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Abstract

In this paper we investigate the connection between asymptotic expan­
sions of solutions to elliptic equations near different points of singularities
of the underlying manifold. "Ve propose the procedure of computation of
the asymptotic expansion of solution at any point of singularity via the
asymptotics given at one (fixed) of these points.

Introduction

One of the main problenls of the tlteory of differential equations on manifolds
with singularities is the investigation of the behavior of solutions near singular
points of the manifold. In fact, this probleITI is strongly connected with the other
main problem of the theory - the solvability problem. Actually, the knowledge
of the asymptotics of solutions in a neighborhood of the singularity set allows
one to give the adequate functional spaces in which the finiteness theorem for
the corresponding operator can be proved.

It is well-known (see, for example, [1]) that a solution to homogeneous elliptic
equation near singular (say, conical) point has the so-called conormal asymptotic

1



expansion, that is, the expansion of the form

mir

U (r, x) ~ L rS/c L akj (x) In jr,
k j;;;:;O

w here (r, x) are spedal coordinates in a neighborhood of the conical point cor­
responding to the representation

M= ([0,1] xX)/({O} xX)

of the manifold M near this point; r E [0,1], x E X. Far less known is the
fact that the conormal asynlptotics of solutians near points of singularity are
strongly connected with one anotber, nanlely, that the asymptotics near one of
these points uniquely detennines the asymptotics near all of them (see [2]).

Hence, the probleIn arises to find out the method allowing to compute the
asymptotics near any point of singularity provided that such an asymptotics is
known near sanle (fixed) point. \Ve remark that the solution of this problem,
being of interest by itself, allows one to find out the exact /unctional spaces
in which the considered equation is uniquely solvable (or, at least, possesses a
Fredholm property).

The outline of the paper is as folIows:
In the first section, we present silnple exalnples which are aimed at the moti­

vation of the general statenlent of the problenl. Nalnely, in the first subsection,
tbe connection between asymptotic expansion of solutions at singular points and
correct statements of problenls for tohe corresponding operators is illustrated.
The second subsection illustrates (on the exalllple) the mechanism 0/ transporta­
tion of asymptotic expansions [rOl11 one singular point to the another throug tbe
complex domain.

The second section contains (as this follows frolll its title) the formulation of
the main problem of investigation in this paper.

Later Oll, the two last sections contain the investigation of the above stated
problelTI for the two-dinlensional and ITIultidilllensional cases, respectively. The
reason of the distinct consideration of the two-dimensional case is that in this case
the main ideas of the computational algorythm are not darkened by thechnical
difficulties. Hoth tbese sections are divided, in turn, into the two subsections,
tbe first aimed at the consideration of the propagation of singularities along
the regular cOI11ponent of the singularity set of the solution, and the second
on the consideration of "junlps" of the asYI11ptotic expansion from one of such
components to the another.
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1 Examples

1.1 Singularities of solutions to a homogeneous equation
and correct statements of the problem

As it was already told in the introduction, the aim of this paper is to investigate
global aspects of asymptotic theory of partial differential equations on manifolds
with singularities. Namely, if the manifold M has two or more connected com­
ponents of its singularity set and Ci is an elliptic partial differential operator on
M, then the problem is to compute the asymptotic expansion of solution to the
homogeneous equation

Ciu = 0 (1)

on the whole singularity set of !d provided that this expansion is known on Olle
of the connected conlponents of this set.

The stated problem has ilnportant applications to investigation of properties
of operator Ci in the weighted Sobolev spaces H; (A1) (see, e.g. (2]). Let us
illustrate the connection between asym ptotic behavior of solut ions to (1) and
the investigation of the operator

on a simple exanlple (here rn is the order of the operator Ci).
Consider the operator

(2)

given on the surface of the spindIe S (see Figure 1). Here x is a coordinate along
the axis of the spinelle, -1 < x < 1 anel 'P is the coordinate corresponding to the
rotation around this axis. It is easy to check that the full system of solutions to
equation (1) for such an operator is

uf (x,.,,) = (} ±~r e±ik'P, k t" 0,

uo (x, 'P) = A + Bin I i: ~ ,
(3)

where k is an integer. So, one can see that if a solution to equation (1) behaves
as (1 +x)k at Olle of the vertexes x = -1of the spindie, then this solution
necessarily behaves as (1 - x)-k at the other its vertex x = 1. This fact allows
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Figure 1. The spindIe.

