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THE NIELSEN NUMBERS OF ITERATIONS OF MAPS ON
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ALEXANDER FEL’SHTYN AND JONG BUM LEE

ABSTRACT. Utilizing the arguments employed mainly in [2] and [19, Chap. I1I] for
the Lefschetz numbers of iterations, we study the asymptotic behavior of the sequence
of the Nielsen numbers {N(f*)}, the essential periodic orbits of f and the homotopy
minimal periods of f by using the Nielsen theory of maps f on infra-solvmanifolds of

type (R).
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1. INTRODUCTION

Let f: X — X be a map on a finite complex X. A point x € X is a fixed point of f
if f(z) = z; a periodic point of f with period n if f™(z) = z. The smallest period of =
is called the minimal period. We will use the following notations:

Fix(f) = {z € X | f(z) = 2},
Per(f) = the set of all minimal periods of f,
P, (f) = the set of all periodic points of f with minimal period n,

HPer(f) = () {n € N | P(g) # 0}
g~ f
= the set of all homotopy minimal periods of f.

Let p: X - X be the universal cover of X and f:X — X alift of f, ie, pof =
fop. Two lifts f and f" are called conjugate if there is a v € T' = 71(X) such that

f''=~o0 foy~t. The subset p(Fix(f)) C Fix(f) is called the fized point class of f

determined by the lifting class [f]. A fixed point class is called essential if its index is
nonzero. The number of essential fixed point classes is called the Nielsen number of f,
denoted by N(f) [20].

The Nielsen number is always finite and is a homotopy invariant lower bound for
the number of fixed points of f. In the category of compact, connected polyhedra the
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Nielsen number of a map is, apart from in certain exceptional cases, equal to the least
number of fixed points of maps with the same homotopy type as f.

From the dynamical point of view, it is natural to consider the Nielsen numbers
N(f*) of all iterations of f simultaneously. For example, N. Ivanov [18] introduced the
notion of the asymptotic Nielsen number, measuring the growth of the sequence N (f¥)
and found the basic relation between the topological entropy of f and the asymptotic
Nielsen number. Later on, it was suggested in [9, 30, 10, 11] to arrange the Nielsen
numbers N (f¥) of all iterations of f into the Nielsen zeta function

o N(*) x
Nr(z) =ex —Lz" .
(2) = exp (; -

The Nielsen zeta function N¢(z) is a nonabelian analogue of the Lefschetz zeta function

o0 k
L¢(z) =exp (Z L(lf >Zk) )

k=1
where
dim X
L™= 3 (-Dktr [ffk L Hy(X;Q) — Hk(X;Q)}
k=0

is the Lefschetz number of the iterate f™ of f.
Nice analytical properties of N¢(z) [12, 11, 5, 13] indicate that the numbers N(f*)
are closely interconnected. Another manifestations of this are Gauss congruences

Zu(’;) N(f)=0 mod k,

dlk

for any k£ > 0, where f is a map on an infra-solvmanifold of type (R) [13].

The fundamental invariants of f used in the study of periodic points are the Lefschetz
numbers L(f*), and their algebraic combinations, the Nielsen numbers N(f*) and the
Nielsen-Jiang periodic numbers NP, (f) and N®,(f).

The study of periodic points by using the Lefschetz theory has been done extensively
by many authors in the literatures such as [20], [7], [2], [19], [29]. A natural question is
to know how much information we can get about the set of essential periodic points of
f or about the set of (homotopy) minimal periods of f from the study of the sequence
{N(f*)} of the Nielsen numbers of iterations of f. Utilizing the arguments employed
mainly in [2] and [19, Chap. III] for the Lefschetz numbers of iterations, we will study
the asymptotic behavior of the sequence {N(f*)}, the essential periodic orbits of f
and the homotopy minimal periods of f by using the Nielsen theory of maps f on
infra-solvmanifolds of type (R).

Acknowledgments. The first author is indebted to the Max-Planck-Institute for
Mathematics(Bonn) for the support and hospitality and the possibility of the present
research during his visit there.

2. NIELSEN NUMBERS N (fF)

Let S be a connected and simply connected solvable Lie group. A discrete subgroup
I’ of S is a lattice of S if '\ S is compact, and in this case, we say that the quotient
space I'\ S is a special solvmanifold. Let IT C Aff(S) be a torsion-free finite extension of
the lattice I' = IIN S of S. That is, II fits the short exact sequence

1 S Aff(S) —— Aut(S) —— 1

| | |

1 r n — I —— 1
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Then II acts freely on S and the manifold IT\S is called an infra-solvmanifold. The
finite group ® = II/T" is the holonomy group of II or II\S. It sits naturally in Aut(.5).
Thus every infra-solvmanifold IT\S is finitely covered by the special solvmanifold T'\S.
An infra-solvmanifold M = II\S is of type (R) if S is of type (R) or completely solvable,
i.e., if ad X : & — & has only real eigenvalues for all X in the Lie algebra & of S.
Recall that a connected solvable Lie group S contains a sequence of closed subgroups

such that N; is normal in N;y; and N;11/N; & R or N;1/N; = S, If the groups
Ny, -+, N are normal in S, the group S is called supersolvable. The supersolvable Lie
groups are the Lie groups of type (R).

Lemma 2.1 ([33, Lemma 4.1], [14, Lemma 2.4]). For a connected Lie group S, the
following are equivalent:

(1) S is supersolvable.
(2) All elements of Ad(S) have only positive eigenvalues.
(3) S is of type (R).

Recall [33, Theorem 1] in which it is proved that every infra-solvmanifold is modeled
in a canonical way on a supersolvable Lie group. Hence whenever we deal with infra-
solvmanifolds, we may assume that we are given infra-solvmanifolds M = II\S of type
(R).

In this paper, we shall assume that f : M — M is a continuous map on an infra-
solvmanifold M = TI\S of type (R) with holonomy group ®. Then f has an affine
homotopy lift (d, D) : S — S, and so f* has an affine homotopy lift (d, D)* = (d’, D¥)
where d’ = dD(d) - -- D*~1(d). By the averaging formula for the Nielsen number N (f¥)
[24, Theorem 4.2], we have

1
(AV) N(f*) = 5 > | det(I — A,.DE).
Aed
Concerning the Nielsen numbers N (f*) of all iterates of f, we recall the following
results:

Theorem 2.2 ([13, Theorem 11.4]). Let f : M — M be a map on an infra-solvmanifold
M of type (R). Then

(DN) Z“(S) N(fH=0 mod k

d|k
for all k > 0.

Consider the sequences of algebraic multiplicities {Ag(f)} and Dold multiplicities
{I.(f)} associated to the sequence {N(f*)}:

ah) = Sn(5) v nin =S u(h) .

d|k dk

Then I(f) = kAr(f) and all Ax(f) are integers by Theorem 2.2. From the Mobius
inversion formula, we immediately have

N(ff) =" dAa(f).
d|k

Theorem 2.3 ([5, Theorem 4.5]). Let f : M — M be a map on an infra-solvmanifold
M of type (R). Then the Nielsen zeta function of f
oo
N k
N¢(z) = exp (; (If)zk)
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s a rational function.

