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Abstract

In this paper we investigate the connection between asymptotic expan-
sions of solutions to elliptic equations near different points of singularities
of the underlying manifold. We propose the procedure of computation of
the asymptotic expansion of solution at any point of singularity via the
asymptotics given at one (fixed) of these points.

Introduction

One of the main problems of the theory of differential equations on manifolds
with singularities is the investigation of the behavior of solutions near singular
points of the manifold. In fact, this problem is strongly connected with the other
main problem of the theory — the solvability problem. Actually, the knowledge
of the asymptotics of solutions in a neighborhood of the singularity set allows
one to give the adequate functional spaces in which the finiteness theorem for
the corresponding operator can be proved.

It is well-known (see, for example, [1]) that a solution to homogeneous elliptic
equation near singular (say, conical) point has the so-called conormal asymptotic



ezpansion, that is, the expansion of the form

g
u(r,z) ~ er“ Z agj (z)In’r,
k

1=0

where (r, z) are special coordinates in a neighborhood of the conical point cor-
responding to the representation

M = ([0,1] x X) / ({0} x X)

of the manifold M near this point; r € [0,1}, z € X. Far less known is the
fact that the conormal asymptotics of solutions near points of singularity are
strongly connected with one another, namely, that the asymptotics near one of
these points uniquely determines the asymptotics near all of them (see [2]).

Hence, the problem arises to find out the method allowing to compute the
asymptotics near any point of singularity provided that such an asymptotics is
known near some (fixed) point. We remark that the solution of this problem,
being of interest by itself, allows one to find out the ezact functional spaces
in which the considered equation is uniquely solvable (or, at least, possesses a
Fredholm property).

The outline of the paper is as follows:

In the first section, we present simple examples which are aimed at the moti-
vation of the general statement of the problem. Namely, in the first subsection,
the connection between asymptotic expansion of solutions at singular points and
correct statements of problems for the corresponding operators is illustrated.
The second subsection illustrates (on the example) the mechanism of transporta-
tion of asymptotic expansions from one singular point to the another throug the
complex domain.

The second section contains (as this follows from its title) the formulation of
the main problem of investigation in this paper.

Later on, the two last sections contain the investigation of the above stated
problem for the two-dimensional and multidimensional cases, respectively. The
reason of the distinct consideration of the two-dimensional case is that in this case
the main ideas of the computational algorythm are not darkened by thechnical
difficulties. Both these sections are divided, in turn, into the two subsections,
the first aimed at the consideration of the propagation of singularities along
the regular component of the singularity set of the solution, and the second
on the consideration of “jumps” of the asymptotic expansion from one of such
components to the another.



1 Examples

1.1 Singularities of solutions to a homogeneous equation
and correct statements of the problem

As it was already told in the introduction, the aim of this paper is to investigate
global aspects of asymptotic theory of partial differential equations on manifolds
with singularities. Namely, if the manifold M has two or more connected com-
ponents of its singularity set and @ is an elliptic partial differential operator on
M, then the problem is to compute the asymptotic expansion of solution to the
homogeneous equation

au =0 (1)

on the whole singularity set of M provided that this expansion is known on one
of the connected components of this set.

The stated problem has important applications to investigation of properties
of operator @ in the weighted Sobolev spaces H} (M) (see, e.g. {2]). Let us
illustrate the connection between asymptotic behavior of solutions to (1) and
the investigation of the operator

@ H(M) > H™(M)

on a simple example (here m is the order of the operator @).
Consider the operator

R [((1%2) ai)+-a€1—] ©)

given on the surface of the spindle S (see Figure 1). Here z is a coordinate along
the axis of the spindle, —1 < = < 1 and ¢ is the coordinate corresponding to the
rotation around this axis. It is easy to check that the full system of solutions to
equation (1) for such an operator is

koo
uki (xv(ro) = (1] — i) ei'kwa k 7& 0, (3)
uo(z,0) = A+ Bln {_Lg,

where k is an integer. So, one can see that if a solution to equation (1) behaves
as (14 z)* at one of the vertexes z = —1 of the spindle, then this solution
necessarily behaves as (1 — z)™* at the other its vertex z = 1. This fact allows