one, in particular, to investigate the correct statements of the problem for the
operator

al = ((1- x2
) :x)\ :;2 :H; (S) --"' H; (S) (4)

(to be short, we had olnitted the factor (1 - X 2 )-2 in the expression (2) for the
operator ad considered in the weighted Sobolev spaces H; (5), / = (/0, i'd. We
recall that the latter spaces are defined with the help of the norm

1 211"

lIull~.~ = JJ(1 + xr2
-ro (1 - x )-2~1 1(1 - ad'/2 u (x, ep) 1

2

dep (1 ~XX2)"
-I 0

Here i'o and i'l are weights at points x = -1 and x = 1, respectively.
One of the requirements for operator (4) to be an isomorphism is that the

kerneI of this operator must vanish. From the other hand, the functions ut (x, c,o)
given by (3) belong to spaces H; (5) for i'o < k, /1 < -k (and arbitrary values of
s). From this fact it follows that for operator (4) to have zero kernel it is necessary
to require that the interval (/0, -i'd does not contain any integer k. Actually,
if we fix the value i'o, then all elelllents u; (x, c.p) of the kernel with k > /0 will
belong to the space H; (S) at the left vertex x = -1 of the spindie S. Later
on, as it was already mentioned, the behavior of the solution u; (x, er') at the
left vertex prescribes the behavior of this solution at the right vertex. Namely,
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Figure 2. KerneI, cokernel, anel the isomorphisIll region of tbe operator a.

if the solution is of order (1 +x)k at x = -1, then it is of order (1 - x) -k at
x = 1. Hence, for operator (4) to have the zero kerneI, it is necessary to require
that all elements of its kernel ut (x, 'P) w hich belang to the space H; (S) at the
left vertex x = -1 do not belong to this space at the right vertex x = 1 of the
spindie S. This means that any value of k subject to the inequality k > 10 must
satisfy the condition k ~ -,I, because the latter inequality is equivalent ta the
fact that the functian ut (x, 'P) does not belang Lo the space H; (S) at x = 1.
So, the domain on the plane ('o, Id where the operator ahas zero kernel is such
as it is shown on Figure 2 (the upper clashed region).

To investigate the cokernel of this operator we remark that the adjoint ope­
rator1

--. . H-.,+m -+ H-~
a • _ry _ry

is given by the san1e expression. So, the dOIllain on the plane (/0, 11)' where
operator (4) has zero cokernel is such as it is drawn on Figure 2 (the lower
dashed region).

1 with respect to the paring

1 2111'

(u, v) = JJu (x, 1") v (x, 1") dl" (1 :xx2 )

-1 0
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(5)

Now, combining the two obtained results one can construct the isomorphism
region for the considered operator which is dashed twice on Figure 2.

The above analysis shows that the dependence between the asymptotic be­
havior of one and the same solution at different points of singularity of the
underlying manifold affects the correct statements of the problems of the corre­
sponding differential operator. This paper is aimed at the investigation of this
dependence.

Further, we are mostly interested in the investigation of partial differential
equations on manifolds with singularities of the wedge and edge types (see [1]).
Since all these singularities can be obtained with the help of the operation of
constructing a cone over a manifold and taking direct product with a smooth
manifold, it suffices to investigate the above stated problem on manifolds with
conical singularities. For silllplicity, we shall consider here singularities of the
type of the circular cones in different dimensions though Inethods developed in
this paper seeIll to be applicable to the conical singularities of an arbitrary type.

1.2 Propagation of singularities. Metamorphosis

Here, on simple examples, we illustrate that the investigation of the above stated
problem requires the analytic continualion of the differential equation in question
into the complex space.