In fact, it is well-known that

Hdet — 2 fu)

where fi. : Hp(M;Q) — Hy (M, Q). Hence L¢(z) is a rational function with coefficients
in Q. In [5, Theorem 4.5], it is shown that Ny(z) is either

Ny(z) = Lp((—1)"z) 07"

N (2) <ld4<<—4>"z>><-1w*"
! Ly((-1)"2)

where p is the number of real eigenvalues of D, which are > 1 and n is the number of
real eigenvalues of D, which are < —1. Here f, is a lift of f to a certain 2-fold covering
of M which has the same affine homotopy lift (d, D) as f. Consequently, N¢(z) is a
rational function with coefficients in Q.

On the other hand, since N¢(0) = 1 by definition, z = 0 is not a zero nor a pole of
the rational function N¢(z). Thus we can write

) ILO-89 iy n
N = ) T e~ LA

with all \; distinct nonzero algebraic integers and p; nonzero integers. Taking log on
both sides of the above identity, we obtain

or

i N(gk)zk ZT: —pilog(l — \;2) sz <Z Z)k> = i Zg:zipi)\f 2",
k=1 i=1 i=1 k=1

This induces

r(f)
(N1) N(f*) =Y piAi-
=1

Note that r(f) is the number of zeros and poles of Ny (z). Since N¢(z) is a homotopy
invariant, so is 7(f). This argument tells us that whenever we have a rational expres-
sion of Ny(z), we can write down all N(f*) directly from the expression. However
even though we can compute all N(f*) using the averaging formula, it can be rather
complicated to write down the rational expression of N¢(z), see [8].
On the other hand, we can show that
oo
Ny() = [J (0 = by,

k=1
This identity shows that 1 are possible zeros or poles of N¢(z). Indeed, this identity
follows from the following observation

log (H (1- zm>-Am<f>> =3 —An(log(l ") = 3 An(f) (Z “?”)

m=1 m=1 m=1 n=1
> A, e > mA,,
_ <Z n(f)( )>:Z $ k;(f) K
k=1 \k=mn k=1 \'mlk
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Consider another generating function associated to the sequence {N(f*)}:
o
51() = SN (A
k=1

Then it is easy to see that

S¢(z) = 4 log N¢(2).

dz
Moreover,
oo 7(f) r(f) ik
St(z) = AL = N
) kzﬂ;p - oAz

is a rational function with simple poles and integral residues, and 0 at infinity. The
rational function Sy(z) can be written as S¢(z) = u(z)/v(z) where the polynomials
u(z) and v(z) are of the form

s t
u(z) :N(f)—i—Zaizi, v(z) = l—i—ijzj
i=1 j=1

with a; and b; integers, see (3) = (5), Theorem 2.1 in [2] or [19, Lemma 3.1.31]. Let
9(z) be the conjugate polynomial of v(z), i.e., 9(z) = z'v(1/z). Then the numbers {);}
are the roots of 9(z), and r(f) = t.

The following can be found in the proof of (3) = (5), Theorem 2.1 in [2].

Lemma 2.4. If \; and X\; are roots of the rational polynomial ©(z) which are alge-
braically conjugate (i.e., \; and \; are roots of the same irreducible polynomial), then

pi = pj.

Proof. Let ¥ = Q(A1,---,Ar) C C be the field of the rational polynomial o(z) and let
o be an automorphism of ¥ over Q, i.e., ¢ is the identity on Q. The group of all such
automorphisms is called the Galois group of ¥. Since the o()\;) are again the roots of
0(z), we have 0(\;) = Ay(;). That is, o induces a permutation o on {1,---,r}. Applying
o to the sequence {N(f*)}, we obtain

7 (VM) =o (z; piAf) = Z}PiU(Ai)k = ;PMIS(Q = Z;pg—l(i%?-

Since the N(f*) are integers, o(N(f*)) = N(f*) and consequently

Sk =Y o
=1 =1

As a matrix form, we can write

Al )‘2 o AT P1 )\1 )\2 tee )\7" poﬁl(l)
S IR V1 I 1 B E IV N B i
>\71Q Ag T A; Pr )‘7{ )‘g e )‘77: Po=1(r)

Since the \; are distinct, the matrices in this equation are nonsingular (the Vandermonde
determinant). Thus p; = po-i(y for all i = 1,--- r. On the other hand, it is known
that the Galois group acts transitively on the set of algebraically conjugate roots. Since
Ai and A; are conjugate roots of ¥(z), we can choose o in the Galois group so that
o(Ai) = Aj. Hence o(i) = j and so p; = p;. O
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Let 9(z) = [[._; 9a(2) be the decomposition of the monic integral polynomial v(z)
into irreducible polynomials U, (2) of degree ro. Of course, r =r(f) =Y > | 74 and

9(2) = 2"+ b2 F b2 b2+ by

S S
_ H(Zm _‘_btl)zzm—l+b<2)¢zra—2+...+b7‘}a_1z+b$‘a) = Hﬁa(z)
a=1

If {)\Z(.a)} are the roots of 0,(z), then the associated p’s are the same p,. Consequently,
we can rewrite (V1) as

=S (Bor)
=sz(z AH) - 3 g (S0

pa>0 i=1 pa<0 i=1

Consider the r, X ro-integral square matrices

00 -~ 0 —b%

10 - 0 —ba .
M= | :

00 - 0 —bg

00 - 1 —by |

The characteristic polynomial is det(zI — M,) = 0,(2) and therefore {)\ga)} are the
eigenvalues of M,. This implies that N(f*) = > i Patr MPF. Set

My =P piMa, M= P paM
pa>0 pa<0
Then

(N2) N(f*) =t MF —tr M* = tr (M, 5 -

We will show in Proposition 5.4 that if Ap(f) # 0 then N(f*) # 0 and hence f
has an essential periodic point of period k. In the following we investigate some other
necessary conditions under which N(f*) # 0. Recall that

N(f*) = the number of essential fixed point classes of f¥.

If F is a fixed point class of f* then f*(F) = F and the length of F is the smallest
number p for which fP(F) = F, written p(F). We denote by (F) the f-orbit of F, i.e.,
(F) = {F, f(F),---, fP~Y(F)} where p = p(F). If F is essential, so is every f*(F) and (F)
is an essential periodic orbit of f with length p(F) and p(F) | k. These are variations
of Corollaries 2.3, 2.4 and 2.5 of [2].

Corollary 2.5. If r(f) # 0, then N(f) # 0 for some 1 < i < r(f). In particular, f
has at least N(f*) essential periodic points of period i and an essential periodic orbit
with the length p | i, < r(f).

Proof. Recall that

r(f)
— N k
51 =3 125 Z (
Assume that N(f) = --- = N(f")) = 0. For simplicity, write the above identity as

S¢(z) = u(z)/v(z) = s(z) where v(z) is a polynomial of degree r(f) and s(z) is the
series of the right-hand side. Then u(z) = v(z)s(z). A simple calculation shows that
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the higher order derivative of v(z)s(z) up to order r(f) — 1 at 0 are all zero. Since u(z)
is a polynomial of degree r(f) — 1, it shows that u(z) = 0, a contradiction. O

Recalling the identity N(f*) = Zifl) pirF, we define

(2

r(f)
P(f):ZPza M(f):max Zplv_zp]
i=1

pi>0 p;<0

Corollary 2.6. If p(f) = 0 and r(f) > 1, then r(f) > 2 and N(f%) # 0 for some
1 <i<r(f). In particular, f has at least N(f") essential periodic points of period i
and an essential periodic orbit with the length p | i,i < r(f)— 1.