Figure 1. The spindle.

one, in particular, to investigate the correct statements of the problem for the
operator

. N O\ P

0= (=) 35) + g0 ¢ 209 = H3(S) ()
(to be short, we had omitted the factor (1 — z2)~? in the expression (2) for the

operator @) considered in the weighted Sobolev spaces H (S}, ¥ = (70,71). We
recall that the latter spaces are defined with the help of the norm

1 2r
2 d
= [ [ o™ (=2 |0 -a)" wiee)| do o
10
Here 4o and v, are weights at points z = —1 and z = 1, respectively.
One of the requirements for operator (4) to be an isomorphism is that the

kernel of this operator must vanish. From the other hand, the functions u¥ (z, )

given by (3) belong to spaces H2 (S) for 0 < k, 71 < —k (and arbitrary values of
s). From this fact it follows that for operator (4) to have zero kernel it is necessary
to require that the interval (4o, —%1) does not contain any integer k. Actually,
if we fix the value 7o, then all elements uf (z,¢) of the kernel with k > v, will
belong to the space H2(S) at the left vertex = = —1 of the spindle S. Later
on, as it was already mentioned, the behavior of the solution uf (z,) at the
left vertex prescribes the behavior of this solution at the right vertex. Namely,
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Figure 2. Kernel, cokernel, and the isomorphism region of the operator @.

if the solution is of order (1 4+ z)* at £ = —1, then it is of order (1 —z)7* at
z = 1. Hence, for operator (4) to have the zero kernel, it is necessary to require
that all elements of its kernel uf (z,() which belong to the space H?(S) at the
left vertex £ = —1 do not belong to this space at the right vertex z = 1 of the
spindle S. This means that any value of k subject to the inequality & > v, must
satisfy the condition k£ > —,, because the latter inequality is equivalent to the
fact that the function uf (z,¢) does not belong to the space H?(S) at z = 1.
So, the domain on the plane (y0,%1) where the operator @ has zero kernel is such
as it is shown on Figure 2 (the upper dashed region).

To investigate the cokernel of this operator we remark that the adjoint ope-
rator!

a . HJY™ — H2?

is given by the same expression. So, the domain on the plane (70,71), where
operator (4) has zero cokernel is such as it is drawn on Figure 2 (the lower
dashed region).

'with respect to the paring

1 2»
<u,v>=]]u(z,aa)u<z,w)dso(lf—“;2).



Now, combining the two obtained results one can construct the isomorphism
region for the considered operator which is dashed twice on Figure 2.

The above analysis shows that the dependence between the asymptotic be-
havior of one and the same solution at different points of singularity of the
underlying manifold affects the correct statements of the problems of the corre-
sponding differential operator. This paper is aimed at the investigation of this
dependence.

Further, we are mostly interested in the investigation of partial differential
equations on manifolds with singularities of the wedge and edge types (see [1]).
Since all these singularities can be obtained with the help of the operation of
constructing a cone over a manifold and taking direct product with a smooth
manifold, it suffices to investigate the above stated problem on manifolds with
conical singularities. For simplicity, we shall consider here singularities of the
type of the circular cones in different dimensions though methods developed in
this paper seem to be applicable to the conical singularities of an arbitrary type.

1.2 Propagation of singularities. Metamorphosis

Here, on simple examples, we illustrate that the investigation of the above stated
problem requires the analytic continuation of the differential equation in question
into the complex space.