1. In this example, we shall show that the singularities of solutions, being
located at points of singularities of the underlying I11anifold in the real domain,
propagate to the cOlllplex dOlllain along the degeneration set of the analytic
continuation of the considered differential operator. To do this, let us consider
the Laplace eqllation on the surface of the two-dilnensional cone C:

1 a ( 8u) c
2 82u

;: 81' r 8,1' + r 2 8<p2 = O.

Here (r, <p) are polar coordinates on the surface of the cone, and c is a constant
determined by the opening of the cone.

It is easy to see that the full systelll of solutions to equation (5) is

ut (r, <p) = r±ckeikr.p , k E Z.

The latter formula shows that these solutions have singularities on the set

r
2 = x

2 + y2 = 0

in the complexification of the cone C (we use here the coordinates

(x,y) = (rcos<p,rsin<p) E C 2

6
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on the above mentioned complexification).
Certainly, this observation is based on the fact that for our simple example

we have written down the solutions to the homogelleous equation in the explicit
form. Since for general equations on manifolds with singularities it is not possible,
one has to understand the reason of appearence of the singularities in terms of
the considered operators. To do this, we notice that, due to the relations

(7)

z = x + iy, ( = x - iy, equation (5) can be rewritten in the form

(8)

We remark that the set of singularities x 2 + y2 = 0 of solutions to equation (5)
exactly coinsides with the degeneration set of this equation. Clearly, this fact is
not an occasional one, and we shall see below that the singularities 0/ solution
propagate /rom singula1' points 0/ the 7nanzjold info the c01nplex domain along the
degeneration set 0/ the considered equation. Hence, one can imagine that if the
equation has more than one point of singularity, then the asymptotic expansion
comes from one of these point to another through the comp/ex domain along
the degeneration set 0/ the corresponding equation. This guess ean be confirmed
with the help of the following exalnplc which is a slight modifieation of the above
considered one.

2. Consider the equation

(9)

as an equation on the surface of the spindie. In this case oue of the vertexes of the
spindie corresponds to the origin in the plane (x, y), and the other corresponds
ta infinity. We remark that the variable change p = 1Ir does not change the
form of equation (9). In this exanlple, the singular points r = 0 and r = 00 are
not connected by the set of singularities of the solution on the (real) spindie, but
are lying on one and the salne eonneeted set {z = O} U {( = O} of singularities
of solution in the cOInplexification of this spindie. Such a situation is drawn
schematically on Figure 3. So, the form of the asymptatic expansion at one
of (real) points of singularities ean be found out by that at the other if the
propagation of a singularity along the degeneration set (Inore exactly, along the
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Figure 3. Degeneration set (simple configuration).

regular part of the degeneration set) of the equation under consideration can be
computed. The luethod of this C0l11putation will be described below.

3. However , for luore general equations the situation can be quite different.
Namely, in the latter example the degeneration set of solutions to homogeneous
equation was a reg11.lar cOlnplex manifold apart froln the real singular points
of Al. So, to cOlnpute the asymptotic expansion at one of singular points via
that at the other it was sufficient to exalnine the propagation of singularities
along this regular part. In general, however, the regular part of the degeneration
set of the equation (and, hence, the regular part of the set of singularities of
solutions) can split into different connected components , and points of singularity
of the manifold Al can lye on different connected eomponents. To illustrate
that this situation ean really take plaee, let us turn our n1ind onee more to the
eonsideration of equation (2) on the surfaee of the spindie. The degeneration set
for this equation can be decolnposed into two irreducible components x = 1 and
x = -1. Consequently, the regular part of this degeneration set splits into the
(disjoint ) union of two connected e0l11pOnents (these two components intersect
each other at infinity; this fact is clearly quite occasional). It is clear that one of
the two points of singularity of the spinelle lyes on one of these components, and
the other point of singularity lyes on the other of them; this situation is drawn
sehematieally on Figure 4.