Proof. The conditions p(f) = 0 and r(f) > 1 immediately implies that r(f) > 2. Since
r(f) # 0 by the previous corollary there exists i € {1,--- ,7(f)} such that N(f?) # 0.
Assume N(f) = --- = N(f/)=1) = 0. So, N(f"Y)) # 0. As in the proof of the
above corollary, we consider u(z)/v(z) = s(z) where u(z) is a polynomial of degree
r(f) —1>1 and s(2) is a power series starting from the nonzero term N (f7(/))z(/)—1,
The derivative of order r(f) —1 on both sides of the identity u(z) = v(2)s(z) yields that
N(f ) =0, a contradiction. O

Corollary 2.7. If r(f) > 0, then N(f*) # 0 for some 1 < i < M(f). In particular,
f has at least N(f") essential periodic points of period i and an essential periodic orbit
with the length p | 1,1 < M(f).

Proof. Assume that N(f*) = 0 for all k = 1,---, M(f). From (N2), we have J :=
tr M j“_ = tr M*. For simplicity, suppose

m(f)=_pi< =D pi= M)
pi>0 p;<0
Then the matrix My has size m(f) and M_ has size M (f). We write the eigenvalues
of M and M_ respectively as
By s () By ()

Of course, {p1, -+, sy, 815+ Bar(ryy = {M,- -, Ar} as a set. Now the identities
tr Mﬁ = tr M* yield the M (f) equations

:U’]f"i_"'"i_/“”ﬁ@(f)+O+"'+0:ﬂ]l€+"'+laﬁ/[(f)

where p1; = 0 when m(f) < j < M(f). By [3, p.72, Corollary], there exists a permu-
tation o on {1,---, M(f)} such that y; = fig;). If m(f) < M(f) then 0 = ppry) =
fio(v(f)) = Aj for some j, a contradiction. Hence m(f) = M(f) and the \;’s associated
to p; > 0 and the \;’s associated with p; < 0 are the same. This implies that the
rational function Ny(z) has the same poles and zeros of equal multiplicity and hence
Ny(z) = 1, contradicting that r(f) > 0. O

3. RADIUS OF CONVERGENCE OF Nj(z)

From the Cauchy-Hadamard formula, we can see that the radii R of convergence of
the infinite series N¢(z) and S¢(z) are the same and given by

o 1/k
1_ lim sup <N(f)> = limsup N (f*)/k.
R k—s00 k k—o0

We will understand the radius R of convergence from the identity N (f*) = Z:ifl) pirE.
Recall that the A\, are the poles or the zeros of the rational function Ny(z). We define

A(f) = max{[Ai| [ i = 1,---,r(f)}.
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Remark 3.1. In this paper, the number A(f) will play a similar role as the “essential
spectral radius” in [19] or the “reduced spectral radius” in [2]. Theorem 3.2 below shows
that 1/A(f) is the “radius” of the Nielsen zeta function N¢(z). Note also that A(f) is a
homotopy invariant.

If r(f) = 0, ie., if N(f*) =0 for all k& > 0, then N(z) = 1 and 1/R = 0. In this
case, we define customarily A(f) = 0. We shall assume now that r(f) # 0. In what
follows, when A\(f) > 0, we consider another homotopy invariant:

n(f) = #{i | Al = A()}-
First we can observe easily the following;:
F — lim sup(re®) /% = lim sup r,lc/kewk/k = lim sup r;/k.
(2) limsup(A\¥)'/% = |\| by taking z, = AF in (1).
(3) When limz; = 0 in (1), limsup z;/k =0.
(4)

4) lim(z + p)'/* = lim z;,/k when lim z;, = oo. For, in this case (1) induces

1/k
lim (Zk+p> —1.
2

Assume |);| # A(f) for some j; then we have
N(f") A" : A\
J i#j J i#j J
It follows from the above observations that 1/R = limsup(}_,; PNk Consequently,
we may assume that N(f¥) = > pj/\;? with all |\;| = A(f) and then we have
1/k

. 1
(1) limsup 2,

.
B= lim sup Z pj)\?
IAj[=A()
Remark that if A(f) < 1 then N(f*) = ZMH:A(JC) pj/\;? — 0 and so the sequence of
integers are eventually zero, i.e., N(f*) = 0 for all k sufficiently large. This shows that
1/R = 0 and furthermore, N¢(z) is the exponential of a polynomial. Hence the rational
function Ny(z) has no poles and zeros. This forces N¢(z) = 1; hence A(f) = 0. If
A(f) > 1, then N(f*) — co and by L’Hopital’s rule we obtain
log N(f*)

log (ZJ Pj/\?>
limsup ———= = limsup —————*

1
==,
If A(f) = 1, then N(f*) < >_;lpjl < oo isabounded sequence and so it has a convergent
subsequence. If limsup N(f*) = 0, then N(f*) = 0 for all k sufficiently large and so
by the same reason as above, A(f) = 0, a contradiction. Hence limsup N(f*) is a finite
nonzero integer and so 1/R =1 = A(f).

Summing up, we have obtained that

=log A(f) =

Theorem 3.2. Let f be a map on an infra-solvmanifold of type (R). Let R denote
the radius of convergence of the Nielsen zeta function N¢(z) of f. Then A(f) =0 or
AMf) =1, and
(R1)

1
= =),

In particular, R > 0.

By Theorem 3.2, we see that the sequence N (f¥) is either bounded or exponentially
unbounded.
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Remark 3.3. Recall that

PiNi
Sf(Z) = 1 _ )\'Z’
i=1 v
r(f) 1, _o(1=X;2)~"i
Np(z) = (1 = Niz) P = =<0 S
£(2) g( ) Hpi>0(1 — \iz)Pi

These show that all of the 1/); are the poles of S¢(z), whereas the 1/\; with correspond-
ing p; > 0 are the poles of N¢(z). The radius of convergence of a power series centered
at a point a is equal to the distance from a to the nearest point where the power series
cannot be defined in a way that makes it holomorphic. Hence the radius of convergence
of S¢(z) is 1/A(f) and the radius of convergence of Ny(z) is 1/ max{|\;| | p; > 0}. In
particular, we have shown that

A(f) =max{|Xi| [i =1, ,r(f)} = max{|\i| | p; > 0}
Notice this identity in Example 3.6.

On the other hand, we can understand the radius R of convergence using the aver-
aging formula. Compare our result with [13, Theorem 7.10]. Let {p1,--+ , um} be the
eigenvalues of D,, counted with multiplicities, where m is the dimension of the manifold
M. We denote by sp(A) the spectral radius of the matrix A which is the largest modulus
of an eigenvalue of A. From the definition, we have

sp(Dy) = max{|p;| [ i =1,---,m},

. (/\D ) Zw>1 ||  when sp(Dy) > 1;
when sp(D,) < 1.
Note |det(I — D¥)| = [T, 11— u§| If some p; = 1, then det(I — D¥) = 0 for all k > 0
and hence limsup | det(I — D¥)|/¥ = 0. Assume now all ji; # 1; then det(I — D¥) # 0
for all k£ > 0. Remark further from [13, Theorem 4.1] that

log |1 —
log <limsup|det(l — Df)|1/k> hHlSUPZ g’ Mj

k—o0 k—o0

_ Z\umloglul when sp(D,) > 1
0 when sp(D,) < 1.