1. In this example, we shall show that the singularities of solutions, being
located at points of singularities of the underlying manifold in the real domain,
propagate to the complex domain along the degeneration set of the analytic
continuation of the considered differential operator. To do this, let us consider
the Laplace equation on the surface of the two-dimensional cone C":

10 Ju c? 0%u

== —— =0, )

r or (r 81‘) ta Jp? (5)
Here (r, ) are polar coordinates on the surface of the cone, and ¢ is a constant

determined by the opening of the cone.
It is easy to see that the full system of solutions to equation (5) is

uE (r,p) = rike* ke Z. (6)
The latter formula shows that these solutions have singularities on the set
Pty =0
in the complexification of the cone C (we use here the coordinates

(z,y) = (rcosp,rsing) € C?

6



on the above mentioned complexification).

Certainly, this observation is based on the fact that for our simple example
we have written down the solutions to the homogeneous equation in the explicit
form. Since for general equations on manifolds with singularities it is not possible,
one has to understand the reason of appearence of the singularities in terms of
the considered operators. To do this, we notice that, due to the relations

9_,9,.9 90 _.(,8_,3 (7)
"or %9z 8¢ 8 '\*8: "ac)’

z =z +1y, ( = z — 1y, equation (5) can be rewritten in the form

%{(1 _ &) (z—a-a;)z+2(1 ) st (1= ) (ca%)z} u=0. (8)

We remark that the set of singularities 2 4+ y? = 0 of solutions to equation (5)
exactly coinsides with the degeneration set of this equation. Clearly, this fact is
not an occasional one, and we shall see below that the singularities of solution
propagate from singular points of the manifold into the complex domain along the
degeneration set of the considered equation. Hence, one can imagine that if the
equation has more than one point of singularity, then the asymptotic expansion
comes from one of these point to another through the complex domain along
the degeneration set of the corresponding equation. This guess can be confirmed
with the help of the following example which is a slight modification of the above
considered one.

2. Consider the equation

1+ 72

r2

(r%)z + 8%23] u=0 9)

as an equation on the surface of the spindle. In this case one of the vertexes of the
spindle corresponds to the origin in the plane (z,y), and the other corresponds
to infinity. We remark that the variable change p = 1/r does not change the
form of equation (9). In this example, the singular points r = 0 and r = oo are
not connected by the set of singularities of the solution on the (real) spindle, but
are lying on one and the same connected set {z = 0} U {{ = 0} of singularities
of solution in the complexification of this spindle. Such a situation is drawn
schematically on Figure 3. So, the form of the asymptotic expansion at one
of (real) points of singularities can be found out by that at the other if the
propagation of a singularity along the degeneration set (more exactly, along the

7
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Figure 3. Degeneration set (simple configuration).

regular part of the degeneration set) of the equation under consideration can be
computed. The method of this computation will be described below.

3. However, for more general equations the situation can be quite different.
Namely, in the latter example the degeneration set of solutions to homogeneous
equation was a regular complex manifold apart from the real singular points
of M. So, to compute the asymptotic expansion at one of singular points via
that at the other it was sufficient to examine the propagation of singularities
along this regular part. In general, however, the regular part of the degeneration
set of the equation (and, hence, the regular part of the set of singularities of
solutions) can split into different connected components, and points of singularity
of the manifold M can lye on different connected components. To illustrate
that this situation can really take place, let us turn our mind once more to the
consideration of equation (2) on the surface of the spindle. The degeneration set
for this equation can be decomposed into two irreducible components z = 1 and
z = —1. Consequently, the regular part of this degeneration set splits into the
(disjoint) union of two connected components (these two components intersect
each other at infinity; this fact is clearly quite occasional). It is clear that one of
the two points of singularity of the spindle lyes on one of these components, and
the other point of singularity lyes on the other of them; this situation is drawn
schematically on Figure 4.

Hence, if one knows the asymptotic expansion at one of the vertexes, say,



Components of the
degeneration set

Real space
L

x=-1 x=/

Figure 4. Degeneration set (general case).

z = 1, then to compute the corresponding asymptotic expansion at the other
vertex one has:

1) to investigate the propagation of singularity along the component z = 1
of the degeneration set;

2) to examine the “jump” of the singularity from one of the connected com-
ponents to the other. Clearly, this jump takes place at the point A of intersection
of the two irreducible components z = 1 and £ = —1 of the degeneration set
(see Figure 4. So, to examine the mentioned jump one has to investigate the
asymptotic expansion of the solution near the point A and then to find out the
asymptotic expansion of the solution at points of the component z = —1 near
the point A;

3) to investigate the propagation of singularity along the component z = —1
from A to the vertex z = —1.