Bence, if one knows the asymptotic expansion at one of the vertexes, say,
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Components 0/the
degeneration set

Real space

,
~\

Figure 4. Degeneration set (general case).

x = 1, then to compute the corresponding asynlptotic expansion at the other
vertex one has:

1) to investigate the propagation of singularity along the component x = 1
of the degeneration set;

2) to examine the "jump" of the singularity frotTI one of the connected COffi­
ponents to the other. Clearly, this junIp takes place at the point A of intersection
of the two irreducible COlTIpOnents x = 1 and x = -1 of the degeneration set
(see Figure 4. So, to exaluine the 111entioned jUlnp one has to investigate the
asymptotic expansion of the solution near the point A and then to find out the
asymptotic expansion of the solution at points of the component x = -1 near
the point A;

3) to investigate the propagation of singularity along the component x = -1
from A to tbe vertex x = -1.

Thus, in general, the following two problems arise:
First,to investigate the propagation of singularities along regular parts of

degeneration sets of the equation in question.
Second, to find out the asYluptotic expansion of a singularity of solution on

one of the cOlllponents of its singularity set provided that tbe corresponding
asymptotic expansion is known on the other cOlllponent. This problem can be
solved by investigation of asYlllptotic expansion of solution in a neighborhood of
the intersection of the two C0I11pOnents in question.

In the rest part of the paper we shall consider hoth these problems. To make
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the presentation more clear, we shall consider first the two-dimensional case.

2 General Statement

So, the general statement of the problem is as follows:
Let M be an n-dimensional real-analytic manifold which is a real part of

a complex-analytic manifold Me. Suppose that the manifold M has a finite
number of singular points ml, ... ,mk each being a point of conical type. This
means that in a neighborhood Uj of each point 111.j, j = 1, ... , k the manifold M
is diffeomorphic to the cone

(10)

where sn-l is an n - I-dinlensional unit sphere in the Cartesian space Rn. So,
near each point mi there exists a "coordinate systeln" (r, w), r E (0, 1), w E sn-I.
We suppose that this coordinate systenl is compatible with the complex extension
Ale of the manifold A'!, that is, that (r,w), r E Dt, w E Qn-l forms a coordinate
system in a neighborhood of the point 1ni E Ale. Here by Qn-l we denote the
complex quadrics

and by D1 we denote the unit disk

D1 = {r E Cl Irl < ]}

in the cOlnplex plane C. So, we suppose that the complex manifold Me IS

biholomorphic to the cOlnplex cone

Consider an elliptic differential operator a of order m on the manifold M.
This means, in particular, that this operator has the fornl

(11)

near each regular point of At and the farnl

(12)
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near eaeh singular point ffij, where bj are differential operators on the eom­
plex quadries Qn-l (we use here the above mentioned representation (10) of
the manifold M). Suppose that the operator a can be analytieally eontinued
on the manifold Me; t he eontinuation is giyen by t he same form ulas (11) and
(12), where aa (x) are now holOiTIorphic functions of the variable x E C n , and
bj are differential operators on the eomplex quadries Qn-l with holomorphie
coefficients.

Now the problem is to investigate the asymptotic expansion 0/ analytic con­
tinuations 0/ solutions to the h07nogeneous equation

au = 0 (13)

to the complex manifold Aie near the degeneration set 0/ the operator a.
In partieular, we must investigate the propagation of singularities along the

degeneration set of the operator anel the "illetamorphosis" of the singularity
which takes plaee at points of interseetion of different components of the degen­
eration set.

3 Two-Dimensional Case

3.1 Propagation of singularities

It is well-known (see [1], [3]) that, under the above conditions, the asymptotics
of solutions to (13) near each singular point of the Inanifold Al has the form

mk

U (r, c.p) :::: L 7'S... L akj (c.p) In jr
k j=O

(conormal asymptotics), where r is a radial variable and ep is the angular variable
along the direetrix of the eone and the outer SUITI is taken over the set of values
of s = Sk having a finite intersection wi th any half-plane Re s < A for any real
value of A.