Now we ascertain that if D, has no eigenvalue 1, then

(R2) %-hmsup|det([ DYk = sp (/\D)

k—o0

From the averaging formula, we have N(f*) > |det(I — D¥)|/|®|. This induces

<|det(IDf)|>1/k

1
B= lim sup N,i/k > lim sup

k—ro0 k—ro0 |(I)‘
= limsup | det(I — DF)[V/*,
k—o00

Furthermore, for any A € ®, we obtain (see the proof of [13, Theorem 4.3])

| det(I — D) < TT + lus|®)
j=1



10 ALEXANDER FEL’SHTYN AND JONG BUM LEE

and hence from the averaging formula
e 1
H L") = % < 1] Il
J=1 || >1
This finishes the proof of our assertion.

Following from (R1) and (R2), we immediately have:

Theorem 3.4. Let f be a map on an infra-solvmanifold of type (R) with an affine
homotopy lift (d, D). Let R denote the radius of convergence of the Nielsen zeta function
of f. If Dy has no eigenvalue 1, then

%:sp (AD.) =20,

We recall that the asymptotic Nielsen number of f is defined to be

k—o0

N°°(f) :max{l,limsupN(fk)l/k}.

We also recall that the most widely used measure for the complexity of a dynamical
system is the topological entropy h(f). A basic relation between these two numbers is
h(f) > log N*°(f), which was found by Ivanov in [18]. There is a conjectural inequality
h(f) > log(sp(f)) raised by Shub [31]. This conjecture was proven for all maps on
infra-solvmanifolds of type (R), see [27, 28] and [13]. Now we can state about relations
between N°°(f), A(f) and h(f).

Corollary 3.5. Let f be a map on an infra-solvmanifold of type (R) with an affine
homotopy lift (d, D). If D, has no eigenvalue 1, then

NZ(f) = Af),  h(f) = 1og A(f)-

Proof. From [13, Theorem 4.3] and Theorem 3.4, we have N°°(f) = sp(A D) = A(f).
Hence by Ivanov’s inequality, we obtain that h(f) > log N*°(f) = log A(f). O

The following example shows that the assumption in Theorem 3.4 and its Corollary
that 1 is not in the spectrum of D, is essential.

Example 3.6. Let f : M — M be a map of type (r, ¢, q) on the Klein bottle M induced
by an affine map (d, D) : R? — R2. Recall from [22, Theorem 2.3] and its proof that r
is odd and ¢ = 0, and

_% [Z , [g 0]) when r is odd;
(d, D) = .

[* , " 0]) when r is even and ¢ = 0,

* 2¢ 0
(1 — ) " (rF - 1) when 7 is odd and gr > 0
— k) =
1 (—=1)*¢*(r* —1) when r is odd and ¢r < 0
N(fk): 1 when ¢ =r =0
17k =rk—1 when r >0 and ¢ =0

(—=1)*(rk —1) when r <0 and ¢ = 0.

A simple calculation shows that
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[ ar [ NUH T N ] S¢(2) [(f),sp(AD-)) |
r=1 0 1 0 (0, max{1, |¢})
I —gqz qr q
dd, qr > 0 k_ gk -
r odd, gr (qr)" —q T wre | Toae 1w (gr,qr)
T+gqgz qr q
dd, gr <0 | (—qr)* — (=q)* — —qr, —
r odd, gr (=qr)* = (—q) ez | 1razt1ra (—qr,—qr)
—0,r=0 1 ! ! (1,1)
. T 1=z |
_ k _ 1 VA T .
¢=0,r>0 " 11;7“2 1—rz 1 +lz (r,7)
—0,7r<0 | (=r)F—(=1)k G I -

These observations show that when one of the eigenvalues is 1, the invariants Ny (z),
sp(A Dx) and A(f) still strongly depend upon the other eigenvalue. Remark also in this
example that the identity A(f) = max{|A;| | p; > 0} holds.

4. ASYMPTOTIC BEHAVIOR OF THE SEQUENCE {N(f%)}

In this section, we study the asymptotic behavior of the Nielsen numbers of iterates of

maps on infra-solvmanifolds of type (R). Compared to the asymptotic behavior of the
Lefschetz numbers, see [2, Theorem 2.6] or [19, Theorem 3.1.53], the Nielsen numbers
on infra-solvmanifolds have rather very restrictive asymptotic behavior. For example,
the case (b) of [2, Theorem 2.6] does not occur.

Theorem 4.1. For a map f of an infra-solvmanifold of type (R), one of the following
two possibilities holds:

(1) A(f) =0, which occurs if and only if Ny(z) = 1.
(2) The sequence {N(f*)/X(f)*} has the same limit points as a periodic sequence
{3 ajeé‘?} where o;j € Z,¢j € C and €] =1 for some g > 0.

Proof. For simplicity, we denote A\(f) by Ag. Recall that Ao = 0 if and only if all

N(f*¥) = 0 and otherwise, A9 > 1. Suppose that Ao > 1. Let

2im0
)\1 :)\06 1,‘--

s An(f) = Aoe

be all the )\; of modulus \g in the identity N(f*) = ZT(f)

i=1

pz)\iC

First we observe that the sequence {N(f*)/Ak}, has the same asymptotic behavior
as the sequence {Z?ifl) p;e?™k0i), Tndeed, we can write N(f*) = Ty + Q, where

n(f) r(f)
Te =5 | Y pje?m ko) Q=Y pdf with [\ < Xo.
j=1 i=n(f)+1
Consequently,
n(f) r(f) k

N(f*) in (k6 |Ail

‘ y =S e (ke;)’ < 3 ol 0,
0 j=1 i=n(f)+1 0

since |A;| < Ao.

Suppose all 0; = p;/q; (j =
is a g;th root of unity, and thus all A\j/A\g = e

lem(qq, - - -
This proves (2).

1,

2im;

,n(f)) are rational. Then every \;/\g = €7
are roots of unity of degree q =

»dn(f))> and hence the sequence {Z?ifl) pjezi“(kej)}k is periodic of period gq.

