S is a special solvmanifold which covers M . Since
Λ is a fully invariant subgroup of Π, it follows that any map f : M → M has a lifting
f̄ : M̄ → M̄ , and M̄ is a regular covering of M . By [16, Corollary 4.5], f̄ is essentially
reducible and then by [25, Proposition 2.4], f is essentially reducible. �

We can strengthen Corollary 6.4 as follows:

Proposition 6.8. Let f be a map on an infra-solvmanifold of type (R). Suppose that
the sequence {N(fk)} is strictly monotone increasing. Then:

(1) All primes belong to HPer(f).
(2) There exists N such that if p is a prime > N then {pn | n ∈ N} ⊂ HPer(f).

We not only extend but also strengthen Corollary 6.4.

Proof. Observe that for any prime p

N(fp)−
∑

p
k

: prime

N(fk) = N(fp)−N(f) = Ip(f).

The strict monotonicity implies Ap(f) = pIp(f) > 0, and hence p ∈ HPer(f), which
proves (1).

Under the same assumption, we have shown in the proof of Corollary 6.4 that there
exists N such that k > N ⇒ Ik(f) > 0. Let p be a prime > N and n ∈ N. Then

N(fp
n
)−

∑
pn

k
: prime

N(fk) =

n∑
i=0

Ipi(f)−N(fp
n−1

) = Ipn(f) > 0.

By Lemma 6.6, we have pn ∈ HPer(f), which proves (2). �

In Remark 4.7, we observed about the lower density DA(f) of the set of algebraic
periods A(f) = {m ∈ N | Am(f) 6= 0}. We can consider as well the lower densities of
Per(f) and HPer(f), see also [17] and [26]:

DP(f) = lim inf
k→∞

#(Per(f) ∩ [1, k])

k
,

DH(f) = lim inf
k→∞

#(HPer(f) ∩ [1, k])

k
.
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Since Ik(f) = #EPk(f) by Proposition 5.4, it follows that A(f) ⊂ HPer(f) ⊂ Per(f).
Hence we have DA(f) ≤ DH(f) ≤ DP(f).

Corollary 6.9. Let f be a map on an infra-solvmanifold of type (R). Suppose that
the sequence {N(fk)} is strictly monotone increasing. Then HPer(f) is cofinite and
DA(f) = DH(f) = DP(f) = 1.

Proof. Under the same assumption, we have shown in the proof of Corollary 6.4 that
there exists N such that if k > N then Ik(f) > 0. This means EPk(f) is nonempty by
Proposition 5.4 and hence k ∈ HPer(f). �

Now we can prove the main result of [25].

Corollary 6.10 ([23, Theorem 4.6], [25, Theorem 3.2]). Let f be an expanding map on
an infra-nilmanifold. Then HPer(f) is cofinite.

Proof. Since f is expanding, we have that λ(f) = sp(
∧
D∗) > 1. For any k > 0, we can

write N(fk) = Γk + Ωk, where

Γk = λ(f)k

n(f)∑
j=1

ρje
2iπ(kθj)

 , Ωk =

r(f)∑
i=n(f)+1

ρiλ
k
i with |λi| < λ(f).

Here Ωk → 0 and Γk → ∞ as k → ∞. This implies that N(fk) is eventually strictly
monotone increasing. We can use Corollary 6.4 and then Corollary 6.9 to conclude the
assertion. �
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