In this subsection, we shall investigate how asymptotics of the conormal
type propagate along the degeneration set of equation (13). Sinee in the twO­
dimensional ease the sphere sn-l is siluply a circle, we shall use the notation
c.p instead of w for the coordinate on this circle. Hence, equation (13) can be
rewritten in the form

...... ( a a)au = a r, c.p, r ßr' 8<p U = o.
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This equation can be considered as an equation on the real two-dimensional plane
R 2 with the coordinates X, y:

x = r cos Cf', y = r Sin Cf'

(sure, this equation degenerates at the origin). As above, we suppose that the
coefficients of the obtained equation can be analytically continued to the complex
domain.

To describe the degeneration set of the considered equation, it is convenient
to introduce the complex variables z = x + iy, ( = x - iy. Using the relations
(7) one can rewrite the equation in the form

(14)

with SOlne synlbol GI (z, (, p, q). The reader can notke that the latter equation
is an equation of the Fuchs type in the variables (z, () with the degeneration
set {z = O} U {( = O}. Hence, the singulal'ities of solutions to this equation are
posited on its degeneration set (see [4], [5]).

Ta be definite, let usO considcr the equation near the set z = 0; in this case
z is asnlall complex variable anel ( is separated frOITI zero. Thus, it is useful to
rewrite the equation as2

(15)

For example, equation (5) have the following form in the variables (x, y):

( 2 2 2) Ej2 u ( 2) 8
2

U ( 2 2 2) {)2 u ( 2) (8u 8U)
x + c y 8x2 + 2 1- c 8x8y + c x + Y 8y2 + 1 - c x 8x + y 8y =O.

In the variables (Z,() we obtain

If one examines this equation near the set Z =0 (under the assumption that ( is not small),
tbe equation ean be rewrilten as

{ (1 - c') (z:z)' + 2( (1 + c') (z:z) (:c) +(' (1 - c') (:c) ,
+( (1 - c') (:c) }u = O.

2In what follows we omit subscripls of symbols. So, one and the same letter a ean denote
different symbols.
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Let us search for solutions to equation (15) in the form

k

u(z,() = ZSLUj(z,()lnjz,
j;Q

where Uj (z, () are regular functions of z near the origin:

00

Uj (z,() = L Ujl «() /.
{;Q

Taking into account the relations

~..

+ L jUj (z, () In j-l Z,

j;1

(16)

(17)

k ( 8 8).2;: Gi z, (, z 8z' o( Ui (z, (), (18)
1;)+1

j = k - 1, ... ,0.

one cau write down the result of the substitution of (16) ioto (15) in the form

a(z",s+z:z,:,)udz,Cl = 0,

a(z",S+z:z,:C)Uj(z,Cl =

Here ai (z, (, zß/az, a/a() are differential operators of order m + j - k with
holomorphic in (z, () coefficients.

Let us consider the first of equations (18). Expanding the coefficients of the
operator a (z, (, S + za/az, a/a() into the Taylor series in z and substituting
(17) for Uk (z, (), we arrive at the recurrent systeol of equations for Ukl «():

a~ ((, S, ~) Uw (Cl = 0,

a~ (" S + /, :,) Ukl (Cl = - t a;_ j (" S + j, ~) Ukj (Cl , (19)

1= 1,2, ....

13



Here aj «(, p, q) are Taylor coefficients of the symbol a (z, (, p, q) of the operator
a (z, (, z8/8z, (B/ß():

00

a (z, (,p, q) = L ziaj «(, p, q).
j=O

In particular,
a~«(,p,q) = a(O,(,p,q).

The recurrent systeln of equations for Taylor coefficients of funetions Uj (z, () ean
be obtained quite similar to systeln (19). Thus, one ean see that to construet the
asymptotic expansion of the fonn (15) to equation (16) it is sufficient to salve
an ordinary differential equation for eaeh coefficient of this expansion.

3.2 Asymptotics near the intersection

In this subseetion we investigate the asymptotie expansion of solutions to equa­
tion (13) near a point tl10 E A1c of interseetion of different eomponents of de­
generation set. We require that thc following condition is valid:

Condition 1 The considered point 1no is a (proper) point of transversal inter­
seetion of two regular e0l11pOnents of the degeneration set of the equation in
question.

Under this condition, it is clear that the equation can be rewritten in the
form (14) near the point 1no. However, unlike the previous subseetion, one cannot
neglect the factor ( in the operator (a / 8( since at the point 1no one has z = ( = O.