Now we claim that all #; must be rational. For the given map f : II\S — II\\S on

the infra-solvmanifold II\\S, let ¢ : II — II be the homomorphism induced by f and
let (d,D) : S — S be an affine map such that ¢(a)(d,D) = (d,D)a for all o € Il C
S x Aut(S). Then ¢ induces a function ¢ : & — ® on the holonomy group ® satisfying
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that p(A)D = DA for all A € ®. Recall from [6, Lemma 3.1] the following: Given
A € &, we choose a sequence By = A and B;;1 = $(B;) so that there exist j,k > 1
such that B; ; = B;. Furthermore,

(1) Vi e N, det(I — ¢(B;)«Dy) = det(I — ¢(Bjt+1)«Dx),

(2) 3¢ € N such that (¢(B;)«D.)" = DE.
Let p1,- -+, tm be the eigenvalues of Dy, and vy, -- , vy, the eigenvalues of @(Bj).D.
Since (3(B;)«Dx) = DL, (p(B;)«Dy)" has the eigenvalues {uf, - - - ,,ufn} ={vf,--- V).
We may assume that \,ulle |v5|¢ and so |p;| = || for all i = 1,--- ,m. Now, we have

det(I — A,D,) = det(I — D, A,) = det(I — ¢(B;),D.)

m
=[[0-w)
=1
m
:1_ZW+ Z ViVj—-'-—{—(—l)mVl'--I/m.
i=1

1<i<j<n

Let 1, -, us be all the eigenvalues with absolute value > 1 and let pg41, -« , st (S+
t < m) be the eigenvalues of modulus 1, which are roots of unity by a well-known result
of Kronecker: Every nonzero algebraic integer that lies with its algebraic conjugates in
the closed unit disc is a root of unity. In the above expression for det(I — A, D), the
largest modulus of a term is []| > || = sp(/\ D«) and the terms of this modulus are
of the form []7_, v; [1/cqst1, 544y vo- Remark that det(] — A, D) is a real number (in
fact, an integer). Hence

|<I>|Z:I: Zuz—i— Z vivi — -+ (=) |

Aed 1<i<j<n
n(f)
LY X (T T
j=1 Acd =1 JC{s+1, ,s+t}

Since A(f) > 1, by Lemma 4.2 below A(f) = sp(/ Dx). Consequently, we must have

O IN] = A(f HV, 11 vy|Aed

i=1  JC{s+1, ,s+t}

Remark that vey; (j =1,--- ,t) is a root of unity because |vst;j| = |ps+;|. Remark also
that if some v; (i = 1,---,s) is a complex number then its complex conjugate 7; is v;
for some j € {1,---,s}. That is, the collection {vy,--- ,vs} with modulus > 1 contains
complex conjugate pairs. This shows that [[7_; v; is a real number. Hence it follows
that the 0; associated to ); is a rational number. U

In Theorem 3.4, we showed that if D, has no eigenvalue 1 then A(f) = sp(/ Dx).
In Example 3.6, we have seen that when D, has an eigenvalue 1, there are maps f for
which A(f) # sp(A Dx«) with A(f) =0, and A(f) = sp(/A D«) with A(f) > 1. In fact, we
prove in the following that the latter case is always true.

Lemma 4.2. Let f be a map on an infra-solvmanifold of type (R) with an affine ho-
motopy lift (d, D). If X\(f) > 1, then A(f) = sp(/A Dx).

Proof. Since A\(f) > 1, by Corollary 2.7, N(f*) # 0 for some k& > 1 and then by the
averaging formula, there is B € ® such that det( — B,D¥) # 0. Choose 8 € II of
the form 8 = (b, B). Then $(d, D)* is another homotopy lift of f*. We have observed
above that there are numbers vy, - - - , vy, such that det(I — B,D¥) =[], (1 — v;) and
{(uh)ey = {v}} for some ¢ > 0. Since det(I — B,.D¥) # 0, B.D¥ has no eigenvalue 1.
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Hence by Theorem 3.4, we have A(f*) = sp(/\ B+DF). Recall that N(f*) = Z:Lfl) PNy
and A(f) = max{|)\;|}. Since A(f) > 1, it follows that A(f*) = A(f)*. Observe further
that sp(/\ B.DF) = [T vl = 11 || = sp(A\ D.)k. Consequently, we obtain

the required identity A\(f) = sp(/A Dx). O

Example 4.3. Consider the 3-dimensional orientable flat manifold with fundamental
group &, generated by {t1,t2,t3, a} where

1 0 0
ti=1|lol 1], ta=1{|1]|.1),ts=1 10| ,1}],
0 0 1
31 [t 0 o0
a=(a,A)=110[,]/0 =1 0
0 0 0 -1

Thus,
Gy = (t1,to, t3, | [ti 8] = 1,0 = t,atea =t atga™h =t31).

Let ¢ : 3 — B9 be any homomorphism. Every element of &, is of the form o*5'¢%.
Thus ¢ has the form

O(ta) = aF2t02402 o(t3) = aF3t]310% ) p(a) = oFt5'ts.

The relations atoa™! = t2_1 and atza™! = tgl yield that ko = k3 = 0, (—1)*m; = —m;
and (—1)*n; = —n;. Hence when k is even, we have m; = n; = 0. Further, o(t1) = t¥.

Now we shall determine an affine map (d, D) satisfying ¢(8)(d, D) = (d, D) for all
B € s,

CASE k = 2¢.
In this case, we have ¢(t2) = ¢(t3) = 1 and ¢(a) = o*t5t} = t{t5%, and hence we
need to determine (d, D) satisfying

(d,D) = (d,D)(e2,I) = D(e2)
(d, D) = (d, D)(es, I) = D(es3)
(661 + meg + ?1@3,[)((17 D) = (d7 D)(aa A)

= le1 + meg +nes +d =d+ D(a), D = DA.

0,
0,

Hence the second and the third columns of D must be 0 and so D = D A is automatically
satisfied and the first column of D is 2 [E m n]t. That is,

* 20 0 0
(d,D)=1| [*|,|2m 0 O
2n 0 0

The eigenvalues of D are 0 (multiple) and 2¢, and N(f*) = |(2¢)* — 1| and

L when ¢ = 0;

1-z
Ny(z) =< 755 when £ > 1;
1
1;52 when ¢ < —1.

It follows that A(f) = max{1,2|¢|} and r(f) = 1.

CASE k =20+ 1.
In this case, we have ¢(t2) = th%t5%, ¢(t3) = th3t5® and p(a) = oFtiHY = atftt?,
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and hence we need to determine (d, D) satisfying
¢(t2)(d, D) = (d, D)ts = D(e2) = maes + noes,
¢(t3)(d, D) = (d, D)ts = D(e3) = mazez + nzes,
p(a)(d, D) = (d, D)«
= a+ A(le; + meg + neg) + A(d) = d+ D(a), AD = DA.
These yield
* 20+1 0 0

<d7 D) = - ) 0 m2 ms3
- 0 no ns

wIS[3

Now we consider some explicit examples of such D. First we take D to be

-1 0 0
D= 0 d e
0 —e d

Then D has eigenvalues —1 and u = d + ei. Thus
det(I — D) = 2((1 — d)? + €2), det(I — AD) = 2((1 +d)? + ¢?),
Nf)=((1=ad)?+ A+ ((1+d)?+e*) =201 +d*>+e) =201+ |u).