Thus, in general, the following two problems arise:

First,to investigate the propagation of singularities along regular parts of
degeneration sets of the equation in question.

Second, to find out the asymptotic expansion of a singularity of solution on
one of the components of its singularity set provided that the corresponding
asymptotic expansion is known on the other component. This problem can be
solved by investigation of asymptotic expansion of solution in a neighborhood of
the intersection of the two components in question.

In the rest part of the paper we shall consider both these problems. To make



the presentation more clear, we shall consider first the two-dimensional case.

2 General Statement

So, the general statement of the problem is as follows:

Let M be an n-dimensional real-analytic manifold which is a real part of
a complex-analytic manifold Mc. Suppose that the manifold M has a finite
number of singular points m,,...,m; each being a point of conical type. This
means that in a neighborhood U; of each point mj, j = 1,..., k the manifold M
is diffeomorphic to the cone

(0,1) x §*1/{0} x §*°1, (10)

where §™! is an n — 1-dimensional unit sphere in the Cartesian space R". So,
near each point m; there exists a “coordinate system” (r,w), r € (0,1), w € ™71,
We suppose that this coordinate system is compatible with the complex extension
Mg of the manifold M, that is, that (r,w), r € D), w € Q"' forms a coordinate
system in a neighborhood of the point m; € M¢. Here by Q™! we denote the

complex quadrics
Q! = {3: ey (o)} = 1},
Jj=1

and by D; we denote the unit disk
Di={reC||r| <1}

in the complex plane C. So, we suppose that the complex manifold Mc is
biholomorphic to the complex cone

Dy x Q™7 {0} x Q™.

Consider an elliptic differential operator @ of order m on the manifold M.
This means, in particular, that this operator has the form

a= lgmaa (z) (%)a (11)

near each regular point of M and the form



near each singular point m;, where ’l;j are differential operators on the com-
plex quadrics Q*~! (we use here the above mentioned representation (10) of
the manifold M). Suppose that the operator @ can be analytically continued
on the manifold Mc; the continuation is given by the same formulas (11) and
(12), where a, (z) are now holomorphic functions of the variable z € C*, and
’l;_,- are differential operators on the complex quadrics Q™! with holomorphic
coefficients.

Now the problem is to investigate the asymptotic expansion of analytic con-
tinuations of solutions to the homogeneous equalion

Gu=0 (13)

to the complez manifold Mg near the degeneration set of the operator a.

In particular, we must investigate the propagation of singularities along the
degeneration set of the operator and the “metamorphosis” of the singularity
which takes place at points of intersection of different components of the degen-
eration set.

3 Two-Dimensional Case

3.1 Propagation of singularities

It is well-known (see [1], [3]) that, under the above conditions, the asymptotics
of solutions to (13) near each singular point of the manifold M has the form

my
u(r,p) ~ Z Sk Z a; () In'r
k

=0

(conormal asymptotics), where r is a radial variable and ¢ is the angular variable
along the directrix of the cone and the outer sum is taken over the set of values
of s = Si having a finite intersection with any half-plane Res < A for any real
value of A.

In this subsection, we shall investigate how asymptotics of the conormal
type propagate along the degeneration set of equation (13). Since in the two-
dimensional case the sphere $"~! is simply a circle, we shall use the notation
¢ instead of w for the coordinate on this circle. Hence, equation (13) can be

rewritten in the form
- a d
au=a T’Q’TE’% u = 0.

11



This equation can be considered as an equation on the real two-dimensional plane
R? with the coordinates z, y:

T =Trcosp, y=rsine

(sure, this equation degenerates at the origin). As above, we suppose that the
coefficients of the obtained equation can be analytically continued to the complex
domain.