Let us show that the asYlnptotics of a solution to equation (14) has a specific
form in a neighborhood of the point mo.

Lemma 1 Let u (z, () be a solution to equation (14) near z = ( = 0 having the
form (16) 0/ conorrnal aSY111ptotics apart f1'om the origin. Then this solution has
an asymptotic expansion 0/ the !oMn

k1 k2

U (z, () = ZSl (S2 L L Ujl (z, () In i z In '(
j=o 1=0

with Ujl (z, () regular near tl1o.

14
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Proof. For simplicity, we shall consider the case when both multiplicities
are equal to 1. So, for the solution u (z, () we have the following asymptotic
expanSIons:

u(z,()

u (z, ()

= ZSI [Ul (z, () In z + Uo (z, ()] for z -+ 0,1(1 > €,

(8) [U'l (z, () In ( + u~ (z, ()] for ( -+ 0, Izl > € (21 )

(for any posi ti ve c) wi th regular functions U j (z, (), uj (z, (), j = 1, 2. Denote

v (z, () = Z-SI(-~U (z, ().

This function have the form

v (z, () = Ul (z, () In z + uo (z, () for z -+ 0, 1(1 > c,

v(z,() - u;(z,()ln(+u~(z,()for(-+O,lzl>c.

Hence, the function

VI (z, () = v (z, () - UI (z, () In z - u; (z, () In (

possesses the following properties:
1) It is univalent both around the Inanifold z = 0 and ( = O.
2) It has at most logarithnlic growth a.s z -+ 0 and ( -4 O.
Hence, VI (z, () is a holOinorphic function in adeleted neighborhood of the

point mo. Using the t.heorenl on removable singularity, we obtain that this
function is regular at the point 1no as weIl. This proves the Lenlma.

Now let us search for soilltions to equation (]4) in the fornl (20). Taking into
account the relations

Du {k
l

k
2

[ ( a) ]zoz = ZSI(S, f;~ Sl+Zoz Ujl(Z,() lnjzln '(

+ ~~jUjl(Z,()lnj-lz In 1
(},

]5



we arrive at the following recurrent systeln of equations for the unknown coeffi­
deuts Ujl (z, () of asymptotic expansion (20):

a (Z,(,SI +Z:Z,S2 +':,) Uk,k, (z,O = 0,

a (Z, " S. + Z:Z' S2 +(:,) Ujl (z, 0 =

~a (Z,(,z:z,':J Uj'I'(z,O

(22)

where aj'l' (z, (, z8/az, Ca/ac) are differential operators of order m+ j +/- j' -I'
and the summation is taken over all indices j', L' such that j' ~ j, I' ~ I, (j', L') #
(j, I). Let us consider the first of equat.ions (22). vVe shall search for a solution
to this equation in the fornl of the Taylor series

00

UJ... k 2 (z, () = ~ u~f~zO(ß.
o,ß=O

Substituting this relation into the first frOln equations (22) and expanding the
coefficients of the operator a (z, (, SI + za/az, S'J + (a/a() in powers of z and (,
we obtain

a~ (SI, S2) UZ~\'2 = 0,

a~o (SI + 0:, S2 + ß) U~~k2 =

~ a~-"Y,ß-8(51 +"S2+,s)UZ;k2 '

h,6)«o,ß)

(23)

Here a~8 (p, q) are the Tay101' coefficients of the synlhol H (z, (, p, q) in powers of
z and (:

a (z, (,p, q) = ~ a~8 (]J, q) Z"Y(b.

Ih,b)l$m

So, there exists a nontrivial solution to equation (14) of the form (20) only in
the case when the nUlllbers 51 anel S2 satisfy the following equation

(24)

The last equation is a honlogeneous algebraic equation with respect to (SI, 8 2 )

of order m. Using this equation one can find the possible values of the ratio
8 1/52 necessary for equation (14) to possess a solution of the form (20). These
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values allow to COInpute the power of ( in asYInptotic expansions (21) if the
corresponding power of z is known.