Clearly N(f*) = 0 for all even integers k > 0. Now for an odd k, D* has eigenvalues
—1 and p* and consequently N(f*) = 2(1 4 |u|?*). This yields that

) 14+ u2(2k71) B
Ny(z) = exp (Z ( 2|k|—1 )z% !

k=1
o0 2 o0
_ 2 2k—1
o (3 5 X g )
142 1+ |pl?z
= 1 1
exp(ogl_z+ Og1—|,u\2z

_ (4 2) (1 +[uf2)
(1 —=2)(1 = [ul?2)
Moreover, A(f) = max{1,|u|?}, and 7(f) = 2 when A(f) > 1 and 7(f) = 1 when

) < 1.
Secondly, we take D to be

D=

SO
=N O
)

Then the eigenvalues of D are —1 and y; = (3 £+/5)/2 and N(f*) = (1 — (=1)F)(uf
p%). We then have the case (2) of Theorem 4.1. Observe also that Np(z) = (1
112)(1+ 122)/(1— i 2) (1 — i) and so A(f) = masc{|jul} = (3 -+ v/5)/2 with r(f) =
Another remark about the eigenvalues of AD is: The eigenvalues of AD are —1 and
vi = (=3 4++/5)/2; hence |u;| = |vs| but p; # v;.

It is important to know not only the rate of growth of the sequence {N(f*)} but
also the frequency with which the largest Nielsen number is encountered. The following
theorem shows that this sequence grows relatively dense. The following are variations
of Theorem 2.7, Proposition 2.8 and Corollary 2.9 of [2].

Theorem 4.4. Let f : M — M be a map on an infra-solvmanifold of type (R). If
A f) > 1, then there exist v > 0 and a natural number N such that for any m > N
there is an £ € {0,1,--- ,n(f) — 1} such that N(f™)/A(f)™ > 4.

_l’_
_l’_
2
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Proof. As in the proof of Theorem 4.1, for any k > 0, we can write N(f*) = 'y + Qu,
where

I = Af)F g:)pje%(k@ﬂ . = f‘j pi\E with || < A(f).
= i=n(f)+1
Then T'y/A(f)* = Z ) | pje?™R%)  Consider the following n(f) consecutive identities
TDere _ % ( ,€2i77(k9j)> em05) g =0, n(f)—1
A(f)F+e P Pi g T :

Let W =W(01,--- ,0,(s)) be the Vandermonde operator on cn(f)

1 1 - 1
e2imo1 e2im0: . e2i7r9n(f)
W(017 s, en(f)) — e2i7r(201) 627;71'(292) e €217T(29"(f))
emwou}%—nel €2quQ)—1w2 . emwgﬂf}_nemﬂ

and let 2y = ||[W~!{|~!. Then the vector § = (plezi“(k’el), e ,pn(f)e%“(kaﬂf))) satisfies

IWall > W75 = 29/17]l > 2v+/n(f). Thus there is at least one of the coordinates
of the vector Wp whose modulus is > 2v. That is, there is an ¢ € {0,1,--- ,n(f) — 1}
such that [Ty /A(f)FFE > 2.

On the other hand, since all |\;| < A(f), we have Qi/A(f)* — 0. Thus we can choose
N so large that m > N = [Q,,|/A(f)™ < 7.

In all, whenever m > N there is an £ € {0,1,--- ,n(f) — 1} such that

N(™) Tl Qe
> — > 2y —y=1.
AP S AT T T
This finishes the proof. O

Proposition 4.5. Let f : M — M be a map on an infra-solvmanifold of type (R) such
that X(f) > 1. Then for any € > 0, there exists N such that if N(f™)/\(f)™ > € for
m > N, then the Dold multiplicity I, (f) satisfies

INGIESOL

Proof. From the definition of Dold multiplicity Ix(f), we have
k
w0l = Su(5) vt = - | T u(f) v
d|k d|k,d#£k
Let C be any number such that 2M (f) < C. Then for any d > 0

r(f)
N(f) <ZW T <M (AT < A

Thus we have
1)l > N =0 D7 MHT > N — Crk)A(f)H?

d|k,d£k

k 7(k)

where 7(k) is the number of divisors of k. Since 7(k) < 2v/k, see [19, Ex 3.2.17], and
since A(f) > 1, we have limy,_,o, 7(k)/A(f)¥/? = 0, and so there exists an integer N such

AP
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that C7(k)/A(f)¥/? < €/2 for all k > N. Let m > N such that N(f™)/A(f)™ > €. The
above inequality induces the required inequality

(fm) 7(m) m

Theorem 4.4 and Proposition 4.5 imply immediately the following:

)™ O

Corollary 4.6. Let f : M — M be a map on an infra-solvmanifold of type (R) such
that A(f) > 1. Then there exist v > 0 and a natural number N such that if m > N then
there exists £ with 0 < £ < n(f) — 1 such that |Ly,o(f)|/Nf)™H > ~v/2. In particular

Imte(f) # 0 and so Apio(f) # 0.

Remark 4.7 (Compare with [19, Remark 3.1.60]). We state a little bit more about the
density of the set of algebraic periods A(f) = {m € N | A,,(f) # 0}. We consider the
notion of the lower density DA(f) of the set A(f) C N

DA(f) = liminf A D [1’k]).
k—ro0 k
By Corollary 4.6, when A(f) > 1, we have DA(f) > 1/n(f). On the other hand,
when A(f) > 1 by Theorem 4.1, the sequence {N(f*)/A(f)*} has the same limit points
as the periodic sequence {Z;Lifl) p;e2im (ko)
Theorem 4.4, we have DA(f) > 1/q.

of period ¢ = lem(q1, - -+ , @y(y)). Hence by

5. ESSENTIAL PERIODIC ORBITS

In this section, we shall give an estimate from below the number of essential periodic
orbits of maps on infra-solvmanifolds of type (R).
First of all, we recall the following;:

Theorem 5.1 ([32]). If f: M — M is a C'-map on a smooth compact manifold M
and {L(f*)} is unbounded, then the set of periodic points of f, Us Fix(f*), is infinite.

This theorem is not true for continuous maps. Consider the one-point compactifica-
tion of the map of the complex plane f(z) = 222/|z||. This is a continuous degree two
map of S? with only two periodic points. But L(f*) = 2k+1,

However, when M is an infra-solvmanifold of type (R), the theorem is true for all
continuous maps f on M. In fact using the averaging formula, we obtain

L(f* |_| > ldet(I — ADE)| = N(f").

AE@
If L(f*) is unbounded, then so is N(f*) and hence the number of essential fixed point
classes of all f* is infinite.

Remark 5.2. The inequality |L(f)| < N(f) for any maps f on an infra-solvmanifold
was proved in [34]. On the other hand, we can prove this inequality using averaging
formula for infra-solvmanifolds of type (R) as above and then using the fact [33, The-
orem 1] that every infra-solvmanifold is modeled in a canonical way on a solvable Lie
group of type (R). In fact, the term supersolvability is used in [33]. But it can be seen
easily from Lemma 2.1 that the supersolvable groups are the Lie groups of type (R).

Recall that any map f on an infra-solvmanifold of type (R) is homotopic to a map
f induced by an affine map (d, D). By [13, Proposition 9.3], every essential fixed point
class of f consists of a single element with index sign det(I — df,). Hence N(f) = N(f)
is the number of essential fixed point classes of f. It is a classical fact that a homotopy
between f and f induces a one-one correspondence between the fixed point classes of f
and those of f, which is index preserving. Consequently, we obtain

IL(fO) < N(F¥) < #Fix(f*).