To describe the degeneration set of the considered equation, it is convenient
to introduce the complex variables z = z + 1y, ( = ¢ — 1y. Using the relations
(7) one can rewrite the equation in the form

o (3G G ) u=0 (14)

with some symbol a, (z,{,p,q). The reader can notice that the latter equation
is an equation of the Fuchs type in the variables (z,{) with the degeneration
set {z =0} U {¢ = 0}. Hence, the singularities of solutions to this equation are
posited on its degeneration set (see [4], [5]).

To be definite, let us consider the equation near the set z = 0; in this case
z is a small complex variable and ( is separated from zero. Thus, it is useful to
rewrite the equation as?

3 2
al z, = 0. 15
For example, equation (5) have the following form in the variables (z, y):
?u 0u du  Ou
2, .22 —e? bt
(@4 ) Ta (1= ) S+ (@4 ) T4 (=) (35 +450) =0

In the variables (z,() we obtain

{(1 -c?) (zf—z)zw (1+c%) (:3) (c(fc) +(1-¢%) (C%)z}u =0.

If one examines this equation near the set z = 0 (under the assumption that { is not small),
the equation can be rewritten as

{12 () xte (2) (&) +e0- (2)
+¢ (1 —¢?) (a—c—)}u=0.

2In what follows we omit subscripts of symbols. So, one and the same letter a can denote
different symbols.

12



Let us search for solutions to equation (15) in the form

k
u(z,():zSZuj (z,¢)In"z, (16)
3=0
where u; (z,() are regular functions of z near the origin:

= 0]

i (50 =) uin(() 7. (17)

i=

Taking into account the relations

k k
z%u(z,(j) = SzSZu,- (z,)Inz + zsz (z%uj (z,()) In?z

j=0 =0
k
+ D gui (5O,
=1
one can write down the result of the substitution of (16) into (15) in the form

a (z,(,S-’;—z%,%) ur(z,{) = 0,

8 a - 8 0
a(z’<’8+25;,52) Uj(zyf) = Zai (z:QzEab—C)ui(‘ZaC)a (18)

i=5+1
j=k—1,....0.

|

Here a;(z,(,20/0z,0/9() are diflerential operators of order m + j — k with
holomorphic in (z,() coefficients.

Let us consider the first of equations (18). Expanding the coefficients of the
operator a(z,(,S + z0/0z,0/9() into the Taylor series in z and substituting
(17) for ug (z,¢), we arrive at the recurrent system of equations for ug ({):

a:) (Ca Sa B_BC) ko (C) = 07

-1

%(gs+a§Ju“«)= —§:$d(aS+L§)uqu (19)

=0

1=1,2,....

13



Here a (¢, p, ) are Taylor coefficients of the symbol a(z,(,p,¢) of the operator
a(z,(,20/0z,(8/3():

o0

a(z,0,0,9) =Y 2a;((,p,q).-

1=0

In particular,
ag (¢, p,9) =a(0,{,p,9).

The recurrent system of equations for Taylor coefficients of functions u; (z,() can
be obtained quite similar to system (19). Thus, one can see that to construct the
asymptotic expansion of the form (15) to equation (16) it is sufficient to solve
an ordinary differential equation for each coefficient of this expansion.

3.2 Asymptotics near the intersection

In this subsection we investigate the asymptotic expansion of solutions to equa-
tion (13) near a point mg € Mg of intersection of different components of de-
generation set. We require that the following condition is valid:

Condition 1 The considered point mg is a (proper) point of transversal inter-
section of two regular components of the degeneration set of the equation in
question.

Under this condition, it is clear that the equation can be rewritten in the
form (14) near the point mq. However, unlike the previous subsection, one cannot
neglect the factor ¢ in the operator (3/9( since at the point m one has z = ( = 0.

Let us show that the asymptotics of a solution to equation (14) has a specific
form in a neighborhood of the point my.