The rest equation in (23) can be solved in a quite similar manner if the
following nondegeneracy condition is valid:

Condition 2 The pair (SI + 0', S2 + ß) is not a solution to equation (24) except
for (Ci, ß) = O.

We remark that the latter condition takes place in the generic position.

Similar considerations can be also used for computing asymptotic expansions of 8OIutions
to differential equations near singular points of tbe manifold. We shaH ilIustrate this on the
example of tbe equation (8):

Searching for solutions to this eqnation in the form

u = ZO(ß

we are lead to the foHowi ng eqnation for (0 I ß):

(I - c2) 0
2 + 2 (I + c2) aß + (1- c2) ß2 = O.

The ratio olß can be computed from this eqllation:

(} I+c 0 I-e
-=--- or -=---.
ß I-e ß I+e

Taking into account that we are searching for solutions to (8) which are univalent on the real
space z =C, we obtain the second equation for determining the numbers 0' and ß:

(} - ß = k E Z.

The last two equations give 1IS possible values of 0 and ß:

{

_(e+l)k
(\ - 2 I

ß - (e-I)k
- 2 '

or

{

__ (e-I)k
(\ - 2 I

ß
__ (e+l)k
- 2'

The reader can easily verify that all the obtained values of (er, ß) really determine univalent
solutions to equation (8). Actually, the corresponding solutiolls to the homogeneous equation
are

and

The latter expressions correspond to formula (6) above.
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(27)

4 Multidimensional case

In this section, we consider asYlnptotic expansions of solutions to the homoge­
neous equation (1) for some operator of the corner type (12) on n-dimensional
manifold M with conical singularities. Similar to the previous section, we divide
tbe presentation into two parts: investigation of the propagation of singularities
along regular parts of the degeneration set of the considered equation and in­
vestigation of "metamorphosis" of singularity on the intersection points of these
regular parts.

4.1 Propagation of singularities

Considerations similar to those of Subsection 3.1 show that the complexification
of the equation of the corner type in the cOIllplex dOlnain in a neighborhood of
any point fronl regular part of its degeneration set rearls

a(z, (, z:z' :() u = 0, (25)

where z E C is an one-dilllensional complex variable transversal to the degener­
ation set at the considered point and ( = ((I,' .. , (n-l) E Cn- I are coordinates
on the degeneration set itself.

Let us search for solutions to this equation in the form

k

u (z, () = zS L Uj (z, () In j z (26)
j=O

with same regular functions Uj (z, (). As above, we search the functions Uj (z, ()
in the form of tbe Taylor series in the variable z:

00

Uj (z, () = L ZIUil (() .

1=0

Substituting relations (26) and (27) into equation (25) and equating the coeffi­
eients of powers of z, we arrive at the following recurrent systeIll of equations for
the Taylor coefficients Ukj (() of the lllain tenll Uk (z, () of expansion (26):

a~ ((, S + [, ~) U kl (Cl

1= 1,2, ... ,
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and similar recurrent systenls for Taylor coefficients of the rest terms Uj (z, (),
j = 0, ... , k - 1. Here, as above, aj ((,p, q) are the Taylor coefficients of the full
symbol a (z, (,p, q) in the variable z:

00

a (z, ( , p, q) = L ziaj ((, p, q) .
j=O

We remark that in the rTIultidilnensional case the Taylor coefficients Uij (() are
to be determined from a partial differential equation along the components of
the degeneration set of equation (25).

4.2 Asymptotics near the intersection

Here we investigate the asyrTIptotics of solutions near the intersection of different
components of the degeneration set of the equation considered. The geomet­
rical situation in this case is quit.e different fronl that in the two-dimensional
one. The matter is that in the rllultiditnensional case the intersection between
different components of the degeneration set is a complex-analytic manifold of
non-zero dimension whereas in the two-dilllensional case this intersection is sim­
ply a discrete set of points.