THE NIELSEN NUMBERS OF ITERATIONS OF MAPS ON INFRA-SOLVMANIFOLDS 17

This induces the following conjectural inequality (see [31, 32]) for infra-solvmanifolds of
type (R): . .
lim sup — log |L(f*)| < limsup — log #Fix(f*).
k—o0 k k—o0 k

We denote by O(f, k) the set of all essential periodic orbits of f with length < k.
Thus

O(f, k) = {(F) | F is a essential fixed point class of f™ with m < k}.

Theorem 5.3. Let f be a map on an infra-solvmanifold of type (R). Suppose that the
sequence N(f*) is unbounded. Then there exists a natural number Ny such that
k — Ny

r(f) -
Proof. As mentioned earlier, we may assume that every essential fixed point class F of
any f* consists of a single element F = {z}. Denote by Fix.(f*) the set of essential
fixed point (class) of f*. Thus N(f*) = #Fix.(f*). Recalling also that f acts on the
set Fix.(f*) from the proof of [13, Theorem 11.4], we have

O(f,k) = {(x) | = is a essential periodic point of f with length < k}.

k> No = #0(f.k) =

Observe further that if x is an essential periodic point of f with least period p, then
x € Fixe(f?) if and only if p | g. The length of the orbit (z) of z is p, and

Fixe(fk) = U FiXe(fd)a
d|k
Fixe(f4) [ Fixe(f*) = Fixe(f5e4D).
Recalling that
An(f) = S (T NG = 5 () # (),
we define A,,(f, (z)) for any z € |J; Fixc(f?) to be
An(f, @) = S () #(t) A Fixe ()

m
k|lm

Then we have
An(H)= D An(f, (@)
()

z€Fixe (f™)
We begin with new notation. For a given integer £ > 0 and z € |, Fixc(f™), let
A(f k) ={m < k| An(f) # 0},
A(f (@) ={m | An(f, (x)) # O} .

Remark that if A,,(f) # 0 then there exists an essential periodic point x of f with
period m such that A,,(f, (z)) # 0. Consequently, we have

Af,ky e U Al (@)

(z)€O(f k)

Since N(f*) is unbounded, we have that A(f) > 1, see the observation just above
Theorem 3.2. By Corollary 4.6, there is Ny such that if n > Ny then there is ¢ with
n <i<n+n(f)—1such that A;(f) # 0. This leads to the estimate

BA(f, k) > oo

() Vk > Np.
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Assume that x has least period p. Then we have

An(f o) == 3 w(B) ey = 2 57 (2.

pln|m pln|m

Thus if m is not a multiple of p then by definition A,,(f, (z)) = 0. It is clear that
Ap(f,(x)) = p(1) =1, e, p € A(f,(z)). Because p | n | rp & n = r'p with ' | r,
we have A, (f, (z)) = 1/1 32 10 #(rp/m) = 1/r 37,0, p(r/r') which is 0 when and only
when r > 1. Consequently, A(f, (z)) = {p}.
In all, we obtain the required inequality
k — Ny
)

We consider the set of periodic points of f with minimal period &

Pu(f) = Fix(f*) = [J Fix(9).

dlk,d<k

< #A(f, k) < #O(f, k). O

It is clear that Fix(f) C Fix(f?), i.e., any fixed point class of f is naturally contained
in a unique fixed point class of f2. It is also known that Fixe( f) C Fixe(f?). We define

EP;(f) = Fixe fk U Fix.(f),
dlk,d<k

the set of essential periodic points of f with minimal period k. Because

Fix.(f*) = HEPd

dk

we have

N(f*) = #Fixc(f*) =Y #EPa(f)

d|k
Proposition 5.4. For every k > 0, we have
k
HEP,(f) = Zu<d> N(F) = ().
dlk
In particular, if I,(f) # 0 then N(f*) # 0.

Proof. We apply the Mobius inversion formula to the above identity and then we obtain
#EP,(f) = Zd|ku(§) N(f%), which is exactly I1(f) by its definition. O

Definition 5.5. We consider the mod 2 reduction of the Nielsen number N(f¥) of f*,
written N (f*). A positive integer k is a N -period of fif NO(fk+iy = N@(f1) for
all i > 1. We denote the minimal N®)-period of f by a(?(f).

Proposition 5.6 ([29, Proposition 1]). Let p be a prime number and let A be a square
matriz with entries in the field F,. Then there exists k with (p,k) =1 such that

tr AFH = tr A
for alli>1.

Recalling (N2): N(f*) = tr M¥ —tr M* = tr (M & —M_)¥, we can see easily that
the minimal N®-period a(®(f) always exists and must be an odd number.
Now we obtain a result which resembles [29, Theorem 2].
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Theorem 5.7. Let f be a map on an infra-solvmanifold of type (R). Let k > 0 be an
odd number Suppose that a@ (f)? | k or p | k where p is a prime such that p = 2°
mod a? (f) for some i > 0. Then

#{(z) |z € EP(f)} = #EP:(f)/k

18 even.

Proof. By Proposition 5.4, #EP;(f) = I;(f). Hence it is sufficient to show that Ij(f)
is even.
Let o = a®(f). Consider the case where o | k. If d | k and p(k/d) # 0 then it

follows that o | d. By the definition of a, N®)(f4) = N (f®). This induces that
— k 2 d (2)( £ —
Ik(f)zg;;M(d) )(f )f %kju( )—0 mod 2.

Assume p is a prime such that p | k and p = 2! mod « for some i > 0. Write k = pir
where (p,r) = 1. Then

5 =) | Zu(Z) i)

dlr el|p

L () (s N () + ) NP T)

= Ir(fpj) ~ L"),
Since a is a N@-period of [, it follows that the sequence {I.(f)}; is a-periodic in its
mod 2 reduction, i.e., I.(f/**) = I.(f*) mod 2 for all j > 1. Since p = 2" mod «a, we
have I.(fP°) = I.(f*") mod 2 for all s > 0. Recall [4, Proposition 5] : For any square

matrix B with entries in the field F, and for any j > 0, we have tr BY =tr B. Due to
this result, we obtain

Ny =tr (My & —M_)? =tr (My ®—-M_)=ND(f) mod 2
and it follows that I.(f2") = I,(f) mod 2. Consequently, we have

L) =L - L Y = L) - L) = () = L(f) =0 mod 2.
This finishes the proof. 0

6. HOMOTOPY MINIMAL PERIODS

In this section, we study (homotopy) minimal periods of maps f on infra-solvmanifolds
of type (R). We like to determine HPer(f) only from the knowledge of the sequence
{N(f*¥)}. This approach was used in [1, 15, 21] for torus maps, in [19] for maps of
compact nilmanifolds and certain solvmanifolds and in [25] for expanding maps on
infra-nilmanifolds. Recalling that N(f*) = Z:ifl) pidF and A(f) = max{|\]| | i =
1,---,7r(f)}, we define

Al phy ko NI pky L A
I>\i|=\>\|
Lemma 6.1. If \(f) > 1, then we have
lim su (fk) =1 ME)( £k
p im sup | N2 (£F)].
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Proof. We have

N(*) _ oa !
IO SR
M)k M)k v
Since for |A;| < A(f), lim AF/A(f)* = 0, it follows that the proof is completed. O

Theorem 6.2. Let f be a map on an infra-solvmanifold of type (R). Suppose that
the sequence N(f*) is unbounded. Then there exist m and an infinite sequence {p;} of
primes such that {mp;} C Per(f). Furthermore, {mp;} C HPer(f).