Lemma 1 Let u(z,() be a solution to equation (14) near z = { = 0 having the
Jorm (16) of conormal asymptotics apart from the origin. Then this solution has
an asymplotic expansion of the form

ki kg

u(z,()=zS‘CS’ZZuJ-;(z,()lnjz In¢ (20)

j=0 I=0

with uj (z,() regular near my.

14



Proof. For simplicity, we shall consider the case when both multiplicities
are equal to 1. So, for the solution u(z,{) we have the following asymptotic
expansions: :

u(z,() = 2% [ur(z,{)Inz+uo(z)] for z = 0,[¢| > ¢,
u(z,0) = (PR (0l +up(2,0)] for (= 0,]z] > ¢ (21)
(for any positive €) with regular functions u; (z,(), u}(2,(), 7 = 1,2. Denote

v(z,¢) = 27%("%u(z,().
This function have the form
v(2,¢) = w(z,¢)nz+uo(z) forz = 0,]¢ > e,
v(z,() = uw(z,0)In{+uy(z,) for { = 0,]z| > e.

Hence, the function

v1(2,¢) =v(z,{) —u1(z,{)Inz —u) (2,{)In¢

possesses the following properties:

1) It is univalent both around the manifold 2 = 0 and { = 0.

2) It has at most logarithmic growth as z — 0 and { — 0.

Hence, v, (2,() is a holomorphic function in a deleted neighborhood of the
point mg. Using the theorem on removable singularity, we obtain that this
function is regular at the point mg as well. This proves the Lemma.

Now let us search for solutions to equation (14) in the form (20). Taking into
account the relations

ko

z-g; = (% {iz[(sl Z?‘) uj (z, ()] In’zIn'¢

j=0 =0

ki ks
g—z = S¢S {J:Zog [(52 + C(%) uji (z,C)] In?z Inf¢
Ky kg
+ ZZIUjI(Z,C)lIIjZ in't },
1=0 I=1

15



we arrive at the following recurrent system of equations for the unknown coeffi-
cients uj (z,() of asymptotic expansion (20):

G(Z C Sl‘l’zaa,s'z'l‘cac) uklkz(zaC)‘_“Oa
a(z C:Sl'l'zg S+ ¢+ )“J’l(za()= (22)

Z a (z, ¢, 25 Ca_(f) uj (2,()

where ajy (z,(,20/0z,(8/9() are differential operators of order m+3+1—j5 -1
and the summation is taken over all indices j', I’ such that 3 > 7, ' > I, (7, ') #
(7,1). Let us consider the first of equations (22). We shall search for a solution
to this equation in the form of the Taylor series

U[\IA2 E uklhz
a,f=0

Substituting this relation into the first from equations (22) and expanding the
coefficients of the operator a (z,(,S; + 28/8z, S + (9/J¢) in powers of z and (,
we obtain

(160 (5[, 32) u?‘?kg = 0,
aho (S1+ @, Sz + B)uyl,, = (23)

§
- Z (1:.,_.,‘;3_5 (Sl +7, 5+ 6) uzlkg'
(v.6)<(a.,0)

Here al; (p, ) are the Taylor coefficients of the symbol H (z,(,p, ¢) in powers of

z and (:
a(z0p0)= D, as(pg)2"¢"

|(v,6)I<m

So, there exists a nontrivial solution to equation (14) of the form (20) only in
the case when the numbers 5, and S; satisfy the following equation

al (S1, S2) = 0. (24)

The last equation is a homogeneous algebraic equation with respect to (5, S2)
of order m. Using this equation one can find the possible values of the ratio
S1/Ss necessary for equation (14) to possess a solution of the form (20). These

16



values allow to compute the power of { in asymptotic expansions (21} if the
corresponding power of z is known.

The rest equation in (23) can be solved in a quite similar manner if the
following nondegeneracy condition is valid:

Condition 2 The pair (S; + @, Sz + 8) is not a solution to equation (24) except
for (o, 8) = 0.