So, let us consider two subrnanifolds XI anel X 2 in the complexification Me
which are two irreducible cOlllponents of the degeneration set of the operator Ci
anel suppose that these two tnanifolds intersect each other transversely at points
of their intersection Xl n X 2 • Then, silnilar to the results of the previous section,
one can rewrite the operator a in the fonn

where the coordinates (z, (, 77) are chosen in such a way that z = 0 and ( = 0
are equations of the Il1anifolds )[1 anel x 2 , correspondingly.

Suppose that u (z, (,77) is a solution to the hOlllogeneous equation

(28)

such that u (z, (,1]) has the asYlllptotic expansion of the conormal type near hoth
Xl anel X 2 • This l11eans that

(29)
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with regular funetions Uj (z, (, 1]) near Xl apart frOill X 2 (that is, for lzl < cl

and 1(1 > C2 for same positive Cl and C2) and

k';J

U (z, ( , 7]) = (~ L vj (Z, ( , 1] ) In j (

j=O

(30)

wi th regular funet ions v j (z, ( , 7]) near X 2 apart from Xl. Then, similar to the
result of Subseetion 3.2, the following affirmation takes place:

Lemma 2 Let u (z, (,7]) be a solution to equation (28) having asymptotic expan­
sions (29) and (30) at points 01 Xl and X2 , correspondingly. Then this solution
has the asymptotic expansion 0/ th e /oNn

kJ k 2

U (z, ( , 7]) = ZSl (5} L L U jl (z, ( , 7] ) In j z In j (

j=o 1=0

(31 )

with regular lunetiolls lljl (z, (, 1]) near lhe inlersection Xl n X 2 , that is, at the
points with Z = ( = o.

The proof of this leillilla is quite sill1ilar to that of Lellllna 1 in Subsection
3.2.

To establish the connectian between nUlllbers SI and S2 let us search for a

solution to equation (28) in the fonD (31). The substitution of expansion (31)
into equation (28) goes quite silnilar ta that in Subsection 3.2. The result is

where aj/I' (z, e 1], z8/ßz, (8/8e 8/8'1]) are differential operators of order m + j +
I - j' - 1'. Sinlilar to the two-dimensional case we can construct the recurrent
system of equations for the Taylor coefficien ts ujf (1]) of the functiori U jl (z, (,7])
in (z,():

00

Ujf (z,(,7]) = L u;f (7]) zQ(ß.
o,ß=O
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For the main tenn Ukt k2 (z, (, 1]) this systenl reads

a~ (1,81> 82, :,,) U'?::k2 ('I) = 0,

a~ ('I' 8d a, 8d ß,~) U~~k, = (32)

L a~-.,.ß-6 ('1,8. + 'Y,82 + <5, :'1) Uk~k, ('I) ,
("'1 ,S)<(0 ,ß)

where, as above, a~o (1],Pz'P"PTI) are the Taylor coefficients of the symbol a in
powers of z and (:

a (z, ( , Tl, pz , p, , PTI) = L a~o ('1, pz , P, , PTI) z"f(0.
Ih,S)I:$m

Clearly, similar systelns can be obtained for a11 coefficients ujf (1]).
Thus, for coefficients ujf (-'1) \....e have obtained a recurrent system of differen­

tial equations of the form (32). Since the first equation in this system (see (32))
is a homogeneous one (its right-hand part vanishcs), for this system to admit
nontrivial solutions it is necessary that the hOillogeneous equation

a:ro ('1,81> 52, :'1) U = 0

on the manifold XI n X 2 has a non-zero univalent solution for the given values
of SI, 52- This is exactly the coudition for detenllining the connection between
values of SI and S2 on the two COlllpollents XI and X 2 of the degeneration set
of the considered equatioll.

Remark 1 This condition can be fonllulated in the Inore explicit terms if there
exists areal-type cOIllpact sublnallifold X of the intersection Xl nX2 such that the
operator expression a.~ (11, SI, S2, Dj D.,,) deternlines an elliptic analytic operator
family on X \vith paranleters SI and S'J' Denote by L: the set in the plane
C 2 with coordinates (SI,S'J) such that the operator family a'oo (Tl,S., S'J,8j8f/)
is invertible outside E. Then the connection between 8 1 and 52 is described by
the inclusion (SI, S'J) E L:.
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