Proof. Since the sequence N (f k ) is unbounded, by Theorem 4.1, there exists ¢ such that
all \;/|\s| with |A\;| = A(f) are roots of unity of degree ¢, and the sequence { NA)(f*)}
is periodic and nonzero, because limsup;_ . [N*P)(f¥)] > 0 by Lemma 6.1. Conse-
quently, there exists m with 1 < m < ¢ such that N ) (f™) £ 0.

Let h = f™. Then A(h) = A(f™) = A(f)™ > 1. The periodicity N () (fmtta) =
NAD (™) induces NAP (p1Ha) = NXM)(p) for all £ > 0. By Lemma 6.1 or Theo-
rem 4.1, we can see that there exists v > 0 such that N(h'+%) > y\(h)!*% > 0 for all
¢ sufficiently large. From Proposition 4.5 it follows that the Dold multiplicity Iy, (h)
satisfies [11¢(h)| > (7/2)A(h)1% when ¢ is sufficiently large.

According to Dirichlet prime number theorem, since (1,q) = 1, there are infinitely
many primes p of the form 1+/¢g. Consider all primes p; satisfying |Ip, (h)| > (v/2)A(h)P:.
Remark that for a prime p,

1(h) = Y (%) N(h?) = u(p)N () + p(1)N () = N (k") = N (h)
dlp

= #Fix,(h?) — #Fix.(h) = #(Fix.(h?) — Fixe(h))

where the last identity follows from that fact that Fix.(h) C Fix.(h?). Since p is a
prime, the set Fix.(hP) — Fix.(h) consists of essential periodic points of A with minimal
period p.

Because |Ip,(h)| > 0, each p; is the minimal period of some essential periodic point
of h. Thus mp; is a period of f. This means that m;p; is the minimal period of f for
some m; with m; | m. Choose a subsequence {m;, } of the sequence {m;} bounded by
m which is constant, say mg. Consequently, the infinite sequence {mqp;, } consists of
minimal periods of f, or {mp;} C Per(f).

These arguments also work for all maps homotopic to f. Hence {mp;} C HPer(f),
which completes the proof. O

In the proof of Theorem 6.2, we have shown the following, which proves that the
algebraic period is a homotopy minimal period when it is a prime number.

Corollary 6.3. Let f be a map on an infra-solvmanifold of type (R). For all primes p,
if Ap(f) # 0 then p € HPer(f).

Corollary 6.4. Let f be a map on an infra-solvmanifold of type (R). If the sequence
{N(f*)} is strictly monotone increasing, then there exists N such that the set HPer(f)
contains all primes larger than N.

Proof. By the assumption, we have A\(f) > 1. Thus by Theorem 4.4, there exist v > 0
and N such that if k¥ > N then there exists £ = £(k) < r(f) such that N (f*=)/\(f)F* >
~. Then for all kK > N, the monotonicity induces

NGB NG NGy oy
AOE = XHE AMOEENE T AN~ A

Applying Proposition 4.5 with € = v/A(f)"), we see that I,(f) # 0 and so Ag(f) # 0

for all k sufficiently large. Now our assertion follows from Corollary 6.3. O
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We next recall the following:

Definition 6.5. A map f : M — M is essentially reducible if any fixed point class of
f* being contained in an essential fixed point class of f*" is essential, for any positive
integers k and n. The space M is essentially reducible if every map on M is essentially
reducible.

Lemma 6.6 ([1, Proposition 2.2]). Let f : M — M be an essentially reducible map. If
> N <N™),

= prime
then any map which is homotopic to f has a periodic point with minimal period m, i.e.,
m € HPer(f).

Lemma 6.7. Every infra-solvmanifold of type (R) is essentially reducible.

Proof. Let f: M — M be a map on an infra-solvmanifold M = II\S of type (R). Then
II fits a short exact sequence

l1—TI—I—&—1

where I' = II N S and the holonomy group ® of II naturally sits in Aut(S). By [24,
Lemma 2.1], we know that IT has a fully invariant subgroup A of finite index and A C T".
Therefore A C T' C S and M = A\S is a special solvmanifold which covers M. Since
A is a fully invariant subgroup of II, it follows that any map f : M — M has a lifting

f:M — M, and M is a regular covering of M. By [16, Corollary 4.5], f is essentially
reducible and then by [25, Proposition 2.4], f is essentially reducible. O

We can strengthen Corollary 6.4 as follows:

Proposition 6.8. Let f be a map on an infra-solvmanifold of type (R). Suppose that
the sequence {N(f*)} is strictly monotone increasing. Then:

(1) All primes belong to HPer(f).

(2) There exists N such that if p is a prime > N then {p" | n € N} C HPer(f).

We not only extend but also strengthen Corollary 6.4.
Proof. Observe that for any prime p

N(fP)y= Y N(f*)=N(f") = N(f) = L(f).

Z: prime

The strict monotonicity implies A,(f) = pI,(f) > 0, and hence p € HPer(f), which
proves (1).

Under the same assumption, we have shown in the proof of Corollary 6.4 that there
exists NV such that k > N = I(f) > 0. Let p be a prime > N and n € N. Then

NP Y = 3 N =S 1) - N(fP") = L () > 0.
n =0

£—: prime

By Lemma 6.6, we have p™ € HPer(f), which proves (2). O

In Remark 4.7, we observed about the lower density DA(f) of the set of algebraic
periods A(f) = {m € N | A,,(f) # 0}. We can consider as well the lower densities of
Per(f) and HPer(f), see also [17] and [26]:

 Palf)NLE)
DP(f) = liminf A )

k—ro0
DH(f) = limint 7 TP LK),

k—o0 k
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Since Ii(f) = #EPx(f) by Proposition 5.4, it follows that A(f) C HPer(f) C Per(f).
Hence we have DA(f) < DH(f) < DP(f).

Corollary 6.9. Let f be a map on an infra-solvmanifold of type (R). Suppose that
the sequence {N(f*)} is strictly monotone increasing. Then HPer(f) is cofinite and
DA(f) = DH(f) = DP(f) = 1.

Proof. Under the same assumption, we have shown in the proof of Corollary 6.4 that
there exists N such that if & > N then Ij(f) > 0. This means EPy(f) is nonempty by
Proposition 5.4 and hence k € HPer(f). O

Now we can prove the main result of [25].

Corollary 6.10 ([23, Theorem 4.6], [25, Theorem 3.2]). Let f be an expanding map on
an infra-nilmanifold. Then HPer(f) is cofinite.

Proof. Since f is expanding, we have that A(f) = sp(/\ D«) > 1. For any k > 0, we can
write N(f*) = Ty + Q, where

n(f) r(f)
Te = AP D pe®™®0) | = Y pidf with [\ < A(f).
j=1 i=n(f)+1

Here €, — 0 and I'y, — oo as k — oo. This implies that N(f*) is eventually strictly
monotone increasing. We can use Corollary 6.4 and then Corollary 6.9 to conclude the
assertion. O
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