We remark that the latter condition takes place in the generic position.

Similar considerations can be also used for computing asymptotic expansions of solutions
to differential equations near singular points of the manifold. We shall illustrate this on the
example of the equation (8):

1 AN ik 2\’
E{(l—cz) (ZE) +2(1+C?)ZC823C+(}_02) (C&) }u:{).

Searching for solutions to this equation in the form

u=z2¢?
we are lead to the following equation for (a, 3):
(1-cHe?+2(1+cHaf+(1-*)p*=0.
The ratio «/f can be computed from this equation:

a l+¢ a l—c¢

- = - or = =-— .

I} l—c¢ 8 l1+¢
Taking into account that we are searching for solutions to (8) which are univalent on the real
space z = {, we obtain the second equation for determining the numbers & and g:

a—f=keclZ.

The last two equations give us possible values of a and 8:

NS

8= c— 1)k

oo —les b
g (et 1k

The reader can easily verify that all the obtained values of (a, 3) really determine univalent
solutions to equation (8). Actually, the corresponding solutions to the homogeneous equation

are o1}k (a=1}k .
s 2

or

and

z_ {e—1)k C_ !n:‘l!k - r-CkeikV‘

The latter expressions correspond to formula (6) above.
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4 Multidimensional case

In this section, we consider asymptotic expansions of solutions to the homoge-
neous equation (1) for some operator of the corner type (12) on n-dimensional
manifold M with conical singularities. Similar to the previous section, we divide
the presentation into two parts: investigation of the propagation of singularities
along regular parts of the degeneration set of the considered equation and in-
vestigation of “metamorphosis” of singularity on the intersection points of these
regular parts.

4.1 Propagation of singularities

Considerations similar to those of Subsection 3.1 show that the complexification
of the equation of the corner type in the complex domain in a neighborhood of
any point from regular part of its degeneration set reads

Jd 0
alz u=0, 25
(655 2) (29
where z € C is an one-dimensional complex variable transversal to the degener-
ation set at the considered point and ¢ = ({;,...,{a=1) € C*"! are coordinates

on the degeneration set itself.
Let us search for solutions to this equa.t,ion in the form

y==z ZuJ ln z (26)

with some regular functions u; (z, (). As above, we search the functions u; (z,()
in the form of the Taylor series in the variable z:

=Y Zuu((). (27)

Substituting relations (26) and (27) into equation (25) and equating the coeffi-
cients of powers of z, we arrive at the following recurrent system of equations for
the Taylor coefficients u; (¢) of the main term uy (z, () of expansion (26):

(cs c) wo(() = 0,

9 < 9
(C S+1, BC) wa(() = =) a (C S+J’3C) ukj (C)

7=0

1=1,2,...,
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and similar recurrent systems for Taylor coeflicients of the rest terms u;(z,(),
J=0,...,k—1. Here, as above, a}{(,p, ) are the Taylor coefficients of the full
symbol a(z,(,p,¢) in the variable z:

(2,¢,7,9) ZZ’ (S X)F

j=0

We remark that in the multidimensional case the Taylor coefficients u;; ({) are
to be determined from a partial differential equation along the components of
the degeneration set of equation (25).

4.2 Asymptotics near the intersection

Here we investigate the asymptotics of solutions near the intersection of different
components of the degeneration set of the equation considered. The geomet-
rical situation in this case is quite different from that in the two-dimensional
one. The matter is that in the multidimensional case the intersection between
different components of the degeneration set is a complex-analytic manifold of
non-zero dimension whereas in the two-dimensional case this intersection is sim-
ply a discrete set of points.

So, let us consider two submanifolds X, and X, in the complexification Mg
which are two irreducible components of the degeneration set of the operator @
and suppose that these two manifolds intersect each other transversely at points
of their intersection X; N X;. Then, similar to the results of the previous section,
one can rewrite the operator @ in the form

“ g @
a=a ( ,6,m 2 B,Cac a)

where the coordinates (z,(,75) are chosen in such a way that z = 0 and ( =0
are equations of the manifolds X, and X;, correspondingly.
Suppose that u (2,(,%) is a solution to the homogeneous equation

Jd ,a 0
o (56mogmtar g ) wlaGn) =0 (28)

such that u (z,{,n) has the asymptotic expansion of the conormal type near both
X; and X;. This means that

ky

u(z,(,n) = 2> Z uj(z,¢,n)In?z (29)

3=0
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with regular functions u; (z,(,7n) near X; apart from X, (that is, for |z| < &,
and || > €, for some positive €, and ¢;) and

u(z,(,n) = cSﬂZv, (,¢,m)In%¢ (30)

3=0

with regular functions v;(z,¢,7) near X; apart from X;. Then, similar to the
result of Subsection 3.2, the following affirmation takes place:

Lemma 2 Let u{z,(,n) be a solution to equation (28) having asymptotic expan-
sions (29) and (30) at points of X, and Xz, correspondingly. Then this solution
has the asymptotic expansion of the form

ko ks
u(z,(,n)=zs‘(S’ZZuﬂ (z,¢,7)In7z1n%¢ (31)

1=0 {=0

with regular functions uj (z,(,n) near the intersection X, N Xy, that is, at the
points with z = ( = 0.

The proof of this lemma is quite similar to that of Lemma 1 in Subsection
3.2.

To establish the connection between numbers S; and S; let us search for a
solution to equation (28) in the form (31). The substitution of expansion (31)
into equation (28) goes quite similar to that in Subsection 3.2. The result is

0 a d
(1(2 Cv’]aSl+za 152+C6C PR )uhk:( 1(377):07

0 a 9
a(z ¢, n,Sl+za ’52+C8C P} )UJI(Z ¢,n)=

a 0
Z ajy (Z,C,T], ,Cac a )u;'l’ (2 C) )

325020 )EG)

where a; (2,(,7n,20/02,(3/0(, 3/0y) are differential operators of order m + j +
[ — 7' —U. Similar to the two-dimensional case we can construct the recurrent
system of equations for the Taylor coefficients uj.',ﬁ (n) of the function uj (z,¢,7)

in (2,():

00

uj{z,(,n) = Z u;’,’a (1])2"‘(5.

a,p=0
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For the main term wuy,, (2, (,n) this system reads

, d
Qag (na813521 -6_7?) u?:?k; (7]) = O!
9\ .
060 (T], Sl + a, Sj + ,B, 5};) uhﬁk? = (32)

d
- Z Gopmry -t (7), S1+7,52+54, 0_) “:fk, (m),
(1,6)<(o.ﬁ) T]

where, as above, a’; (7, ps, p¢, py) are the Taylor coefficients of the symbol a in
powers of z and (:

§
a(z,(,1,P:,P¢, Pn) = Z als (1, pes e n) 27C°
(.6} €m

Clearly, similar systems can be obtained for all coefficients u?,ﬁ (7).

Thus, for coefficients u?f (n) we have obtained a recurrent system of differen-
tial equations of the form (32). Since the first equation in this system (see (32))
is a homogeneous one (its right-hand part vanishes), for this system to admit
nontrivial solutions it is necessary that the homogeneous equation

(1;)0 (U:SHSQ) t%) u=10

on the manifold X; N X; has a non-zero univalent solution for the given values
of 51, Sz2. This is exactly the condition for determining the connection between
values of S; and S, on the two components X, and X; of the degeneration set
of the considered equation.

Remark 1 This condition can be formulated in the more explicit terms if there
exists a real-type compact submanifold X of the intersection X;NX; such that the
operator expression ag, (17, S}, S2,3/31) determines an elliptic analytic operator
family on X with parameters S, and S;. Denote by > the set in the plane
C; with coordinates (S;,Sz) such that the operator family ag, (n, S1,.S2,8/d7)
is invertible outside 5. Then the connection between S; and S; is described by

the inclusion (51, 5;) € 3.
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